1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12 */
13
14#undef DEBUG
15
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/sched/mm.h>
19#include <linux/sched/task_stack.h>
20#include <linux/sched/topology.h>
21#include <linux/smp.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/init.h>
25#include <linux/spinlock.h>
26#include <linux/cache.h>
27#include <linux/err.h>
28#include <linux/device.h>
29#include <linux/cpu.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/profile.h>
33#include <linux/processor.h>
34#include <linux/random.h>
35#include <linux/stackprotector.h>
36#include <linux/pgtable.h>
37#include <linux/clockchips.h>
38#include <linux/kexec.h>
39
40#include <asm/ptrace.h>
41#include <linux/atomic.h>
42#include <asm/irq.h>
43#include <asm/hw_irq.h>
44#include <asm/kvm_ppc.h>
45#include <asm/dbell.h>
46#include <asm/page.h>
47#include <asm/smp.h>
48#include <asm/time.h>
49#include <asm/machdep.h>
50#include <asm/mmu_context.h>
51#include <asm/cputhreads.h>
52#include <asm/cputable.h>
53#include <asm/mpic.h>
54#include <asm/vdso_datapage.h>
55#ifdef CONFIG_PPC64
56#include <asm/paca.h>
57#endif
58#include <asm/vdso.h>
59#include <asm/debug.h>
60#include <asm/cpu_has_feature.h>
61#include <asm/ftrace.h>
62#include <asm/kup.h>
63#include <asm/fadump.h>
64
65#include <trace/events/ipi.h>
66
67#ifdef DEBUG
68#include <asm/udbg.h>
69#define DBG(fmt...) udbg_printf(fmt)
70#else
71#define DBG(fmt...)
72#endif
73
74#ifdef CONFIG_HOTPLUG_CPU
75/* State of each CPU during hotplug phases */
76static DEFINE_PER_CPU(int, cpu_state) = { 0 };
77#endif
78
79struct task_struct *secondary_current;
80bool has_big_cores __ro_after_init;
81bool coregroup_enabled __ro_after_init;
82bool thread_group_shares_l2 __ro_after_init;
83bool thread_group_shares_l3 __ro_after_init;
84
85DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
86DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
87DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
88DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
89static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
90
91EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
92EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
93EXPORT_PER_CPU_SYMBOL(cpu_core_map);
94EXPORT_SYMBOL_GPL(has_big_cores);
95
96#define MAX_THREAD_LIST_SIZE	8
97#define THREAD_GROUP_SHARE_L1   1
98#define THREAD_GROUP_SHARE_L2_L3 2
99struct thread_groups {
100	unsigned int property;
101	unsigned int nr_groups;
102	unsigned int threads_per_group;
103	unsigned int thread_list[MAX_THREAD_LIST_SIZE];
104};
105
106/* Maximum number of properties that groups of threads within a core can share */
107#define MAX_THREAD_GROUP_PROPERTIES 2
108
109struct thread_groups_list {
110	unsigned int nr_properties;
111	struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
112};
113
114static struct thread_groups_list tgl[NR_CPUS] __initdata;
115/*
116 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
117 * the set its siblings that share the L1-cache.
118 */
119DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
120
121/*
122 * On some big-cores system, thread_group_l2_cache_map for each CPU
123 * corresponds to the set its siblings within the core that share the
124 * L2-cache.
125 */
126DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
127
128/*
129 * On P10, thread_group_l3_cache_map for each CPU is equal to the
130 * thread_group_l2_cache_map
131 */
132DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
133
134/* SMP operations for this machine */
135struct smp_ops_t *smp_ops;
136
137/* Can't be static due to PowerMac hackery */
138volatile unsigned int cpu_callin_map[NR_CPUS];
139
140int smt_enabled_at_boot = 1;
141
142/*
143 * Returns 1 if the specified cpu should be brought up during boot.
144 * Used to inhibit booting threads if they've been disabled or
145 * limited on the command line
146 */
147int smp_generic_cpu_bootable(unsigned int nr)
148{
149	/* Special case - we inhibit secondary thread startup
150	 * during boot if the user requests it.
151	 */
152	if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
153		if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
154			return 0;
155		if (smt_enabled_at_boot
156		    && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
157			return 0;
158	}
159
160	return 1;
161}
162
163
164#ifdef CONFIG_PPC64
165int smp_generic_kick_cpu(int nr)
166{
167	if (nr < 0 || nr >= nr_cpu_ids)
168		return -EINVAL;
169
170	/*
171	 * The processor is currently spinning, waiting for the
172	 * cpu_start field to become non-zero After we set cpu_start,
173	 * the processor will continue on to secondary_start
174	 */
175	if (!paca_ptrs[nr]->cpu_start) {
176		paca_ptrs[nr]->cpu_start = 1;
177		smp_mb();
178		return 0;
179	}
180
181#ifdef CONFIG_HOTPLUG_CPU
182	/*
183	 * Ok it's not there, so it might be soft-unplugged, let's
184	 * try to bring it back
185	 */
186	generic_set_cpu_up(nr);
187	smp_wmb();
188	smp_send_reschedule(nr);
189#endif /* CONFIG_HOTPLUG_CPU */
190
191	return 0;
192}
193#endif /* CONFIG_PPC64 */
194
195static irqreturn_t call_function_action(int irq, void *data)
196{
197	generic_smp_call_function_interrupt();
198	return IRQ_HANDLED;
199}
200
201static irqreturn_t reschedule_action(int irq, void *data)
202{
203	scheduler_ipi();
204	return IRQ_HANDLED;
205}
206
207#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
208static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
209{
210	timer_broadcast_interrupt();
211	return IRQ_HANDLED;
212}
213#endif
214
215#ifdef CONFIG_NMI_IPI
216static irqreturn_t nmi_ipi_action(int irq, void *data)
217{
218	smp_handle_nmi_ipi(get_irq_regs());
219	return IRQ_HANDLED;
220}
221#endif
222
223static irq_handler_t smp_ipi_action[] = {
224	[PPC_MSG_CALL_FUNCTION] =  call_function_action,
225	[PPC_MSG_RESCHEDULE] = reschedule_action,
226#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
227	[PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
228#endif
229#ifdef CONFIG_NMI_IPI
230	[PPC_MSG_NMI_IPI] = nmi_ipi_action,
231#endif
232};
233
234/*
235 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
236 * than going through the call function infrastructure, and strongly
237 * serialized, so it is more appropriate for debugging.
238 */
239const char *smp_ipi_name[] = {
240	[PPC_MSG_CALL_FUNCTION] =  "ipi call function",
241	[PPC_MSG_RESCHEDULE] = "ipi reschedule",
242#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
243	[PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
244#endif
245#ifdef CONFIG_NMI_IPI
246	[PPC_MSG_NMI_IPI] = "nmi ipi",
247#endif
248};
249
250/* optional function to request ipi, for controllers with >= 4 ipis */
251int smp_request_message_ipi(int virq, int msg)
252{
253	int err;
254
255	if (msg < 0 || msg > PPC_MSG_NMI_IPI)
256		return -EINVAL;
257#ifndef CONFIG_NMI_IPI
258	if (msg == PPC_MSG_NMI_IPI)
259		return 1;
260#endif
261
262	err = request_irq(virq, smp_ipi_action[msg],
263			  IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
264			  smp_ipi_name[msg], NULL);
265	WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
266		virq, smp_ipi_name[msg], err);
267
268	return err;
269}
270
271#ifdef CONFIG_PPC_SMP_MUXED_IPI
272struct cpu_messages {
273	long messages;			/* current messages */
274};
275static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
276
277void smp_muxed_ipi_set_message(int cpu, int msg)
278{
279	struct cpu_messages *info = &per_cpu(ipi_message, cpu);
280	char *message = (char *)&info->messages;
281
282	/*
283	 * Order previous accesses before accesses in the IPI handler.
284	 */
285	smp_mb();
286	WRITE_ONCE(message[msg], 1);
287}
288
289void smp_muxed_ipi_message_pass(int cpu, int msg)
290{
291	smp_muxed_ipi_set_message(cpu, msg);
292
293	/*
294	 * cause_ipi functions are required to include a full barrier
295	 * before doing whatever causes the IPI.
296	 */
297	smp_ops->cause_ipi(cpu);
298}
299
300#ifdef __BIG_ENDIAN__
301#define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
302#else
303#define IPI_MESSAGE(A) (1uL << (8 * (A)))
304#endif
305
306irqreturn_t smp_ipi_demux(void)
307{
308	mb();	/* order any irq clear */
309
310	return smp_ipi_demux_relaxed();
311}
312
313/* sync-free variant. Callers should ensure synchronization */
314irqreturn_t smp_ipi_demux_relaxed(void)
315{
316	struct cpu_messages *info;
317	unsigned long all;
318
319	info = this_cpu_ptr(&ipi_message);
320	do {
321		all = xchg(&info->messages, 0);
322#if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
323		/*
324		 * Must check for PPC_MSG_RM_HOST_ACTION messages
325		 * before PPC_MSG_CALL_FUNCTION messages because when
326		 * a VM is destroyed, we call kick_all_cpus_sync()
327		 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
328		 * messages have completed before we free any VCPUs.
329		 */
330		if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
331			kvmppc_xics_ipi_action();
332#endif
333		if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
334			generic_smp_call_function_interrupt();
335		if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
336			scheduler_ipi();
337#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
338		if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
339			timer_broadcast_interrupt();
340#endif
341#ifdef CONFIG_NMI_IPI
342		if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
343			nmi_ipi_action(0, NULL);
344#endif
345	} while (READ_ONCE(info->messages));
346
347	return IRQ_HANDLED;
348}
349#endif /* CONFIG_PPC_SMP_MUXED_IPI */
350
351static inline void do_message_pass(int cpu, int msg)
352{
353	if (smp_ops->message_pass)
354		smp_ops->message_pass(cpu, msg);
355#ifdef CONFIG_PPC_SMP_MUXED_IPI
356	else
357		smp_muxed_ipi_message_pass(cpu, msg);
358#endif
359}
360
361void arch_smp_send_reschedule(int cpu)
362{
363	if (likely(smp_ops))
364		do_message_pass(cpu, PPC_MSG_RESCHEDULE);
365}
366EXPORT_SYMBOL_GPL(arch_smp_send_reschedule);
367
368void arch_send_call_function_single_ipi(int cpu)
369{
370	do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
371}
372
373void arch_send_call_function_ipi_mask(const struct cpumask *mask)
374{
375	unsigned int cpu;
376
377	for_each_cpu(cpu, mask)
378		do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
379}
380
381#ifdef CONFIG_NMI_IPI
382
383/*
384 * "NMI IPI" system.
385 *
386 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
387 * a running system. They can be used for crash, debug, halt/reboot, etc.
388 *
389 * The IPI call waits with interrupts disabled until all targets enter the
390 * NMI handler, then returns. Subsequent IPIs can be issued before targets
391 * have returned from their handlers, so there is no guarantee about
392 * concurrency or re-entrancy.
393 *
394 * A new NMI can be issued before all targets exit the handler.
395 *
396 * The IPI call may time out without all targets entering the NMI handler.
397 * In that case, there is some logic to recover (and ignore subsequent
398 * NMI interrupts that may eventually be raised), but the platform interrupt
399 * handler may not be able to distinguish this from other exception causes,
400 * which may cause a crash.
401 */
402
403static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
404static struct cpumask nmi_ipi_pending_mask;
405static bool nmi_ipi_busy = false;
406static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
407
408noinstr static void nmi_ipi_lock_start(unsigned long *flags)
409{
410	raw_local_irq_save(*flags);
411	hard_irq_disable();
412	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
413		raw_local_irq_restore(*flags);
414		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
415		raw_local_irq_save(*flags);
416		hard_irq_disable();
417	}
418}
419
420noinstr static void nmi_ipi_lock(void)
421{
422	while (raw_atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
423		spin_until_cond(raw_atomic_read(&__nmi_ipi_lock) == 0);
424}
425
426noinstr static void nmi_ipi_unlock(void)
427{
428	smp_mb();
429	WARN_ON(raw_atomic_read(&__nmi_ipi_lock) != 1);
430	raw_atomic_set(&__nmi_ipi_lock, 0);
431}
432
433noinstr static void nmi_ipi_unlock_end(unsigned long *flags)
434{
435	nmi_ipi_unlock();
436	raw_local_irq_restore(*flags);
437}
438
439/*
440 * Platform NMI handler calls this to ack
441 */
442noinstr int smp_handle_nmi_ipi(struct pt_regs *regs)
443{
444	void (*fn)(struct pt_regs *) = NULL;
445	unsigned long flags;
446	int me = raw_smp_processor_id();
447	int ret = 0;
448
449	/*
450	 * Unexpected NMIs are possible here because the interrupt may not
451	 * be able to distinguish NMI IPIs from other types of NMIs, or
452	 * because the caller may have timed out.
453	 */
454	nmi_ipi_lock_start(&flags);
455	if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
456		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
457		fn = READ_ONCE(nmi_ipi_function);
458		WARN_ON_ONCE(!fn);
459		ret = 1;
460	}
461	nmi_ipi_unlock_end(&flags);
462
463	if (fn)
464		fn(regs);
465
466	return ret;
467}
468
469static void do_smp_send_nmi_ipi(int cpu, bool safe)
470{
471	if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
472		return;
473
474	if (cpu >= 0) {
475		do_message_pass(cpu, PPC_MSG_NMI_IPI);
476	} else {
477		int c;
478
479		for_each_online_cpu(c) {
480			if (c == raw_smp_processor_id())
481				continue;
482			do_message_pass(c, PPC_MSG_NMI_IPI);
483		}
484	}
485}
486
487/*
488 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
489 * - fn is the target callback function.
490 * - delay_us > 0 is the delay before giving up waiting for targets to
491 *   begin executing the handler, == 0 specifies indefinite delay.
492 */
493static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
494				u64 delay_us, bool safe)
495{
496	unsigned long flags;
497	int me = raw_smp_processor_id();
498	int ret = 1;
499
500	BUG_ON(cpu == me);
501	BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
502
503	if (unlikely(!smp_ops))
504		return 0;
505
506	nmi_ipi_lock_start(&flags);
507	while (nmi_ipi_busy) {
508		nmi_ipi_unlock_end(&flags);
509		spin_until_cond(!nmi_ipi_busy);
510		nmi_ipi_lock_start(&flags);
511	}
512	nmi_ipi_busy = true;
513	nmi_ipi_function = fn;
514
515	WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
516
517	if (cpu < 0) {
518		/* ALL_OTHERS */
519		cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
520		cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
521	} else {
522		cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
523	}
524
525	nmi_ipi_unlock();
526
527	/* Interrupts remain hard disabled */
528
529	do_smp_send_nmi_ipi(cpu, safe);
530
531	nmi_ipi_lock();
532	/* nmi_ipi_busy is set here, so unlock/lock is okay */
533	while (!cpumask_empty(&nmi_ipi_pending_mask)) {
534		nmi_ipi_unlock();
535		udelay(1);
536		nmi_ipi_lock();
537		if (delay_us) {
538			delay_us--;
539			if (!delay_us)
540				break;
541		}
542	}
543
544	if (!cpumask_empty(&nmi_ipi_pending_mask)) {
545		/* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
546		ret = 0;
547		cpumask_clear(&nmi_ipi_pending_mask);
548	}
549
550	nmi_ipi_function = NULL;
551	nmi_ipi_busy = false;
552
553	nmi_ipi_unlock_end(&flags);
554
555	return ret;
556}
557
558int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
559{
560	return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
561}
562
563int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
564{
565	return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
566}
567#endif /* CONFIG_NMI_IPI */
568
569#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
570void tick_broadcast(const struct cpumask *mask)
571{
572	unsigned int cpu;
573
574	for_each_cpu(cpu, mask)
575		do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
576}
577#endif
578
579#ifdef CONFIG_DEBUGGER
580static void debugger_ipi_callback(struct pt_regs *regs)
581{
582	debugger_ipi(regs);
583}
584
585void smp_send_debugger_break(void)
586{
587	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
588}
589#endif
590
591#ifdef CONFIG_CRASH_DUMP
592void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
593{
594	int cpu;
595
596	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
597	if (kdump_in_progress() && crash_wake_offline) {
598		for_each_present_cpu(cpu) {
599			if (cpu_online(cpu))
600				continue;
601			/*
602			 * crash_ipi_callback will wait for
603			 * all cpus, including offline CPUs.
604			 * We don't care about nmi_ipi_function.
605			 * Offline cpus will jump straight into
606			 * crash_ipi_callback, we can skip the
607			 * entire NMI dance and waiting for
608			 * cpus to clear pending mask, etc.
609			 */
610			do_smp_send_nmi_ipi(cpu, false);
611		}
612	}
613}
614#endif
615
616void crash_smp_send_stop(void)
617{
618	static bool stopped = false;
619
620	/*
621	 * In case of fadump, register data for all CPUs is captured by f/w
622	 * on ibm,os-term rtas call. Skip IPI callbacks to other CPUs before
623	 * this rtas call to avoid tricky post processing of those CPUs'
624	 * backtraces.
625	 */
626	if (should_fadump_crash())
627		return;
628
629	if (stopped)
630		return;
631
632	stopped = true;
633
634#ifdef CONFIG_CRASH_DUMP
635	if (kexec_crash_image) {
636		crash_kexec_prepare();
637		return;
638	}
639#endif
640
641	smp_send_stop();
642}
643
644#ifdef CONFIG_NMI_IPI
645static void nmi_stop_this_cpu(struct pt_regs *regs)
646{
647	/*
648	 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
649	 */
650	set_cpu_online(smp_processor_id(), false);
651
652	spin_begin();
653	while (1)
654		spin_cpu_relax();
655}
656
657void smp_send_stop(void)
658{
659	smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
660}
661
662#else /* CONFIG_NMI_IPI */
663
664static void stop_this_cpu(void *dummy)
665{
666	hard_irq_disable();
667
668	/*
669	 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
670	 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
671	 * to know other CPUs are offline before it breaks locks to flush
672	 * printk buffers, in case we panic()ed while holding the lock.
673	 */
674	set_cpu_online(smp_processor_id(), false);
675
676	spin_begin();
677	while (1)
678		spin_cpu_relax();
679}
680
681void smp_send_stop(void)
682{
683	static bool stopped = false;
684
685	/*
686	 * Prevent waiting on csd lock from a previous smp_send_stop.
687	 * This is racy, but in general callers try to do the right
688	 * thing and only fire off one smp_send_stop (e.g., see
689	 * kernel/panic.c)
690	 */
691	if (stopped)
692		return;
693
694	stopped = true;
695
696	smp_call_function(stop_this_cpu, NULL, 0);
697}
698#endif /* CONFIG_NMI_IPI */
699
700static struct task_struct *current_set[NR_CPUS];
701
702static void smp_store_cpu_info(int id)
703{
704	per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
705#ifdef CONFIG_PPC_E500
706	per_cpu(next_tlbcam_idx, id)
707		= (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
708#endif
709}
710
711/*
712 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
713 * rather than just passing around the cpumask we pass around a function that
714 * returns the that cpumask for the given CPU.
715 */
716static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
717{
718	cpumask_set_cpu(i, get_cpumask(j));
719	cpumask_set_cpu(j, get_cpumask(i));
720}
721
722#ifdef CONFIG_HOTPLUG_CPU
723static void set_cpus_unrelated(int i, int j,
724		struct cpumask *(*get_cpumask)(int))
725{
726	cpumask_clear_cpu(i, get_cpumask(j));
727	cpumask_clear_cpu(j, get_cpumask(i));
728}
729#endif
730
731/*
732 * Extends set_cpus_related. Instead of setting one CPU at a time in
733 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
734 */
735static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
736				struct cpumask *(*dstmask)(int))
737{
738	struct cpumask *mask;
739	int k;
740
741	mask = srcmask(j);
742	for_each_cpu(k, srcmask(i))
743		cpumask_or(dstmask(k), dstmask(k), mask);
744
745	if (i == j)
746		return;
747
748	mask = srcmask(i);
749	for_each_cpu(k, srcmask(j))
750		cpumask_or(dstmask(k), dstmask(k), mask);
751}
752
753/*
754 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
755 *                      property for the CPU device node @dn and stores
756 *                      the parsed output in the thread_groups_list
757 *                      structure @tglp.
758 *
759 * @dn: The device node of the CPU device.
760 * @tglp: Pointer to a thread group list structure into which the parsed
761 *      output of "ibm,thread-groups" is stored.
762 *
763 * ibm,thread-groups[0..N-1] array defines which group of threads in
764 * the CPU-device node can be grouped together based on the property.
765 *
766 * This array can represent thread groupings for multiple properties.
767 *
768 * ibm,thread-groups[i + 0] tells us the property based on which the
769 * threads are being grouped together. If this value is 1, it implies
770 * that the threads in the same group share L1, translation cache. If
771 * the value is 2, it implies that the threads in the same group share
772 * the same L2 cache.
773 *
774 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
775 * property ibm,thread-groups[i]
776 *
777 * ibm,thread-groups[i+2] tells us the number of threads in each such
778 * group.
779 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
780 *
781 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
782 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
783 * the grouping.
784 *
785 * Example:
786 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
787 * This can be decomposed up into two consecutive arrays:
788 * a) [1,2,4,8,10,12,14,9,11,13,15]
789 * b) [2,2,4,8,10,12,14,9,11,13,15]
790 *
791 * where in,
792 *
793 * a) provides information of Property "1" being shared by "2" groups,
794 *  each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
795 *  the first group is {8,10,12,14} and the
796 *  "ibm,ppc-interrupt-server#s" of the second group is
797 *  {9,11,13,15}. Property "1" is indicative of the thread in the
798 *  group sharing L1 cache, translation cache and Instruction Data
799 *  flow.
800 *
801 * b) provides information of Property "2" being shared by "2" groups,
802 *  each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
803 *  the first group is {8,10,12,14} and the
804 *  "ibm,ppc-interrupt-server#s" of the second group is
805 *  {9,11,13,15}. Property "2" indicates that the threads in each
806 *  group share the L2-cache.
807 *
808 * Returns 0 on success, -EINVAL if the property does not exist,
809 * -ENODATA if property does not have a value, and -EOVERFLOW if the
810 * property data isn't large enough.
811 */
812static int parse_thread_groups(struct device_node *dn,
813			       struct thread_groups_list *tglp)
814{
815	unsigned int property_idx = 0;
816	u32 *thread_group_array;
817	size_t total_threads;
818	int ret = 0, count;
819	u32 *thread_list;
820	int i = 0;
821
822	count = of_property_count_u32_elems(dn, "ibm,thread-groups");
823	thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
824	ret = of_property_read_u32_array(dn, "ibm,thread-groups",
825					 thread_group_array, count);
826	if (ret)
827		goto out_free;
828
829	while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
830		int j;
831		struct thread_groups *tg = &tglp->property_tgs[property_idx++];
832
833		tg->property = thread_group_array[i];
834		tg->nr_groups = thread_group_array[i + 1];
835		tg->threads_per_group = thread_group_array[i + 2];
836		total_threads = tg->nr_groups * tg->threads_per_group;
837
838		thread_list = &thread_group_array[i + 3];
839
840		for (j = 0; j < total_threads; j++)
841			tg->thread_list[j] = thread_list[j];
842		i = i + 3 + total_threads;
843	}
844
845	tglp->nr_properties = property_idx;
846
847out_free:
848	kfree(thread_group_array);
849	return ret;
850}
851
852/*
853 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
854 *                              that @cpu belongs to.
855 *
856 * @cpu : The logical CPU whose thread group is being searched.
857 * @tg : The thread-group structure of the CPU node which @cpu belongs
858 *       to.
859 *
860 * Returns the index to tg->thread_list that points to the start
861 * of the thread_group that @cpu belongs to.
862 *
863 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
864 * tg->thread_list.
865 */
866static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
867{
868	int hw_cpu_id = get_hard_smp_processor_id(cpu);
869	int i, j;
870
871	for (i = 0; i < tg->nr_groups; i++) {
872		int group_start = i * tg->threads_per_group;
873
874		for (j = 0; j < tg->threads_per_group; j++) {
875			int idx = group_start + j;
876
877			if (tg->thread_list[idx] == hw_cpu_id)
878				return group_start;
879		}
880	}
881
882	return -1;
883}
884
885static struct thread_groups *__init get_thread_groups(int cpu,
886						      int group_property,
887						      int *err)
888{
889	struct device_node *dn = of_get_cpu_node(cpu, NULL);
890	struct thread_groups_list *cpu_tgl = &tgl[cpu];
891	struct thread_groups *tg = NULL;
892	int i;
893	*err = 0;
894
895	if (!dn) {
896		*err = -ENODATA;
897		return NULL;
898	}
899
900	if (!cpu_tgl->nr_properties) {
901		*err = parse_thread_groups(dn, cpu_tgl);
902		if (*err)
903			goto out;
904	}
905
906	for (i = 0; i < cpu_tgl->nr_properties; i++) {
907		if (cpu_tgl->property_tgs[i].property == group_property) {
908			tg = &cpu_tgl->property_tgs[i];
909			break;
910		}
911	}
912
913	if (!tg)
914		*err = -EINVAL;
915out:
916	of_node_put(dn);
917	return tg;
918}
919
920static int __init update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg,
921					       int cpu, int cpu_group_start)
922{
923	int first_thread = cpu_first_thread_sibling(cpu);
924	int i;
925
926	zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
927
928	for (i = first_thread; i < first_thread + threads_per_core; i++) {
929		int i_group_start = get_cpu_thread_group_start(i, tg);
930
931		if (unlikely(i_group_start == -1)) {
932			WARN_ON_ONCE(1);
933			return -ENODATA;
934		}
935
936		if (i_group_start == cpu_group_start)
937			cpumask_set_cpu(i, *mask);
938	}
939
940	return 0;
941}
942
943static int __init init_thread_group_cache_map(int cpu, int cache_property)
944
945{
946	int cpu_group_start = -1, err = 0;
947	struct thread_groups *tg = NULL;
948	cpumask_var_t *mask = NULL;
949
950	if (cache_property != THREAD_GROUP_SHARE_L1 &&
951	    cache_property != THREAD_GROUP_SHARE_L2_L3)
952		return -EINVAL;
953
954	tg = get_thread_groups(cpu, cache_property, &err);
955
956	if (!tg)
957		return err;
958
959	cpu_group_start = get_cpu_thread_group_start(cpu, tg);
960
961	if (unlikely(cpu_group_start == -1)) {
962		WARN_ON_ONCE(1);
963		return -ENODATA;
964	}
965
966	if (cache_property == THREAD_GROUP_SHARE_L1) {
967		mask = &per_cpu(thread_group_l1_cache_map, cpu);
968		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
969	}
970	else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
971		mask = &per_cpu(thread_group_l2_cache_map, cpu);
972		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
973		mask = &per_cpu(thread_group_l3_cache_map, cpu);
974		update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
975	}
976
977
978	return 0;
979}
980
981static bool shared_caches __ro_after_init;
982
983#ifdef CONFIG_SCHED_SMT
984/* cpumask of CPUs with asymmetric SMT dependency */
985static int powerpc_smt_flags(void)
986{
987	int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_LLC;
988
989	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
990		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
991		flags |= SD_ASYM_PACKING;
992	}
993	return flags;
994}
995#endif
996
997/*
998 * On shared processor LPARs scheduled on a big core (which has two or more
999 * independent thread groups per core), prefer lower numbered CPUs, so
1000 * that workload consolidates to lesser number of cores.
1001 */
1002static __ro_after_init DEFINE_STATIC_KEY_FALSE(splpar_asym_pack);
1003
1004/*
1005 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1006 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1007 * since the migrated task remains cache hot. We want to take advantage of this
1008 * at the scheduler level so an extra topology level is required.
1009 */
1010static int powerpc_shared_cache_flags(void)
1011{
1012	if (static_branch_unlikely(&splpar_asym_pack))
1013		return SD_SHARE_LLC | SD_ASYM_PACKING;
1014
1015	return SD_SHARE_LLC;
1016}
1017
1018static int powerpc_shared_proc_flags(void)
1019{
1020	if (static_branch_unlikely(&splpar_asym_pack))
1021		return SD_ASYM_PACKING;
1022
1023	return 0;
1024}
1025
1026/*
1027 * We can't just pass cpu_l2_cache_mask() directly because
1028 * returns a non-const pointer and the compiler barfs on that.
1029 */
1030static const struct cpumask *shared_cache_mask(int cpu)
1031{
1032	return per_cpu(cpu_l2_cache_map, cpu);
1033}
1034
1035#ifdef CONFIG_SCHED_SMT
1036static const struct cpumask *smallcore_smt_mask(int cpu)
1037{
1038	return cpu_smallcore_mask(cpu);
1039}
1040#endif
1041
1042static struct cpumask *cpu_coregroup_mask(int cpu)
1043{
1044	return per_cpu(cpu_coregroup_map, cpu);
1045}
1046
1047static bool has_coregroup_support(void)
1048{
1049	/* Coregroup identification not available on shared systems */
1050	if (is_shared_processor())
1051		return 0;
1052
1053	return coregroup_enabled;
1054}
1055
1056static const struct cpumask *cpu_mc_mask(int cpu)
1057{
1058	return cpu_coregroup_mask(cpu);
1059}
1060
1061static int __init init_big_cores(void)
1062{
1063	int cpu;
1064
1065	for_each_possible_cpu(cpu) {
1066		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1067
1068		if (err)
1069			return err;
1070
1071		zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1072					GFP_KERNEL,
1073					cpu_to_node(cpu));
1074	}
1075
1076	has_big_cores = true;
1077
1078	for_each_possible_cpu(cpu) {
1079		int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1080
1081		if (err)
1082			return err;
1083	}
1084
1085	thread_group_shares_l2 = true;
1086	thread_group_shares_l3 = true;
1087	pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1088
1089	return 0;
1090}
1091
1092void __init smp_prepare_cpus(unsigned int max_cpus)
1093{
1094	unsigned int cpu, num_threads;
1095
1096	DBG("smp_prepare_cpus\n");
1097
1098	/*
1099	 * setup_cpu may need to be called on the boot cpu. We haven't
1100	 * spun any cpus up but lets be paranoid.
1101	 */
1102	BUG_ON(boot_cpuid != smp_processor_id());
1103
1104	/* Fixup boot cpu */
1105	smp_store_cpu_info(boot_cpuid);
1106	cpu_callin_map[boot_cpuid] = 1;
1107
1108	for_each_possible_cpu(cpu) {
1109		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1110					GFP_KERNEL, cpu_to_node(cpu));
1111		zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1112					GFP_KERNEL, cpu_to_node(cpu));
1113		zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1114					GFP_KERNEL, cpu_to_node(cpu));
1115		if (has_coregroup_support())
1116			zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1117						GFP_KERNEL, cpu_to_node(cpu));
1118
1119#ifdef CONFIG_NUMA
1120		/*
1121		 * numa_node_id() works after this.
1122		 */
1123		if (cpu_present(cpu)) {
1124			set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1125			set_cpu_numa_mem(cpu,
1126				local_memory_node(numa_cpu_lookup_table[cpu]));
1127		}
1128#endif
1129	}
1130
1131	/* Init the cpumasks so the boot CPU is related to itself */
1132	cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1133	cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1134	cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1135
1136	if (has_coregroup_support())
1137		cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1138
1139	init_big_cores();
1140	if (has_big_cores) {
1141		cpumask_set_cpu(boot_cpuid,
1142				cpu_smallcore_mask(boot_cpuid));
1143	}
1144
1145	if (cpu_to_chip_id(boot_cpuid) != -1) {
1146		int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1147
1148		/*
1149		 * All threads of a core will all belong to the same core,
1150		 * chip_id_lookup_table will have one entry per core.
1151		 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1152		 * other CPUs, will also not have chip-id.
1153		 */
1154		chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1155		if (chip_id_lookup_table)
1156			memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1157	}
1158
1159	if (smp_ops && smp_ops->probe)
1160		smp_ops->probe();
1161
1162	// Initalise the generic SMT topology support
1163	num_threads = 1;
1164	if (smt_enabled_at_boot)
1165		num_threads = smt_enabled_at_boot;
1166	cpu_smt_set_num_threads(num_threads, threads_per_core);
1167}
1168
1169void smp_prepare_boot_cpu(void)
1170{
1171	BUG_ON(smp_processor_id() != boot_cpuid);
1172#ifdef CONFIG_PPC64
1173	paca_ptrs[boot_cpuid]->__current = current;
1174#endif
1175	set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1176	current_set[boot_cpuid] = current;
1177}
1178
1179#ifdef CONFIG_HOTPLUG_CPU
1180
1181int generic_cpu_disable(void)
1182{
1183	unsigned int cpu = smp_processor_id();
1184
1185	if (cpu == boot_cpuid)
1186		return -EBUSY;
1187
1188	set_cpu_online(cpu, false);
1189#ifdef CONFIG_PPC64
1190	vdso_data->processorCount--;
1191#endif
1192	/* Update affinity of all IRQs previously aimed at this CPU */
1193	irq_migrate_all_off_this_cpu();
1194
1195	/*
1196	 * Depending on the details of the interrupt controller, it's possible
1197	 * that one of the interrupts we just migrated away from this CPU is
1198	 * actually already pending on this CPU. If we leave it in that state
1199	 * the interrupt will never be EOI'ed, and will never fire again. So
1200	 * temporarily enable interrupts here, to allow any pending interrupt to
1201	 * be received (and EOI'ed), before we take this CPU offline.
1202	 */
1203	local_irq_enable();
1204	mdelay(1);
1205	local_irq_disable();
1206
1207	return 0;
1208}
1209
1210void generic_cpu_die(unsigned int cpu)
1211{
1212	int i;
1213
1214	for (i = 0; i < 100; i++) {
1215		smp_rmb();
1216		if (is_cpu_dead(cpu))
1217			return;
1218		msleep(100);
1219	}
1220	printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1221}
1222
1223void generic_set_cpu_dead(unsigned int cpu)
1224{
1225	per_cpu(cpu_state, cpu) = CPU_DEAD;
1226}
1227
1228/*
1229 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1230 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1231 * which makes the delay in generic_cpu_die() not happen.
1232 */
1233void generic_set_cpu_up(unsigned int cpu)
1234{
1235	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1236}
1237
1238int generic_check_cpu_restart(unsigned int cpu)
1239{
1240	return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1241}
1242
1243int is_cpu_dead(unsigned int cpu)
1244{
1245	return per_cpu(cpu_state, cpu) == CPU_DEAD;
1246}
1247
1248static bool secondaries_inhibited(void)
1249{
1250	return kvm_hv_mode_active();
1251}
1252
1253#else /* HOTPLUG_CPU */
1254
1255#define secondaries_inhibited()		0
1256
1257#endif
1258
1259static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1260{
1261#ifdef CONFIG_PPC64
1262	paca_ptrs[cpu]->__current = idle;
1263	paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1264				 THREAD_SIZE - STACK_FRAME_MIN_SIZE;
1265#endif
1266	task_thread_info(idle)->cpu = cpu;
1267	secondary_current = current_set[cpu] = idle;
1268}
1269
1270int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1271{
1272	const unsigned long boot_spin_ms = 5 * MSEC_PER_SEC;
1273	const bool booting = system_state < SYSTEM_RUNNING;
1274	const unsigned long hp_spin_ms = 1;
1275	unsigned long deadline;
1276	int rc;
1277	const unsigned long spin_wait_ms = booting ? boot_spin_ms : hp_spin_ms;
1278
1279	/*
1280	 * Don't allow secondary threads to come online if inhibited
1281	 */
1282	if (threads_per_core > 1 && secondaries_inhibited() &&
1283	    cpu_thread_in_subcore(cpu))
1284		return -EBUSY;
1285
1286	if (smp_ops == NULL ||
1287	    (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1288		return -EINVAL;
1289
1290	cpu_idle_thread_init(cpu, tidle);
1291
1292	/*
1293	 * The platform might need to allocate resources prior to bringing
1294	 * up the CPU
1295	 */
1296	if (smp_ops->prepare_cpu) {
1297		rc = smp_ops->prepare_cpu(cpu);
1298		if (rc)
1299			return rc;
1300	}
1301
1302	/* Make sure callin-map entry is 0 (can be leftover a CPU
1303	 * hotplug
1304	 */
1305	cpu_callin_map[cpu] = 0;
1306
1307	/* The information for processor bringup must
1308	 * be written out to main store before we release
1309	 * the processor.
1310	 */
1311	smp_mb();
1312
1313	/* wake up cpus */
1314	DBG("smp: kicking cpu %d\n", cpu);
1315	rc = smp_ops->kick_cpu(cpu);
1316	if (rc) {
1317		pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1318		return rc;
1319	}
1320
1321	/*
1322	 * At boot time, simply spin on the callin word until the
1323	 * deadline passes.
1324	 *
1325	 * At run time, spin for an optimistic amount of time to avoid
1326	 * sleeping in the common case.
1327	 */
1328	deadline = jiffies + msecs_to_jiffies(spin_wait_ms);
1329	spin_until_cond(cpu_callin_map[cpu] || time_is_before_jiffies(deadline));
1330
1331	if (!cpu_callin_map[cpu] && system_state >= SYSTEM_RUNNING) {
1332		const unsigned long sleep_interval_us = 10 * USEC_PER_MSEC;
1333		const unsigned long sleep_wait_ms = 100 * MSEC_PER_SEC;
1334
1335		deadline = jiffies + msecs_to_jiffies(sleep_wait_ms);
1336		while (!cpu_callin_map[cpu] && time_is_after_jiffies(deadline))
1337			fsleep(sleep_interval_us);
1338	}
1339
1340	if (!cpu_callin_map[cpu]) {
1341		printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1342		return -ENOENT;
1343	}
1344
1345	DBG("Processor %u found.\n", cpu);
1346
1347	if (smp_ops->give_timebase)
1348		smp_ops->give_timebase();
1349
1350	/* Wait until cpu puts itself in the online & active maps */
1351	spin_until_cond(cpu_online(cpu));
1352
1353	return 0;
1354}
1355
1356/* Return the value of the reg property corresponding to the given
1357 * logical cpu.
1358 */
1359int cpu_to_core_id(int cpu)
1360{
1361	struct device_node *np;
1362	int id = -1;
1363
1364	np = of_get_cpu_node(cpu, NULL);
1365	if (!np)
1366		goto out;
1367
1368	id = of_get_cpu_hwid(np, 0);
1369out:
1370	of_node_put(np);
1371	return id;
1372}
1373EXPORT_SYMBOL_GPL(cpu_to_core_id);
1374
1375/* Helper routines for cpu to core mapping */
1376int cpu_core_index_of_thread(int cpu)
1377{
1378	return cpu >> threads_shift;
1379}
1380EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1381
1382int cpu_first_thread_of_core(int core)
1383{
1384	return core << threads_shift;
1385}
1386EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1387
1388/* Must be called when no change can occur to cpu_present_mask,
1389 * i.e. during cpu online or offline.
1390 */
1391static struct device_node *cpu_to_l2cache(int cpu)
1392{
1393	struct device_node *np;
1394	struct device_node *cache;
1395
1396	if (!cpu_present(cpu))
1397		return NULL;
1398
1399	np = of_get_cpu_node(cpu, NULL);
1400	if (np == NULL)
1401		return NULL;
1402
1403	cache = of_find_next_cache_node(np);
1404
1405	of_node_put(np);
1406
1407	return cache;
1408}
1409
1410static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1411{
1412	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1413	struct device_node *l2_cache, *np;
1414	int i;
1415
1416	if (has_big_cores)
1417		submask_fn = cpu_smallcore_mask;
1418
1419	/*
1420	 * If the threads in a thread-group share L2 cache, then the
1421	 * L2-mask can be obtained from thread_group_l2_cache_map.
1422	 */
1423	if (thread_group_shares_l2) {
1424		cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1425
1426		for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1427			if (cpu_online(i))
1428				set_cpus_related(i, cpu, cpu_l2_cache_mask);
1429		}
1430
1431		/* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1432		if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1433		    !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1434			pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1435				     cpu);
1436		}
1437
1438		return true;
1439	}
1440
1441	l2_cache = cpu_to_l2cache(cpu);
1442	if (!l2_cache || !*mask) {
1443		/* Assume only core siblings share cache with this CPU */
1444		for_each_cpu(i, cpu_sibling_mask(cpu))
1445			set_cpus_related(cpu, i, cpu_l2_cache_mask);
1446
1447		return false;
1448	}
1449
1450	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1451
1452	/* Update l2-cache mask with all the CPUs that are part of submask */
1453	or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1454
1455	/* Skip all CPUs already part of current CPU l2-cache mask */
1456	cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1457
1458	for_each_cpu(i, *mask) {
1459		/*
1460		 * when updating the marks the current CPU has not been marked
1461		 * online, but we need to update the cache masks
1462		 */
1463		np = cpu_to_l2cache(i);
1464
1465		/* Skip all CPUs already part of current CPU l2-cache */
1466		if (np == l2_cache) {
1467			or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1468			cpumask_andnot(*mask, *mask, submask_fn(i));
1469		} else {
1470			cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1471		}
1472
1473		of_node_put(np);
1474	}
1475	of_node_put(l2_cache);
1476
1477	return true;
1478}
1479
1480#ifdef CONFIG_HOTPLUG_CPU
1481static void remove_cpu_from_masks(int cpu)
1482{
1483	struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1484	int i;
1485
1486	unmap_cpu_from_node(cpu);
1487
1488	if (shared_caches)
1489		mask_fn = cpu_l2_cache_mask;
1490
1491	for_each_cpu(i, mask_fn(cpu)) {
1492		set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1493		set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1494		if (has_big_cores)
1495			set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1496	}
1497
1498	for_each_cpu(i, cpu_core_mask(cpu))
1499		set_cpus_unrelated(cpu, i, cpu_core_mask);
1500
1501	if (has_coregroup_support()) {
1502		for_each_cpu(i, cpu_coregroup_mask(cpu))
1503			set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1504	}
1505}
1506#endif
1507
1508static inline void add_cpu_to_smallcore_masks(int cpu)
1509{
1510	int i;
1511
1512	if (!has_big_cores)
1513		return;
1514
1515	cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1516
1517	for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1518		if (cpu_online(i))
1519			set_cpus_related(i, cpu, cpu_smallcore_mask);
1520	}
1521}
1522
1523static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1524{
1525	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1526	int coregroup_id = cpu_to_coregroup_id(cpu);
1527	int i;
1528
1529	if (shared_caches)
1530		submask_fn = cpu_l2_cache_mask;
1531
1532	if (!*mask) {
1533		/* Assume only siblings are part of this CPU's coregroup */
1534		for_each_cpu(i, submask_fn(cpu))
1535			set_cpus_related(cpu, i, cpu_coregroup_mask);
1536
1537		return;
1538	}
1539
1540	cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1541
1542	/* Update coregroup mask with all the CPUs that are part of submask */
1543	or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1544
1545	/* Skip all CPUs already part of coregroup mask */
1546	cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1547
1548	for_each_cpu(i, *mask) {
1549		/* Skip all CPUs not part of this coregroup */
1550		if (coregroup_id == cpu_to_coregroup_id(i)) {
1551			or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1552			cpumask_andnot(*mask, *mask, submask_fn(i));
1553		} else {
1554			cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1555		}
1556	}
1557}
1558
1559static void add_cpu_to_masks(int cpu)
1560{
1561	struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1562	int first_thread = cpu_first_thread_sibling(cpu);
1563	cpumask_var_t mask;
1564	int chip_id = -1;
1565	bool ret;
1566	int i;
1567
1568	/*
1569	 * This CPU will not be in the online mask yet so we need to manually
1570	 * add it to it's own thread sibling mask.
1571	 */
1572	map_cpu_to_node(cpu, cpu_to_node(cpu));
1573	cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1574	cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1575
1576	for (i = first_thread; i < first_thread + threads_per_core; i++)
1577		if (cpu_online(i))
1578			set_cpus_related(i, cpu, cpu_sibling_mask);
1579
1580	add_cpu_to_smallcore_masks(cpu);
1581
1582	/* In CPU-hotplug path, hence use GFP_ATOMIC */
1583	ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1584	update_mask_by_l2(cpu, &mask);
1585
1586	if (has_coregroup_support())
1587		update_coregroup_mask(cpu, &mask);
1588
1589	if (chip_id_lookup_table && ret)
1590		chip_id = cpu_to_chip_id(cpu);
1591
1592	if (shared_caches)
1593		submask_fn = cpu_l2_cache_mask;
1594
1595	/* Update core_mask with all the CPUs that are part of submask */
1596	or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1597
1598	/* Skip all CPUs already part of current CPU core mask */
1599	cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1600
1601	/* If chip_id is -1; limit the cpu_core_mask to within PKG */
1602	if (chip_id == -1)
1603		cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1604
1605	for_each_cpu(i, mask) {
1606		if (chip_id == cpu_to_chip_id(i)) {
1607			or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1608			cpumask_andnot(mask, mask, submask_fn(i));
1609		} else {
1610			cpumask_andnot(mask, mask, cpu_core_mask(i));
1611		}
1612	}
1613
1614	free_cpumask_var(mask);
1615}
1616
1617/* Activate a secondary processor. */
1618__no_stack_protector
1619void start_secondary(void *unused)
1620{
1621	unsigned int cpu = raw_smp_processor_id();
1622
1623	/* PPC64 calls setup_kup() in early_setup_secondary() */
1624	if (IS_ENABLED(CONFIG_PPC32))
1625		setup_kup();
1626
1627	mmgrab_lazy_tlb(&init_mm);
1628	current->active_mm = &init_mm;
1629	VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
1630	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
1631	inc_mm_active_cpus(&init_mm);
1632
1633	smp_store_cpu_info(cpu);
1634	set_dec(tb_ticks_per_jiffy);
1635	rcutree_report_cpu_starting(cpu);
1636	cpu_callin_map[cpu] = 1;
1637
1638	if (smp_ops->setup_cpu)
1639		smp_ops->setup_cpu(cpu);
1640	if (smp_ops->take_timebase)
1641		smp_ops->take_timebase();
1642
1643	secondary_cpu_time_init();
1644
1645#ifdef CONFIG_PPC64
1646	if (system_state == SYSTEM_RUNNING)
1647		vdso_data->processorCount++;
1648
1649	vdso_getcpu_init();
1650#endif
1651	set_numa_node(numa_cpu_lookup_table[cpu]);
1652	set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1653
1654	/* Update topology CPU masks */
1655	add_cpu_to_masks(cpu);
1656
1657	/*
1658	 * Check for any shared caches. Note that this must be done on a
1659	 * per-core basis because one core in the pair might be disabled.
1660	 */
1661	if (!shared_caches) {
1662		struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1663		struct cpumask *mask = cpu_l2_cache_mask(cpu);
1664
1665		if (has_big_cores)
1666			sibling_mask = cpu_smallcore_mask;
1667
1668		if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1669			shared_caches = true;
1670	}
1671
1672	smp_wmb();
1673	notify_cpu_starting(cpu);
1674	set_cpu_online(cpu, true);
1675
1676	boot_init_stack_canary();
1677
1678	local_irq_enable();
1679
1680	/* We can enable ftrace for secondary cpus now */
1681	this_cpu_enable_ftrace();
1682
1683	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1684
1685	BUG();
1686}
1687
1688static struct sched_domain_topology_level powerpc_topology[6];
1689
1690static void __init build_sched_topology(void)
1691{
1692	int i = 0;
1693
1694	if (is_shared_processor() && has_big_cores)
1695		static_branch_enable(&splpar_asym_pack);
1696
1697#ifdef CONFIG_SCHED_SMT
1698	if (has_big_cores) {
1699		pr_info("Big cores detected but using small core scheduling\n");
1700		powerpc_topology[i++] = (struct sched_domain_topology_level){
1701			smallcore_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT)
1702		};
1703	} else {
1704		powerpc_topology[i++] = (struct sched_domain_topology_level){
1705			cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT)
1706		};
1707	}
1708#endif
1709	if (shared_caches) {
1710		powerpc_topology[i++] = (struct sched_domain_topology_level){
1711			shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE)
1712		};
1713	}
1714	if (has_coregroup_support()) {
1715		powerpc_topology[i++] = (struct sched_domain_topology_level){
1716			cpu_mc_mask, powerpc_shared_proc_flags, SD_INIT_NAME(MC)
1717		};
1718	}
1719	powerpc_topology[i++] = (struct sched_domain_topology_level){
1720		cpu_cpu_mask, powerpc_shared_proc_flags, SD_INIT_NAME(PKG)
1721	};
1722
1723	/* There must be one trailing NULL entry left.  */
1724	BUG_ON(i >= ARRAY_SIZE(powerpc_topology) - 1);
1725
1726	set_sched_topology(powerpc_topology);
1727}
1728
1729void __init smp_cpus_done(unsigned int max_cpus)
1730{
1731	/*
1732	 * We are running pinned to the boot CPU, see rest_init().
1733	 */
1734	if (smp_ops && smp_ops->setup_cpu)
1735		smp_ops->setup_cpu(boot_cpuid);
1736
1737	if (smp_ops && smp_ops->bringup_done)
1738		smp_ops->bringup_done();
1739
1740	dump_numa_cpu_topology();
1741	build_sched_topology();
1742}
1743
1744/*
1745 * For asym packing, by default lower numbered CPU has higher priority.
1746 * On shared processors, pack to lower numbered core. However avoid moving
1747 * between thread_groups within the same core.
1748 */
1749int arch_asym_cpu_priority(int cpu)
1750{
1751	if (static_branch_unlikely(&splpar_asym_pack))
1752		return -cpu / threads_per_core;
1753
1754	return -cpu;
1755}
1756
1757#ifdef CONFIG_HOTPLUG_CPU
1758int __cpu_disable(void)
1759{
1760	int cpu = smp_processor_id();
1761	int err;
1762
1763	if (!smp_ops->cpu_disable)
1764		return -ENOSYS;
1765
1766	this_cpu_disable_ftrace();
1767
1768	err = smp_ops->cpu_disable();
1769	if (err)
1770		return err;
1771
1772	/* Update sibling maps */
1773	remove_cpu_from_masks(cpu);
1774
1775	return 0;
1776}
1777
1778void __cpu_die(unsigned int cpu)
1779{
1780	/*
1781	 * This could perhaps be a generic call in idlea_task_dead(), but
1782	 * that requires testing from all archs, so first put it here to
1783	 */
1784	VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(&init_mm)));
1785	dec_mm_active_cpus(&init_mm);
1786	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
1787
1788	if (smp_ops->cpu_die)
1789		smp_ops->cpu_die(cpu);
1790}
1791
1792void __noreturn arch_cpu_idle_dead(void)
1793{
1794	/*
1795	 * Disable on the down path. This will be re-enabled by
1796	 * start_secondary() via start_secondary_resume() below
1797	 */
1798	this_cpu_disable_ftrace();
1799
1800	if (smp_ops->cpu_offline_self)
1801		smp_ops->cpu_offline_self();
1802
1803	/* If we return, we re-enter start_secondary */
1804	start_secondary_resume();
1805}
1806
1807#endif
1808