1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 * Common boot and setup code.
5 *
6 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 */
8
9#include <linux/export.h>
10#include <linux/string.h>
11#include <linux/sched.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
14#include <linux/reboot.h>
15#include <linux/delay.h>
16#include <linux/initrd.h>
17#include <linux/seq_file.h>
18#include <linux/ioport.h>
19#include <linux/console.h>
20#include <linux/utsname.h>
21#include <linux/tty.h>
22#include <linux/root_dev.h>
23#include <linux/notifier.h>
24#include <linux/cpu.h>
25#include <linux/unistd.h>
26#include <linux/serial.h>
27#include <linux/serial_8250.h>
28#include <linux/memblock.h>
29#include <linux/pci.h>
30#include <linux/lockdep.h>
31#include <linux/memory.h>
32#include <linux/nmi.h>
33#include <linux/pgtable.h>
34#include <linux/of.h>
35#include <linux/of_fdt.h>
36
37#include <asm/asm-prototypes.h>
38#include <asm/kvm_guest.h>
39#include <asm/io.h>
40#include <asm/kdump.h>
41#include <asm/processor.h>
42#include <asm/smp.h>
43#include <asm/elf.h>
44#include <asm/machdep.h>
45#include <asm/paca.h>
46#include <asm/time.h>
47#include <asm/cputable.h>
48#include <asm/dt_cpu_ftrs.h>
49#include <asm/sections.h>
50#include <asm/btext.h>
51#include <asm/nvram.h>
52#include <asm/setup.h>
53#include <asm/rtas.h>
54#include <asm/iommu.h>
55#include <asm/serial.h>
56#include <asm/cache.h>
57#include <asm/page.h>
58#include <asm/mmu.h>
59#include <asm/firmware.h>
60#include <asm/xmon.h>
61#include <asm/udbg.h>
62#include <asm/kexec.h>
63#include <asm/code-patching.h>
64#include <asm/ftrace.h>
65#include <asm/opal.h>
66#include <asm/cputhreads.h>
67#include <asm/hw_irq.h>
68#include <asm/feature-fixups.h>
69#include <asm/kup.h>
70#include <asm/early_ioremap.h>
71#include <asm/pgalloc.h>
72
73#include "setup.h"
74
75int spinning_secondaries;
76u64 ppc64_pft_size;
77
78struct ppc64_caches ppc64_caches = {
79	.l1d = {
80		.block_size = 0x40,
81		.log_block_size = 6,
82	},
83	.l1i = {
84		.block_size = 0x40,
85		.log_block_size = 6
86	},
87};
88EXPORT_SYMBOL_GPL(ppc64_caches);
89
90#if defined(CONFIG_PPC_BOOK3E_64) && defined(CONFIG_SMP)
91void __init setup_tlb_core_data(void)
92{
93	int cpu;
94
95	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
96
97	for_each_possible_cpu(cpu) {
98		int first = cpu_first_thread_sibling(cpu);
99
100		/*
101		 * If we boot via kdump on a non-primary thread,
102		 * make sure we point at the thread that actually
103		 * set up this TLB.
104		 */
105		if (cpu_first_thread_sibling(boot_cpuid) == first)
106			first = boot_cpuid;
107
108		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
109
110		/*
111		 * If we have threads, we need either tlbsrx.
112		 * or e6500 tablewalk mode, or else TLB handlers
113		 * will be racy and could produce duplicate entries.
114		 * Should we panic instead?
115		 */
116		WARN_ONCE(smt_enabled_at_boot >= 2 &&
117			  book3e_htw_mode != PPC_HTW_E6500,
118			  "%s: unsupported MMU configuration\n", __func__);
119	}
120}
121#endif
122
123#ifdef CONFIG_SMP
124
125static char *smt_enabled_cmdline;
126
127/* Look for ibm,smt-enabled OF option */
128void __init check_smt_enabled(void)
129{
130	struct device_node *dn;
131	const char *smt_option;
132
133	/* Default to enabling all threads */
134	smt_enabled_at_boot = threads_per_core;
135
136	/* Allow the command line to overrule the OF option */
137	if (smt_enabled_cmdline) {
138		if (!strcmp(smt_enabled_cmdline, "on"))
139			smt_enabled_at_boot = threads_per_core;
140		else if (!strcmp(smt_enabled_cmdline, "off"))
141			smt_enabled_at_boot = 0;
142		else {
143			int smt;
144			int rc;
145
146			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
147			if (!rc)
148				smt_enabled_at_boot =
149					min(threads_per_core, smt);
150		}
151	} else {
152		dn = of_find_node_by_path("/options");
153		if (dn) {
154			smt_option = of_get_property(dn, "ibm,smt-enabled",
155						     NULL);
156
157			if (smt_option) {
158				if (!strcmp(smt_option, "on"))
159					smt_enabled_at_boot = threads_per_core;
160				else if (!strcmp(smt_option, "off"))
161					smt_enabled_at_boot = 0;
162			}
163
164			of_node_put(dn);
165		}
166	}
167}
168
169/* Look for smt-enabled= cmdline option */
170static int __init early_smt_enabled(char *p)
171{
172	smt_enabled_cmdline = p;
173	return 0;
174}
175early_param("smt-enabled", early_smt_enabled);
176
177#endif /* CONFIG_SMP */
178
179/** Fix up paca fields required for the boot cpu */
180static void __init fixup_boot_paca(struct paca_struct *boot_paca)
181{
182	/* The boot cpu is started */
183	boot_paca->cpu_start = 1;
184#ifdef CONFIG_PPC_BOOK3S_64
185	/*
186	 * Give the early boot machine check stack somewhere to use, use
187	 * half of the init stack. This is a bit hacky but there should not be
188	 * deep stack usage in early init so shouldn't overflow it or overwrite
189	 * things.
190	 */
191	boot_paca->mc_emergency_sp = (void *)&init_thread_union +
192		(THREAD_SIZE/2);
193#endif
194	/* Allow percpu accesses to work until we setup percpu data */
195	boot_paca->data_offset = 0;
196	/* Mark interrupts soft and hard disabled in PACA */
197	boot_paca->irq_soft_mask = IRQS_DISABLED;
198	boot_paca->irq_happened = PACA_IRQ_HARD_DIS;
199	WARN_ON(mfmsr() & MSR_EE);
200}
201
202static void __init configure_exceptions(void)
203{
204	/*
205	 * Setup the trampolines from the lowmem exception vectors
206	 * to the kdump kernel when not using a relocatable kernel.
207	 */
208	setup_kdump_trampoline();
209
210	/* Under a PAPR hypervisor, we need hypercalls */
211	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
212		/*
213		 * - PR KVM does not support AIL mode interrupts in the host
214		 *   while a PR guest is running.
215		 *
216		 * - SCV system call interrupt vectors are only implemented for
217		 *   AIL mode interrupts.
218		 *
219		 * - On pseries, AIL mode can only be enabled and disabled
220		 *   system-wide so when a PR VM is created on a pseries host,
221		 *   all CPUs of the host are set to AIL=0 mode.
222		 *
223		 * - Therefore host CPUs must not execute scv while a PR VM
224		 *   exists.
225		 *
226		 * - SCV support can not be disabled dynamically because the
227		 *   feature is advertised to host userspace. Disabling the
228		 *   facility and emulating it would be possible but is not
229		 *   implemented.
230		 *
231		 * - So SCV support is blanket disabled if PR KVM could possibly
232		 *   run. That is, PR support compiled in, booting on pseries
233		 *   with hash MMU.
234		 */
235		if (IS_ENABLED(CONFIG_KVM_BOOK3S_PR_POSSIBLE) && !radix_enabled()) {
236			init_task.thread.fscr &= ~FSCR_SCV;
237			cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
238		}
239
240		/* Enable AIL if possible */
241		if (!pseries_enable_reloc_on_exc()) {
242			init_task.thread.fscr &= ~FSCR_SCV;
243			cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
244		}
245
246		/*
247		 * Tell the hypervisor that we want our exceptions to
248		 * be taken in little endian mode.
249		 *
250		 * We don't call this for big endian as our calling convention
251		 * makes us always enter in BE, and the call may fail under
252		 * some circumstances with kdump.
253		 */
254#ifdef __LITTLE_ENDIAN__
255		pseries_little_endian_exceptions();
256#endif
257	} else {
258		/* Set endian mode using OPAL */
259		if (firmware_has_feature(FW_FEATURE_OPAL))
260			opal_configure_cores();
261
262		/* AIL on native is done in cpu_ready_for_interrupts() */
263	}
264}
265
266static void cpu_ready_for_interrupts(void)
267{
268	/*
269	 * Enable AIL if supported, and we are in hypervisor mode. This
270	 * is called once for every processor.
271	 *
272	 * If we are not in hypervisor mode the job is done once for
273	 * the whole partition in configure_exceptions().
274	 */
275	if (cpu_has_feature(CPU_FTR_HVMODE)) {
276		unsigned long lpcr = mfspr(SPRN_LPCR);
277		unsigned long new_lpcr = lpcr;
278
279		if (cpu_has_feature(CPU_FTR_ARCH_31)) {
280			/* P10 DD1 does not have HAIL */
281			if (pvr_version_is(PVR_POWER10) &&
282					(mfspr(SPRN_PVR) & 0xf00) == 0x100)
283				new_lpcr |= LPCR_AIL_3;
284			else
285				new_lpcr |= LPCR_HAIL;
286		} else if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
287			new_lpcr |= LPCR_AIL_3;
288		}
289
290		if (new_lpcr != lpcr)
291			mtspr(SPRN_LPCR, new_lpcr);
292	}
293
294	/*
295	 * Set HFSCR:TM based on CPU features:
296	 * In the special case of TM no suspend (P9N DD2.1), Linux is
297	 * told TM is off via the dt-ftrs but told to (partially) use
298	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
299	 * will be off from dt-ftrs but we need to turn it on for the
300	 * no suspend case.
301	 */
302	if (cpu_has_feature(CPU_FTR_HVMODE)) {
303		if (cpu_has_feature(CPU_FTR_TM_COMP))
304			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
305		else
306			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
307	}
308
309	/* Set IR and DR in PACA MSR */
310	get_paca()->kernel_msr = MSR_KERNEL;
311}
312
313unsigned long spr_default_dscr = 0;
314
315static void __init record_spr_defaults(void)
316{
317	if (early_cpu_has_feature(CPU_FTR_DSCR))
318		spr_default_dscr = mfspr(SPRN_DSCR);
319}
320
321/*
322 * Early initialization entry point. This is called by head.S
323 * with MMU translation disabled. We rely on the "feature" of
324 * the CPU that ignores the top 2 bits of the address in real
325 * mode so we can access kernel globals normally provided we
326 * only toy with things in the RMO region. From here, we do
327 * some early parsing of the device-tree to setup out MEMBLOCK
328 * data structures, and allocate & initialize the hash table
329 * and segment tables so we can start running with translation
330 * enabled.
331 *
332 * It is this function which will call the probe() callback of
333 * the various platform types and copy the matching one to the
334 * global ppc_md structure. Your platform can eventually do
335 * some very early initializations from the probe() routine, but
336 * this is not recommended, be very careful as, for example, the
337 * device-tree is not accessible via normal means at this point.
338 */
339
340void __init early_setup(unsigned long dt_ptr)
341{
342	static __initdata struct paca_struct boot_paca;
343
344	/* -------- printk is _NOT_ safe to use here ! ------- */
345
346	/*
347	 * Assume we're on cpu 0 for now.
348	 *
349	 * We need to load a PACA very early for a few reasons.
350	 *
351	 * The stack protector canary is stored in the paca, so as soon as we
352	 * call any stack protected code we need r13 pointing somewhere valid.
353	 *
354	 * If we are using kcov it will call in_task() in its instrumentation,
355	 * which relies on the current task from the PACA.
356	 *
357	 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
358	 * printk(), which can trigger both stack protector and kcov.
359	 *
360	 * percpu variables and spin locks also use the paca.
361	 *
362	 * So set up a temporary paca. It will be replaced below once we know
363	 * what CPU we are on.
364	 */
365	initialise_paca(&boot_paca, 0);
366	fixup_boot_paca(&boot_paca);
367	WARN_ON(local_paca);
368	setup_paca(&boot_paca); /* install the paca into registers */
369
370	/* -------- printk is now safe to use ------- */
371
372	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && (mfmsr() & MSR_HV))
373		enable_machine_check();
374
375	/* Try new device tree based feature discovery ... */
376	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
377		/* Otherwise use the old style CPU table */
378		identify_cpu(0, mfspr(SPRN_PVR));
379
380	/* Enable early debugging if any specified (see udbg.h) */
381	udbg_early_init();
382
383	udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
384
385	/*
386	 * Do early initialization using the flattened device
387	 * tree, such as retrieving the physical memory map or
388	 * calculating/retrieving the hash table size, discover
389	 * boot_cpuid and boot_cpu_hwid.
390	 */
391	early_init_devtree(__va(dt_ptr));
392
393	allocate_paca_ptrs();
394	allocate_paca(boot_cpuid);
395	set_hard_smp_processor_id(boot_cpuid, boot_cpu_hwid);
396	fixup_boot_paca(paca_ptrs[boot_cpuid]);
397	setup_paca(paca_ptrs[boot_cpuid]); /* install the paca into registers */
398	// smp_processor_id() now reports boot_cpuid
399
400#ifdef CONFIG_SMP
401	task_thread_info(current)->cpu = boot_cpuid; // fix task_cpu(current)
402#endif
403
404	/*
405	 * Configure exception handlers. This include setting up trampolines
406	 * if needed, setting exception endian mode, etc...
407	 */
408	configure_exceptions();
409
410	/*
411	 * Configure Kernel Userspace Protection. This needs to happen before
412	 * feature fixups for platforms that implement this using features.
413	 */
414	setup_kup();
415
416	/* Apply all the dynamic patching */
417	apply_feature_fixups();
418	setup_feature_keys();
419
420	/* Initialize the hash table or TLB handling */
421	early_init_mmu();
422
423	early_ioremap_setup();
424
425	/*
426	 * After firmware and early platform setup code has set things up,
427	 * we note the SPR values for configurable control/performance
428	 * registers, and use those as initial defaults.
429	 */
430	record_spr_defaults();
431
432	/*
433	 * At this point, we can let interrupts switch to virtual mode
434	 * (the MMU has been setup), so adjust the MSR in the PACA to
435	 * have IR and DR set and enable AIL if it exists
436	 */
437	cpu_ready_for_interrupts();
438
439	/*
440	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
441	 * will only actually get enabled on the boot cpu much later once
442	 * ftrace itself has been initialized.
443	 */
444	this_cpu_enable_ftrace();
445
446	udbg_printf(" <- %s()\n", __func__);
447
448#ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
449	/*
450	 * This needs to be done *last* (after the above udbg_printf() even)
451	 *
452	 * Right after we return from this function, we turn on the MMU
453	 * which means the real-mode access trick that btext does will
454	 * no longer work, it needs to switch to using a real MMU
455	 * mapping. This call will ensure that it does
456	 */
457	btext_map();
458#endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
459}
460
461#ifdef CONFIG_SMP
462void early_setup_secondary(void)
463{
464	/* Mark interrupts disabled in PACA */
465	irq_soft_mask_set(IRQS_DISABLED);
466
467	/* Initialize the hash table or TLB handling */
468	early_init_mmu_secondary();
469
470	/* Perform any KUP setup that is per-cpu */
471	setup_kup();
472
473	/*
474	 * At this point, we can let interrupts switch to virtual mode
475	 * (the MMU has been setup), so adjust the MSR in the PACA to
476	 * have IR and DR set.
477	 */
478	cpu_ready_for_interrupts();
479}
480
481#endif /* CONFIG_SMP */
482
483void __noreturn panic_smp_self_stop(void)
484{
485	hard_irq_disable();
486	spin_begin();
487	while (1)
488		spin_cpu_relax();
489}
490
491#if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
492static bool use_spinloop(void)
493{
494	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
495		/*
496		 * See comments in head_64.S -- not all platforms insert
497		 * secondaries at __secondary_hold and wait at the spin
498		 * loop.
499		 */
500		if (firmware_has_feature(FW_FEATURE_OPAL))
501			return false;
502		return true;
503	}
504
505	/*
506	 * When book3e boots from kexec, the ePAPR spin table does
507	 * not get used.
508	 */
509	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
510}
511
512void smp_release_cpus(void)
513{
514	unsigned long *ptr;
515	int i;
516
517	if (!use_spinloop())
518		return;
519
520	/* All secondary cpus are spinning on a common spinloop, release them
521	 * all now so they can start to spin on their individual paca
522	 * spinloops. For non SMP kernels, the secondary cpus never get out
523	 * of the common spinloop.
524	 */
525
526	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
527			- PHYSICAL_START);
528	*ptr = ppc_function_entry(generic_secondary_smp_init);
529
530	/* And wait a bit for them to catch up */
531	for (i = 0; i < 100000; i++) {
532		mb();
533		HMT_low();
534		if (spinning_secondaries == 0)
535			break;
536		udelay(1);
537	}
538	pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
539}
540#endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
541
542/*
543 * Initialize some remaining members of the ppc64_caches and systemcfg
544 * structures
545 * (at least until we get rid of them completely). This is mostly some
546 * cache informations about the CPU that will be used by cache flush
547 * routines and/or provided to userland
548 */
549
550static void __init init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
551			    u32 bsize, u32 sets)
552{
553	info->size = size;
554	info->sets = sets;
555	info->line_size = lsize;
556	info->block_size = bsize;
557	info->log_block_size = __ilog2(bsize);
558	if (bsize)
559		info->blocks_per_page = PAGE_SIZE / bsize;
560	else
561		info->blocks_per_page = 0;
562
563	if (sets == 0)
564		info->assoc = 0xffff;
565	else
566		info->assoc = size / (sets * lsize);
567}
568
569static bool __init parse_cache_info(struct device_node *np,
570				    bool icache,
571				    struct ppc_cache_info *info)
572{
573	static const char *ipropnames[] __initdata = {
574		"i-cache-size",
575		"i-cache-sets",
576		"i-cache-block-size",
577		"i-cache-line-size",
578	};
579	static const char *dpropnames[] __initdata = {
580		"d-cache-size",
581		"d-cache-sets",
582		"d-cache-block-size",
583		"d-cache-line-size",
584	};
585	const char **propnames = icache ? ipropnames : dpropnames;
586	const __be32 *sizep, *lsizep, *bsizep, *setsp;
587	u32 size, lsize, bsize, sets;
588	bool success = true;
589
590	size = 0;
591	sets = -1u;
592	lsize = bsize = cur_cpu_spec->dcache_bsize;
593	sizep = of_get_property(np, propnames[0], NULL);
594	if (sizep != NULL)
595		size = be32_to_cpu(*sizep);
596	setsp = of_get_property(np, propnames[1], NULL);
597	if (setsp != NULL)
598		sets = be32_to_cpu(*setsp);
599	bsizep = of_get_property(np, propnames[2], NULL);
600	lsizep = of_get_property(np, propnames[3], NULL);
601	if (bsizep == NULL)
602		bsizep = lsizep;
603	if (lsizep == NULL)
604		lsizep = bsizep;
605	if (lsizep != NULL)
606		lsize = be32_to_cpu(*lsizep);
607	if (bsizep != NULL)
608		bsize = be32_to_cpu(*bsizep);
609	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
610		success = false;
611
612	/*
613	 * OF is weird .. it represents fully associative caches
614	 * as "1 way" which doesn't make much sense and doesn't
615	 * leave room for direct mapped. We'll assume that 0
616	 * in OF means direct mapped for that reason.
617	 */
618	if (sets == 1)
619		sets = 0;
620	else if (sets == 0)
621		sets = 1;
622
623	init_cache_info(info, size, lsize, bsize, sets);
624
625	return success;
626}
627
628void __init initialize_cache_info(void)
629{
630	struct device_node *cpu = NULL, *l2, *l3 = NULL;
631	u32 pvr;
632
633	/*
634	 * All shipping POWER8 machines have a firmware bug that
635	 * puts incorrect information in the device-tree. This will
636	 * be (hopefully) fixed for future chips but for now hard
637	 * code the values if we are running on one of these
638	 */
639	pvr = PVR_VER(mfspr(SPRN_PVR));
640	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
641	    pvr == PVR_POWER8NVL) {
642						/* size    lsize   blk  sets */
643		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
644		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
645		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
646		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
647	} else
648		cpu = of_find_node_by_type(NULL, "cpu");
649
650	/*
651	 * We're assuming *all* of the CPUs have the same
652	 * d-cache and i-cache sizes... -Peter
653	 */
654	if (cpu) {
655		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
656			pr_warn("Argh, can't find dcache properties !\n");
657
658		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
659			pr_warn("Argh, can't find icache properties !\n");
660
661		/*
662		 * Try to find the L2 and L3 if any. Assume they are
663		 * unified and use the D-side properties.
664		 */
665		l2 = of_find_next_cache_node(cpu);
666		of_node_put(cpu);
667		if (l2) {
668			parse_cache_info(l2, false, &ppc64_caches.l2);
669			l3 = of_find_next_cache_node(l2);
670			of_node_put(l2);
671		}
672		if (l3) {
673			parse_cache_info(l3, false, &ppc64_caches.l3);
674			of_node_put(l3);
675		}
676	}
677
678	/* For use by binfmt_elf */
679	dcache_bsize = ppc64_caches.l1d.block_size;
680	icache_bsize = ppc64_caches.l1i.block_size;
681
682	cur_cpu_spec->dcache_bsize = dcache_bsize;
683	cur_cpu_spec->icache_bsize = icache_bsize;
684}
685
686/*
687 * This returns the limit below which memory accesses to the linear
688 * mapping are guarnateed not to cause an architectural exception (e.g.,
689 * TLB or SLB miss fault).
690 *
691 * This is used to allocate PACAs and various interrupt stacks that
692 * that are accessed early in interrupt handlers that must not cause
693 * re-entrant interrupts.
694 */
695__init u64 ppc64_bolted_size(void)
696{
697#ifdef CONFIG_PPC_BOOK3E_64
698	/* Freescale BookE bolts the entire linear mapping */
699	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
700	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
701		return linear_map_top;
702	/* Other BookE, we assume the first GB is bolted */
703	return 1ul << 30;
704#else
705	/* BookS radix, does not take faults on linear mapping */
706	if (early_radix_enabled())
707		return ULONG_MAX;
708
709	/* BookS hash, the first segment is bolted */
710	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
711		return 1UL << SID_SHIFT_1T;
712	return 1UL << SID_SHIFT;
713#endif
714}
715
716static void *__init alloc_stack(unsigned long limit, int cpu)
717{
718	void *ptr;
719
720	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
721
722	ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
723				     MEMBLOCK_LOW_LIMIT, limit,
724				     early_cpu_to_node(cpu));
725	if (!ptr)
726		panic("cannot allocate stacks");
727
728	return ptr;
729}
730
731void __init irqstack_early_init(void)
732{
733	u64 limit = ppc64_bolted_size();
734	unsigned int i;
735
736	/*
737	 * Interrupt stacks must be in the first segment since we
738	 * cannot afford to take SLB misses on them. They are not
739	 * accessed in realmode.
740	 */
741	for_each_possible_cpu(i) {
742		softirq_ctx[i] = alloc_stack(limit, i);
743		hardirq_ctx[i] = alloc_stack(limit, i);
744	}
745}
746
747#ifdef CONFIG_PPC_BOOK3E_64
748void __init exc_lvl_early_init(void)
749{
750	unsigned int i;
751
752	for_each_possible_cpu(i) {
753		void *sp;
754
755		sp = alloc_stack(ULONG_MAX, i);
756		critirq_ctx[i] = sp;
757		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
758
759		sp = alloc_stack(ULONG_MAX, i);
760		dbgirq_ctx[i] = sp;
761		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
762
763		sp = alloc_stack(ULONG_MAX, i);
764		mcheckirq_ctx[i] = sp;
765		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
766	}
767
768	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
769		patch_exception(0x040, exc_debug_debug_book3e);
770}
771#endif
772
773/*
774 * Stack space used when we detect a bad kernel stack pointer, and
775 * early in SMP boots before relocation is enabled. Exclusive emergency
776 * stack for machine checks.
777 */
778void __init emergency_stack_init(void)
779{
780	u64 limit, mce_limit;
781	unsigned int i;
782
783	/*
784	 * Emergency stacks must be under 256MB, we cannot afford to take
785	 * SLB misses on them. The ABI also requires them to be 128-byte
786	 * aligned.
787	 *
788	 * Since we use these as temporary stacks during secondary CPU
789	 * bringup, machine check, system reset, and HMI, we need to get
790	 * at them in real mode. This means they must also be within the RMO
791	 * region.
792	 *
793	 * The IRQ stacks allocated elsewhere in this file are zeroed and
794	 * initialized in kernel/irq.c. These are initialized here in order
795	 * to have emergency stacks available as early as possible.
796	 */
797	limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
798
799	/*
800	 * Machine check on pseries calls rtas, but can't use the static
801	 * rtas_args due to a machine check hitting while the lock is held.
802	 * rtas args have to be under 4GB, so the machine check stack is
803	 * limited to 4GB so args can be put on stack.
804	 */
805	if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
806		mce_limit = SZ_4G;
807
808	for_each_possible_cpu(i) {
809		paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
810
811#ifdef CONFIG_PPC_BOOK3S_64
812		/* emergency stack for NMI exception handling. */
813		paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
814
815		/* emergency stack for machine check exception handling. */
816		paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
817#endif
818	}
819}
820
821#ifdef CONFIG_SMP
822static int pcpu_cpu_distance(unsigned int from, unsigned int to)
823{
824	if (early_cpu_to_node(from) == early_cpu_to_node(to))
825		return LOCAL_DISTANCE;
826	else
827		return REMOTE_DISTANCE;
828}
829
830static __init int pcpu_cpu_to_node(int cpu)
831{
832	return early_cpu_to_node(cpu);
833}
834
835unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
836EXPORT_SYMBOL(__per_cpu_offset);
837
838void __init setup_per_cpu_areas(void)
839{
840	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
841	size_t atom_size;
842	unsigned long delta;
843	unsigned int cpu;
844	int rc = -EINVAL;
845
846	/*
847	 * BookE and BookS radix are historical values and should be revisited.
848	 */
849	if (IS_ENABLED(CONFIG_PPC_BOOK3E_64)) {
850		atom_size = SZ_1M;
851	} else if (radix_enabled()) {
852		atom_size = PAGE_SIZE;
853	} else if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU)) {
854		/*
855		 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
856		 * to group units.  For larger mappings, use 1M atom which
857		 * should be large enough to contain a number of units.
858		 */
859		if (mmu_linear_psize == MMU_PAGE_4K)
860			atom_size = PAGE_SIZE;
861		else
862			atom_size = SZ_1M;
863	}
864
865	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
866		rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
867					    pcpu_cpu_to_node);
868		if (rc)
869			pr_warn("PERCPU: %s allocator failed (%d), "
870				"falling back to page size\n",
871				pcpu_fc_names[pcpu_chosen_fc], rc);
872	}
873
874	if (rc < 0)
875		rc = pcpu_page_first_chunk(0, pcpu_cpu_to_node);
876	if (rc < 0)
877		panic("cannot initialize percpu area (err=%d)", rc);
878
879	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
880	for_each_possible_cpu(cpu) {
881                __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
882		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
883	}
884}
885#endif
886
887#ifdef CONFIG_MEMORY_HOTPLUG
888unsigned long memory_block_size_bytes(void)
889{
890	if (ppc_md.memory_block_size)
891		return ppc_md.memory_block_size();
892
893	return MIN_MEMORY_BLOCK_SIZE;
894}
895#endif
896
897#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
898struct ppc_pci_io ppc_pci_io;
899EXPORT_SYMBOL(ppc_pci_io);
900#endif
901
902#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
903u64 hw_nmi_get_sample_period(int watchdog_thresh)
904{
905	return ppc_proc_freq * watchdog_thresh;
906}
907#endif
908
909/*
910 * The perf based hardlockup detector breaks PMU event based branches, so
911 * disable it by default. Book3S has a soft-nmi hardlockup detector based
912 * on the decrementer interrupt, so it does not suffer from this problem.
913 *
914 * It is likely to get false positives in KVM guests, so disable it there
915 * by default too. PowerVM will not stop or arbitrarily oversubscribe
916 * CPUs, but give a minimum regular allotment even with SPLPAR, so enable
917 * the detector for non-KVM guests, assume PowerVM.
918 */
919static int __init disable_hardlockup_detector(void)
920{
921#ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
922	hardlockup_detector_disable();
923#else
924	if (firmware_has_feature(FW_FEATURE_LPAR)) {
925		if (is_kvm_guest())
926			hardlockup_detector_disable();
927	}
928#endif
929
930	return 0;
931}
932early_initcall(disable_hardlockup_detector);
933