1/* Machine-dependent software floating-point definitions.  PPC version.
2   Copyright (C) 1997 Free Software Foundation, Inc.
3   This file is part of the GNU C Library.
4
5   The GNU C Library is free software; you can redistribute it and/or
6   modify it under the terms of the GNU Library General Public License as
7   published by the Free Software Foundation; either version 2 of the
8   License, or (at your option) any later version.
9
10   The GNU C Library is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13   Library General Public License for more details.
14
15   You should have received a copy of the GNU Library General Public
16   License along with the GNU C Library; see the file COPYING.LIB.  If
17   not, write to the Free Software Foundation, Inc.,
18   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20   Actually, this is a PPC (32bit) version, written based on the
21   i386, sparc, and sparc64 versions, by me,
22   Peter Maydell (pmaydell@chiark.greenend.org.uk).
23   Comments are by and large also mine, although they may be inaccurate.
24
25   In picking out asm fragments I've gone with the lowest common
26   denominator, which also happens to be the hardware I have :->
27   That is, a SPARC without hardware multiply and divide.
28 */
29
30/* basic word size definitions */
31#define _FP_W_TYPE_SIZE		32
32#define _FP_W_TYPE		unsigned int
33#define _FP_WS_TYPE		signed int
34#define _FP_I_TYPE		int
35
36#define __ll_B			((UWtype) 1 << (W_TYPE_SIZE / 2))
37#define __ll_lowpart(t)		((UWtype) (t) & (__ll_B - 1))
38#define __ll_highpart(t)	((UWtype) (t) >> (W_TYPE_SIZE / 2))
39
40/* You can optionally code some things like addition in asm. For
41 * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't
42 * then you get a fragment of C code [if you change an #ifdef 0
43 * in op-2.h] or a call to add_ssaaaa (see below).
44 * Good places to look for asm fragments to use are gcc and glibc.
45 * gcc's longlong.h is useful.
46 */
47
48/* We need to know how to multiply and divide. If the host word size
49 * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which
50 * codes the multiply with whatever gcc does to 'a * b'.
51 * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm
52 * function that can multiply two 1W values and get a 2W result.
53 * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which
54 * does bitshifting to avoid overflow.
55 * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size
56 * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or
57 * _FP_DIV_HELP_ldiv (see op-1.h).
58 * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W).
59 * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd
60 * to do this.]
61 * In general, 'n' is the number of words required to hold the type,
62 * and 't' is either S, D or Q for single/double/quad.
63 *           -- PMM
64 */
65/* Example: SPARC64:
66 * #define _FP_MUL_MEAT_S(R,X,Y)	_FP_MUL_MEAT_1_imm(S,R,X,Y)
67 * #define _FP_MUL_MEAT_D(R,X,Y)	_FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm)
68 * #define _FP_MUL_MEAT_Q(R,X,Y)	_FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm)
69 *
70 * #define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm)
71 * #define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_1_udiv(D,R,X,Y)
72 * #define _FP_DIV_MEAT_Q(R,X,Y)	_FP_DIV_MEAT_2_udiv_64(Q,R,X,Y)
73 *
74 * Example: i386:
75 * #define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64)
76 * #define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64)
77 *
78 * #define _FP_DIV_MEAT_S(R,X,Y)   _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32)
79 * #define _FP_DIV_MEAT_D(R,X,Y)   _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)
80 */
81
82#define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)
83#define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
84
85#define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_udiv_norm(S,R,X,Y)
86#define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_2_udiv(D,R,X,Y)
87
88/* These macros define what NaN looks like. They're supposed to expand to
89 * a comma-separated set of 32bit unsigned ints that encode NaN.
90 */
91#define _FP_NANFRAC_S		((_FP_QNANBIT_S << 1) - 1)
92#define _FP_NANFRAC_D		((_FP_QNANBIT_D << 1) - 1), -1
93#define _FP_NANFRAC_Q		((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1
94#define _FP_NANSIGN_S		0
95#define _FP_NANSIGN_D		0
96#define _FP_NANSIGN_Q		0
97
98#define _FP_KEEPNANFRACP 1
99
100#ifdef FP_EX_BOOKE_E500_SPE
101#define FP_EX_INEXACT		(1 << 21)
102#define FP_EX_INVALID		(1 << 20)
103#define FP_EX_DIVZERO		(1 << 19)
104#define FP_EX_UNDERFLOW		(1 << 18)
105#define FP_EX_OVERFLOW		(1 << 17)
106#define FP_INHIBIT_RESULTS	0
107
108#define __FPU_FPSCR	(current->thread.spefscr)
109#define __FPU_ENABLED_EXC		\
110({					\
111	(__FPU_FPSCR >> 2) & 0x1f;	\
112})
113#else
114/* Exception flags.  We use the bit positions of the appropriate bits
115   in the FPSCR, which also correspond to the FE_* bits.  This makes
116   everything easier ;-).  */
117#define FP_EX_INVALID         (1 << (31 - 2))
118#define FP_EX_INVALID_SNAN	EFLAG_VXSNAN
119#define FP_EX_INVALID_ISI	EFLAG_VXISI
120#define FP_EX_INVALID_IDI	EFLAG_VXIDI
121#define FP_EX_INVALID_ZDZ	EFLAG_VXZDZ
122#define FP_EX_INVALID_IMZ	EFLAG_VXIMZ
123#define FP_EX_OVERFLOW        (1 << (31 - 3))
124#define FP_EX_UNDERFLOW       (1 << (31 - 4))
125#define FP_EX_DIVZERO         (1 << (31 - 5))
126#define FP_EX_INEXACT         (1 << (31 - 6))
127
128#define __FPU_FPSCR	(current->thread.fp_state.fpscr)
129
130/* We only actually write to the destination register
131 * if exceptions signalled (if any) will not trap.
132 */
133#define __FPU_ENABLED_EXC \
134({						\
135	(__FPU_FPSCR >> 3) & 0x1f;	\
136})
137
138#endif
139
140/*
141 * If one NaN is signaling and the other is not,
142 * we choose that one, otherwise we choose X.
143 */
144#define _FP_CHOOSENAN(fs, wc, R, X, Y, OP)			\
145  do {								\
146    if ((_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs)		\
147	&& !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))	\
148      {								\
149	R##_s = X##_s;						\
150	_FP_FRAC_COPY_##wc(R,X);				\
151      }								\
152    else							\
153      {								\
154	R##_s = Y##_s;						\
155	_FP_FRAC_COPY_##wc(R,Y);				\
156      }								\
157    R##_c = FP_CLS_NAN;						\
158  } while (0)
159
160
161#include <linux/kernel.h>
162#include <linux/sched.h>
163
164#define __FPU_TRAP_P(bits) \
165	((__FPU_ENABLED_EXC & (bits)) != 0)
166
167#define __FP_PACK_S(val,X)			\
168({  int __exc = _FP_PACK_CANONICAL(S,1,X);	\
169    if(!__exc || !__FPU_TRAP_P(__exc))		\
170        _FP_PACK_RAW_1_P(S,val,X);		\
171    __exc;					\
172})
173
174#define __FP_PACK_D(val,X)			\
175   do {									\
176	_FP_PACK_CANONICAL(D, 2, X);					\
177	if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS))	\
178		_FP_PACK_RAW_2_P(D, val, X);				\
179   } while (0)
180
181#define __FP_PACK_DS(val,X)							\
182   do {										\
183	   FP_DECL_S(__X);							\
184	   FP_CONV(S, D, 1, 2, __X, X);						\
185	   _FP_PACK_CANONICAL(S, 1, __X);					\
186	   if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) {	\
187		   _FP_UNPACK_CANONICAL(S, 1, __X);				\
188		   FP_CONV(D, S, 2, 1, X, __X);					\
189		   _FP_PACK_CANONICAL(D, 2, X);					\
190		   if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS))	\
191		   _FP_PACK_RAW_2_P(D, val, X);					\
192	   }									\
193   } while (0)
194
195/* Obtain the current rounding mode. */
196#define FP_ROUNDMODE			\
197({					\
198	__FPU_FPSCR & 0x3;		\
199})
200
201/* the asm fragments go here: all these are taken from glibc-2.0.5's
202 * stdlib/longlong.h
203 */
204
205#include <linux/types.h>
206#include <asm/byteorder.h>
207
208/* add_ssaaaa is used in op-2.h and should be equivalent to
209 * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al))
210 * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
211 * high_addend_2, low_addend_2) adds two UWtype integers, composed by
212 * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2
213 * respectively.  The result is placed in HIGH_SUM and LOW_SUM.  Overflow
214 * (i.e. carry out) is not stored anywhere, and is lost.
215 */
216#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
217  do {									\
218    if (__builtin_constant_p (bh) && (bh) == 0)				\
219      __asm__ ("add%I4c %1,%3,%4\n\taddze %0,%2"		\
220	     : "=r" (sh), "=&r" (sl) : "r" (ah), "%r" (al), "rI" (bl));\
221    else if (__builtin_constant_p (bh) && (bh) == ~(USItype) 0)		\
222      __asm__ ("add%I4c %1,%3,%4\n\taddme %0,%2"		\
223	     : "=r" (sh), "=&r" (sl) : "r" (ah), "%r" (al), "rI" (bl));\
224    else								\
225      __asm__ ("add%I5c %1,%4,%5\n\tadde %0,%2,%3"		\
226	     : "=r" (sh), "=&r" (sl)					\
227	     : "%r" (ah), "r" (bh), "%r" (al), "rI" (bl));		\
228  } while (0)
229
230/* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to
231 * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al))
232 * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend,
233 * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers,
234 * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and
235 * LOW_SUBTRAHEND_2 respectively.  The result is placed in HIGH_DIFFERENCE
236 * and LOW_DIFFERENCE.  Overflow (i.e. carry out) is not stored anywhere,
237 * and is lost.
238 */
239#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
240  do {									\
241    if (__builtin_constant_p (ah) && (ah) == 0)				\
242      __asm__ ("subf%I3c %1,%4,%3\n\tsubfze %0,%2"	\
243	       : "=r" (sh), "=&r" (sl) : "r" (bh), "rI" (al), "r" (bl));\
244    else if (__builtin_constant_p (ah) && (ah) == ~(USItype) 0)		\
245      __asm__ ("subf%I3c %1,%4,%3\n\tsubfme %0,%2"	\
246	       : "=r" (sh), "=&r" (sl) : "r" (bh), "rI" (al), "r" (bl));\
247    else if (__builtin_constant_p (bh) && (bh) == 0)			\
248      __asm__ ("subf%I3c %1,%4,%3\n\taddme %0,%2"		\
249	       : "=r" (sh), "=&r" (sl) : "r" (ah), "rI" (al), "r" (bl));\
250    else if (__builtin_constant_p (bh) && (bh) == ~(USItype) 0)		\
251      __asm__ ("subf%I3c %1,%4,%3\n\taddze %0,%2"		\
252	       : "=r" (sh), "=&r" (sl) : "r" (ah), "rI" (al), "r" (bl));\
253    else								\
254      __asm__ ("subf%I4c %1,%5,%4\n\tsubfe %0,%3,%2"	\
255	       : "=r" (sh), "=&r" (sl)					\
256	       : "r" (ah), "r" (bh), "rI" (al), "r" (bl));		\
257  } while (0)
258
259/* asm fragments for mul and div */
260
261/* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two
262 * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype
263 * word product in HIGH_PROD and LOW_PROD.
264 */
265#define umul_ppmm(ph, pl, m0, m1) \
266  do {									\
267    USItype __m0 = (m0), __m1 = (m1);					\
268    __asm__ ("mulhwu %0,%1,%2" : "=r" (ph) : "%r" (m0), "r" (m1));	\
269    (pl) = __m0 * __m1;							\
270  } while (0)
271
272/* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
273 * denominator) divides a UDWtype, composed by the UWtype integers
274 * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient
275 * in QUOTIENT and the remainder in REMAINDER.  HIGH_NUMERATOR must be less
276 * than DENOMINATOR for correct operation.  If, in addition, the most
277 * significant bit of DENOMINATOR must be 1, then the pre-processor symbol
278 * UDIV_NEEDS_NORMALIZATION is defined to 1.
279 */
280#define udiv_qrnnd(q, r, n1, n0, d) \
281  do {									\
282    UWtype __d1, __d0, __q1, __q0;					\
283    UWtype __r1, __r0, __m;						\
284    __d1 = __ll_highpart (d);						\
285    __d0 = __ll_lowpart (d);						\
286									\
287    __r1 = (n1) % __d1;							\
288    __q1 = (n1) / __d1;							\
289    __m = (UWtype) __q1 * __d0;						\
290    __r1 = __r1 * __ll_B | __ll_highpart (n0);				\
291    if (__r1 < __m)							\
292      {									\
293	__q1--, __r1 += (d);						\
294	if (__r1 >= (d)) /* i.e. we didn't get carry when adding to __r1 */\
295	  if (__r1 < __m)						\
296	    __q1--, __r1 += (d);					\
297      }									\
298    __r1 -= __m;							\
299									\
300    __r0 = __r1 % __d1;							\
301    __q0 = __r1 / __d1;							\
302    __m = (UWtype) __q0 * __d0;						\
303    __r0 = __r0 * __ll_B | __ll_lowpart (n0);				\
304    if (__r0 < __m)							\
305      {									\
306	__q0--, __r0 += (d);						\
307	if (__r0 >= (d))						\
308	  if (__r0 < __m)						\
309	    __q0--, __r0 += (d);					\
310      }									\
311    __r0 -= __m;							\
312									\
313    (q) = (UWtype) __q1 * __ll_B | __q0;				\
314    (r) = __r0;								\
315  } while (0)
316
317#define UDIV_NEEDS_NORMALIZATION 1
318
319#define abort()								\
320	return 0
321
322#ifdef __BIG_ENDIAN
323#define __BYTE_ORDER __BIG_ENDIAN
324#else
325#define __BYTE_ORDER __LITTLE_ENDIAN
326#endif
327
328/* Exception flags. */
329#define EFLAG_INVALID		(1 << (31 - 2))
330#define EFLAG_OVERFLOW		(1 << (31 - 3))
331#define EFLAG_UNDERFLOW		(1 << (31 - 4))
332#define EFLAG_DIVZERO		(1 << (31 - 5))
333#define EFLAG_INEXACT		(1 << (31 - 6))
334
335#define EFLAG_VXSNAN		(1 << (31 - 7))
336#define EFLAG_VXISI		(1 << (31 - 8))
337#define EFLAG_VXIDI		(1 << (31 - 9))
338#define EFLAG_VXZDZ		(1 << (31 - 10))
339#define EFLAG_VXIMZ		(1 << (31 - 11))
340#define EFLAG_VXVC		(1 << (31 - 12))
341#define EFLAG_VXSOFT		(1 << (31 - 21))
342#define EFLAG_VXSQRT		(1 << (31 - 22))
343#define EFLAG_VXCVI		(1 << (31 - 23))
344