1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Copyright (C) 2001  Dave Engebretsen & Todd Inglett IBM Corporation.
4 * Copyright 2001-2012 IBM Corporation.
5 */
6
7#ifndef _POWERPC_EEH_H
8#define _POWERPC_EEH_H
9#ifdef __KERNEL__
10
11#include <linux/init.h>
12#include <linux/list.h>
13#include <linux/string.h>
14#include <linux/time.h>
15#include <linux/atomic.h>
16
17#include <uapi/asm/eeh.h>
18
19struct pci_dev;
20struct pci_bus;
21struct pci_dn;
22
23#ifdef CONFIG_EEH
24
25/* EEH subsystem flags */
26#define EEH_ENABLED		0x01	/* EEH enabled			     */
27#define EEH_FORCE_DISABLED	0x02	/* EEH disabled			     */
28#define EEH_PROBE_MODE_DEV	0x04	/* From PCI device		     */
29#define EEH_PROBE_MODE_DEVTREE	0x08	/* From device tree		     */
30#define EEH_ENABLE_IO_FOR_LOG	0x20	/* Enable IO for log		     */
31#define EEH_EARLY_DUMP_LOG	0x40	/* Dump log immediately		     */
32
33/*
34 * Delay for PE reset, all in ms
35 *
36 * PCI specification has reset hold time of 100 milliseconds.
37 * We have 250 milliseconds here. The PCI bus settlement time
38 * is specified as 1.5 seconds and we have 1.8 seconds.
39 */
40#define EEH_PE_RST_HOLD_TIME		250
41#define EEH_PE_RST_SETTLE_TIME		1800
42
43/*
44 * The struct is used to trace PE related EEH functionality.
45 * In theory, there will have one instance of the struct to
46 * be created against particular PE. In nature, PEs correlate
47 * to each other. the struct has to reflect that hierarchy in
48 * order to easily pick up those affected PEs when one particular
49 * PE has EEH errors.
50 *
51 * Also, one particular PE might be composed of PCI device, PCI
52 * bus and its subordinate components. The struct also need ship
53 * the information. Further more, one particular PE is only meaingful
54 * in the corresponding PHB. Therefore, the root PEs should be created
55 * against existing PHBs in on-to-one fashion.
56 */
57#define EEH_PE_INVALID	(1 << 0)	/* Invalid   */
58#define EEH_PE_PHB	(1 << 1)	/* PHB PE    */
59#define EEH_PE_DEVICE 	(1 << 2)	/* Device PE */
60#define EEH_PE_BUS	(1 << 3)	/* Bus PE    */
61#define EEH_PE_VF	(1 << 4)	/* VF PE     */
62
63#define EEH_PE_ISOLATED		(1 << 0)	/* Isolated PE		*/
64#define EEH_PE_RECOVERING	(1 << 1)	/* Recovering PE	*/
65#define EEH_PE_CFG_BLOCKED	(1 << 2)	/* Block config access	*/
66#define EEH_PE_RESET		(1 << 3)	/* PE reset in progress */
67
68#define EEH_PE_KEEP		(1 << 8)	/* Keep PE on hotplug	*/
69#define EEH_PE_CFG_RESTRICTED	(1 << 9)	/* Block config on error */
70#define EEH_PE_REMOVED		(1 << 10)	/* Removed permanently	*/
71#define EEH_PE_PRI_BUS		(1 << 11)	/* Cached primary bus   */
72
73struct eeh_pe {
74	int type;			/* PE type: PHB/Bus/Device	*/
75	int state;			/* PE EEH dependent mode	*/
76	int addr;			/* PE configuration address	*/
77	struct pci_controller *phb;	/* Associated PHB		*/
78	struct pci_bus *bus;		/* Top PCI bus for bus PE	*/
79	int check_count;		/* Times of ignored error	*/
80	int freeze_count;		/* Times of froze up		*/
81	time64_t tstamp;		/* Time on first-time freeze	*/
82	int false_positives;		/* Times of reported #ff's	*/
83	atomic_t pass_dev_cnt;		/* Count of passed through devs	*/
84	struct eeh_pe *parent;		/* Parent PE			*/
85	void *data;			/* PE auxillary data		*/
86	struct list_head child_list;	/* List of PEs below this PE	*/
87	struct list_head child;		/* Memb. child_list/eeh_phb_pe	*/
88	struct list_head edevs;		/* List of eeh_dev in this PE	*/
89
90#ifdef CONFIG_STACKTRACE
91	/*
92	 * Saved stack trace. When we find a PE freeze in eeh_dev_check_failure
93	 * the stack trace is saved here so we can print it in the recovery
94	 * thread if it turns out to due to a real problem rather than
95	 * a hot-remove.
96	 *
97	 * A max of 64 entries might be overkill, but it also might not be.
98	 */
99	unsigned long stack_trace[64];
100	int trace_entries;
101#endif /* CONFIG_STACKTRACE */
102};
103
104#define eeh_pe_for_each_dev(pe, edev, tmp) \
105		list_for_each_entry_safe(edev, tmp, &pe->edevs, entry)
106
107#define eeh_for_each_pe(root, pe) \
108	for (pe = root; pe; pe = eeh_pe_next(pe, root))
109
110static inline bool eeh_pe_passed(struct eeh_pe *pe)
111{
112	return pe ? !!atomic_read(&pe->pass_dev_cnt) : false;
113}
114
115/*
116 * The struct is used to trace EEH state for the associated
117 * PCI device node or PCI device. In future, it might
118 * represent PE as well so that the EEH device to form
119 * another tree except the currently existing tree of PCI
120 * buses and PCI devices
121 */
122#define EEH_DEV_BRIDGE		(1 << 0)	/* PCI bridge		*/
123#define EEH_DEV_ROOT_PORT	(1 << 1)	/* PCIe root port	*/
124#define EEH_DEV_DS_PORT		(1 << 2)	/* Downstream port	*/
125#define EEH_DEV_IRQ_DISABLED	(1 << 3)	/* Interrupt disabled	*/
126#define EEH_DEV_DISCONNECTED	(1 << 4)	/* Removing from PE	*/
127
128#define EEH_DEV_NO_HANDLER	(1 << 8)	/* No error handler	*/
129#define EEH_DEV_SYSFS		(1 << 9)	/* Sysfs created	*/
130#define EEH_DEV_REMOVED		(1 << 10)	/* Removed permanently	*/
131
132struct eeh_dev {
133	int mode;			/* EEH mode			*/
134	int bdfn;			/* bdfn of device (for cfg ops) */
135	struct pci_controller *controller;
136	int pe_config_addr;		/* PE config address		*/
137	u32 config_space[16];		/* Saved PCI config space	*/
138	int pcix_cap;			/* Saved PCIx capability	*/
139	int pcie_cap;			/* Saved PCIe capability	*/
140	int aer_cap;			/* Saved AER capability		*/
141	int af_cap;			/* Saved AF capability		*/
142	struct eeh_pe *pe;		/* Associated PE		*/
143	struct list_head entry;		/* Membership in eeh_pe.edevs	*/
144	struct list_head rmv_entry;	/* Membership in rmv_list	*/
145	struct pci_dn *pdn;		/* Associated PCI device node	*/
146	struct pci_dev *pdev;		/* Associated PCI device	*/
147	bool in_error;			/* Error flag for edev		*/
148
149	/* VF specific properties */
150	struct pci_dev *physfn;		/* Associated SRIOV PF		*/
151	int vf_index;			/* Index of this VF 		*/
152};
153
154/* "fmt" must be a simple literal string */
155#define EEH_EDEV_PRINT(level, edev, fmt, ...) \
156	pr_##level("PCI %04x:%02x:%02x.%x#%04x: EEH: " fmt, \
157	(edev)->controller->global_number, PCI_BUSNO((edev)->bdfn), \
158	PCI_SLOT((edev)->bdfn), PCI_FUNC((edev)->bdfn), \
159	((edev)->pe ? (edev)->pe_config_addr : 0xffff), ##__VA_ARGS__)
160#define eeh_edev_dbg(edev, fmt, ...) EEH_EDEV_PRINT(debug, (edev), fmt, ##__VA_ARGS__)
161#define eeh_edev_info(edev, fmt, ...) EEH_EDEV_PRINT(info, (edev), fmt, ##__VA_ARGS__)
162#define eeh_edev_warn(edev, fmt, ...) EEH_EDEV_PRINT(warn, (edev), fmt, ##__VA_ARGS__)
163#define eeh_edev_err(edev, fmt, ...) EEH_EDEV_PRINT(err, (edev), fmt, ##__VA_ARGS__)
164
165static inline struct pci_dn *eeh_dev_to_pdn(struct eeh_dev *edev)
166{
167	return edev ? edev->pdn : NULL;
168}
169
170static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
171{
172	return edev ? edev->pdev : NULL;
173}
174
175static inline struct eeh_pe *eeh_dev_to_pe(struct eeh_dev* edev)
176{
177	return edev ? edev->pe : NULL;
178}
179
180/* Return values from eeh_ops::next_error */
181enum {
182	EEH_NEXT_ERR_NONE = 0,
183	EEH_NEXT_ERR_INF,
184	EEH_NEXT_ERR_FROZEN_PE,
185	EEH_NEXT_ERR_FENCED_PHB,
186	EEH_NEXT_ERR_DEAD_PHB,
187	EEH_NEXT_ERR_DEAD_IOC
188};
189
190/*
191 * The struct is used to trace the registered EEH operation
192 * callback functions. Actually, those operation callback
193 * functions are heavily platform dependent. That means the
194 * platform should register its own EEH operation callback
195 * functions before any EEH further operations.
196 */
197#define EEH_OPT_DISABLE		0	/* EEH disable	*/
198#define EEH_OPT_ENABLE		1	/* EEH enable	*/
199#define EEH_OPT_THAW_MMIO	2	/* MMIO enable	*/
200#define EEH_OPT_THAW_DMA	3	/* DMA enable	*/
201#define EEH_OPT_FREEZE_PE	4	/* Freeze PE	*/
202#define EEH_STATE_UNAVAILABLE	(1 << 0)	/* State unavailable	*/
203#define EEH_STATE_NOT_SUPPORT	(1 << 1)	/* EEH not supported	*/
204#define EEH_STATE_RESET_ACTIVE	(1 << 2)	/* Active reset		*/
205#define EEH_STATE_MMIO_ACTIVE	(1 << 3)	/* Active MMIO		*/
206#define EEH_STATE_DMA_ACTIVE	(1 << 4)	/* Active DMA		*/
207#define EEH_STATE_MMIO_ENABLED	(1 << 5)	/* MMIO enabled		*/
208#define EEH_STATE_DMA_ENABLED	(1 << 6)	/* DMA enabled		*/
209#define EEH_RESET_DEACTIVATE	0	/* Deactivate the PE reset	*/
210#define EEH_RESET_HOT		1	/* Hot reset			*/
211#define EEH_RESET_FUNDAMENTAL	3	/* Fundamental reset		*/
212#define EEH_LOG_TEMP		1	/* EEH temporary error log	*/
213#define EEH_LOG_PERM		2	/* EEH permanent error log	*/
214
215struct eeh_ops {
216	char *name;
217	struct eeh_dev *(*probe)(struct pci_dev *pdev);
218	int (*set_option)(struct eeh_pe *pe, int option);
219	int (*get_state)(struct eeh_pe *pe, int *delay);
220	int (*reset)(struct eeh_pe *pe, int option);
221	int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
222	int (*configure_bridge)(struct eeh_pe *pe);
223	int (*err_inject)(struct eeh_pe *pe, int type, int func,
224			  unsigned long addr, unsigned long mask);
225	int (*read_config)(struct eeh_dev *edev, int where, int size, u32 *val);
226	int (*write_config)(struct eeh_dev *edev, int where, int size, u32 val);
227	int (*next_error)(struct eeh_pe **pe);
228	int (*restore_config)(struct eeh_dev *edev);
229	int (*notify_resume)(struct eeh_dev *edev);
230};
231
232extern int eeh_subsystem_flags;
233extern u32 eeh_max_freezes;
234extern bool eeh_debugfs_no_recover;
235extern struct eeh_ops *eeh_ops;
236extern raw_spinlock_t confirm_error_lock;
237
238static inline void eeh_add_flag(int flag)
239{
240	eeh_subsystem_flags |= flag;
241}
242
243static inline void eeh_clear_flag(int flag)
244{
245	eeh_subsystem_flags &= ~flag;
246}
247
248static inline bool eeh_has_flag(int flag)
249{
250        return !!(eeh_subsystem_flags & flag);
251}
252
253static inline bool eeh_enabled(void)
254{
255	return eeh_has_flag(EEH_ENABLED) && !eeh_has_flag(EEH_FORCE_DISABLED);
256}
257
258static inline void eeh_serialize_lock(unsigned long *flags)
259{
260	raw_spin_lock_irqsave(&confirm_error_lock, *flags);
261}
262
263static inline void eeh_serialize_unlock(unsigned long flags)
264{
265	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
266}
267
268static inline bool eeh_state_active(int state)
269{
270	return (state & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE))
271	== (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
272}
273
274typedef void (*eeh_edev_traverse_func)(struct eeh_dev *edev, void *flag);
275typedef void *(*eeh_pe_traverse_func)(struct eeh_pe *pe, void *flag);
276void eeh_set_pe_aux_size(int size);
277int eeh_phb_pe_create(struct pci_controller *phb);
278int eeh_wait_state(struct eeh_pe *pe, int max_wait);
279struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
280struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root);
281struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no);
282int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent);
283int eeh_pe_tree_remove(struct eeh_dev *edev);
284void eeh_pe_update_time_stamp(struct eeh_pe *pe);
285void *eeh_pe_traverse(struct eeh_pe *root,
286		      eeh_pe_traverse_func fn, void *flag);
287void eeh_pe_dev_traverse(struct eeh_pe *root,
288			 eeh_edev_traverse_func fn, void *flag);
289void eeh_pe_restore_bars(struct eeh_pe *pe);
290const char *eeh_pe_loc_get(struct eeh_pe *pe);
291struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
292
293void eeh_show_enabled(void);
294int __init eeh_init(struct eeh_ops *ops);
295int eeh_check_failure(const volatile void __iomem *token);
296int eeh_dev_check_failure(struct eeh_dev *edev);
297void eeh_addr_cache_init(void);
298void eeh_probe_device(struct pci_dev *pdev);
299void eeh_remove_device(struct pci_dev *);
300int eeh_unfreeze_pe(struct eeh_pe *pe);
301int eeh_pe_reset_and_recover(struct eeh_pe *pe);
302int eeh_dev_open(struct pci_dev *pdev);
303void eeh_dev_release(struct pci_dev *pdev);
304struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group);
305int eeh_pe_set_option(struct eeh_pe *pe, int option);
306int eeh_pe_get_state(struct eeh_pe *pe);
307int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed);
308int eeh_pe_configure(struct eeh_pe *pe);
309int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
310		      unsigned long addr, unsigned long mask);
311
312/**
313 * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
314 *
315 * If this macro yields TRUE, the caller relays to eeh_check_failure()
316 * which does further tests out of line.
317 */
318#define EEH_POSSIBLE_ERROR(val, type)	((val) == (type)~0 && eeh_enabled())
319
320/*
321 * Reads from a device which has been isolated by EEH will return
322 * all 1s.  This macro gives an all-1s value of the given size (in
323 * bytes: 1, 2, or 4) for comparing with the result of a read.
324 */
325#define EEH_IO_ERROR_VALUE(size)	(~0U >> ((4 - (size)) * 8))
326
327#else /* !CONFIG_EEH */
328
329static inline bool eeh_enabled(void)
330{
331        return false;
332}
333
334static inline void eeh_show_enabled(void) { }
335
336static inline int eeh_check_failure(const volatile void __iomem *token)
337{
338	return 0;
339}
340
341#define eeh_dev_check_failure(x) (0)
342
343static inline void eeh_addr_cache_init(void) { }
344
345static inline void eeh_probe_device(struct pci_dev *dev) { }
346
347static inline void eeh_remove_device(struct pci_dev *dev) { }
348
349#define EEH_POSSIBLE_ERROR(val, type) (0)
350#define EEH_IO_ERROR_VALUE(size) (-1UL)
351static inline int eeh_phb_pe_create(struct pci_controller *phb) { return 0; }
352#endif /* CONFIG_EEH */
353
354#if defined(CONFIG_PPC_PSERIES) && defined(CONFIG_EEH)
355void pseries_eeh_init_edev_recursive(struct pci_dn *pdn);
356#endif
357
358#ifdef CONFIG_PPC64
359/*
360 * MMIO read/write operations with EEH support.
361 */
362static inline u8 eeh_readb(const volatile void __iomem *addr)
363{
364	u8 val = in_8(addr);
365	if (EEH_POSSIBLE_ERROR(val, u8))
366		eeh_check_failure(addr);
367	return val;
368}
369
370static inline u16 eeh_readw(const volatile void __iomem *addr)
371{
372	u16 val = in_le16(addr);
373	if (EEH_POSSIBLE_ERROR(val, u16))
374		eeh_check_failure(addr);
375	return val;
376}
377
378static inline u32 eeh_readl(const volatile void __iomem *addr)
379{
380	u32 val = in_le32(addr);
381	if (EEH_POSSIBLE_ERROR(val, u32))
382		eeh_check_failure(addr);
383	return val;
384}
385
386static inline u64 eeh_readq(const volatile void __iomem *addr)
387{
388	u64 val = in_le64(addr);
389	if (EEH_POSSIBLE_ERROR(val, u64))
390		eeh_check_failure(addr);
391	return val;
392}
393
394static inline u16 eeh_readw_be(const volatile void __iomem *addr)
395{
396	u16 val = in_be16(addr);
397	if (EEH_POSSIBLE_ERROR(val, u16))
398		eeh_check_failure(addr);
399	return val;
400}
401
402static inline u32 eeh_readl_be(const volatile void __iomem *addr)
403{
404	u32 val = in_be32(addr);
405	if (EEH_POSSIBLE_ERROR(val, u32))
406		eeh_check_failure(addr);
407	return val;
408}
409
410static inline u64 eeh_readq_be(const volatile void __iomem *addr)
411{
412	u64 val = in_be64(addr);
413	if (EEH_POSSIBLE_ERROR(val, u64))
414		eeh_check_failure(addr);
415	return val;
416}
417
418static inline void eeh_memcpy_fromio(void *dest, const
419				     volatile void __iomem *src,
420				     unsigned long n)
421{
422	_memcpy_fromio(dest, src, n);
423
424	/* Look for ffff's here at dest[n].  Assume that at least 4 bytes
425	 * were copied. Check all four bytes.
426	 */
427	if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
428		eeh_check_failure(src);
429}
430
431/* in-string eeh macros */
432static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
433			      int ns)
434{
435	_insb(addr, buf, ns);
436	if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
437		eeh_check_failure(addr);
438}
439
440static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
441			      int ns)
442{
443	_insw(addr, buf, ns);
444	if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
445		eeh_check_failure(addr);
446}
447
448static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
449			      int nl)
450{
451	_insl(addr, buf, nl);
452	if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
453		eeh_check_failure(addr);
454}
455
456
457void __init eeh_cache_debugfs_init(void);
458
459#endif /* CONFIG_PPC64 */
460#endif /* __KERNEL__ */
461#endif /* _POWERPC_EEH_H */
462