1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_POWERPC_DMA_H
3#define _ASM_POWERPC_DMA_H
4#ifdef __KERNEL__
5
6/*
7 * Defines for using and allocating dma channels.
8 * Written by Hennus Bergman, 1992.
9 * High DMA channel support & info by Hannu Savolainen
10 * and John Boyd, Nov. 1992.
11 * Changes for ppc sound by Christoph Nadig
12 */
13
14/*
15 * Note: Adapted for PowerPC by Gary Thomas
16 * Modified by Cort Dougan <cort@cs.nmt.edu>
17 *
18 * None of this really applies for Power Macintoshes.  There is
19 * basically just enough here to get kernel/dma.c to compile.
20 */
21
22#include <asm/io.h>
23#include <linux/spinlock.h>
24
25#ifndef MAX_DMA_CHANNELS
26#define MAX_DMA_CHANNELS	8
27#endif
28
29/* The maximum address that we can perform a DMA transfer to on this platform */
30/* Doesn't really apply... */
31#define MAX_DMA_ADDRESS		(~0UL)
32
33#ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
34#define dma_outb	outb_p
35#else
36#define dma_outb	outb
37#endif
38
39#define dma_inb		inb
40
41/*
42 * NOTES about DMA transfers:
43 *
44 *  controller 1: channels 0-3, byte operations, ports 00-1F
45 *  controller 2: channels 4-7, word operations, ports C0-DF
46 *
47 *  - ALL registers are 8 bits only, regardless of transfer size
48 *  - channel 4 is not used - cascades 1 into 2.
49 *  - channels 0-3 are byte - addresses/counts are for physical bytes
50 *  - channels 5-7 are word - addresses/counts are for physical words
51 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
52 *  - transfer count loaded to registers is 1 less than actual count
53 *  - controller 2 offsets are all even (2x offsets for controller 1)
54 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
55 *  - page registers for 0-3 use bit 0, represent 64K pages
56 *
57 * On CHRP, the W83C553F (and VLSI Tollgate?) support full 32 bit addressing.
58 * Note that addresses loaded into registers must be _physical_ addresses,
59 * not logical addresses (which may differ if paging is active).
60 *
61 *  Address mapping for channels 0-3:
62 *
63 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
64 *    |  ...  |   |  ... |   |  ... |
65 *    |  ...  |   |  ... |   |  ... |
66 *    |  ...  |   |  ... |   |  ... |
67 *   P7  ...  P0  A7 ... A0  A7 ... A0
68 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
69 *
70 *  Address mapping for channels 5-7:
71 *
72 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
73 *    |  ...  |   \   \   ... \  \  \  ... \  \
74 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
75 *    |  ...  |     \   \   ... \  \  \  ... \
76 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
77 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
78 *
79 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
80 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
81 * the hardware level, so odd-byte transfers aren't possible).
82 *
83 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
84 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
85 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
86 *
87 */
88
89/* 8237 DMA controllers */
90#define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
91#define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
92
93/* DMA controller registers */
94#define DMA1_CMD_REG		0x08	/* command register (w) */
95#define DMA1_STAT_REG		0x08	/* status register (r) */
96#define DMA1_REQ_REG		0x09	/* request register (w) */
97#define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
98#define DMA1_MODE_REG		0x0B	/* mode register (w) */
99#define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
100#define DMA1_TEMP_REG		0x0D	/* Temporary Register (r) */
101#define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
102#define DMA1_CLR_MASK_REG	0x0E	/* Clear Mask */
103#define DMA1_MASK_ALL_REG	0x0F	/* all-channels mask (w) */
104
105#define DMA2_CMD_REG		0xD0	/* command register (w) */
106#define DMA2_STAT_REG		0xD0	/* status register (r) */
107#define DMA2_REQ_REG		0xD2	/* request register (w) */
108#define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
109#define DMA2_MODE_REG		0xD6	/* mode register (w) */
110#define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
111#define DMA2_TEMP_REG		0xDA	/* Temporary Register (r) */
112#define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
113#define DMA2_CLR_MASK_REG	0xDC	/* Clear Mask */
114#define DMA2_MASK_ALL_REG	0xDE	/* all-channels mask (w) */
115
116#define DMA_ADDR_0		0x00	/* DMA address registers */
117#define DMA_ADDR_1		0x02
118#define DMA_ADDR_2		0x04
119#define DMA_ADDR_3		0x06
120#define DMA_ADDR_4		0xC0
121#define DMA_ADDR_5		0xC4
122#define DMA_ADDR_6		0xC8
123#define DMA_ADDR_7		0xCC
124
125#define DMA_CNT_0		0x01	/* DMA count registers */
126#define DMA_CNT_1		0x03
127#define DMA_CNT_2		0x05
128#define DMA_CNT_3		0x07
129#define DMA_CNT_4		0xC2
130#define DMA_CNT_5		0xC6
131#define DMA_CNT_6		0xCA
132#define DMA_CNT_7		0xCE
133
134#define DMA_LO_PAGE_0		0x87	/* DMA page registers */
135#define DMA_LO_PAGE_1		0x83
136#define DMA_LO_PAGE_2		0x81
137#define DMA_LO_PAGE_3		0x82
138#define DMA_LO_PAGE_5		0x8B
139#define DMA_LO_PAGE_6		0x89
140#define DMA_LO_PAGE_7		0x8A
141
142#define DMA_HI_PAGE_0		0x487	/* DMA page registers */
143#define DMA_HI_PAGE_1		0x483
144#define DMA_HI_PAGE_2		0x481
145#define DMA_HI_PAGE_3		0x482
146#define DMA_HI_PAGE_5		0x48B
147#define DMA_HI_PAGE_6		0x489
148#define DMA_HI_PAGE_7		0x48A
149
150#define DMA1_EXT_REG		0x40B
151#define DMA2_EXT_REG		0x4D6
152
153#ifndef __powerpc64__
154    /* in arch/powerpc/kernel/setup_32.c -- Cort */
155    extern unsigned int DMA_MODE_WRITE;
156    extern unsigned int DMA_MODE_READ;
157#else
158    #define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
159    #define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
160#endif
161
162#define DMA_MODE_CASCADE	0xC0	/* pass thru DREQ->HRQ, DACK<-HLDA only */
163
164#define DMA_AUTOINIT		0x10
165
166extern spinlock_t dma_spin_lock;
167
168static __inline__ unsigned long claim_dma_lock(void)
169{
170	unsigned long flags;
171	spin_lock_irqsave(&dma_spin_lock, flags);
172	return flags;
173}
174
175static __inline__ void release_dma_lock(unsigned long flags)
176{
177	spin_unlock_irqrestore(&dma_spin_lock, flags);
178}
179
180/* enable/disable a specific DMA channel */
181static __inline__ void enable_dma(unsigned int dmanr)
182{
183	unsigned char ucDmaCmd = 0x00;
184
185	if (dmanr != 4) {
186		dma_outb(0, DMA2_MASK_REG);	/* This may not be enabled */
187		dma_outb(ucDmaCmd, DMA2_CMD_REG);	/* Enable group */
188	}
189	if (dmanr <= 3) {
190		dma_outb(dmanr, DMA1_MASK_REG);
191		dma_outb(ucDmaCmd, DMA1_CMD_REG);	/* Enable group */
192	} else {
193		dma_outb(dmanr & 3, DMA2_MASK_REG);
194	}
195}
196
197static __inline__ void disable_dma(unsigned int dmanr)
198{
199	if (dmanr <= 3)
200		dma_outb(dmanr | 4, DMA1_MASK_REG);
201	else
202		dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
203}
204
205/* Clear the 'DMA Pointer Flip Flop'.
206 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
207 * Use this once to initialize the FF to a known state.
208 * After that, keep track of it. :-)
209 * --- In order to do that, the DMA routines below should ---
210 * --- only be used while interrupts are disabled! ---
211 */
212static __inline__ void clear_dma_ff(unsigned int dmanr)
213{
214	if (dmanr <= 3)
215		dma_outb(0, DMA1_CLEAR_FF_REG);
216	else
217		dma_outb(0, DMA2_CLEAR_FF_REG);
218}
219
220/* set mode (above) for a specific DMA channel */
221static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
222{
223	if (dmanr <= 3)
224		dma_outb(mode | dmanr, DMA1_MODE_REG);
225	else
226		dma_outb(mode | (dmanr & 3), DMA2_MODE_REG);
227}
228
229/* Set only the page register bits of the transfer address.
230 * This is used for successive transfers when we know the contents of
231 * the lower 16 bits of the DMA current address register, but a 64k boundary
232 * may have been crossed.
233 */
234static __inline__ void set_dma_page(unsigned int dmanr, int pagenr)
235{
236	switch (dmanr) {
237	case 0:
238		dma_outb(pagenr, DMA_LO_PAGE_0);
239		dma_outb(pagenr >> 8, DMA_HI_PAGE_0);
240		break;
241	case 1:
242		dma_outb(pagenr, DMA_LO_PAGE_1);
243		dma_outb(pagenr >> 8, DMA_HI_PAGE_1);
244		break;
245	case 2:
246		dma_outb(pagenr, DMA_LO_PAGE_2);
247		dma_outb(pagenr >> 8, DMA_HI_PAGE_2);
248		break;
249	case 3:
250		dma_outb(pagenr, DMA_LO_PAGE_3);
251		dma_outb(pagenr >> 8, DMA_HI_PAGE_3);
252		break;
253	case 5:
254		dma_outb(pagenr & 0xfe, DMA_LO_PAGE_5);
255		dma_outb(pagenr >> 8, DMA_HI_PAGE_5);
256		break;
257	case 6:
258		dma_outb(pagenr & 0xfe, DMA_LO_PAGE_6);
259		dma_outb(pagenr >> 8, DMA_HI_PAGE_6);
260		break;
261	case 7:
262		dma_outb(pagenr & 0xfe, DMA_LO_PAGE_7);
263		dma_outb(pagenr >> 8, DMA_HI_PAGE_7);
264		break;
265	}
266}
267
268/* Set transfer address & page bits for specific DMA channel.
269 * Assumes dma flipflop is clear.
270 */
271static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int phys)
272{
273	if (dmanr <= 3) {
274		dma_outb(phys & 0xff,
275			 ((dmanr & 3) << 1) + IO_DMA1_BASE);
276		dma_outb((phys >> 8) & 0xff,
277			 ((dmanr & 3) << 1) + IO_DMA1_BASE);
278	} else {
279		dma_outb((phys >> 1) & 0xff,
280			 ((dmanr & 3) << 2) + IO_DMA2_BASE);
281		dma_outb((phys >> 9) & 0xff,
282			 ((dmanr & 3) << 2) + IO_DMA2_BASE);
283	}
284	set_dma_page(dmanr, phys >> 16);
285}
286
287
288/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
289 * a specific DMA channel.
290 * You must ensure the parameters are valid.
291 * NOTE: from a manual: "the number of transfers is one more
292 * than the initial word count"! This is taken into account.
293 * Assumes dma flip-flop is clear.
294 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
295 */
296static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
297{
298	count--;
299	if (dmanr <= 3) {
300		dma_outb(count & 0xff,
301			 ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
302		dma_outb((count >> 8) & 0xff,
303			 ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE);
304	} else {
305		dma_outb((count >> 1) & 0xff,
306			 ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
307		dma_outb((count >> 9) & 0xff,
308			 ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE);
309	}
310}
311
312
313/* Get DMA residue count. After a DMA transfer, this
314 * should return zero. Reading this while a DMA transfer is
315 * still in progress will return unpredictable results.
316 * If called before the channel has been used, it may return 1.
317 * Otherwise, it returns the number of _bytes_ left to transfer.
318 *
319 * Assumes DMA flip-flop is clear.
320 */
321static __inline__ int get_dma_residue(unsigned int dmanr)
322{
323	unsigned int io_port = (dmanr <= 3)
324	    ? ((dmanr & 3) << 1) + 1 + IO_DMA1_BASE
325	    : ((dmanr & 3) << 2) + 2 + IO_DMA2_BASE;
326
327	/* using short to get 16-bit wrap around */
328	unsigned short count;
329
330	count = 1 + dma_inb(io_port);
331	count += dma_inb(io_port) << 8;
332
333	return (dmanr <= 3) ? count : (count << 1);
334}
335
336/* These are in kernel/dma.c: */
337
338/* reserve a DMA channel */
339extern int request_dma(unsigned int dmanr, const char *device_id);
340/* release it again */
341extern void free_dma(unsigned int dmanr);
342
343#endif /* __KERNEL__ */
344#endif	/* _ASM_POWERPC_DMA_H */
345