1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3#define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
4
5#define H_PTE_INDEX_SIZE   8  // size: 8B <<  8 = 2KB, maps 2^8  x 64KB = 16MB
6#define H_PMD_INDEX_SIZE  10  // size: 8B << 10 = 8KB, maps 2^10 x 16MB = 16GB
7#define H_PUD_INDEX_SIZE  10  // size: 8B << 10 = 8KB, maps 2^10 x 16GB = 16TB
8#define H_PGD_INDEX_SIZE   8  // size: 8B <<  8 = 2KB, maps 2^8  x 16TB =  4PB
9
10/*
11 * If we store section details in page->flags we can't increase the MAX_PHYSMEM_BITS
12 * if we increase SECTIONS_WIDTH we will not store node details in page->flags and
13 * page_to_nid does a page->section->node lookup
14 * Hence only increase for VMEMMAP. Further depending on SPARSEMEM_EXTREME reduce
15 * memory requirements with large number of sections.
16 * 51 bits is the max physical real address on POWER9
17 */
18#if defined(CONFIG_SPARSEMEM_VMEMMAP) && defined(CONFIG_SPARSEMEM_EXTREME)
19#define H_MAX_PHYSMEM_BITS	51
20#else
21#define H_MAX_PHYSMEM_BITS	46
22#endif
23
24/*
25 * Each context is 512TB size. SLB miss for first context/default context
26 * is handled in the hotpath.
27 */
28#define MAX_EA_BITS_PER_CONTEXT		49
29#define REGION_SHIFT		MAX_EA_BITS_PER_CONTEXT
30
31/*
32 * We use one context for each MAP area.
33 */
34#define H_KERN_MAP_SIZE		(1UL << MAX_EA_BITS_PER_CONTEXT)
35
36/*
37 * Define the address range of the kernel non-linear virtual area
38 * 2PB
39 */
40#define H_KERN_VIRT_START	ASM_CONST(0xc008000000000000)
41
42/*
43 * 64k aligned address free up few of the lower bits of RPN for us
44 * We steal that here. For more deatils look at pte_pfn/pfn_pte()
45 */
46#define H_PAGE_COMBO	_RPAGE_RPN0 /* this is a combo 4k page */
47#define H_PAGE_4K_PFN	_RPAGE_RPN1 /* PFN is for a single 4k page */
48#define H_PAGE_BUSY	_RPAGE_RSV1     /* software: PTE & hash are busy */
49#define H_PAGE_HASHPTE	_RPAGE_RPN43	/* PTE has associated HPTE */
50
51/* memory key bits. */
52#define H_PTE_PKEY_BIT4		_RPAGE_PKEY_BIT4
53#define H_PTE_PKEY_BIT3		_RPAGE_PKEY_BIT3
54#define H_PTE_PKEY_BIT2		_RPAGE_PKEY_BIT2
55#define H_PTE_PKEY_BIT1		_RPAGE_PKEY_BIT1
56#define H_PTE_PKEY_BIT0		_RPAGE_PKEY_BIT0
57
58/*
59 * We need to differentiate between explicit huge page and THP huge
60 * page, since THP huge page also need to track real subpage details
61 */
62#define H_PAGE_THP_HUGE  H_PAGE_4K_PFN
63
64/* PTE flags to conserve for HPTE identification */
65#define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
66/*
67 * We use a 2K PTE page fragment and another 2K for storing
68 * real_pte_t hash index
69 * 8 bytes per each pte entry and another 8 bytes for storing
70 * slot details.
71 */
72#define H_PTE_FRAG_SIZE_SHIFT  (H_PTE_INDEX_SIZE + 3 + 1)
73#define H_PTE_FRAG_NR	(PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT)
74
75#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
76#define H_PMD_FRAG_SIZE_SHIFT  (H_PMD_INDEX_SIZE + 3 + 1)
77#else
78#define H_PMD_FRAG_SIZE_SHIFT  (H_PMD_INDEX_SIZE + 3)
79#endif
80#define H_PMD_FRAG_NR	(PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT)
81
82#ifndef __ASSEMBLY__
83#include <asm/errno.h>
84
85/*
86 * With 64K pages on hash table, we have a special PTE format that
87 * uses a second "half" of the page table to encode sub-page information
88 * in order to deal with 64K made of 4K HW pages. Thus we override the
89 * generic accessors and iterators here
90 */
91#define __real_pte __real_pte
92static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
93{
94	real_pte_t rpte;
95	unsigned long *hidxp;
96
97	rpte.pte = pte;
98
99	/*
100	 * Ensure that we do not read the hidx before we read the PTE. Because
101	 * the writer side is expected to finish writing the hidx first followed
102	 * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
103	 */
104	smp_rmb();
105
106	hidxp = (unsigned long *)(ptep + offset);
107	rpte.hidx = *hidxp;
108	return rpte;
109}
110
111/*
112 * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
113 * as 1, 1 as 2,... , and 0xf as 0.  This convention lets us represent a
114 * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
115 * allocated. We dont have to zero them gain; thus save on the initialization.
116 */
117#define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
118#define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL)   /* shift forward by one */
119#define HIDX_BITS(x, index)  (x << (index << 2))
120#define BITS_TO_HIDX(x, index)  ((x >> (index << 2)) & 0xfUL)
121#define INVALID_RPTE_HIDX  0x0UL
122
123static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
124{
125	return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
126}
127
128/*
129 * Commit the hidx and return PTE bits that needs to be modified. The caller is
130 * expected to modify the PTE bits accordingly and commit the PTE to memory.
131 */
132static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
133					 unsigned int subpg_index,
134					 unsigned long hidx, int offset)
135{
136	unsigned long *hidxp = (unsigned long *)(ptep + offset);
137
138	rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
139	*hidxp = rpte.hidx  | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
140
141	/*
142	 * Anyone reading PTE must ensure hidx bits are read after reading the
143	 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
144	 * used for that.
145	 */
146	smp_wmb();
147
148	/* No PTE bits to be modified, return 0x0UL */
149	return 0x0UL;
150}
151
152#define __rpte_to_pte(r)	((r).pte)
153extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
154/*
155 * Trick: we set __end to va + 64k, which happens works for
156 * a 16M page as well as we want only one iteration
157 */
158#define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift)	\
159	do {								\
160		unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT));	\
161		unsigned __split = (psize == MMU_PAGE_4K ||		\
162				    psize == MMU_PAGE_64K_AP);		\
163		shift = mmu_psize_defs[psize].shift;			\
164		for (index = 0; vpn < __end; index++,			\
165			     vpn += (1L << (shift - VPN_SHIFT))) {	\
166		if (!__split || __rpte_sub_valid(rpte, index))
167
168#define pte_iterate_hashed_end()  } } while(0)
169
170#define pte_pagesize_index(mm, addr, pte)	\
171	(((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
172
173extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
174			   unsigned long pfn, unsigned long size, pgprot_t);
175static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
176				 unsigned long pfn, pgprot_t prot)
177{
178	if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
179		WARN(1, "remap_4k_pfn called with wrong pfn value\n");
180		return -EINVAL;
181	}
182	return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
183			       __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
184}
185
186#define H_PTE_TABLE_SIZE	PTE_FRAG_SIZE
187#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE)
188#define H_PMD_TABLE_SIZE	((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
189				 (sizeof(unsigned long) << PMD_INDEX_SIZE))
190#else
191#define H_PMD_TABLE_SIZE	(sizeof(pmd_t) << PMD_INDEX_SIZE)
192#endif
193#ifdef CONFIG_HUGETLB_PAGE
194#define H_PUD_TABLE_SIZE	((sizeof(pud_t) << PUD_INDEX_SIZE) +	\
195				 (sizeof(unsigned long) << PUD_INDEX_SIZE))
196#else
197#define H_PUD_TABLE_SIZE	(sizeof(pud_t) << PUD_INDEX_SIZE)
198#endif
199#define H_PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
200
201#ifdef CONFIG_TRANSPARENT_HUGEPAGE
202static inline char *get_hpte_slot_array(pmd_t *pmdp)
203{
204	/*
205	 * The hpte hindex is stored in the pgtable whose address is in the
206	 * second half of the PMD
207	 *
208	 * Order this load with the test for pmd_trans_huge in the caller
209	 */
210	smp_rmb();
211	return *(char **)(pmdp + PTRS_PER_PMD);
212
213
214}
215/*
216 * The linux hugepage PMD now include the pmd entries followed by the address
217 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
218 * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
219 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
220 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
221 *
222 * The top three bits are intentionally left as zero. This memory location
223 * are also used as normal page PTE pointers. So if we have any pointers
224 * left around while we collapse a hugepage, we need to make sure
225 * _PAGE_PRESENT bit of that is zero when we look at them
226 */
227static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
228{
229	return hpte_slot_array[index] & 0x1;
230}
231
232static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
233					   int index)
234{
235	return hpte_slot_array[index] >> 1;
236}
237
238static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
239					unsigned int index, unsigned int hidx)
240{
241	hpte_slot_array[index] = (hidx << 1) | 0x1;
242}
243
244/*
245 *
246 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
247 * page. The hugetlbfs page table walking and mangling paths are totally
248 * separated form the core VM paths and they're differentiated by
249 *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
250 *
251 * pmd_trans_huge() is defined as false at build time if
252 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
253 * time in such case.
254 *
255 * For ppc64 we need to differntiate from explicit hugepages from THP, because
256 * for THP we also track the subpage details at the pmd level. We don't do
257 * that for explicit huge pages.
258 *
259 */
260static inline int hash__pmd_trans_huge(pmd_t pmd)
261{
262	return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP)) ==
263		  (_PAGE_PTE | H_PAGE_THP_HUGE));
264}
265
266static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
267{
268	return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
269}
270
271extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
272					   unsigned long addr, pmd_t *pmdp,
273					   unsigned long clr, unsigned long set);
274extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
275				   unsigned long address, pmd_t *pmdp);
276extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
277					 pgtable_t pgtable);
278extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
279extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
280				       unsigned long addr, pmd_t *pmdp);
281extern int hash__has_transparent_hugepage(void);
282#endif /*  CONFIG_TRANSPARENT_HUGEPAGE */
283
284static inline pmd_t hash__pmd_mkdevmap(pmd_t pmd)
285{
286	return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP));
287}
288
289#endif	/* __ASSEMBLY__ */
290
291#endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */
292