1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
4 *
5 * Floating-point emulation code
6 *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
7 */
8#ifdef __NO_PA_HDRS
9    PA header file -- do not include this header file for non-PA builds.
10#endif
11
12/* 32-bit word grabbing functions */
13#define Dbl_firstword(value) Dallp1(value)
14#define Dbl_secondword(value) Dallp2(value)
15#define Dbl_thirdword(value) dummy_location
16#define Dbl_fourthword(value) dummy_location
17
18#define Dbl_sign(object) Dsign(object)
19#define Dbl_exponent(object) Dexponent(object)
20#define Dbl_signexponent(object) Dsignexponent(object)
21#define Dbl_mantissap1(object) Dmantissap1(object)
22#define Dbl_mantissap2(object) Dmantissap2(object)
23#define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
24#define Dbl_allp1(object) Dallp1(object)
25#define Dbl_allp2(object) Dallp2(object)
26
27/* dbl_and_signs ANDs the sign bits of each argument and puts the result
28 * into the first argument. dbl_or_signs ors those same sign bits */
29#define Dbl_and_signs( src1dst, src2)		\
30    Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)
31#define Dbl_or_signs( src1dst, src2)		\
32    Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)
33
34/* The hidden bit is always the low bit of the exponent */
35#define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
36#define Dbl_clear_signexponent_set_hidden(srcdst) \
37    Deposit_dsignexponent(srcdst,1)
38#define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)
39#define Dbl_clear_signexponent(srcdst) \
40    Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)
41
42/* Exponent field for doubles has already been cleared and may be
43 * included in the shift.  Here we need to generate two double width
44 * variable shifts.  The insignificant bits can be ignored.
45 *      MTSAR f(varamount)
46 *      VSHD	srcdst.high,srcdst.low => srcdst.low
47 *	VSHD	0,srcdst.high => srcdst.high
48 * This is very difficult to model with C expressions since the shift amount
49 * could exceed 32.  */
50/* varamount must be less than 64 */
51#define Dbl_rightshift(srcdstA, srcdstB, varamount)			\
52    {if((varamount) >= 32) {						\
53        Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32);		\
54        Dallp1(srcdstA)=0;						\
55    }									\
56    else if(varamount > 0) {						\
57	Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), 	\
58	  (varamount), Dallp2(srcdstB));				\
59	Dallp1(srcdstA) >>= varamount;					\
60    } }
61/* varamount must be less than 64 */
62#define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount)	\
63    {if((varamount) >= 32) {						\
64        Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \
65	Dallp1(srcdstA) &= ((unsigned int)1<<31);  /* clear expmant field */ \
66    }									\
67    else if(varamount > 0) {						\
68	Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
69	(varamount), Dallp2(srcdstB));					\
70	Deposit_dexponentmantissap1(srcdstA,				\
71	    (Dexponentmantissap1(srcdstA)>>varamount));			\
72    } }
73/* varamount must be less than 64 */
74#define Dbl_leftshift(srcdstA, srcdstB, varamount)			\
75    {if((varamount) >= 32) {						\
76	Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32);		\
77	Dallp2(srcdstB)=0;						\
78    }									\
79    else {								\
80	if ((varamount) > 0) {						\
81	    Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) |	\
82		(Dallp2(srcdstB) >> (32-(varamount)));			\
83	    Dallp2(srcdstB) <<= varamount;				\
84	}								\
85    } }
86#define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb)	\
87    Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta));	\
88    Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))
89
90#define Dbl_rightshiftby1_withextent(leftb,right,dst)		\
91    Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \
92		  Extlow(right)
93
94#define Dbl_arithrightshiftby1(srcdstA,srcdstB)			\
95    Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
96    Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
97
98/* Sign extend the sign bit with an integer destination */
99#define Dbl_signextendedsign(value)  Dsignedsign(value)
100
101#define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
102/* Singles and doubles may include the sign and exponent fields.  The
103 * hidden bit and the hidden overflow must be included. */
104#define Dbl_increment(dbl_valueA,dbl_valueB) \
105    if( (Dallp2(dbl_valueB) += 1) == 0 )  Dallp1(dbl_valueA) += 1
106#define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
107    if( (Dmantissap2(dbl_valueB) += 1) == 0 )  \
108    Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
109#define Dbl_decrement(dbl_valueA,dbl_valueB) \
110    if( Dallp2(dbl_valueB) == 0 )  Dallp1(dbl_valueA) -= 1; \
111    Dallp2(dbl_valueB) -= 1
112
113#define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
114#define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
115#define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
116#define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
117#define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
118#define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
119#define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
120    (Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
121#define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
122    (Dhiddenhigh7mantissa(dbl_value)!=0)
123#define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
124#define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
125    (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
126#define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
127#define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
128#define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
129    (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
130#define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
131#define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
132    Dallp2(dbl_valueB)==0)
133#define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
134#define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
135#define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
136#define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
137#define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
138    (Dhiddenhigh3mantissa(dbl_value)==0)
139#define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
140    (Dhiddenhigh7mantissa(dbl_value)==0)
141#define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
142#define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
143#define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
144    (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
145#define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
146    (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
147#define Dbl_isinfinity_exponent(dbl_value)		\
148    (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
149#define Dbl_isnotinfinity_exponent(dbl_value)		\
150    (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
151#define Dbl_isinfinity(dbl_valueA,dbl_valueB)			\
152    (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
153    Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
154#define Dbl_isnan(dbl_valueA,dbl_valueB)		\
155    (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
156    (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
157#define Dbl_isnotnan(dbl_valueA,dbl_valueB)		\
158    (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT ||	\
159    (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))
160
161#define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
162    (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
163     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
164      Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
165#define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
166    (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
167     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
168      Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
169#define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
170    (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
171     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
172      Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
173#define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
174    (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
175     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
176      Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
177#define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
178     ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) &&			\
179      (Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))
180
181#define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
182    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
183    Dallp2(dbl_valueB) <<= 8
184#define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
185    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
186    Dallp2(dbl_valueB) <<= 7
187#define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
188    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
189    Dallp2(dbl_valueB) <<= 4
190#define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
191    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
192    Dallp2(dbl_valueB) <<= 3
193#define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
194    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
195    Dallp2(dbl_valueB) <<= 2
196#define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
197    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
198    Dallp2(dbl_valueB) <<= 1
199
200#define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
201    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
202    Dallp1(dbl_valueA) >>= 8
203#define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
204    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
205    Dallp1(dbl_valueA) >>= 4
206#define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
207    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
208    Dallp1(dbl_valueA) >>= 2
209#define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
210    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
211    Dallp1(dbl_valueA) >>= 1
212
213/* This magnitude comparison uses the signless first words and
214 * the regular part2 words.  The comparison is graphically:
215 *
216 *       1st greater?  -------------
217 *                                 |
218 *       1st less?-----------------+---------
219 *                                 |        |
220 *       2nd greater or equal----->|        |
221 *                               False     True
222 */
223#define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)	\
224      ((signlessleft <= signlessright) &&				\
225       ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
226
227#define Dbl_copytoint_exponentmantissap1(src,dest) \
228    dest = Dexponentmantissap1(src)
229
230/* A quiet NaN has the high mantissa bit clear and at least on other (in this
231 * case the adjacent bit) bit set. */
232#define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
233#define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)
234
235#define Dbl_set_mantissa(desta,destb,valuea,valueb)	\
236    Deposit_dmantissap1(desta,valuea);			\
237    Dmantissap2(destb) = Dmantissap2(valueb)
238#define Dbl_set_mantissap1(desta,valuea)		\
239    Deposit_dmantissap1(desta,valuea)
240#define Dbl_set_mantissap2(destb,valueb)		\
241    Dmantissap2(destb) = Dmantissap2(valueb)
242
243#define Dbl_set_exponentmantissa(desta,destb,valuea,valueb)	\
244    Deposit_dexponentmantissap1(desta,valuea);			\
245    Dmantissap2(destb) = Dmantissap2(valueb)
246#define Dbl_set_exponentmantissap1(dest,value)			\
247    Deposit_dexponentmantissap1(dest,value)
248
249#define Dbl_copyfromptr(src,desta,destb) \
250    Dallp1(desta) = src->wd0;		\
251    Dallp2(destb) = src->wd1
252#define Dbl_copytoptr(srca,srcb,dest)	\
253    dest->wd0 = Dallp1(srca);		\
254    dest->wd1 = Dallp2(srcb)
255
256/*  An infinity is represented with the max exponent and a zero mantissa */
257#define Dbl_setinfinity_exponent(dbl_value) \
258    Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
259#define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB)	\
260    Deposit_dexponentmantissap1(dbl_valueA, 			\
261    (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))));	\
262    Dmantissap2(dbl_valueB) = 0
263#define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB)		\
264    Dallp1(dbl_valueA) 						\
265        = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
266    Dmantissap2(dbl_valueB) = 0
267#define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB)		\
268    Dallp1(dbl_valueA) = ((unsigned int)1<<31) |		\
269         (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
270    Dmantissap2(dbl_valueB) = 0
271#define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign)		\
272    Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | 		\
273	(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
274    Dmantissap2(dbl_valueB) = 0
275
276#define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
277#define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
278#define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
279#define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
280#define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
281#define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
282#define Dbl_setzero_exponent(dbl_value) 		\
283    Dallp1(dbl_value) &= 0x800fffff
284#define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB)	\
285    Dallp1(dbl_valueA) &= 0xfff00000; 			\
286    Dallp2(dbl_valueB) = 0
287#define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
288#define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
289#define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB)	\
290    Dallp1(dbl_valueA) &= 0x80000000;		\
291    Dallp2(dbl_valueB) = 0
292#define Dbl_setzero_exponentmantissap1(dbl_valueA)	\
293    Dallp1(dbl_valueA) &= 0x80000000
294#define Dbl_setzero(dbl_valueA,dbl_valueB) \
295    Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
296#define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
297#define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
298#define Dbl_setnegativezero(dbl_value) \
299    Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0
300#define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31
301
302/* Use the following macro for both overflow & underflow conditions */
303#define ovfl -
304#define unfl +
305#define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
306    Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))
307
308#define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) 			\
309    Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
310			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 );		\
311    Dallp2(dbl_valueB) = 0xFFFFFFFF
312#define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) 			\
313    Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
314			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )		\
315			| ((unsigned int)1<<31);			\
316    Dallp2(dbl_valueB) = 0xFFFFFFFF
317#define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB)		\
318    Deposit_dexponentmantissap1(dbl_valueA,				\
319	(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH)))		\
320			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )));	\
321    Dallp2(dbl_valueB) = 0xFFFFFFFF
322
323#define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) 			\
324    Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) 	\
325			 << (32-(1+DBL_EXP_LENGTH)) ; 			\
326    Dallp2(dbl_valueB) = 0
327#define Dbl_setlargest(dbl_valueA,dbl_valueB,sign)			\
328    Dallp1(dbl_valueA) = ((unsigned int)sign << 31) |			\
329         ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) |	 	\
330	 ((1 << (32-(1+DBL_EXP_LENGTH))) - 1 );				\
331    Dallp2(dbl_valueB) = 0xFFFFFFFF
332
333
334/* The high bit is always zero so arithmetic or logical shifts will work. */
335#define Dbl_right_align(srcdstA,srcdstB,shift,extent)			\
336    if( shift >= 32 ) 							\
337	{								\
338	/* Big shift requires examining the portion shift off 		\
339	the end to properly set inexact.  */				\
340	if(shift < 64)							\
341	    {								\
342	    if(shift > 32)						\
343		{							\
344	        Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),	\
345		 shift-32, Extall(extent));				\
346	        if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \
347	        }							\
348	    else Extall(extent) = Dallp2(srcdstB);			\
349	    Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32);		\
350	    }								\
351	else								\
352	    {								\
353	    Extall(extent) = Dallp1(srcdstA);				\
354	    if(Dallp2(srcdstB)) Ext_setone_low(extent);			\
355	    Dallp2(srcdstB) = 0;					\
356	    }								\
357	Dallp1(srcdstA) = 0;						\
358	}								\
359    else								\
360	{								\
361	/* Small alignment is simpler.  Extension is easily set. */	\
362	if (shift > 0)							\
363	    {								\
364	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
365	    Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
366	     Dallp2(srcdstB));						\
367	    Dallp1(srcdstA) >>= shift;					\
368	    }								\
369	else Extall(extent) = 0;					\
370	}
371
372/*
373 * Here we need to shift the result right to correct for an overshift
374 * (due to the exponent becoming negative) during normalization.
375 */
376#define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent)			\
377	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
378	    Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) |	\
379		(Dallp2(srcdstB) >> (shift));				\
380	    Dallp1(srcdstA) = Dallp1(srcdstA) >> shift
381
382#define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
383#define Dbl_hidden(dbl_value) Dhidden(dbl_value)
384#define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)
385
386/* The left argument is never smaller than the right argument */
387#define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb)			\
388    if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--;	\
389    Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb);		\
390    Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)
391
392/* Subtract right augmented with extension from left augmented with zeros and
393 * store into result and extension. */
394#define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb)	\
395    Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb);		\
396    if( (Extall(extent) = 0-Extall(extent)) )				\
397        {								\
398        if((Dallp2(resultb)--) == 0) Dallp1(resulta)--;			\
399        }
400
401#define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb)		\
402    /* If the sum of the low words is less than either source, then	\
403     * an overflow into the next word occurred. */			\
404    Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta);			\
405    if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
406	Dallp1(resulta)++
407
408#define Dbl_xortointp1(left,right,result)			\
409    result = Dallp1(left) XOR Dallp1(right)
410
411#define Dbl_xorfromintp1(left,right,result)			\
412    Dallp1(result) = left XOR Dallp1(right)
413
414#define Dbl_swap_lower(left,right)				\
415    Dallp2(left)  = Dallp2(left) XOR Dallp2(right);		\
416    Dallp2(right) = Dallp2(left) XOR Dallp2(right);		\
417    Dallp2(left)  = Dallp2(left) XOR Dallp2(right)
418
419/* Need to Initialize */
420#define Dbl_makequietnan(desta,destb)					\
421    Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
422                 | (1<<(32-(1+DBL_EXP_LENGTH+2)));			\
423    Dallp2(destb) = 0
424#define Dbl_makesignalingnan(desta,destb)				\
425    Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
426                 | (1<<(32-(1+DBL_EXP_LENGTH+1)));			\
427    Dallp2(destb) = 0
428
429#define Dbl_normalize(dbl_opndA,dbl_opndB,exponent)			\
430	while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) {		\
431		Dbl_leftshiftby8(dbl_opndA,dbl_opndB);			\
432		exponent -= 8;						\
433	}								\
434	if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) {			\
435		Dbl_leftshiftby4(dbl_opndA,dbl_opndB);			\
436		exponent -= 4;						\
437	}								\
438	while(Dbl_iszero_hidden(dbl_opndA)) {				\
439		Dbl_leftshiftby1(dbl_opndA,dbl_opndB);			\
440		exponent -= 1;						\
441	}
442
443#define Twoword_add(src1dstA,src1dstB,src2A,src2B)		\
444	/* 							\
445	 * want this macro to generate:				\
446	 *	ADD	src1dstB,src2B,src1dstB;		\
447	 *	ADDC	src1dstA,src2A,src1dstA;		\
448	 */							\
449	if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
450	Dallp1(src1dstA) += (src2A);				\
451	Dallp2(src1dstB) += (src2B)
452
453#define Twoword_subtract(src1dstA,src1dstB,src2A,src2B)		\
454	/* 							\
455	 * want this macro to generate:				\
456	 *	SUB	src1dstB,src2B,src1dstB;		\
457	 *	SUBB	src1dstA,src2A,src1dstA;		\
458	 */							\
459	if ((src1dstB) < (src2B)) Dallp1(src1dstA)--;		\
460	Dallp1(src1dstA) -= (src2A);				\
461	Dallp2(src1dstB) -= (src2B)
462
463#define Dbl_setoverflow(resultA,resultB)				\
464	/* set result to infinity or largest number */			\
465	switch (Rounding_mode()) {					\
466		case ROUNDPLUS:						\
467			if (Dbl_isone_sign(resultA)) {			\
468				Dbl_setlargestnegative(resultA,resultB); \
469			}						\
470			else {						\
471				Dbl_setinfinitypositive(resultA,resultB); \
472			}						\
473			break;						\
474		case ROUNDMINUS:					\
475			if (Dbl_iszero_sign(resultA)) {			\
476				Dbl_setlargestpositive(resultA,resultB); \
477			}						\
478			else {						\
479				Dbl_setinfinitynegative(resultA,resultB); \
480			}						\
481			break;						\
482		case ROUNDNEAREST:					\
483			Dbl_setinfinity_exponentmantissa(resultA,resultB); \
484			break;						\
485		case ROUNDZERO:						\
486			Dbl_setlargest_exponentmantissa(resultA,resultB); \
487	}
488
489#define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact)	\
490    Dbl_clear_signexponent_set_hidden(opndp1);				\
491    if (exponent >= (1-DBL_P)) {					\
492	if (exponent >= -31) {						\
493	    guard = (Dallp2(opndp2) >> -exponent) & 1;			\
494	    if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
495	    if (exponent > -31) {					\
496		Variable_shift_double(opndp1,opndp2,1-exponent,opndp2);	\
497		Dallp1(opndp1) >>= 1-exponent;				\
498	    }								\
499	    else {							\
500		Dallp2(opndp2) = Dallp1(opndp1);			\
501		Dbl_setzerop1(opndp1);					\
502	    }								\
503	}								\
504	else {								\
505	    guard = (Dallp1(opndp1) >> -32-exponent) & 1;		\
506	    if (exponent == -32) sticky |= Dallp2(opndp2);		\
507	    else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \
508	    Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent;		\
509	    Dbl_setzerop1(opndp1);					\
510	}								\
511	inexact = guard | sticky;					\
512    }									\
513    else {								\
514	guard = 0;							\
515	sticky |= (Dallp1(opndp1) | Dallp2(opndp2));			\
516	Dbl_setzero(opndp1,opndp2);					\
517	inexact = sticky;						\
518    }
519
520/*
521 * The fused multiply add instructions requires a double extended format,
522 * with 106 bits of mantissa.
523 */
524#define DBLEXT_THRESHOLD 106
525
526#define Dblext_setzero(valA,valB,valC,valD)	\
527    Dextallp1(valA) = 0; Dextallp2(valB) = 0;	\
528    Dextallp3(valC) = 0; Dextallp4(valD) = 0
529
530
531#define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0)
532#define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0)
533#define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0)
534#define Dblext_isone_highp3(val) (Dexthighp3(val)!=0)
535#define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0)
536#define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \
537    Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0)
538
539#define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \
540    Dextallp1(desta) = Dextallp4(srca);	\
541    Dextallp2(destb) = Dextallp4(srcb);	\
542    Dextallp3(destc) = Dextallp4(srcc);	\
543    Dextallp4(destd) = Dextallp4(srcd)
544
545#define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4)  \
546    Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
547    Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
548    Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
549    Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
550    Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
551    Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
552    Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
553    Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
554    Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4)
555
556#define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1)
557
558/* The high bit is always zero so arithmetic or logical shifts will work. */
559#define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \
560  {int shiftamt, sticky;						\
561    shiftamt = shift % 32;						\
562    sticky = 0;								\
563    switch (shift/32) {							\
564     case 0: if (shiftamt > 0) {					\
565	        sticky = Dextallp4(srcdstD) << 32 - (shiftamt); 	\
566                Variable_shift_double(Dextallp3(srcdstC),		\
567		 Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD));	\
568                Variable_shift_double(Dextallp2(srcdstB),		\
569		 Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC));	\
570                Variable_shift_double(Dextallp1(srcdstA),		\
571		 Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB));	\
572	        Dextallp1(srcdstA) >>= shiftamt;			\
573	     }								\
574	     break;							\
575     case 1: if (shiftamt > 0) {					\
576                sticky = (Dextallp3(srcdstC) << 31 - shiftamt) |	\
577			 Dextallp4(srcdstD);				\
578                Variable_shift_double(Dextallp2(srcdstB),		\
579		 Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD));	\
580                Variable_shift_double(Dextallp1(srcdstA),		\
581		 Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC));	\
582	     }								\
583	     else {							\
584		sticky = Dextallp4(srcdstD);				\
585		Dextallp4(srcdstD) = Dextallp3(srcdstC);		\
586		Dextallp3(srcdstC) = Dextallp2(srcdstB);		\
587	     }								\
588	     Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt;	\
589	     Dextallp1(srcdstA) = 0;					\
590	     break;							\
591     case 2: if (shiftamt > 0) {					\
592                sticky = (Dextallp2(srcdstB) << 31 - shiftamt) |	\
593			 Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
594                Variable_shift_double(Dextallp1(srcdstA),		\
595		 Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD));	\
596	     }								\
597	     else {							\
598		sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
599		Dextallp4(srcdstD) = Dextallp2(srcdstB);		\
600	     }								\
601	     Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt;	\
602	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
603	     break;							\
604     case 3: if (shiftamt > 0) {					\
605                sticky = (Dextallp1(srcdstA) << 31 - shiftamt) |	\
606			 Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
607			 Dextallp4(srcdstD);				\
608	     }								\
609	     else {							\
610		sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
611		    Dextallp4(srcdstD);					\
612	     }								\
613	     Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt;	\
614	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
615	     Dextallp3(srcdstC) = 0;					\
616	     break;							\
617    }									\
618    if (sticky) Dblext_setone_lowmantissap4(srcdstD);			\
619  }
620
621/* The left argument is never smaller than the right argument */
622#define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
623    if( Dextallp4(rightd) > Dextallp4(leftd) ) 			\
624	if( (Dextallp3(leftc)--) == 0)				\
625	    if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
626    Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd);	\
627    if( Dextallp3(rightc) > Dextallp3(leftc) ) 			\
628        if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
629    Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc);	\
630    if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \
631    Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb);	\
632    Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta)
633
634#define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
635    /* If the sum of the low words is less than either source, then \
636     * an overflow into the next word occurred. */ \
637    if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \
638	Dextallp4(rightd)) \
639	if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \
640	    Dextallp3(rightc)) \
641	    if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
642	        <= Dextallp2(rightb))  \
643		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
644	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
645	else \
646	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
647	        Dextallp2(rightb)) \
648		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
649	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
650    else \
651	if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \
652	    Dextallp3(rightc))  \
653	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
654	        <= Dextallp2(rightb)) \
655		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
656	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
657	else \
658	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
659	        Dextallp2(rightb)) \
660		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
661	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)
662
663
664#define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD)	\
665    Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \
666    Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \
667    Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \
668    Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1
669
670#define Dblext_leftshiftby8(valA,valB,valC,valD) \
671    Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \
672    Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \
673    Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \
674    Dextallp4(valD) <<= 8
675#define Dblext_leftshiftby4(valA,valB,valC,valD) \
676    Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \
677    Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \
678    Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \
679    Dextallp4(valD) <<= 4
680#define Dblext_leftshiftby3(valA,valB,valC,valD) \
681    Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \
682    Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \
683    Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \
684    Dextallp4(valD) <<= 3
685#define Dblext_leftshiftby2(valA,valB,valC,valD) \
686    Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \
687    Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \
688    Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \
689    Dextallp4(valD) <<= 2
690#define Dblext_leftshiftby1(valA,valB,valC,valD) \
691    Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \
692    Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \
693    Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \
694    Dextallp4(valD) <<= 1
695
696#define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \
697    Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \
698    Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \
699    Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \
700    Dextallp1(valueA) >>= 4
701#define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \
702    Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \
703    Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \
704    Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \
705    Dextallp1(valueA) >>= 1
706
707#define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result)
708
709#define Dblext_xorfromintp1(left,right,result) \
710	Dbl_xorfromintp1(left,right,result)
711
712#define Dblext_copytoint_exponentmantissap1(src,dest) \
713	Dbl_copytoint_exponentmantissap1(src,dest)
714
715#define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
716	Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)
717
718#define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \
719	Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \
720	Dextallp3(dest3) = 0; Dextallp4(dest4) = 0
721
722#define Dblext_set_sign(dbl_value,sign)  Dbl_set_sign(dbl_value,sign)
723#define Dblext_clear_signexponent_set_hidden(srcdst) \
724	Dbl_clear_signexponent_set_hidden(srcdst)
725#define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst)
726#define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst)
727#define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value)
728
729/*
730 * The Fourword_add() macro assumes that integers are 4 bytes in size.
731 * It will break if this is not the case.
732 */
733
734#define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \
735	/* 								\
736	 * want this macro to generate:					\
737	 *	ADD	src1dstD,src2D,src1dstD;			\
738	 *	ADDC	src1dstC,src2C,src1dstC;			\
739	 *	ADDC	src1dstB,src2B,src1dstB;			\
740	 *	ADDC	src1dstA,src2A,src1dstA;			\
741	 */								\
742	if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \
743	   if ((unsigned int)(src1dstC += (src2C) + 1) <=		\
744	       (unsigned int)(src2C)) {					\
745	     if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
746		 (unsigned int)(src2B)) src1dstA++;			\
747	   }								\
748	   else if ((unsigned int)(src1dstB += (src2B)) < 		\
749		    (unsigned int)(src2B)) src1dstA++;			\
750	}								\
751	else {								\
752	   if ((unsigned int)(src1dstC += (src2C)) <			\
753	       (unsigned int)(src2C)) {					\
754	      if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
755		  (unsigned int)(src2B)) src1dstA++;			\
756	   }								\
757	   else if ((unsigned int)(src1dstB += (src2B)) <		\
758		    (unsigned int)(src2B)) src1dstA++;			\
759	}								\
760	src1dstA += (src2A)
761
762#define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \
763  {int shiftamt, sticky;						\
764    is_tiny = TRUE;							\
765    if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) {	\
766	switch (Rounding_mode()) {					\
767	case ROUNDPLUS:							\
768		if (Dbl_iszero_sign(opndp1)) {				\
769			Dbl_increment(opndp1,opndp2);			\
770			if (Dbl_isone_hiddenoverflow(opndp1))		\
771				is_tiny = FALSE;			\
772			Dbl_decrement(opndp1,opndp2);			\
773		}							\
774		break;							\
775	case ROUNDMINUS:						\
776		if (Dbl_isone_sign(opndp1)) {				\
777			Dbl_increment(opndp1,opndp2);			\
778			if (Dbl_isone_hiddenoverflow(opndp1))		\
779				is_tiny = FALSE;			\
780			Dbl_decrement(opndp1,opndp2);			\
781		}							\
782		break;							\
783	case ROUNDNEAREST:						\
784		if (Dblext_isone_highp3(opndp3) &&			\
785		    (Dblext_isone_lowp2(opndp2) || 			\
786		     Dblext_isnotzero_low31p3(opndp3)))	{		\
787			Dbl_increment(opndp1,opndp2);			\
788			if (Dbl_isone_hiddenoverflow(opndp1))		\
789				is_tiny = FALSE;			\
790			Dbl_decrement(opndp1,opndp2);			\
791		}							\
792		break;							\
793	}								\
794    }									\
795    Dblext_clear_signexponent_set_hidden(opndp1);			\
796    if (exponent >= (1-QUAD_P)) {					\
797	shiftamt = (1-exponent) % 32;					\
798	switch((1-exponent)/32) {					\
799	  case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt);		\
800		  Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4);	\
801		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3);	\
802		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2);	\
803		  Dextallp1(opndp1) >>= shiftamt;			\
804		  break;						\
805	  case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | 	\
806			   Dextallp4(opndp4);				\
807		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4);	\
808		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3);	\
809		  Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt;	\
810		  Dextallp1(opndp1) = 0;				\
811		  break;						\
812	  case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) |	\
813			    Dextallp3(opndp3) | Dextallp4(opndp4);	\
814		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4);	\
815		  Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt;	\
816		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
817		  break;						\
818	  case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) |	\
819		  	Dextallp2(opndp2) | Dextallp3(opndp3) | 	\
820			Dextallp4(opndp4);				\
821		  Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt;	\
822		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
823		  Dextallp3(opndp3) = 0;				\
824		  break;						\
825	}								\
826    }									\
827    else {								\
828	sticky = Dextallp1(opndp1) | Dextallp2(opndp2) |		\
829		 Dextallp3(opndp3) | Dextallp4(opndp4);			\
830	Dblext_setzero(opndp1,opndp2,opndp3,opndp4);			\
831    }									\
832    if (sticky) Dblext_setone_lowmantissap4(opndp4);			\
833    exponent = 0;							\
834  }
835