1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10#include <linux/cpu_pm.h>
11#include <linux/hardirq.h>
12#include <linux/init.h>
13#include <linux/highmem.h>
14#include <linux/kernel.h>
15#include <linux/linkage.h>
16#include <linux/preempt.h>
17#include <linux/sched.h>
18#include <linux/smp.h>
19#include <linux/mm.h>
20#include <linux/export.h>
21#include <linux/bitops.h>
22#include <linux/dma-map-ops.h> /* for dma_default_coherent */
23
24#include <asm/bcache.h>
25#include <asm/bootinfo.h>
26#include <asm/cache.h>
27#include <asm/cacheops.h>
28#include <asm/cpu.h>
29#include <asm/cpu-features.h>
30#include <asm/cpu-type.h>
31#include <asm/io.h>
32#include <asm/page.h>
33#include <asm/r4kcache.h>
34#include <asm/sections.h>
35#include <asm/mmu_context.h>
36#include <asm/cacheflush.h> /* for run_uncached() */
37#include <asm/traps.h>
38#include <asm/mips-cps.h>
39
40/*
41 * Bits describing what cache ops an SMP callback function may perform.
42 *
43 * R4K_HIT   -	Virtual user or kernel address based cache operations. The
44 *		active_mm must be checked before using user addresses, falling
45 *		back to kmap.
46 * R4K_INDEX -	Index based cache operations.
47 */
48
49#define R4K_HIT		BIT(0)
50#define R4K_INDEX	BIT(1)
51
52/**
53 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
54 * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
55 *
56 * Decides whether a cache op needs to be performed on every core in the system.
57 * This may change depending on the @type of cache operation, as well as the set
58 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
59 * hotplug from changing the result.
60 *
61 * Returns:	1 if the cache operation @type should be done on every core in
62 *		the system.
63 *		0 if the cache operation @type is globalized and only needs to
64 *		be performed on a simple CPU.
65 */
66static inline bool r4k_op_needs_ipi(unsigned int type)
67{
68	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
69	if (type == R4K_HIT && mips_cm_present())
70		return false;
71
72	/*
73	 * Hardware doesn't globalize the required cache ops, so SMP calls may
74	 * be needed, but only if there are foreign CPUs (non-siblings with
75	 * separate caches).
76	 */
77	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
78#ifdef CONFIG_SMP
79	return !cpumask_empty(&cpu_foreign_map[0]);
80#else
81	return false;
82#endif
83}
84
85/*
86 * Special Variant of smp_call_function for use by cache functions:
87 *
88 *  o No return value
89 *  o collapses to normal function call on UP kernels
90 *  o collapses to normal function call on systems with a single shared
91 *    primary cache.
92 *  o doesn't disable interrupts on the local CPU
93 */
94static inline void r4k_on_each_cpu(unsigned int type,
95				   void (*func)(void *info), void *info)
96{
97	preempt_disable();
98	if (r4k_op_needs_ipi(type))
99		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
100				       func, info, 1);
101	func(info);
102	preempt_enable();
103}
104
105/*
106 * Must die.
107 */
108static unsigned long icache_size __read_mostly;
109static unsigned long dcache_size __read_mostly;
110static unsigned long vcache_size __read_mostly;
111static unsigned long scache_size __read_mostly;
112
113#define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
114#define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
115
116#define R4600_HIT_CACHEOP_WAR_IMPL					\
117do {									\
118	if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) &&		\
119	    cpu_is_r4600_v2_x())					\
120		*(volatile unsigned long *)CKSEG1;			\
121	if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP))					\
122		__asm__ __volatile__("nop;nop;nop;nop");		\
123} while (0)
124
125static void (*r4k_blast_dcache_page)(unsigned long addr);
126
127static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
128{
129	R4600_HIT_CACHEOP_WAR_IMPL;
130	blast_dcache32_page(addr);
131}
132
133static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
134{
135	blast_dcache64_page(addr);
136}
137
138static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
139{
140	blast_dcache128_page(addr);
141}
142
143static void r4k_blast_dcache_page_setup(void)
144{
145	unsigned long  dc_lsize = cpu_dcache_line_size();
146
147	switch (dc_lsize) {
148	case 0:
149		r4k_blast_dcache_page = (void *)cache_noop;
150		break;
151	case 16:
152		r4k_blast_dcache_page = blast_dcache16_page;
153		break;
154	case 32:
155		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
156		break;
157	case 64:
158		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
159		break;
160	case 128:
161		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
162		break;
163	default:
164		break;
165	}
166}
167
168#ifndef CONFIG_EVA
169#define r4k_blast_dcache_user_page  r4k_blast_dcache_page
170#else
171
172static void (*r4k_blast_dcache_user_page)(unsigned long addr);
173
174static void r4k_blast_dcache_user_page_setup(void)
175{
176	unsigned long  dc_lsize = cpu_dcache_line_size();
177
178	if (dc_lsize == 0)
179		r4k_blast_dcache_user_page = (void *)cache_noop;
180	else if (dc_lsize == 16)
181		r4k_blast_dcache_user_page = blast_dcache16_user_page;
182	else if (dc_lsize == 32)
183		r4k_blast_dcache_user_page = blast_dcache32_user_page;
184	else if (dc_lsize == 64)
185		r4k_blast_dcache_user_page = blast_dcache64_user_page;
186}
187
188#endif
189
190void (* r4k_blast_dcache)(void);
191EXPORT_SYMBOL(r4k_blast_dcache);
192
193static void r4k_blast_dcache_setup(void)
194{
195	unsigned long dc_lsize = cpu_dcache_line_size();
196
197	if (dc_lsize == 0)
198		r4k_blast_dcache = (void *)cache_noop;
199	else if (dc_lsize == 16)
200		r4k_blast_dcache = blast_dcache16;
201	else if (dc_lsize == 32)
202		r4k_blast_dcache = blast_dcache32;
203	else if (dc_lsize == 64)
204		r4k_blast_dcache = blast_dcache64;
205	else if (dc_lsize == 128)
206		r4k_blast_dcache = blast_dcache128;
207}
208
209/* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
210#define JUMP_TO_ALIGN(order) \
211	__asm__ __volatile__( \
212		"b\t1f\n\t" \
213		".align\t" #order "\n\t" \
214		"1:\n\t" \
215		)
216#define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
217#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
218
219static inline void blast_r4600_v1_icache32(void)
220{
221	unsigned long flags;
222
223	local_irq_save(flags);
224	blast_icache32();
225	local_irq_restore(flags);
226}
227
228static inline void tx49_blast_icache32(void)
229{
230	unsigned long start = INDEX_BASE;
231	unsigned long end = start + current_cpu_data.icache.waysize;
232	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
233	unsigned long ws_end = current_cpu_data.icache.ways <<
234			       current_cpu_data.icache.waybit;
235	unsigned long ws, addr;
236
237	CACHE32_UNROLL32_ALIGN2;
238	/* I'm in even chunk.  blast odd chunks */
239	for (ws = 0; ws < ws_end; ws += ws_inc)
240		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
241			cache_unroll(32, kernel_cache, Index_Invalidate_I,
242				     addr | ws, 32);
243	CACHE32_UNROLL32_ALIGN;
244	/* I'm in odd chunk.  blast even chunks */
245	for (ws = 0; ws < ws_end; ws += ws_inc)
246		for (addr = start; addr < end; addr += 0x400 * 2)
247			cache_unroll(32, kernel_cache, Index_Invalidate_I,
248				     addr | ws, 32);
249}
250
251static void (* r4k_blast_icache_page)(unsigned long addr);
252
253static void r4k_blast_icache_page_setup(void)
254{
255	unsigned long ic_lsize = cpu_icache_line_size();
256
257	if (ic_lsize == 0)
258		r4k_blast_icache_page = (void *)cache_noop;
259	else if (ic_lsize == 16)
260		r4k_blast_icache_page = blast_icache16_page;
261	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
262		r4k_blast_icache_page = loongson2_blast_icache32_page;
263	else if (ic_lsize == 32)
264		r4k_blast_icache_page = blast_icache32_page;
265	else if (ic_lsize == 64)
266		r4k_blast_icache_page = blast_icache64_page;
267	else if (ic_lsize == 128)
268		r4k_blast_icache_page = blast_icache128_page;
269}
270
271#ifndef CONFIG_EVA
272#define r4k_blast_icache_user_page  r4k_blast_icache_page
273#else
274
275static void (*r4k_blast_icache_user_page)(unsigned long addr);
276
277static void r4k_blast_icache_user_page_setup(void)
278{
279	unsigned long ic_lsize = cpu_icache_line_size();
280
281	if (ic_lsize == 0)
282		r4k_blast_icache_user_page = (void *)cache_noop;
283	else if (ic_lsize == 16)
284		r4k_blast_icache_user_page = blast_icache16_user_page;
285	else if (ic_lsize == 32)
286		r4k_blast_icache_user_page = blast_icache32_user_page;
287	else if (ic_lsize == 64)
288		r4k_blast_icache_user_page = blast_icache64_user_page;
289}
290
291#endif
292
293void (* r4k_blast_icache)(void);
294EXPORT_SYMBOL(r4k_blast_icache);
295
296static void r4k_blast_icache_setup(void)
297{
298	unsigned long ic_lsize = cpu_icache_line_size();
299
300	if (ic_lsize == 0)
301		r4k_blast_icache = (void *)cache_noop;
302	else if (ic_lsize == 16)
303		r4k_blast_icache = blast_icache16;
304	else if (ic_lsize == 32) {
305		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
306		    cpu_is_r4600_v1_x())
307			r4k_blast_icache = blast_r4600_v1_icache32;
308		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
309			r4k_blast_icache = tx49_blast_icache32;
310		else if (current_cpu_type() == CPU_LOONGSON2EF)
311			r4k_blast_icache = loongson2_blast_icache32;
312		else
313			r4k_blast_icache = blast_icache32;
314	} else if (ic_lsize == 64)
315		r4k_blast_icache = blast_icache64;
316	else if (ic_lsize == 128)
317		r4k_blast_icache = blast_icache128;
318}
319
320static void (* r4k_blast_scache_page)(unsigned long addr);
321
322static void r4k_blast_scache_page_setup(void)
323{
324	unsigned long sc_lsize = cpu_scache_line_size();
325
326	if (scache_size == 0)
327		r4k_blast_scache_page = (void *)cache_noop;
328	else if (sc_lsize == 16)
329		r4k_blast_scache_page = blast_scache16_page;
330	else if (sc_lsize == 32)
331		r4k_blast_scache_page = blast_scache32_page;
332	else if (sc_lsize == 64)
333		r4k_blast_scache_page = blast_scache64_page;
334	else if (sc_lsize == 128)
335		r4k_blast_scache_page = blast_scache128_page;
336}
337
338static void (* r4k_blast_scache)(void);
339
340static void r4k_blast_scache_setup(void)
341{
342	unsigned long sc_lsize = cpu_scache_line_size();
343
344	if (scache_size == 0)
345		r4k_blast_scache = (void *)cache_noop;
346	else if (sc_lsize == 16)
347		r4k_blast_scache = blast_scache16;
348	else if (sc_lsize == 32)
349		r4k_blast_scache = blast_scache32;
350	else if (sc_lsize == 64)
351		r4k_blast_scache = blast_scache64;
352	else if (sc_lsize == 128)
353		r4k_blast_scache = blast_scache128;
354}
355
356static void (*r4k_blast_scache_node)(long node);
357
358static void r4k_blast_scache_node_setup(void)
359{
360	unsigned long sc_lsize = cpu_scache_line_size();
361
362	if (current_cpu_type() != CPU_LOONGSON64)
363		r4k_blast_scache_node = (void *)cache_noop;
364	else if (sc_lsize == 16)
365		r4k_blast_scache_node = blast_scache16_node;
366	else if (sc_lsize == 32)
367		r4k_blast_scache_node = blast_scache32_node;
368	else if (sc_lsize == 64)
369		r4k_blast_scache_node = blast_scache64_node;
370	else if (sc_lsize == 128)
371		r4k_blast_scache_node = blast_scache128_node;
372}
373
374static inline void local_r4k___flush_cache_all(void * args)
375{
376	switch (current_cpu_type()) {
377	case CPU_LOONGSON2EF:
378	case CPU_R4000SC:
379	case CPU_R4000MC:
380	case CPU_R4400SC:
381	case CPU_R4400MC:
382	case CPU_R10000:
383	case CPU_R12000:
384	case CPU_R14000:
385	case CPU_R16000:
386		/*
387		 * These caches are inclusive caches, that is, if something
388		 * is not cached in the S-cache, we know it also won't be
389		 * in one of the primary caches.
390		 */
391		r4k_blast_scache();
392		break;
393
394	case CPU_LOONGSON64:
395		/* Use get_ebase_cpunum() for both NUMA=y/n */
396		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
397		break;
398
399	case CPU_BMIPS5000:
400		r4k_blast_scache();
401		__sync();
402		break;
403
404	default:
405		r4k_blast_dcache();
406		r4k_blast_icache();
407		break;
408	}
409}
410
411static void r4k___flush_cache_all(void)
412{
413	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
414}
415
416/**
417 * has_valid_asid() - Determine if an mm already has an ASID.
418 * @mm:		Memory map.
419 * @type:	R4K_HIT or R4K_INDEX, type of cache op.
420 *
421 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
422 * of type @type within an r4k_on_each_cpu() call will affect. If
423 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
424 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
425 * will need to be checked.
426 *
427 * Must be called in non-preemptive context.
428 *
429 * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
430 *		0 otherwise.
431 */
432static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
433{
434	unsigned int i;
435	const cpumask_t *mask = cpu_present_mask;
436
437	if (cpu_has_mmid)
438		return cpu_context(0, mm) != 0;
439
440	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
441#ifdef CONFIG_SMP
442	/*
443	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
444	 * each foreign core, so we only need to worry about siblings.
445	 * Otherwise we need to worry about all present CPUs.
446	 */
447	if (r4k_op_needs_ipi(type))
448		mask = &cpu_sibling_map[smp_processor_id()];
449#endif
450	for_each_cpu(i, mask)
451		if (cpu_context(i, mm))
452			return 1;
453	return 0;
454}
455
456static void r4k__flush_cache_vmap(void)
457{
458	r4k_blast_dcache();
459}
460
461static void r4k__flush_cache_vunmap(void)
462{
463	r4k_blast_dcache();
464}
465
466/*
467 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
468 * whole caches when vma is executable.
469 */
470static inline void local_r4k_flush_cache_range(void * args)
471{
472	struct vm_area_struct *vma = args;
473	int exec = vma->vm_flags & VM_EXEC;
474
475	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
476		return;
477
478	/*
479	 * If dcache can alias, we must blast it since mapping is changing.
480	 * If executable, we must ensure any dirty lines are written back far
481	 * enough to be visible to icache.
482	 */
483	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
484		r4k_blast_dcache();
485	/* If executable, blast stale lines from icache */
486	if (exec)
487		r4k_blast_icache();
488}
489
490static void r4k_flush_cache_range(struct vm_area_struct *vma,
491	unsigned long start, unsigned long end)
492{
493	int exec = vma->vm_flags & VM_EXEC;
494
495	if (cpu_has_dc_aliases || exec)
496		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
497}
498
499static inline void local_r4k_flush_cache_mm(void * args)
500{
501	struct mm_struct *mm = args;
502
503	if (!has_valid_asid(mm, R4K_INDEX))
504		return;
505
506	/*
507	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
508	 * only flush the primary caches but R1x000 behave sane ...
509	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
510	 * caches, so we can bail out early.
511	 */
512	if (current_cpu_type() == CPU_R4000SC ||
513	    current_cpu_type() == CPU_R4000MC ||
514	    current_cpu_type() == CPU_R4400SC ||
515	    current_cpu_type() == CPU_R4400MC) {
516		r4k_blast_scache();
517		return;
518	}
519
520	r4k_blast_dcache();
521}
522
523static void r4k_flush_cache_mm(struct mm_struct *mm)
524{
525	if (!cpu_has_dc_aliases)
526		return;
527
528	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
529}
530
531struct flush_cache_page_args {
532	struct vm_area_struct *vma;
533	unsigned long addr;
534	unsigned long pfn;
535};
536
537static inline void local_r4k_flush_cache_page(void *args)
538{
539	struct flush_cache_page_args *fcp_args = args;
540	struct vm_area_struct *vma = fcp_args->vma;
541	unsigned long addr = fcp_args->addr;
542	struct page *page = pfn_to_page(fcp_args->pfn);
543	int exec = vma->vm_flags & VM_EXEC;
544	struct mm_struct *mm = vma->vm_mm;
545	int map_coherent = 0;
546	pmd_t *pmdp;
547	pte_t *ptep;
548	void *vaddr;
549
550	/*
551	 * If owns no valid ASID yet, cannot possibly have gotten
552	 * this page into the cache.
553	 */
554	if (!has_valid_asid(mm, R4K_HIT))
555		return;
556
557	addr &= PAGE_MASK;
558	pmdp = pmd_off(mm, addr);
559	ptep = pte_offset_kernel(pmdp, addr);
560
561	/*
562	 * If the page isn't marked valid, the page cannot possibly be
563	 * in the cache.
564	 */
565	if (!(pte_present(*ptep)))
566		return;
567
568	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
569		vaddr = NULL;
570	else {
571		struct folio *folio = page_folio(page);
572		/*
573		 * Use kmap_coherent or kmap_atomic to do flushes for
574		 * another ASID than the current one.
575		 */
576		map_coherent = (cpu_has_dc_aliases &&
577				folio_mapped(folio) &&
578				!folio_test_dcache_dirty(folio));
579		if (map_coherent)
580			vaddr = kmap_coherent(page, addr);
581		else
582			vaddr = kmap_atomic(page);
583		addr = (unsigned long)vaddr;
584	}
585
586	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
587		vaddr ? r4k_blast_dcache_page(addr) :
588			r4k_blast_dcache_user_page(addr);
589		if (exec && !cpu_icache_snoops_remote_store)
590			r4k_blast_scache_page(addr);
591	}
592	if (exec) {
593		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
594			drop_mmu_context(mm);
595		} else
596			vaddr ? r4k_blast_icache_page(addr) :
597				r4k_blast_icache_user_page(addr);
598	}
599
600	if (vaddr) {
601		if (map_coherent)
602			kunmap_coherent();
603		else
604			kunmap_atomic(vaddr);
605	}
606}
607
608static void r4k_flush_cache_page(struct vm_area_struct *vma,
609	unsigned long addr, unsigned long pfn)
610{
611	struct flush_cache_page_args args;
612
613	args.vma = vma;
614	args.addr = addr;
615	args.pfn = pfn;
616
617	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
618}
619
620static inline void local_r4k_flush_data_cache_page(void * addr)
621{
622	r4k_blast_dcache_page((unsigned long) addr);
623}
624
625static void r4k_flush_data_cache_page(unsigned long addr)
626{
627	if (in_atomic())
628		local_r4k_flush_data_cache_page((void *)addr);
629	else
630		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
631				(void *) addr);
632}
633
634struct flush_icache_range_args {
635	unsigned long start;
636	unsigned long end;
637	unsigned int type;
638	bool user;
639};
640
641static inline void __local_r4k_flush_icache_range(unsigned long start,
642						  unsigned long end,
643						  unsigned int type,
644						  bool user)
645{
646	if (!cpu_has_ic_fills_f_dc) {
647		if (type == R4K_INDEX ||
648		    (type & R4K_INDEX && end - start >= dcache_size)) {
649			r4k_blast_dcache();
650		} else {
651			R4600_HIT_CACHEOP_WAR_IMPL;
652			if (user)
653				protected_blast_dcache_range(start, end);
654			else
655				blast_dcache_range(start, end);
656		}
657	}
658
659	if (type == R4K_INDEX ||
660	    (type & R4K_INDEX && end - start > icache_size))
661		r4k_blast_icache();
662	else {
663		switch (boot_cpu_type()) {
664		case CPU_LOONGSON2EF:
665			protected_loongson2_blast_icache_range(start, end);
666			break;
667
668		default:
669			if (user)
670				protected_blast_icache_range(start, end);
671			else
672				blast_icache_range(start, end);
673			break;
674		}
675	}
676}
677
678static inline void local_r4k_flush_icache_range(unsigned long start,
679						unsigned long end)
680{
681	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
682}
683
684static inline void local_r4k_flush_icache_user_range(unsigned long start,
685						     unsigned long end)
686{
687	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
688}
689
690static inline void local_r4k_flush_icache_range_ipi(void *args)
691{
692	struct flush_icache_range_args *fir_args = args;
693	unsigned long start = fir_args->start;
694	unsigned long end = fir_args->end;
695	unsigned int type = fir_args->type;
696	bool user = fir_args->user;
697
698	__local_r4k_flush_icache_range(start, end, type, user);
699}
700
701static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
702				     bool user)
703{
704	struct flush_icache_range_args args;
705	unsigned long size, cache_size;
706
707	args.start = start;
708	args.end = end;
709	args.type = R4K_HIT | R4K_INDEX;
710	args.user = user;
711
712	/*
713	 * Indexed cache ops require an SMP call.
714	 * Consider if that can or should be avoided.
715	 */
716	preempt_disable();
717	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
718		/*
719		 * If address-based cache ops don't require an SMP call, then
720		 * use them exclusively for small flushes.
721		 */
722		size = end - start;
723		cache_size = icache_size;
724		if (!cpu_has_ic_fills_f_dc) {
725			size *= 2;
726			cache_size += dcache_size;
727		}
728		if (size <= cache_size)
729			args.type &= ~R4K_INDEX;
730	}
731	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
732	preempt_enable();
733	instruction_hazard();
734}
735
736static void r4k_flush_icache_range(unsigned long start, unsigned long end)
737{
738	return __r4k_flush_icache_range(start, end, false);
739}
740
741static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
742{
743	return __r4k_flush_icache_range(start, end, true);
744}
745
746#ifdef CONFIG_DMA_NONCOHERENT
747
748static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
749{
750	/* Catch bad driver code */
751	if (WARN_ON(size == 0))
752		return;
753
754	preempt_disable();
755	if (cpu_has_inclusive_pcaches) {
756		if (size >= scache_size) {
757			if (current_cpu_type() != CPU_LOONGSON64)
758				r4k_blast_scache();
759			else
760				r4k_blast_scache_node(pa_to_nid(addr));
761		} else {
762			blast_scache_range(addr, addr + size);
763		}
764		preempt_enable();
765		__sync();
766		return;
767	}
768
769	/*
770	 * Either no secondary cache or the available caches don't have the
771	 * subset property so we have to flush the primary caches
772	 * explicitly.
773	 * If we would need IPI to perform an INDEX-type operation, then
774	 * we have to use the HIT-type alternative as IPI cannot be used
775	 * here due to interrupts possibly being disabled.
776	 */
777	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
778		r4k_blast_dcache();
779	} else {
780		R4600_HIT_CACHEOP_WAR_IMPL;
781		blast_dcache_range(addr, addr + size);
782	}
783	preempt_enable();
784
785	bc_wback_inv(addr, size);
786	__sync();
787}
788
789static void prefetch_cache_inv(unsigned long addr, unsigned long size)
790{
791	unsigned int linesz = cpu_scache_line_size();
792	unsigned long addr0 = addr, addr1;
793
794	addr0 &= ~(linesz - 1);
795	addr1 = (addr0 + size - 1) & ~(linesz - 1);
796
797	protected_writeback_scache_line(addr0);
798	if (likely(addr1 != addr0))
799		protected_writeback_scache_line(addr1);
800	else
801		return;
802
803	addr0 += linesz;
804	if (likely(addr1 != addr0))
805		protected_writeback_scache_line(addr0);
806	else
807		return;
808
809	addr1 -= linesz;
810	if (likely(addr1 > addr0))
811		protected_writeback_scache_line(addr0);
812}
813
814static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
815{
816	/* Catch bad driver code */
817	if (WARN_ON(size == 0))
818		return;
819
820	preempt_disable();
821
822	if (current_cpu_type() == CPU_BMIPS5000)
823		prefetch_cache_inv(addr, size);
824
825	if (cpu_has_inclusive_pcaches) {
826		if (size >= scache_size) {
827			if (current_cpu_type() != CPU_LOONGSON64)
828				r4k_blast_scache();
829			else
830				r4k_blast_scache_node(pa_to_nid(addr));
831		} else {
832			/*
833			 * There is no clearly documented alignment requirement
834			 * for the cache instruction on MIPS processors and
835			 * some processors, among them the RM5200 and RM7000
836			 * QED processors will throw an address error for cache
837			 * hit ops with insufficient alignment.	 Solved by
838			 * aligning the address to cache line size.
839			 */
840			blast_inv_scache_range(addr, addr + size);
841		}
842		preempt_enable();
843		__sync();
844		return;
845	}
846
847	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
848		r4k_blast_dcache();
849	} else {
850		R4600_HIT_CACHEOP_WAR_IMPL;
851		blast_inv_dcache_range(addr, addr + size);
852	}
853	preempt_enable();
854
855	bc_inv(addr, size);
856	__sync();
857}
858#endif /* CONFIG_DMA_NONCOHERENT */
859
860static void r4k_flush_icache_all(void)
861{
862	if (cpu_has_vtag_icache)
863		r4k_blast_icache();
864}
865
866struct flush_kernel_vmap_range_args {
867	unsigned long	vaddr;
868	int		size;
869};
870
871static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
872{
873	/*
874	 * Aliases only affect the primary caches so don't bother with
875	 * S-caches or T-caches.
876	 */
877	r4k_blast_dcache();
878}
879
880static inline void local_r4k_flush_kernel_vmap_range(void *args)
881{
882	struct flush_kernel_vmap_range_args *vmra = args;
883	unsigned long vaddr = vmra->vaddr;
884	int size = vmra->size;
885
886	/*
887	 * Aliases only affect the primary caches so don't bother with
888	 * S-caches or T-caches.
889	 */
890	R4600_HIT_CACHEOP_WAR_IMPL;
891	blast_dcache_range(vaddr, vaddr + size);
892}
893
894static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
895{
896	struct flush_kernel_vmap_range_args args;
897
898	args.vaddr = (unsigned long) vaddr;
899	args.size = size;
900
901	if (size >= dcache_size)
902		r4k_on_each_cpu(R4K_INDEX,
903				local_r4k_flush_kernel_vmap_range_index, NULL);
904	else
905		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
906				&args);
907}
908
909static inline void rm7k_erratum31(void)
910{
911	const unsigned long ic_lsize = 32;
912	unsigned long addr;
913
914	/* RM7000 erratum #31. The icache is screwed at startup. */
915	write_c0_taglo(0);
916	write_c0_taghi(0);
917
918	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
919		__asm__ __volatile__ (
920			".set push\n\t"
921			".set noreorder\n\t"
922			".set mips3\n\t"
923			"cache\t%1, 0(%0)\n\t"
924			"cache\t%1, 0x1000(%0)\n\t"
925			"cache\t%1, 0x2000(%0)\n\t"
926			"cache\t%1, 0x3000(%0)\n\t"
927			"cache\t%2, 0(%0)\n\t"
928			"cache\t%2, 0x1000(%0)\n\t"
929			"cache\t%2, 0x2000(%0)\n\t"
930			"cache\t%2, 0x3000(%0)\n\t"
931			"cache\t%1, 0(%0)\n\t"
932			"cache\t%1, 0x1000(%0)\n\t"
933			"cache\t%1, 0x2000(%0)\n\t"
934			"cache\t%1, 0x3000(%0)\n\t"
935			".set pop\n"
936			:
937			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
938	}
939}
940
941static inline int alias_74k_erratum(struct cpuinfo_mips *c)
942{
943	unsigned int imp = c->processor_id & PRID_IMP_MASK;
944	unsigned int rev = c->processor_id & PRID_REV_MASK;
945	int present = 0;
946
947	/*
948	 * Early versions of the 74K do not update the cache tags on a
949	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
950	 * aliases.  In this case it is better to treat the cache as always
951	 * having aliases.  Also disable the synonym tag update feature
952	 * where available.  In this case no opportunistic tag update will
953	 * happen where a load causes a virtual address miss but a physical
954	 * address hit during a D-cache look-up.
955	 */
956	switch (imp) {
957	case PRID_IMP_74K:
958		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
959			present = 1;
960		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
961			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
962		break;
963	case PRID_IMP_1074K:
964		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
965			present = 1;
966			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
967		}
968		break;
969	default:
970		BUG();
971	}
972
973	return present;
974}
975
976static void b5k_instruction_hazard(void)
977{
978	__sync();
979	__sync();
980	__asm__ __volatile__(
981	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
982	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
983	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
984	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
985	: : : "memory");
986}
987
988static char *way_string[] = { NULL, "direct mapped", "2-way",
989	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
990	"9-way", "10-way", "11-way", "12-way",
991	"13-way", "14-way", "15-way", "16-way",
992};
993
994static void probe_pcache(void)
995{
996	struct cpuinfo_mips *c = &current_cpu_data;
997	unsigned int config = read_c0_config();
998	unsigned int prid = read_c0_prid();
999	int has_74k_erratum = 0;
1000	unsigned long config1;
1001	unsigned int lsize;
1002
1003	switch (current_cpu_type()) {
1004	case CPU_R4600:			/* QED style two way caches? */
1005	case CPU_R4700:
1006	case CPU_R5000:
1007	case CPU_NEVADA:
1008		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1009		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1010		c->icache.ways = 2;
1011		c->icache.waybit = __ffs(icache_size/2);
1012
1013		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1014		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1015		c->dcache.ways = 2;
1016		c->dcache.waybit= __ffs(dcache_size/2);
1017
1018		c->options |= MIPS_CPU_CACHE_CDEX_P;
1019		break;
1020
1021	case CPU_R5500:
1022		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1023		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1024		c->icache.ways = 2;
1025		c->icache.waybit= 0;
1026
1027		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1028		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1029		c->dcache.ways = 2;
1030		c->dcache.waybit = 0;
1031
1032		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1033		break;
1034
1035	case CPU_TX49XX:
1036		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1037		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1038		c->icache.ways = 4;
1039		c->icache.waybit= 0;
1040
1041		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1042		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1043		c->dcache.ways = 4;
1044		c->dcache.waybit = 0;
1045
1046		c->options |= MIPS_CPU_CACHE_CDEX_P;
1047		c->options |= MIPS_CPU_PREFETCH;
1048		break;
1049
1050	case CPU_R4000PC:
1051	case CPU_R4000SC:
1052	case CPU_R4000MC:
1053	case CPU_R4400PC:
1054	case CPU_R4400SC:
1055	case CPU_R4400MC:
1056	case CPU_R4300:
1057		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1058		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1059		c->icache.ways = 1;
1060		c->icache.waybit = 0;	/* doesn't matter */
1061
1062		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1063		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1064		c->dcache.ways = 1;
1065		c->dcache.waybit = 0;	/* does not matter */
1066
1067		c->options |= MIPS_CPU_CACHE_CDEX_P;
1068		break;
1069
1070	case CPU_R10000:
1071	case CPU_R12000:
1072	case CPU_R14000:
1073	case CPU_R16000:
1074		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1075		c->icache.linesz = 64;
1076		c->icache.ways = 2;
1077		c->icache.waybit = 0;
1078
1079		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1080		c->dcache.linesz = 32;
1081		c->dcache.ways = 2;
1082		c->dcache.waybit = 0;
1083
1084		c->options |= MIPS_CPU_PREFETCH;
1085		break;
1086
1087	case CPU_RM7000:
1088		rm7k_erratum31();
1089
1090		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1091		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1092		c->icache.ways = 4;
1093		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1094
1095		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1096		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1097		c->dcache.ways = 4;
1098		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1099
1100		c->options |= MIPS_CPU_CACHE_CDEX_P;
1101		c->options |= MIPS_CPU_PREFETCH;
1102		break;
1103
1104	case CPU_LOONGSON2EF:
1105		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1106		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1107		if (prid & 0x3)
1108			c->icache.ways = 4;
1109		else
1110			c->icache.ways = 2;
1111		c->icache.waybit = 0;
1112
1113		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1114		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1115		if (prid & 0x3)
1116			c->dcache.ways = 4;
1117		else
1118			c->dcache.ways = 2;
1119		c->dcache.waybit = 0;
1120		break;
1121
1122	case CPU_LOONGSON64:
1123		config1 = read_c0_config1();
1124		lsize = (config1 >> 19) & 7;
1125		if (lsize)
1126			c->icache.linesz = 2 << lsize;
1127		else
1128			c->icache.linesz = 0;
1129		c->icache.sets = 64 << ((config1 >> 22) & 7);
1130		c->icache.ways = 1 + ((config1 >> 16) & 7);
1131		icache_size = c->icache.sets *
1132					  c->icache.ways *
1133					  c->icache.linesz;
1134		c->icache.waybit = 0;
1135
1136		lsize = (config1 >> 10) & 7;
1137		if (lsize)
1138			c->dcache.linesz = 2 << lsize;
1139		else
1140			c->dcache.linesz = 0;
1141		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1142		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1143		dcache_size = c->dcache.sets *
1144					  c->dcache.ways *
1145					  c->dcache.linesz;
1146		c->dcache.waybit = 0;
1147		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1148				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1149				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1150			c->options |= MIPS_CPU_PREFETCH;
1151		break;
1152
1153	case CPU_CAVIUM_OCTEON3:
1154		/* For now lie about the number of ways. */
1155		c->icache.linesz = 128;
1156		c->icache.sets = 16;
1157		c->icache.ways = 8;
1158		c->icache.flags |= MIPS_CACHE_VTAG;
1159		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1160
1161		c->dcache.linesz = 128;
1162		c->dcache.ways = 8;
1163		c->dcache.sets = 8;
1164		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1165		c->options |= MIPS_CPU_PREFETCH;
1166		break;
1167
1168	default:
1169		if (!(config & MIPS_CONF_M))
1170			panic("Don't know how to probe P-caches on this cpu.");
1171
1172		/*
1173		 * So we seem to be a MIPS32 or MIPS64 CPU
1174		 * So let's probe the I-cache ...
1175		 */
1176		config1 = read_c0_config1();
1177
1178		lsize = (config1 >> 19) & 7;
1179
1180		/* IL == 7 is reserved */
1181		if (lsize == 7)
1182			panic("Invalid icache line size");
1183
1184		c->icache.linesz = lsize ? 2 << lsize : 0;
1185
1186		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1187		c->icache.ways = 1 + ((config1 >> 16) & 7);
1188
1189		icache_size = c->icache.sets *
1190			      c->icache.ways *
1191			      c->icache.linesz;
1192		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1193
1194		if (config & MIPS_CONF_VI)
1195			c->icache.flags |= MIPS_CACHE_VTAG;
1196
1197		/*
1198		 * Now probe the MIPS32 / MIPS64 data cache.
1199		 */
1200		c->dcache.flags = 0;
1201
1202		lsize = (config1 >> 10) & 7;
1203
1204		/* DL == 7 is reserved */
1205		if (lsize == 7)
1206			panic("Invalid dcache line size");
1207
1208		c->dcache.linesz = lsize ? 2 << lsize : 0;
1209
1210		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1211		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1212
1213		dcache_size = c->dcache.sets *
1214			      c->dcache.ways *
1215			      c->dcache.linesz;
1216		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1217
1218		c->options |= MIPS_CPU_PREFETCH;
1219		break;
1220	}
1221
1222	/*
1223	 * Processor configuration sanity check for the R4000SC erratum
1224	 * #5.	With page sizes larger than 32kB there is no possibility
1225	 * to get a VCE exception anymore so we don't care about this
1226	 * misconfiguration.  The case is rather theoretical anyway;
1227	 * presumably no vendor is shipping his hardware in the "bad"
1228	 * configuration.
1229	 */
1230	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1231	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1232	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1233	    PAGE_SIZE <= 0x8000)
1234		panic("Improper R4000SC processor configuration detected");
1235
1236	/* compute a couple of other cache variables */
1237	c->icache.waysize = icache_size / c->icache.ways;
1238	c->dcache.waysize = dcache_size / c->dcache.ways;
1239
1240	c->icache.sets = c->icache.linesz ?
1241		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1242	c->dcache.sets = c->dcache.linesz ?
1243		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1244
1245	/*
1246	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1247	 * virtually indexed so normally would suffer from aliases.  So
1248	 * normally they'd suffer from aliases but magic in the hardware deals
1249	 * with that for us so we don't need to take care ourselves.
1250	 */
1251	switch (current_cpu_type()) {
1252	case CPU_20KC:
1253	case CPU_25KF:
1254	case CPU_I6400:
1255	case CPU_I6500:
1256	case CPU_SB1:
1257	case CPU_SB1A:
1258		c->dcache.flags |= MIPS_CACHE_PINDEX;
1259		break;
1260
1261	case CPU_R10000:
1262	case CPU_R12000:
1263	case CPU_R14000:
1264	case CPU_R16000:
1265		break;
1266
1267	case CPU_74K:
1268	case CPU_1074K:
1269		has_74k_erratum = alias_74k_erratum(c);
1270		fallthrough;
1271	case CPU_M14KC:
1272	case CPU_M14KEC:
1273	case CPU_24K:
1274	case CPU_34K:
1275	case CPU_1004K:
1276	case CPU_INTERAPTIV:
1277	case CPU_P5600:
1278	case CPU_PROAPTIV:
1279	case CPU_M5150:
1280	case CPU_QEMU_GENERIC:
1281	case CPU_P6600:
1282	case CPU_M6250:
1283		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1284		    (c->icache.waysize > PAGE_SIZE))
1285			c->icache.flags |= MIPS_CACHE_ALIASES;
1286		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1287			/*
1288			 * Effectively physically indexed dcache,
1289			 * thus no virtual aliases.
1290			*/
1291			c->dcache.flags |= MIPS_CACHE_PINDEX;
1292			break;
1293		}
1294		fallthrough;
1295	default:
1296		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1297			c->dcache.flags |= MIPS_CACHE_ALIASES;
1298	}
1299
1300	/* Physically indexed caches don't suffer from virtual aliasing */
1301	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1302		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1303
1304	/*
1305	 * In systems with CM the icache fills from L2 or closer caches, and
1306	 * thus sees remote stores without needing to write them back any
1307	 * further than that.
1308	 */
1309	if (mips_cm_present())
1310		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1311
1312	switch (current_cpu_type()) {
1313	case CPU_20KC:
1314		/*
1315		 * Some older 20Kc chips doesn't have the 'VI' bit in
1316		 * the config register.
1317		 */
1318		c->icache.flags |= MIPS_CACHE_VTAG;
1319		break;
1320
1321	case CPU_ALCHEMY:
1322	case CPU_I6400:
1323	case CPU_I6500:
1324		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1325		break;
1326
1327	case CPU_BMIPS5000:
1328		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1329		/* Cache aliases are handled in hardware; allow HIGHMEM */
1330		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1331		break;
1332
1333	case CPU_LOONGSON2EF:
1334		/*
1335		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1336		 * one op will act on all 4 ways
1337		 */
1338		c->icache.ways = 1;
1339	}
1340
1341	pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1342		icache_size >> 10,
1343		c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1344		way_string[c->icache.ways], c->icache.linesz);
1345
1346	pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1347		dcache_size >> 10, way_string[c->dcache.ways],
1348		(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1349		(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1350			"cache aliases" : "no aliases",
1351		c->dcache.linesz);
1352}
1353
1354static void probe_vcache(void)
1355{
1356	struct cpuinfo_mips *c = &current_cpu_data;
1357	unsigned int config2, lsize;
1358
1359	if (current_cpu_type() != CPU_LOONGSON64)
1360		return;
1361
1362	config2 = read_c0_config2();
1363	if ((lsize = ((config2 >> 20) & 15)))
1364		c->vcache.linesz = 2 << lsize;
1365	else
1366		c->vcache.linesz = lsize;
1367
1368	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1369	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1370
1371	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1372
1373	c->vcache.waybit = 0;
1374	c->vcache.waysize = vcache_size / c->vcache.ways;
1375
1376	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1377		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1378}
1379
1380/*
1381 * If you even _breathe_ on this function, look at the gcc output and make sure
1382 * it does not pop things on and off the stack for the cache sizing loop that
1383 * executes in KSEG1 space or else you will crash and burn badly.  You have
1384 * been warned.
1385 */
1386static int probe_scache(void)
1387{
1388	unsigned long flags, addr, begin, end, pow2;
1389	unsigned int config = read_c0_config();
1390	struct cpuinfo_mips *c = &current_cpu_data;
1391
1392	if (config & CONF_SC)
1393		return 0;
1394
1395	begin = (unsigned long) &_stext;
1396	begin &= ~((4 * 1024 * 1024) - 1);
1397	end = begin + (4 * 1024 * 1024);
1398
1399	/*
1400	 * This is such a bitch, you'd think they would make it easy to do
1401	 * this.  Away you daemons of stupidity!
1402	 */
1403	local_irq_save(flags);
1404
1405	/* Fill each size-multiple cache line with a valid tag. */
1406	pow2 = (64 * 1024);
1407	for (addr = begin; addr < end; addr = (begin + pow2)) {
1408		unsigned long *p = (unsigned long *) addr;
1409		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1410		pow2 <<= 1;
1411	}
1412
1413	/* Load first line with zero (therefore invalid) tag. */
1414	write_c0_taglo(0);
1415	write_c0_taghi(0);
1416	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1417	cache_op(Index_Store_Tag_I, begin);
1418	cache_op(Index_Store_Tag_D, begin);
1419	cache_op(Index_Store_Tag_SD, begin);
1420
1421	/* Now search for the wrap around point. */
1422	pow2 = (128 * 1024);
1423	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1424		cache_op(Index_Load_Tag_SD, addr);
1425		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1426		if (!read_c0_taglo())
1427			break;
1428		pow2 <<= 1;
1429	}
1430	local_irq_restore(flags);
1431	addr -= begin;
1432
1433	scache_size = addr;
1434	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1435	c->scache.ways = 1;
1436	c->scache.waybit = 0;		/* does not matter */
1437
1438	return 1;
1439}
1440
1441static void loongson2_sc_init(void)
1442{
1443	struct cpuinfo_mips *c = &current_cpu_data;
1444
1445	scache_size = 512*1024;
1446	c->scache.linesz = 32;
1447	c->scache.ways = 4;
1448	c->scache.waybit = 0;
1449	c->scache.waysize = scache_size / (c->scache.ways);
1450	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1451	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1452	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1453
1454	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1455}
1456
1457static void loongson3_sc_init(void)
1458{
1459	struct cpuinfo_mips *c = &current_cpu_data;
1460	unsigned int config2, lsize;
1461
1462	config2 = read_c0_config2();
1463	lsize = (config2 >> 4) & 15;
1464	if (lsize)
1465		c->scache.linesz = 2 << lsize;
1466	else
1467		c->scache.linesz = 0;
1468	c->scache.sets = 64 << ((config2 >> 8) & 15);
1469	c->scache.ways = 1 + (config2 & 15);
1470
1471	/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1472	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1473		c->scache.sets *= 2;
1474	else
1475		c->scache.sets *= 4;
1476
1477	scache_size = c->scache.sets * c->scache.ways * c->scache.linesz;
1478
1479	c->scache.waybit = 0;
1480	c->scache.waysize = scache_size / c->scache.ways;
1481	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1482	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1483	if (scache_size)
1484		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1485	return;
1486}
1487
1488static void setup_scache(void)
1489{
1490	struct cpuinfo_mips *c = &current_cpu_data;
1491	unsigned int config = read_c0_config();
1492	int sc_present = 0;
1493
1494	/*
1495	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1496	 * processors don't have a S-cache that would be relevant to the
1497	 * Linux memory management.
1498	 */
1499	switch (current_cpu_type()) {
1500	case CPU_R4000SC:
1501	case CPU_R4000MC:
1502	case CPU_R4400SC:
1503	case CPU_R4400MC:
1504		sc_present = run_uncached(probe_scache);
1505		if (sc_present)
1506			c->options |= MIPS_CPU_CACHE_CDEX_S;
1507		break;
1508
1509	case CPU_R10000:
1510	case CPU_R12000:
1511	case CPU_R14000:
1512	case CPU_R16000:
1513		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1514		c->scache.linesz = 64 << ((config >> 13) & 1);
1515		c->scache.ways = 2;
1516		c->scache.waybit= 0;
1517		sc_present = 1;
1518		break;
1519
1520	case CPU_R5000:
1521	case CPU_NEVADA:
1522#ifdef CONFIG_R5000_CPU_SCACHE
1523		r5k_sc_init();
1524#endif
1525		return;
1526
1527	case CPU_RM7000:
1528#ifdef CONFIG_RM7000_CPU_SCACHE
1529		rm7k_sc_init();
1530#endif
1531		return;
1532
1533	case CPU_LOONGSON2EF:
1534		loongson2_sc_init();
1535		return;
1536
1537	case CPU_LOONGSON64:
1538		loongson3_sc_init();
1539		return;
1540
1541	case CPU_CAVIUM_OCTEON3:
1542		/* don't need to worry about L2, fully coherent */
1543		return;
1544
1545	default:
1546		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1547				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1548				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1549				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1550#ifdef CONFIG_MIPS_CPU_SCACHE
1551			if (mips_sc_init ()) {
1552				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1553				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1554				       scache_size >> 10,
1555				       way_string[c->scache.ways], c->scache.linesz);
1556
1557				if (current_cpu_type() == CPU_BMIPS5000)
1558					c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1559			}
1560
1561#else
1562			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1563				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1564#endif
1565			return;
1566		}
1567		sc_present = 0;
1568	}
1569
1570	if (!sc_present)
1571		return;
1572
1573	/* compute a couple of other cache variables */
1574	c->scache.waysize = scache_size / c->scache.ways;
1575
1576	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1577
1578	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1579	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1580
1581	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1582}
1583
1584void au1x00_fixup_config_od(void)
1585{
1586	/*
1587	 * c0_config.od (bit 19) was write only (and read as 0)
1588	 * on the early revisions of Alchemy SOCs.  It disables the bus
1589	 * transaction overlapping and needs to be set to fix various errata.
1590	 */
1591	switch (read_c0_prid()) {
1592	case 0x00030100: /* Au1000 DA */
1593	case 0x00030201: /* Au1000 HA */
1594	case 0x00030202: /* Au1000 HB */
1595	case 0x01030200: /* Au1500 AB */
1596	/*
1597	 * Au1100 errata actually keeps silence about this bit, so we set it
1598	 * just in case for those revisions that require it to be set according
1599	 * to the (now gone) cpu table.
1600	 */
1601	case 0x02030200: /* Au1100 AB */
1602	case 0x02030201: /* Au1100 BA */
1603	case 0x02030202: /* Au1100 BC */
1604		set_c0_config(1 << 19);
1605		break;
1606	}
1607}
1608
1609/* CP0 hazard avoidance. */
1610#define NXP_BARRIER()							\
1611	 __asm__ __volatile__(						\
1612	".set noreorder\n\t"						\
1613	"nop; nop; nop; nop; nop; nop;\n\t"				\
1614	".set reorder\n\t")
1615
1616static void nxp_pr4450_fixup_config(void)
1617{
1618	unsigned long config0;
1619
1620	config0 = read_c0_config();
1621
1622	/* clear all three cache coherency fields */
1623	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1624	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1625		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1626		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1627	write_c0_config(config0);
1628	NXP_BARRIER();
1629}
1630
1631static int cca = -1;
1632
1633static int __init cca_setup(char *str)
1634{
1635	get_option(&str, &cca);
1636
1637	return 0;
1638}
1639
1640early_param("cca", cca_setup);
1641
1642static void coherency_setup(void)
1643{
1644	if (cca < 0 || cca > 7)
1645		cca = read_c0_config() & CONF_CM_CMASK;
1646	_page_cachable_default = cca << _CACHE_SHIFT;
1647
1648	pr_debug("Using cache attribute %d\n", cca);
1649	change_c0_config(CONF_CM_CMASK, cca);
1650
1651	/*
1652	 * c0_status.cu=0 specifies that updates by the sc instruction use
1653	 * the coherency mode specified by the TLB; 1 means cacheable
1654	 * coherent update on write will be used.  Not all processors have
1655	 * this bit and; some wire it to zero, others like Toshiba had the
1656	 * silly idea of putting something else there ...
1657	 */
1658	switch (current_cpu_type()) {
1659	case CPU_R4000PC:
1660	case CPU_R4000SC:
1661	case CPU_R4000MC:
1662	case CPU_R4400PC:
1663	case CPU_R4400SC:
1664	case CPU_R4400MC:
1665		clear_c0_config(CONF_CU);
1666		break;
1667	/*
1668	 * We need to catch the early Alchemy SOCs with
1669	 * the write-only co_config.od bit and set it back to one on:
1670	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1671	 */
1672	case CPU_ALCHEMY:
1673		au1x00_fixup_config_od();
1674		break;
1675
1676	case PRID_IMP_PR4450:
1677		nxp_pr4450_fixup_config();
1678		break;
1679	}
1680}
1681
1682static void r4k_cache_error_setup(void)
1683{
1684	extern char __weak except_vec2_generic;
1685	extern char __weak except_vec2_sb1;
1686
1687	switch (current_cpu_type()) {
1688	case CPU_SB1:
1689	case CPU_SB1A:
1690		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1691		break;
1692
1693	default:
1694		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1695		break;
1696	}
1697}
1698
1699void r4k_cache_init(void)
1700{
1701	extern void build_clear_page(void);
1702	extern void build_copy_page(void);
1703	struct cpuinfo_mips *c = &current_cpu_data;
1704
1705	probe_pcache();
1706	probe_vcache();
1707	setup_scache();
1708
1709	r4k_blast_dcache_page_setup();
1710	r4k_blast_dcache_setup();
1711	r4k_blast_icache_page_setup();
1712	r4k_blast_icache_setup();
1713	r4k_blast_scache_page_setup();
1714	r4k_blast_scache_setup();
1715	r4k_blast_scache_node_setup();
1716#ifdef CONFIG_EVA
1717	r4k_blast_dcache_user_page_setup();
1718	r4k_blast_icache_user_page_setup();
1719#endif
1720
1721	/*
1722	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1723	 * This code supports virtually indexed processors and will be
1724	 * unnecessarily inefficient on physically indexed processors.
1725	 */
1726	if (c->dcache.linesz && cpu_has_dc_aliases)
1727		shm_align_mask = max_t( unsigned long,
1728					c->dcache.sets * c->dcache.linesz - 1,
1729					PAGE_SIZE - 1);
1730	else
1731		shm_align_mask = PAGE_SIZE-1;
1732
1733	__flush_cache_vmap	= r4k__flush_cache_vmap;
1734	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1735
1736	flush_cache_all		= cache_noop;
1737	__flush_cache_all	= r4k___flush_cache_all;
1738	flush_cache_mm		= r4k_flush_cache_mm;
1739	flush_cache_page	= r4k_flush_cache_page;
1740	flush_cache_range	= r4k_flush_cache_range;
1741
1742	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1743
1744	flush_icache_all	= r4k_flush_icache_all;
1745	flush_data_cache_page	= r4k_flush_data_cache_page;
1746	flush_icache_range	= r4k_flush_icache_range;
1747	local_flush_icache_range	= local_r4k_flush_icache_range;
1748	__flush_icache_user_range	= r4k_flush_icache_user_range;
1749	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1750
1751#ifdef CONFIG_DMA_NONCOHERENT
1752	_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1753	_dma_cache_wback	= r4k_dma_cache_wback_inv;
1754	_dma_cache_inv		= r4k_dma_cache_inv;
1755#endif /* CONFIG_DMA_NONCOHERENT */
1756
1757	build_clear_page();
1758	build_copy_page();
1759
1760	/*
1761	 * We want to run CMP kernels on core with and without coherent
1762	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1763	 * or not to flush caches.
1764	 */
1765	local_r4k___flush_cache_all(NULL);
1766
1767	coherency_setup();
1768	board_cache_error_setup = r4k_cache_error_setup;
1769
1770	/*
1771	 * Per-CPU overrides
1772	 */
1773	switch (current_cpu_type()) {
1774	case CPU_BMIPS4350:
1775	case CPU_BMIPS4380:
1776		/* No IPI is needed because all CPUs share the same D$ */
1777		flush_data_cache_page = r4k_blast_dcache_page;
1778		break;
1779	case CPU_BMIPS5000:
1780		/* We lose our superpowers if L2 is disabled */
1781		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1782			break;
1783
1784		/* I$ fills from D$ just by emptying the write buffers */
1785		flush_cache_page = (void *)b5k_instruction_hazard;
1786		flush_cache_range = (void *)b5k_instruction_hazard;
1787		flush_data_cache_page = (void *)b5k_instruction_hazard;
1788		flush_icache_range = (void *)b5k_instruction_hazard;
1789		local_flush_icache_range = (void *)b5k_instruction_hazard;
1790
1791
1792		/* Optimization: an L2 flush implicitly flushes the L1 */
1793		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1794		break;
1795	case CPU_LOONGSON64:
1796		/* Loongson-3 maintains cache coherency by hardware */
1797		__flush_cache_all	= cache_noop;
1798		__flush_cache_vmap	= cache_noop;
1799		__flush_cache_vunmap	= cache_noop;
1800		__flush_kernel_vmap_range = (void *)cache_noop;
1801		flush_cache_mm		= (void *)cache_noop;
1802		flush_cache_page	= (void *)cache_noop;
1803		flush_cache_range	= (void *)cache_noop;
1804		flush_icache_all	= (void *)cache_noop;
1805		flush_data_cache_page	= (void *)cache_noop;
1806		break;
1807	}
1808}
1809
1810static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1811			       void *v)
1812{
1813	switch (cmd) {
1814	case CPU_PM_ENTER_FAILED:
1815	case CPU_PM_EXIT:
1816		coherency_setup();
1817		break;
1818	}
1819
1820	return NOTIFY_OK;
1821}
1822
1823static struct notifier_block r4k_cache_pm_notifier_block = {
1824	.notifier_call = r4k_cache_pm_notifier,
1825};
1826
1827static int __init r4k_cache_init_pm(void)
1828{
1829	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1830}
1831arch_initcall(r4k_cache_init_pm);
1832