1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS MMU handling in the KVM module.
7 *
8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/highmem.h>
13#include <linux/kvm_host.h>
14#include <linux/uaccess.h>
15#include <asm/mmu_context.h>
16#include <asm/pgalloc.h>
17
18/*
19 * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20 * for which pages need to be cached.
21 */
22#if defined(__PAGETABLE_PMD_FOLDED)
23#define KVM_MMU_CACHE_MIN_PAGES 1
24#else
25#define KVM_MMU_CACHE_MIN_PAGES 2
26#endif
27
28void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
29{
30	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
31}
32
33/**
34 * kvm_pgd_init() - Initialise KVM GPA page directory.
35 * @page:	Pointer to page directory (PGD) for KVM GPA.
36 *
37 * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
38 * representing no mappings. This is similar to pgd_init(), however it
39 * initialises all the page directory pointers, not just the ones corresponding
40 * to the userland address space (since it is for the guest physical address
41 * space rather than a virtual address space).
42 */
43static void kvm_pgd_init(void *page)
44{
45	unsigned long *p, *end;
46	unsigned long entry;
47
48#ifdef __PAGETABLE_PMD_FOLDED
49	entry = (unsigned long)invalid_pte_table;
50#else
51	entry = (unsigned long)invalid_pmd_table;
52#endif
53
54	p = (unsigned long *)page;
55	end = p + PTRS_PER_PGD;
56
57	do {
58		p[0] = entry;
59		p[1] = entry;
60		p[2] = entry;
61		p[3] = entry;
62		p[4] = entry;
63		p += 8;
64		p[-3] = entry;
65		p[-2] = entry;
66		p[-1] = entry;
67	} while (p != end);
68}
69
70/**
71 * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
72 *
73 * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
74 * to host physical page mappings.
75 *
76 * Returns:	Pointer to new KVM GPA page directory.
77 *		NULL on allocation failure.
78 */
79pgd_t *kvm_pgd_alloc(void)
80{
81	pgd_t *ret;
82
83	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_TABLE_ORDER);
84	if (ret)
85		kvm_pgd_init(ret);
86
87	return ret;
88}
89
90/**
91 * kvm_mips_walk_pgd() - Walk page table with optional allocation.
92 * @pgd:	Page directory pointer.
93 * @addr:	Address to index page table using.
94 * @cache:	MMU page cache to allocate new page tables from, or NULL.
95 *
96 * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
97 * address @addr. If page tables don't exist for @addr, they will be created
98 * from the MMU cache if @cache is not NULL.
99 *
100 * Returns:	Pointer to pte_t corresponding to @addr.
101 *		NULL if a page table doesn't exist for @addr and !@cache.
102 *		NULL if a page table allocation failed.
103 */
104static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
105				unsigned long addr)
106{
107	p4d_t *p4d;
108	pud_t *pud;
109	pmd_t *pmd;
110
111	pgd += pgd_index(addr);
112	if (pgd_none(*pgd)) {
113		/* Not used on MIPS yet */
114		BUG();
115		return NULL;
116	}
117	p4d = p4d_offset(pgd, addr);
118	pud = pud_offset(p4d, addr);
119	if (pud_none(*pud)) {
120		pmd_t *new_pmd;
121
122		if (!cache)
123			return NULL;
124		new_pmd = kvm_mmu_memory_cache_alloc(cache);
125		pmd_init(new_pmd);
126		pud_populate(NULL, pud, new_pmd);
127	}
128	pmd = pmd_offset(pud, addr);
129	if (pmd_none(*pmd)) {
130		pte_t *new_pte;
131
132		if (!cache)
133			return NULL;
134		new_pte = kvm_mmu_memory_cache_alloc(cache);
135		clear_page(new_pte);
136		pmd_populate_kernel(NULL, pmd, new_pte);
137	}
138	return pte_offset_kernel(pmd, addr);
139}
140
141/* Caller must hold kvm->mm_lock */
142static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
143				   struct kvm_mmu_memory_cache *cache,
144				   unsigned long addr)
145{
146	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
147}
148
149/*
150 * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
151 * Flush a range of guest physical address space from the VM's GPA page tables.
152 */
153
154static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
155				   unsigned long end_gpa)
156{
157	int i_min = pte_index(start_gpa);
158	int i_max = pte_index(end_gpa);
159	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
160	int i;
161
162	for (i = i_min; i <= i_max; ++i) {
163		if (!pte_present(pte[i]))
164			continue;
165
166		set_pte(pte + i, __pte(0));
167	}
168	return safe_to_remove;
169}
170
171static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
172				   unsigned long end_gpa)
173{
174	pte_t *pte;
175	unsigned long end = ~0ul;
176	int i_min = pmd_index(start_gpa);
177	int i_max = pmd_index(end_gpa);
178	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
179	int i;
180
181	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
182		if (!pmd_present(pmd[i]))
183			continue;
184
185		pte = pte_offset_kernel(pmd + i, 0);
186		if (i == i_max)
187			end = end_gpa;
188
189		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
190			pmd_clear(pmd + i);
191			pte_free_kernel(NULL, pte);
192		} else {
193			safe_to_remove = false;
194		}
195	}
196	return safe_to_remove;
197}
198
199static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
200				   unsigned long end_gpa)
201{
202	pmd_t *pmd;
203	unsigned long end = ~0ul;
204	int i_min = pud_index(start_gpa);
205	int i_max = pud_index(end_gpa);
206	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
207	int i;
208
209	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
210		if (!pud_present(pud[i]))
211			continue;
212
213		pmd = pmd_offset(pud + i, 0);
214		if (i == i_max)
215			end = end_gpa;
216
217		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
218			pud_clear(pud + i);
219			pmd_free(NULL, pmd);
220		} else {
221			safe_to_remove = false;
222		}
223	}
224	return safe_to_remove;
225}
226
227static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
228				   unsigned long end_gpa)
229{
230	p4d_t *p4d;
231	pud_t *pud;
232	unsigned long end = ~0ul;
233	int i_min = pgd_index(start_gpa);
234	int i_max = pgd_index(end_gpa);
235	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
236	int i;
237
238	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
239		if (!pgd_present(pgd[i]))
240			continue;
241
242		p4d = p4d_offset(pgd, 0);
243		pud = pud_offset(p4d + i, 0);
244		if (i == i_max)
245			end = end_gpa;
246
247		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
248			pgd_clear(pgd + i);
249			pud_free(NULL, pud);
250		} else {
251			safe_to_remove = false;
252		}
253	}
254	return safe_to_remove;
255}
256
257/**
258 * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
259 * @kvm:	KVM pointer.
260 * @start_gfn:	Guest frame number of first page in GPA range to flush.
261 * @end_gfn:	Guest frame number of last page in GPA range to flush.
262 *
263 * Flushes a range of GPA mappings from the GPA page tables.
264 *
265 * The caller must hold the @kvm->mmu_lock spinlock.
266 *
267 * Returns:	Whether its safe to remove the top level page directory because
268 *		all lower levels have been removed.
269 */
270bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
271{
272	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
273				      start_gfn << PAGE_SHIFT,
274				      end_gfn << PAGE_SHIFT);
275}
276
277#define BUILD_PTE_RANGE_OP(name, op)					\
278static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
279				 unsigned long end)			\
280{									\
281	int ret = 0;							\
282	int i_min = pte_index(start);				\
283	int i_max = pte_index(end);					\
284	int i;								\
285	pte_t old, new;							\
286									\
287	for (i = i_min; i <= i_max; ++i) {				\
288		if (!pte_present(pte[i]))				\
289			continue;					\
290									\
291		old = pte[i];						\
292		new = op(old);						\
293		if (pte_val(new) == pte_val(old))			\
294			continue;					\
295		set_pte(pte + i, new);					\
296		ret = 1;						\
297	}								\
298	return ret;							\
299}									\
300									\
301/* returns true if anything was done */					\
302static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
303				 unsigned long end)			\
304{									\
305	int ret = 0;							\
306	pte_t *pte;							\
307	unsigned long cur_end = ~0ul;					\
308	int i_min = pmd_index(start);				\
309	int i_max = pmd_index(end);					\
310	int i;								\
311									\
312	for (i = i_min; i <= i_max; ++i, start = 0) {			\
313		if (!pmd_present(pmd[i]))				\
314			continue;					\
315									\
316		pte = pte_offset_kernel(pmd + i, 0);				\
317		if (i == i_max)						\
318			cur_end = end;					\
319									\
320		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
321	}								\
322	return ret;							\
323}									\
324									\
325static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
326				 unsigned long end)			\
327{									\
328	int ret = 0;							\
329	pmd_t *pmd;							\
330	unsigned long cur_end = ~0ul;					\
331	int i_min = pud_index(start);				\
332	int i_max = pud_index(end);					\
333	int i;								\
334									\
335	for (i = i_min; i <= i_max; ++i, start = 0) {			\
336		if (!pud_present(pud[i]))				\
337			continue;					\
338									\
339		pmd = pmd_offset(pud + i, 0);				\
340		if (i == i_max)						\
341			cur_end = end;					\
342									\
343		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
344	}								\
345	return ret;							\
346}									\
347									\
348static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
349				 unsigned long end)			\
350{									\
351	int ret = 0;							\
352	p4d_t *p4d;							\
353	pud_t *pud;							\
354	unsigned long cur_end = ~0ul;					\
355	int i_min = pgd_index(start);					\
356	int i_max = pgd_index(end);					\
357	int i;								\
358									\
359	for (i = i_min; i <= i_max; ++i, start = 0) {			\
360		if (!pgd_present(pgd[i]))				\
361			continue;					\
362									\
363		p4d = p4d_offset(pgd, 0);				\
364		pud = pud_offset(p4d + i, 0);				\
365		if (i == i_max)						\
366			cur_end = end;					\
367									\
368		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
369	}								\
370	return ret;							\
371}
372
373/*
374 * kvm_mips_mkclean_gpa_pt.
375 * Mark a range of guest physical address space clean (writes fault) in the VM's
376 * GPA page table to allow dirty page tracking.
377 */
378
379BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
380
381/**
382 * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
383 * @kvm:	KVM pointer.
384 * @start_gfn:	Guest frame number of first page in GPA range to flush.
385 * @end_gfn:	Guest frame number of last page in GPA range to flush.
386 *
387 * Make a range of GPA mappings clean so that guest writes will fault and
388 * trigger dirty page logging.
389 *
390 * The caller must hold the @kvm->mmu_lock spinlock.
391 *
392 * Returns:	Whether any GPA mappings were modified, which would require
393 *		derived mappings (GVA page tables & TLB enties) to be
394 *		invalidated.
395 */
396int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
397{
398	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
399				    start_gfn << PAGE_SHIFT,
400				    end_gfn << PAGE_SHIFT);
401}
402
403/**
404 * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
405 * @kvm:	The KVM pointer
406 * @slot:	The memory slot associated with mask
407 * @gfn_offset:	The gfn offset in memory slot
408 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
409 *		slot to be write protected
410 *
411 * Walks bits set in mask write protects the associated pte's. Caller must
412 * acquire @kvm->mmu_lock.
413 */
414void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
415		struct kvm_memory_slot *slot,
416		gfn_t gfn_offset, unsigned long mask)
417{
418	gfn_t base_gfn = slot->base_gfn + gfn_offset;
419	gfn_t start = base_gfn +  __ffs(mask);
420	gfn_t end = base_gfn + __fls(mask);
421
422	kvm_mips_mkclean_gpa_pt(kvm, start, end);
423}
424
425/*
426 * kvm_mips_mkold_gpa_pt.
427 * Mark a range of guest physical address space old (all accesses fault) in the
428 * VM's GPA page table to allow detection of commonly used pages.
429 */
430
431BUILD_PTE_RANGE_OP(mkold, pte_mkold)
432
433static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
434				 gfn_t end_gfn)
435{
436	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
437				  start_gfn << PAGE_SHIFT,
438				  end_gfn << PAGE_SHIFT);
439}
440
441bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
442{
443	kvm_mips_flush_gpa_pt(kvm, range->start, range->end);
444	return true;
445}
446
447bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
448{
449	gpa_t gpa = range->start << PAGE_SHIFT;
450	pte_t hva_pte = range->arg.pte;
451	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
452	pte_t old_pte;
453
454	if (!gpa_pte)
455		return false;
456
457	/* Mapping may need adjusting depending on memslot flags */
458	old_pte = *gpa_pte;
459	if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
460		hva_pte = pte_mkclean(hva_pte);
461	else if (range->slot->flags & KVM_MEM_READONLY)
462		hva_pte = pte_wrprotect(hva_pte);
463
464	set_pte(gpa_pte, hva_pte);
465
466	/* Replacing an absent or old page doesn't need flushes */
467	if (!pte_present(old_pte) || !pte_young(old_pte))
468		return false;
469
470	/* Pages swapped, aged, moved, or cleaned require flushes */
471	return !pte_present(hva_pte) ||
472	       !pte_young(hva_pte) ||
473	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
474	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
475}
476
477bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
478{
479	return kvm_mips_mkold_gpa_pt(kvm, range->start, range->end);
480}
481
482bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
483{
484	gpa_t gpa = range->start << PAGE_SHIFT;
485	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
486
487	if (!gpa_pte)
488		return false;
489	return pte_young(*gpa_pte);
490}
491
492/**
493 * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
494 * @vcpu:		VCPU pointer.
495 * @gpa:		Guest physical address of fault.
496 * @write_fault:	Whether the fault was due to a write.
497 * @out_entry:		New PTE for @gpa (written on success unless NULL).
498 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
499 *			NULL).
500 *
501 * Perform fast path GPA fault handling, doing all that can be done without
502 * calling into KVM. This handles marking old pages young (for idle page
503 * tracking), and dirtying of clean pages (for dirty page logging).
504 *
505 * Returns:	0 on success, in which case we can update derived mappings and
506 *		resume guest execution.
507 *		-EFAULT on failure due to absent GPA mapping or write to
508 *		read-only page, in which case KVM must be consulted.
509 */
510static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
511				   bool write_fault,
512				   pte_t *out_entry, pte_t *out_buddy)
513{
514	struct kvm *kvm = vcpu->kvm;
515	gfn_t gfn = gpa >> PAGE_SHIFT;
516	pte_t *ptep;
517	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
518	bool pfn_valid = false;
519	int ret = 0;
520
521	spin_lock(&kvm->mmu_lock);
522
523	/* Fast path - just check GPA page table for an existing entry */
524	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
525	if (!ptep || !pte_present(*ptep)) {
526		ret = -EFAULT;
527		goto out;
528	}
529
530	/* Track access to pages marked old */
531	if (!pte_young(*ptep)) {
532		set_pte(ptep, pte_mkyoung(*ptep));
533		pfn = pte_pfn(*ptep);
534		pfn_valid = true;
535		/* call kvm_set_pfn_accessed() after unlock */
536	}
537	if (write_fault && !pte_dirty(*ptep)) {
538		if (!pte_write(*ptep)) {
539			ret = -EFAULT;
540			goto out;
541		}
542
543		/* Track dirtying of writeable pages */
544		set_pte(ptep, pte_mkdirty(*ptep));
545		pfn = pte_pfn(*ptep);
546		mark_page_dirty(kvm, gfn);
547		kvm_set_pfn_dirty(pfn);
548	}
549
550	if (out_entry)
551		*out_entry = *ptep;
552	if (out_buddy)
553		*out_buddy = *ptep_buddy(ptep);
554
555out:
556	spin_unlock(&kvm->mmu_lock);
557	if (pfn_valid)
558		kvm_set_pfn_accessed(pfn);
559	return ret;
560}
561
562/**
563 * kvm_mips_map_page() - Map a guest physical page.
564 * @vcpu:		VCPU pointer.
565 * @gpa:		Guest physical address of fault.
566 * @write_fault:	Whether the fault was due to a write.
567 * @out_entry:		New PTE for @gpa (written on success unless NULL).
568 * @out_buddy:		New PTE for @gpa's buddy (written on success unless
569 *			NULL).
570 *
571 * Handle GPA faults by creating a new GPA mapping (or updating an existing
572 * one).
573 *
574 * This takes care of marking pages young or dirty (idle/dirty page tracking),
575 * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
576 * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
577 * caller.
578 *
579 * Returns:	0 on success, in which case the caller may use the @out_entry
580 *		and @out_buddy PTEs to update derived mappings and resume guest
581 *		execution.
582 *		-EFAULT if there is no memory region at @gpa or a write was
583 *		attempted to a read-only memory region. This is usually handled
584 *		as an MMIO access.
585 */
586static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
587			     bool write_fault,
588			     pte_t *out_entry, pte_t *out_buddy)
589{
590	struct kvm *kvm = vcpu->kvm;
591	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
592	gfn_t gfn = gpa >> PAGE_SHIFT;
593	int srcu_idx, err;
594	kvm_pfn_t pfn;
595	pte_t *ptep, entry;
596	bool writeable;
597	unsigned long prot_bits;
598	unsigned long mmu_seq;
599
600	/* Try the fast path to handle old / clean pages */
601	srcu_idx = srcu_read_lock(&kvm->srcu);
602	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
603				      out_buddy);
604	if (!err)
605		goto out;
606
607	/* We need a minimum of cached pages ready for page table creation */
608	err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
609	if (err)
610		goto out;
611
612retry:
613	/*
614	 * Used to check for invalidations in progress, of the pfn that is
615	 * returned by pfn_to_pfn_prot below.
616	 */
617	mmu_seq = kvm->mmu_invalidate_seq;
618	/*
619	 * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads
620	 * in gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
621	 * risk the page we get a reference to getting unmapped before we have a
622	 * chance to grab the mmu_lock without mmu_invalidate_retry() noticing.
623	 *
624	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
625	 * of the pte_unmap_unlock() after the PTE is zapped, and the
626	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
627	 * mmu_invalidate_seq is incremented.
628	 */
629	smp_rmb();
630
631	/* Slow path - ask KVM core whether we can access this GPA */
632	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
633	if (is_error_noslot_pfn(pfn)) {
634		err = -EFAULT;
635		goto out;
636	}
637
638	spin_lock(&kvm->mmu_lock);
639	/* Check if an invalidation has taken place since we got pfn */
640	if (mmu_invalidate_retry(kvm, mmu_seq)) {
641		/*
642		 * This can happen when mappings are changed asynchronously, but
643		 * also synchronously if a COW is triggered by
644		 * gfn_to_pfn_prot().
645		 */
646		spin_unlock(&kvm->mmu_lock);
647		kvm_release_pfn_clean(pfn);
648		goto retry;
649	}
650
651	/* Ensure page tables are allocated */
652	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
653
654	/* Set up the PTE */
655	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
656	if (writeable) {
657		prot_bits |= _PAGE_WRITE;
658		if (write_fault) {
659			prot_bits |= __WRITEABLE;
660			mark_page_dirty(kvm, gfn);
661			kvm_set_pfn_dirty(pfn);
662		}
663	}
664	entry = pfn_pte(pfn, __pgprot(prot_bits));
665
666	/* Write the PTE */
667	set_pte(ptep, entry);
668
669	err = 0;
670	if (out_entry)
671		*out_entry = *ptep;
672	if (out_buddy)
673		*out_buddy = *ptep_buddy(ptep);
674
675	spin_unlock(&kvm->mmu_lock);
676	kvm_release_pfn_clean(pfn);
677	kvm_set_pfn_accessed(pfn);
678out:
679	srcu_read_unlock(&kvm->srcu, srcu_idx);
680	return err;
681}
682
683int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
684				      struct kvm_vcpu *vcpu,
685				      bool write_fault)
686{
687	int ret;
688
689	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
690	if (ret)
691		return ret;
692
693	/* Invalidate this entry in the TLB */
694	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
695}
696
697/**
698 * kvm_mips_migrate_count() - Migrate timer.
699 * @vcpu:	Virtual CPU.
700 *
701 * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
702 * if it was running prior to being cancelled.
703 *
704 * Must be called when the VCPU is migrated to a different CPU to ensure that
705 * timer expiry during guest execution interrupts the guest and causes the
706 * interrupt to be delivered in a timely manner.
707 */
708static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
709{
710	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
711		hrtimer_restart(&vcpu->arch.comparecount_timer);
712}
713
714/* Restore ASID once we are scheduled back after preemption */
715void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
716{
717	unsigned long flags;
718
719	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
720
721	local_irq_save(flags);
722
723	vcpu->cpu = cpu;
724	if (vcpu->arch.last_sched_cpu != cpu) {
725		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
726			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
727		/*
728		 * Migrate the timer interrupt to the current CPU so that it
729		 * always interrupts the guest and synchronously triggers a
730		 * guest timer interrupt.
731		 */
732		kvm_mips_migrate_count(vcpu);
733	}
734
735	/* restore guest state to registers */
736	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
737
738	local_irq_restore(flags);
739}
740
741/* ASID can change if another task is scheduled during preemption */
742void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
743{
744	unsigned long flags;
745	int cpu;
746
747	local_irq_save(flags);
748
749	cpu = smp_processor_id();
750	vcpu->arch.last_sched_cpu = cpu;
751	vcpu->cpu = -1;
752
753	/* save guest state in registers */
754	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
755
756	local_irq_restore(flags);
757}
758