1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2013 Imagination Technologies
4 * Author: Paul Burton <paul.burton@mips.com>
5 */
6
7#include <linux/cpu.h>
8#include <linux/delay.h>
9#include <linux/io.h>
10#include <linux/memblock.h>
11#include <linux/sched/task_stack.h>
12#include <linux/sched/hotplug.h>
13#include <linux/slab.h>
14#include <linux/smp.h>
15#include <linux/types.h>
16#include <linux/irq.h>
17
18#include <asm/bcache.h>
19#include <asm/mips-cps.h>
20#include <asm/mips_mt.h>
21#include <asm/mipsregs.h>
22#include <asm/pm-cps.h>
23#include <asm/r4kcache.h>
24#include <asm/regdef.h>
25#include <asm/smp.h>
26#include <asm/smp-cps.h>
27#include <asm/time.h>
28#include <asm/uasm.h>
29
30#define BEV_VEC_SIZE	0x500
31#define BEV_VEC_ALIGN	0x1000
32
33enum label_id {
34	label_not_nmi = 1,
35};
36
37UASM_L_LA(_not_nmi)
38
39static DECLARE_BITMAP(core_power, NR_CPUS);
40static uint32_t core_entry_reg;
41static phys_addr_t cps_vec_pa;
42
43struct core_boot_config *mips_cps_core_bootcfg;
44
45static unsigned __init core_vpe_count(unsigned int cluster, unsigned core)
46{
47	return min(smp_max_threads, mips_cps_numvps(cluster, core));
48}
49
50static void __init *mips_cps_build_core_entry(void *addr)
51{
52	extern void (*nmi_handler)(void);
53	u32 *p = addr;
54	u32 val;
55	struct uasm_label labels[2];
56	struct uasm_reloc relocs[2];
57	struct uasm_label *l = labels;
58	struct uasm_reloc *r = relocs;
59
60	memset(labels, 0, sizeof(labels));
61	memset(relocs, 0, sizeof(relocs));
62
63	uasm_i_mfc0(&p, GPR_K0, C0_STATUS);
64	UASM_i_LA(&p, GPR_T9, ST0_NMI);
65	uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T9);
66
67	uasm_il_bnez(&p, &r, GPR_K0, label_not_nmi);
68	uasm_i_nop(&p);
69	UASM_i_LA(&p, GPR_K0, (long)&nmi_handler);
70
71	uasm_l_not_nmi(&l, p);
72
73	val = CAUSEF_IV;
74	uasm_i_lui(&p, GPR_K0, val >> 16);
75	uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
76	uasm_i_mtc0(&p, GPR_K0, C0_CAUSE);
77	val = ST0_CU1 | ST0_CU0 | ST0_BEV | ST0_KX_IF_64;
78	uasm_i_lui(&p, GPR_K0, val >> 16);
79	uasm_i_ori(&p, GPR_K0, GPR_K0, val & 0xffff);
80	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
81	uasm_i_ehb(&p);
82	uasm_i_ori(&p, GPR_A0, 0, read_c0_config() & CONF_CM_CMASK);
83	UASM_i_LA(&p, GPR_A1, (long)mips_gcr_base);
84#if defined(KBUILD_64BIT_SYM32) || defined(CONFIG_32BIT)
85	UASM_i_LA(&p, GPR_T9, CKSEG1ADDR(__pa_symbol(mips_cps_core_boot)));
86#else
87	UASM_i_LA(&p, GPR_T9, TO_UNCAC(__pa_symbol(mips_cps_core_boot)));
88#endif
89	uasm_i_jr(&p, GPR_T9);
90	uasm_i_nop(&p);
91
92	uasm_resolve_relocs(relocs, labels);
93
94	return p;
95}
96
97static int __init allocate_cps_vecs(void)
98{
99	/* Try to allocate in KSEG1 first */
100	cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN,
101						0x0, CSEGX_SIZE - 1);
102
103	if (cps_vec_pa)
104		core_entry_reg = CKSEG1ADDR(cps_vec_pa) &
105					CM_GCR_Cx_RESET_BASE_BEVEXCBASE;
106
107	if (!cps_vec_pa && mips_cm_is64) {
108		cps_vec_pa = memblock_phys_alloc_range(BEV_VEC_SIZE, BEV_VEC_ALIGN,
109							0x0, SZ_4G - 1);
110		if (cps_vec_pa)
111			core_entry_reg = (cps_vec_pa & CM_GCR_Cx_RESET_BASE_BEVEXCBASE) |
112					CM_GCR_Cx_RESET_BASE_MODE;
113	}
114
115	if (!cps_vec_pa)
116		return -ENOMEM;
117
118	return 0;
119}
120
121static void __init setup_cps_vecs(void)
122{
123	void *cps_vec;
124
125	cps_vec = (void *)CKSEG1ADDR_OR_64BIT(cps_vec_pa);
126	mips_cps_build_core_entry(cps_vec);
127
128	memcpy(cps_vec + 0x200, &excep_tlbfill, 0x80);
129	memcpy(cps_vec + 0x280, &excep_xtlbfill, 0x80);
130	memcpy(cps_vec + 0x300, &excep_cache, 0x80);
131	memcpy(cps_vec + 0x380, &excep_genex, 0x80);
132	memcpy(cps_vec + 0x400, &excep_intex, 0x80);
133	memcpy(cps_vec + 0x480, &excep_ejtag, 0x80);
134
135	/* Make sure no prefetched data in cache */
136	blast_inv_dcache_range(CKSEG0ADDR_OR_64BIT(cps_vec_pa), CKSEG0ADDR_OR_64BIT(cps_vec_pa) + BEV_VEC_SIZE);
137	bc_inv(CKSEG0ADDR_OR_64BIT(cps_vec_pa), BEV_VEC_SIZE);
138	__sync();
139}
140
141static void __init cps_smp_setup(void)
142{
143	unsigned int nclusters, ncores, nvpes, core_vpes;
144	int cl, c, v;
145
146	/* Detect & record VPE topology */
147	nvpes = 0;
148	nclusters = mips_cps_numclusters();
149	pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
150	for (cl = 0; cl < nclusters; cl++) {
151		if (cl > 0)
152			pr_cont(",");
153		pr_cont("{");
154
155		ncores = mips_cps_numcores(cl);
156		for (c = 0; c < ncores; c++) {
157			core_vpes = core_vpe_count(cl, c);
158
159			if (c > 0)
160				pr_cont(",");
161			pr_cont("%u", core_vpes);
162
163			/* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
164			if (!cl && !c)
165				smp_num_siblings = core_vpes;
166
167			for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
168				cpu_set_cluster(&cpu_data[nvpes + v], cl);
169				cpu_set_core(&cpu_data[nvpes + v], c);
170				cpu_set_vpe_id(&cpu_data[nvpes + v], v);
171			}
172
173			nvpes += core_vpes;
174		}
175
176		pr_cont("}");
177	}
178	pr_cont(" total %u\n", nvpes);
179
180	/* Indicate present CPUs (CPU being synonymous with VPE) */
181	for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
182		set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
183		set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
184		__cpu_number_map[v] = v;
185		__cpu_logical_map[v] = v;
186	}
187
188	/* Set a coherent default CCA (CWB) */
189	change_c0_config(CONF_CM_CMASK, 0x5);
190
191	/* Core 0 is powered up (we're running on it) */
192	bitmap_set(core_power, 0, 1);
193
194	/* Initialise core 0 */
195	mips_cps_core_init();
196
197	/* Make core 0 coherent with everything */
198	write_gcr_cl_coherence(0xff);
199
200	if (allocate_cps_vecs())
201		pr_err("Failed to allocate CPS vectors\n");
202
203	if (core_entry_reg && mips_cm_revision() >= CM_REV_CM3)
204		write_gcr_bev_base(core_entry_reg);
205
206#ifdef CONFIG_MIPS_MT_FPAFF
207	/* If we have an FPU, enroll ourselves in the FPU-full mask */
208	if (cpu_has_fpu)
209		cpumask_set_cpu(0, &mt_fpu_cpumask);
210#endif /* CONFIG_MIPS_MT_FPAFF */
211}
212
213static void __init cps_prepare_cpus(unsigned int max_cpus)
214{
215	unsigned ncores, core_vpes, c, cca;
216	bool cca_unsuitable, cores_limited;
217
218	mips_mt_set_cpuoptions();
219
220	if (!core_entry_reg) {
221		pr_err("core_entry address unsuitable, disabling smp-cps\n");
222		goto err_out;
223	}
224
225	/* Detect whether the CCA is unsuited to multi-core SMP */
226	cca = read_c0_config() & CONF_CM_CMASK;
227	switch (cca) {
228	case 0x4: /* CWBE */
229	case 0x5: /* CWB */
230		/* The CCA is coherent, multi-core is fine */
231		cca_unsuitable = false;
232		break;
233
234	default:
235		/* CCA is not coherent, multi-core is not usable */
236		cca_unsuitable = true;
237	}
238
239	/* Warn the user if the CCA prevents multi-core */
240	cores_limited = false;
241	if (cca_unsuitable || cpu_has_dc_aliases) {
242		for_each_present_cpu(c) {
243			if (cpus_are_siblings(smp_processor_id(), c))
244				continue;
245
246			set_cpu_present(c, false);
247			cores_limited = true;
248		}
249	}
250	if (cores_limited)
251		pr_warn("Using only one core due to %s%s%s\n",
252			cca_unsuitable ? "unsuitable CCA" : "",
253			(cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
254			cpu_has_dc_aliases ? "dcache aliasing" : "");
255
256	setup_cps_vecs();
257
258	/* Allocate core boot configuration structs */
259	ncores = mips_cps_numcores(0);
260	mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
261					GFP_KERNEL);
262	if (!mips_cps_core_bootcfg) {
263		pr_err("Failed to allocate boot config for %u cores\n", ncores);
264		goto err_out;
265	}
266
267	/* Allocate VPE boot configuration structs */
268	for (c = 0; c < ncores; c++) {
269		core_vpes = core_vpe_count(0, c);
270		mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
271				sizeof(*mips_cps_core_bootcfg[c].vpe_config),
272				GFP_KERNEL);
273		if (!mips_cps_core_bootcfg[c].vpe_config) {
274			pr_err("Failed to allocate %u VPE boot configs\n",
275			       core_vpes);
276			goto err_out;
277		}
278	}
279
280	/* Mark this CPU as booted */
281	atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
282		   1 << cpu_vpe_id(&current_cpu_data));
283
284	return;
285err_out:
286	/* Clean up allocations */
287	if (mips_cps_core_bootcfg) {
288		for (c = 0; c < ncores; c++)
289			kfree(mips_cps_core_bootcfg[c].vpe_config);
290		kfree(mips_cps_core_bootcfg);
291		mips_cps_core_bootcfg = NULL;
292	}
293
294	/* Effectively disable SMP by declaring CPUs not present */
295	for_each_possible_cpu(c) {
296		if (c == 0)
297			continue;
298		set_cpu_present(c, false);
299	}
300}
301
302static void boot_core(unsigned int core, unsigned int vpe_id)
303{
304	u32 stat, seq_state;
305	unsigned timeout;
306
307	/* Select the appropriate core */
308	mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
309
310	/* Set its reset vector */
311	write_gcr_co_reset_base(core_entry_reg);
312
313	/* Ensure its coherency is disabled */
314	write_gcr_co_coherence(0);
315
316	/* Start it with the legacy memory map and exception base */
317	write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
318
319	/* Ensure the core can access the GCRs */
320	set_gcr_access(1 << core);
321
322	if (mips_cpc_present()) {
323		/* Reset the core */
324		mips_cpc_lock_other(core);
325
326		if (mips_cm_revision() >= CM_REV_CM3) {
327			/* Run only the requested VP following the reset */
328			write_cpc_co_vp_stop(0xf);
329			write_cpc_co_vp_run(1 << vpe_id);
330
331			/*
332			 * Ensure that the VP_RUN register is written before the
333			 * core leaves reset.
334			 */
335			wmb();
336		}
337
338		write_cpc_co_cmd(CPC_Cx_CMD_RESET);
339
340		timeout = 100;
341		while (true) {
342			stat = read_cpc_co_stat_conf();
343			seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
344			seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
345
346			/* U6 == coherent execution, ie. the core is up */
347			if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
348				break;
349
350			/* Delay a little while before we start warning */
351			if (timeout) {
352				timeout--;
353				mdelay(10);
354				continue;
355			}
356
357			pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
358				core, stat);
359			mdelay(1000);
360		}
361
362		mips_cpc_unlock_other();
363	} else {
364		/* Take the core out of reset */
365		write_gcr_co_reset_release(0);
366	}
367
368	mips_cm_unlock_other();
369
370	/* The core is now powered up */
371	bitmap_set(core_power, core, 1);
372}
373
374static void remote_vpe_boot(void *dummy)
375{
376	unsigned core = cpu_core(&current_cpu_data);
377	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
378
379	mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
380}
381
382static int cps_boot_secondary(int cpu, struct task_struct *idle)
383{
384	unsigned core = cpu_core(&cpu_data[cpu]);
385	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
386	struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
387	struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
388	unsigned int remote;
389	int err;
390
391	/* We don't yet support booting CPUs in other clusters */
392	if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
393		return -ENOSYS;
394
395	vpe_cfg->pc = (unsigned long)&smp_bootstrap;
396	vpe_cfg->sp = __KSTK_TOS(idle);
397	vpe_cfg->gp = (unsigned long)task_thread_info(idle);
398
399	atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
400
401	preempt_disable();
402
403	if (!test_bit(core, core_power)) {
404		/* Boot a VPE on a powered down core */
405		boot_core(core, vpe_id);
406		goto out;
407	}
408
409	if (cpu_has_vp) {
410		mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
411		write_gcr_co_reset_base(core_entry_reg);
412		mips_cm_unlock_other();
413	}
414
415	if (!cpus_are_siblings(cpu, smp_processor_id())) {
416		/* Boot a VPE on another powered up core */
417		for (remote = 0; remote < NR_CPUS; remote++) {
418			if (!cpus_are_siblings(cpu, remote))
419				continue;
420			if (cpu_online(remote))
421				break;
422		}
423		if (remote >= NR_CPUS) {
424			pr_crit("No online CPU in core %u to start CPU%d\n",
425				core, cpu);
426			goto out;
427		}
428
429		err = smp_call_function_single(remote, remote_vpe_boot,
430					       NULL, 1);
431		if (err)
432			panic("Failed to call remote CPU\n");
433		goto out;
434	}
435
436	BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
437
438	/* Boot a VPE on this core */
439	mips_cps_boot_vpes(core_cfg, vpe_id);
440out:
441	preempt_enable();
442	return 0;
443}
444
445static void cps_init_secondary(void)
446{
447	int core = cpu_core(&current_cpu_data);
448
449	/* Disable MT - we only want to run 1 TC per VPE */
450	if (cpu_has_mipsmt)
451		dmt();
452
453	if (mips_cm_revision() >= CM_REV_CM3) {
454		unsigned int ident = read_gic_vl_ident();
455
456		/*
457		 * Ensure that our calculation of the VP ID matches up with
458		 * what the GIC reports, otherwise we'll have configured
459		 * interrupts incorrectly.
460		 */
461		BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
462	}
463
464	if (core > 0 && !read_gcr_cl_coherence())
465		pr_warn("Core %u is not in coherent domain\n", core);
466
467	if (cpu_has_veic)
468		clear_c0_status(ST0_IM);
469	else
470		change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
471					 STATUSF_IP4 | STATUSF_IP5 |
472					 STATUSF_IP6 | STATUSF_IP7);
473}
474
475static void cps_smp_finish(void)
476{
477	write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
478
479#ifdef CONFIG_MIPS_MT_FPAFF
480	/* If we have an FPU, enroll ourselves in the FPU-full mask */
481	if (cpu_has_fpu)
482		cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
483#endif /* CONFIG_MIPS_MT_FPAFF */
484
485	local_irq_enable();
486}
487
488#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC_CORE)
489
490enum cpu_death {
491	CPU_DEATH_HALT,
492	CPU_DEATH_POWER,
493};
494
495static void cps_shutdown_this_cpu(enum cpu_death death)
496{
497	unsigned int cpu, core, vpe_id;
498
499	cpu = smp_processor_id();
500	core = cpu_core(&cpu_data[cpu]);
501
502	if (death == CPU_DEATH_HALT) {
503		vpe_id = cpu_vpe_id(&cpu_data[cpu]);
504
505		pr_debug("Halting core %d VP%d\n", core, vpe_id);
506		if (cpu_has_mipsmt) {
507			/* Halt this TC */
508			write_c0_tchalt(TCHALT_H);
509			instruction_hazard();
510		} else if (cpu_has_vp) {
511			write_cpc_cl_vp_stop(1 << vpe_id);
512
513			/* Ensure that the VP_STOP register is written */
514			wmb();
515		}
516	} else {
517		if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
518			pr_debug("Gating power to core %d\n", core);
519			/* Power down the core */
520			cps_pm_enter_state(CPS_PM_POWER_GATED);
521		}
522	}
523}
524
525#ifdef CONFIG_KEXEC_CORE
526
527static void cps_kexec_nonboot_cpu(void)
528{
529	if (cpu_has_mipsmt || cpu_has_vp)
530		cps_shutdown_this_cpu(CPU_DEATH_HALT);
531	else
532		cps_shutdown_this_cpu(CPU_DEATH_POWER);
533}
534
535#endif /* CONFIG_KEXEC_CORE */
536
537#endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC_CORE */
538
539#ifdef CONFIG_HOTPLUG_CPU
540
541static int cps_cpu_disable(void)
542{
543	unsigned cpu = smp_processor_id();
544	struct core_boot_config *core_cfg;
545
546	if (!cps_pm_support_state(CPS_PM_POWER_GATED))
547		return -EINVAL;
548
549	core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
550	atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
551	smp_mb__after_atomic();
552	set_cpu_online(cpu, false);
553	calculate_cpu_foreign_map();
554	irq_migrate_all_off_this_cpu();
555
556	return 0;
557}
558
559static unsigned cpu_death_sibling;
560static enum cpu_death cpu_death;
561
562void play_dead(void)
563{
564	unsigned int cpu;
565
566	local_irq_disable();
567	idle_task_exit();
568	cpu = smp_processor_id();
569	cpu_death = CPU_DEATH_POWER;
570
571	pr_debug("CPU%d going offline\n", cpu);
572
573	if (cpu_has_mipsmt || cpu_has_vp) {
574		/* Look for another online VPE within the core */
575		for_each_online_cpu(cpu_death_sibling) {
576			if (!cpus_are_siblings(cpu, cpu_death_sibling))
577				continue;
578
579			/*
580			 * There is an online VPE within the core. Just halt
581			 * this TC and leave the core alone.
582			 */
583			cpu_death = CPU_DEATH_HALT;
584			break;
585		}
586	}
587
588	cpuhp_ap_report_dead();
589
590	cps_shutdown_this_cpu(cpu_death);
591
592	/* This should never be reached */
593	panic("Failed to offline CPU %u", cpu);
594}
595
596static void wait_for_sibling_halt(void *ptr_cpu)
597{
598	unsigned cpu = (unsigned long)ptr_cpu;
599	unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
600	unsigned halted;
601	unsigned long flags;
602
603	do {
604		local_irq_save(flags);
605		settc(vpe_id);
606		halted = read_tc_c0_tchalt();
607		local_irq_restore(flags);
608	} while (!(halted & TCHALT_H));
609}
610
611static void cps_cpu_die(unsigned int cpu) { }
612
613static void cps_cleanup_dead_cpu(unsigned cpu)
614{
615	unsigned core = cpu_core(&cpu_data[cpu]);
616	unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
617	ktime_t fail_time;
618	unsigned stat;
619	int err;
620
621	/*
622	 * Now wait for the CPU to actually offline. Without doing this that
623	 * offlining may race with one or more of:
624	 *
625	 *   - Onlining the CPU again.
626	 *   - Powering down the core if another VPE within it is offlined.
627	 *   - A sibling VPE entering a non-coherent state.
628	 *
629	 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
630	 * with which we could race, so do nothing.
631	 */
632	if (cpu_death == CPU_DEATH_POWER) {
633		/*
634		 * Wait for the core to enter a powered down or clock gated
635		 * state, the latter happening when a JTAG probe is connected
636		 * in which case the CPC will refuse to power down the core.
637		 */
638		fail_time = ktime_add_ms(ktime_get(), 2000);
639		do {
640			mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
641			mips_cpc_lock_other(core);
642			stat = read_cpc_co_stat_conf();
643			stat &= CPC_Cx_STAT_CONF_SEQSTATE;
644			stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
645			mips_cpc_unlock_other();
646			mips_cm_unlock_other();
647
648			if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
649			    stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
650			    stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
651				break;
652
653			/*
654			 * The core ought to have powered down, but didn't &
655			 * now we don't really know what state it's in. It's
656			 * likely that its _pwr_up pin has been wired to logic
657			 * 1 & it powered back up as soon as we powered it
658			 * down...
659			 *
660			 * The best we can do is warn the user & continue in
661			 * the hope that the core is doing nothing harmful &
662			 * might behave properly if we online it later.
663			 */
664			if (WARN(ktime_after(ktime_get(), fail_time),
665				 "CPU%u hasn't powered down, seq. state %u\n",
666				 cpu, stat))
667				break;
668		} while (1);
669
670		/* Indicate the core is powered off */
671		bitmap_clear(core_power, core, 1);
672	} else if (cpu_has_mipsmt) {
673		/*
674		 * Have a CPU with access to the offlined CPUs registers wait
675		 * for its TC to halt.
676		 */
677		err = smp_call_function_single(cpu_death_sibling,
678					       wait_for_sibling_halt,
679					       (void *)(unsigned long)cpu, 1);
680		if (err)
681			panic("Failed to call remote sibling CPU\n");
682	} else if (cpu_has_vp) {
683		do {
684			mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
685			stat = read_cpc_co_vp_running();
686			mips_cm_unlock_other();
687		} while (stat & (1 << vpe_id));
688	}
689}
690
691#endif /* CONFIG_HOTPLUG_CPU */
692
693static const struct plat_smp_ops cps_smp_ops = {
694	.smp_setup		= cps_smp_setup,
695	.prepare_cpus		= cps_prepare_cpus,
696	.boot_secondary		= cps_boot_secondary,
697	.init_secondary		= cps_init_secondary,
698	.smp_finish		= cps_smp_finish,
699	.send_ipi_single	= mips_smp_send_ipi_single,
700	.send_ipi_mask		= mips_smp_send_ipi_mask,
701#ifdef CONFIG_HOTPLUG_CPU
702	.cpu_disable		= cps_cpu_disable,
703	.cpu_die		= cps_cpu_die,
704	.cleanup_dead_cpu	= cps_cleanup_dead_cpu,
705#endif
706#ifdef CONFIG_KEXEC_CORE
707	.kexec_nonboot_cpu	= cps_kexec_nonboot_cpu,
708#endif
709};
710
711bool mips_cps_smp_in_use(void)
712{
713	extern const struct plat_smp_ops *mp_ops;
714	return mp_ops == &cps_smp_ops;
715}
716
717int register_cps_smp_ops(void)
718{
719	if (!mips_cm_present()) {
720		pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
721		return -ENODEV;
722	}
723
724	/* check we have a GIC - we need one for IPIs */
725	if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
726		pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
727		return -ENODEV;
728	}
729
730	register_smp_ops(&cps_smp_ops);
731	return 0;
732}
733