1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2014 Imagination Technologies
4 * Author: Paul Burton <paul.burton@mips.com>
5 */
6
7#include <linux/cpuhotplug.h>
8#include <linux/init.h>
9#include <linux/percpu.h>
10#include <linux/slab.h>
11#include <linux/suspend.h>
12
13#include <asm/asm-offsets.h>
14#include <asm/cacheflush.h>
15#include <asm/cacheops.h>
16#include <asm/idle.h>
17#include <asm/mips-cps.h>
18#include <asm/mipsmtregs.h>
19#include <asm/pm.h>
20#include <asm/pm-cps.h>
21#include <asm/regdef.h>
22#include <asm/smp-cps.h>
23#include <asm/uasm.h>
24
25/*
26 * cps_nc_entry_fn - type of a generated non-coherent state entry function
27 * @online: the count of online coupled VPEs
28 * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
29 *
30 * The code entering & exiting non-coherent states is generated at runtime
31 * using uasm, in order to ensure that the compiler cannot insert a stray
32 * memory access at an unfortunate time and to allow the generation of optimal
33 * core-specific code particularly for cache routines. If coupled_coherence
34 * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
35 * returns the number of VPEs that were in the wait state at the point this
36 * VPE left it. Returns garbage if coupled_coherence is zero or this is not
37 * the entry function for CPS_PM_NC_WAIT.
38 */
39typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
40
41/*
42 * The entry point of the generated non-coherent idle state entry/exit
43 * functions. Actually per-core rather than per-CPU.
44 */
45static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
46				  nc_asm_enter);
47
48/* Bitmap indicating which states are supported by the system */
49static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
50
51/*
52 * Indicates the number of coupled VPEs ready to operate in a non-coherent
53 * state. Actually per-core rather than per-CPU.
54 */
55static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
56
57/* Indicates online CPUs coupled with the current CPU */
58static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
59
60/*
61 * Used to synchronize entry to deep idle states. Actually per-core rather
62 * than per-CPU.
63 */
64static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
65
66/* Saved CPU state across the CPS_PM_POWER_GATED state */
67DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
68
69/* A somewhat arbitrary number of labels & relocs for uasm */
70static struct uasm_label labels[32];
71static struct uasm_reloc relocs[32];
72
73bool cps_pm_support_state(enum cps_pm_state state)
74{
75	return test_bit(state, state_support);
76}
77
78static void coupled_barrier(atomic_t *a, unsigned online)
79{
80	/*
81	 * This function is effectively the same as
82	 * cpuidle_coupled_parallel_barrier, which can't be used here since
83	 * there's no cpuidle device.
84	 */
85
86	if (!coupled_coherence)
87		return;
88
89	smp_mb__before_atomic();
90	atomic_inc(a);
91
92	while (atomic_read(a) < online)
93		cpu_relax();
94
95	if (atomic_inc_return(a) == online * 2) {
96		atomic_set(a, 0);
97		return;
98	}
99
100	while (atomic_read(a) > online)
101		cpu_relax();
102}
103
104int cps_pm_enter_state(enum cps_pm_state state)
105{
106	unsigned cpu = smp_processor_id();
107	unsigned core = cpu_core(&current_cpu_data);
108	unsigned online, left;
109	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
110	u32 *core_ready_count, *nc_core_ready_count;
111	void *nc_addr;
112	cps_nc_entry_fn entry;
113	struct core_boot_config *core_cfg;
114	struct vpe_boot_config *vpe_cfg;
115
116	/* Check that there is an entry function for this state */
117	entry = per_cpu(nc_asm_enter, core)[state];
118	if (!entry)
119		return -EINVAL;
120
121	/* Calculate which coupled CPUs (VPEs) are online */
122#if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
123	if (cpu_online(cpu)) {
124		cpumask_and(coupled_mask, cpu_online_mask,
125			    &cpu_sibling_map[cpu]);
126		online = cpumask_weight(coupled_mask);
127		cpumask_clear_cpu(cpu, coupled_mask);
128	} else
129#endif
130	{
131		cpumask_clear(coupled_mask);
132		online = 1;
133	}
134
135	/* Setup the VPE to run mips_cps_pm_restore when started again */
136	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
137		/* Power gating relies upon CPS SMP */
138		if (!mips_cps_smp_in_use())
139			return -EINVAL;
140
141		core_cfg = &mips_cps_core_bootcfg[core];
142		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
143		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
144		vpe_cfg->gp = (unsigned long)current_thread_info();
145		vpe_cfg->sp = 0;
146	}
147
148	/* Indicate that this CPU might not be coherent */
149	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
150	smp_mb__after_atomic();
151
152	/* Create a non-coherent mapping of the core ready_count */
153	core_ready_count = per_cpu(ready_count, core);
154	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
155				   (unsigned long)core_ready_count);
156	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
157	nc_core_ready_count = nc_addr;
158
159	/* Ensure ready_count is zero-initialised before the assembly runs */
160	WRITE_ONCE(*nc_core_ready_count, 0);
161	coupled_barrier(&per_cpu(pm_barrier, core), online);
162
163	/* Run the generated entry code */
164	left = entry(online, nc_core_ready_count);
165
166	/* Remove the non-coherent mapping of ready_count */
167	kunmap_noncoherent();
168
169	/* Indicate that this CPU is definitely coherent */
170	cpumask_set_cpu(cpu, &cpu_coherent_mask);
171
172	/*
173	 * If this VPE is the first to leave the non-coherent wait state then
174	 * it needs to wake up any coupled VPEs still running their wait
175	 * instruction so that they return to cpuidle, which can then complete
176	 * coordination between the coupled VPEs & provide the governor with
177	 * a chance to reflect on the length of time the VPEs were in the
178	 * idle state.
179	 */
180	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
181		arch_send_call_function_ipi_mask(coupled_mask);
182
183	return 0;
184}
185
186static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
187				  struct uasm_reloc **pr,
188				  const struct cache_desc *cache,
189				  unsigned op, int lbl)
190{
191	unsigned cache_size = cache->ways << cache->waybit;
192	unsigned i;
193	const unsigned unroll_lines = 32;
194
195	/* If the cache isn't present this function has it easy */
196	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
197		return;
198
199	/* Load base address */
200	UASM_i_LA(pp, GPR_T0, (long)CKSEG0);
201
202	/* Calculate end address */
203	if (cache_size < 0x8000)
204		uasm_i_addiu(pp, GPR_T1, GPR_T0, cache_size);
205	else
206		UASM_i_LA(pp, GPR_T1, (long)(CKSEG0 + cache_size));
207
208	/* Start of cache op loop */
209	uasm_build_label(pl, *pp, lbl);
210
211	/* Generate the cache ops */
212	for (i = 0; i < unroll_lines; i++) {
213		if (cpu_has_mips_r6) {
214			uasm_i_cache(pp, op, 0, GPR_T0);
215			uasm_i_addiu(pp, GPR_T0, GPR_T0, cache->linesz);
216		} else {
217			uasm_i_cache(pp, op, i * cache->linesz, GPR_T0);
218		}
219	}
220
221	if (!cpu_has_mips_r6)
222		/* Update the base address */
223		uasm_i_addiu(pp, GPR_T0, GPR_T0, unroll_lines * cache->linesz);
224
225	/* Loop if we haven't reached the end address yet */
226	uasm_il_bne(pp, pr, GPR_T0, GPR_T1, lbl);
227	uasm_i_nop(pp);
228}
229
230static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
231			     struct uasm_reloc **pr,
232			     const struct cpuinfo_mips *cpu_info,
233			     int lbl)
234{
235	unsigned i, fsb_size = 8;
236	unsigned num_loads = (fsb_size * 3) / 2;
237	unsigned line_stride = 2;
238	unsigned line_size = cpu_info->dcache.linesz;
239	unsigned perf_counter, perf_event;
240	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
241
242	/*
243	 * Determine whether this CPU requires an FSB flush, and if so which
244	 * performance counter/event reflect stalls due to a full FSB.
245	 */
246	switch (__get_cpu_type(cpu_info->cputype)) {
247	case CPU_INTERAPTIV:
248		perf_counter = 1;
249		perf_event = 51;
250		break;
251
252	case CPU_PROAPTIV:
253		/* Newer proAptiv cores don't require this workaround */
254		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
255			return 0;
256
257		/* On older ones it's unavailable */
258		return -1;
259
260	default:
261		/* Assume that the CPU does not need this workaround */
262		return 0;
263	}
264
265	/*
266	 * Ensure that the fill/store buffer (FSB) is not holding the results
267	 * of a prefetch, since if it is then the CPC sequencer may become
268	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
269	 */
270
271	/* Preserve perf counter setup */
272	uasm_i_mfc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
273	uasm_i_mfc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */
274
275	/* Setup perf counter to count FSB full pipeline stalls */
276	uasm_i_addiu(pp, GPR_T0, GPR_ZERO, (perf_event << 5) | 0xf);
277	uasm_i_mtc0(pp, GPR_T0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
278	uasm_i_ehb(pp);
279	uasm_i_mtc0(pp, GPR_ZERO, 25, (perf_counter * 2) + 1); /* PerfCntN */
280	uasm_i_ehb(pp);
281
282	/* Base address for loads */
283	UASM_i_LA(pp, GPR_T0, (long)CKSEG0);
284
285	/* Start of clear loop */
286	uasm_build_label(pl, *pp, lbl);
287
288	/* Perform some loads to fill the FSB */
289	for (i = 0; i < num_loads; i++)
290		uasm_i_lw(pp, GPR_ZERO, i * line_size * line_stride, GPR_T0);
291
292	/*
293	 * Invalidate the new D-cache entries so that the cache will need
294	 * refilling (via the FSB) if the loop is executed again.
295	 */
296	for (i = 0; i < num_loads; i++) {
297		uasm_i_cache(pp, Hit_Invalidate_D,
298			     i * line_size * line_stride, GPR_T0);
299		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
300			     i * line_size * line_stride, GPR_T0);
301	}
302
303	/* Barrier ensuring previous cache invalidates are complete */
304	uasm_i_sync(pp, __SYNC_full);
305	uasm_i_ehb(pp);
306
307	/* Check whether the pipeline stalled due to the FSB being full */
308	uasm_i_mfc0(pp, GPR_T1, 25, (perf_counter * 2) + 1); /* PerfCntN */
309
310	/* Loop if it didn't */
311	uasm_il_beqz(pp, pr, GPR_T1, lbl);
312	uasm_i_nop(pp);
313
314	/* Restore perf counter 1. The count may well now be wrong... */
315	uasm_i_mtc0(pp, GPR_T2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
316	uasm_i_ehb(pp);
317	uasm_i_mtc0(pp, GPR_T3, 25, (perf_counter * 2) + 1); /* PerfCntN */
318	uasm_i_ehb(pp);
319
320	return 0;
321}
322
323static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
324				struct uasm_reloc **pr,
325				unsigned r_addr, int lbl)
326{
327	uasm_i_lui(pp, GPR_T0, uasm_rel_hi(0x80000000));
328	uasm_build_label(pl, *pp, lbl);
329	uasm_i_ll(pp, GPR_T1, 0, r_addr);
330	uasm_i_or(pp, GPR_T1, GPR_T1, GPR_T0);
331	uasm_i_sc(pp, GPR_T1, 0, r_addr);
332	uasm_il_beqz(pp, pr, GPR_T1, lbl);
333	uasm_i_nop(pp);
334}
335
336static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
337{
338	struct uasm_label *l = labels;
339	struct uasm_reloc *r = relocs;
340	u32 *buf, *p;
341	const unsigned r_online = GPR_A0;
342	const unsigned r_nc_count = GPR_A1;
343	const unsigned r_pcohctl = GPR_T8;
344	const unsigned max_instrs = 256;
345	unsigned cpc_cmd;
346	int err;
347	enum {
348		lbl_incready = 1,
349		lbl_poll_cont,
350		lbl_secondary_hang,
351		lbl_disable_coherence,
352		lbl_flush_fsb,
353		lbl_invicache,
354		lbl_flushdcache,
355		lbl_hang,
356		lbl_set_cont,
357		lbl_secondary_cont,
358		lbl_decready,
359	};
360
361	/* Allocate a buffer to hold the generated code */
362	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
363	if (!buf)
364		return NULL;
365
366	/* Clear labels & relocs ready for (re)use */
367	memset(labels, 0, sizeof(labels));
368	memset(relocs, 0, sizeof(relocs));
369
370	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
371		/* Power gating relies upon CPS SMP */
372		if (!mips_cps_smp_in_use())
373			goto out_err;
374
375		/*
376		 * Save CPU state. Note the non-standard calling convention
377		 * with the return address placed in v0 to avoid clobbering
378		 * the ra register before it is saved.
379		 */
380		UASM_i_LA(&p, GPR_T0, (long)mips_cps_pm_save);
381		uasm_i_jalr(&p, GPR_V0, GPR_T0);
382		uasm_i_nop(&p);
383	}
384
385	/*
386	 * Load addresses of required CM & CPC registers. This is done early
387	 * because they're needed in both the enable & disable coherence steps
388	 * but in the coupled case the enable step will only run on one VPE.
389	 */
390	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
391
392	if (coupled_coherence) {
393		/* Increment ready_count */
394		uasm_i_sync(&p, __SYNC_mb);
395		uasm_build_label(&l, p, lbl_incready);
396		uasm_i_ll(&p, GPR_T1, 0, r_nc_count);
397		uasm_i_addiu(&p, GPR_T2, GPR_T1, 1);
398		uasm_i_sc(&p, GPR_T2, 0, r_nc_count);
399		uasm_il_beqz(&p, &r, GPR_T2, lbl_incready);
400		uasm_i_addiu(&p, GPR_T1, GPR_T1, 1);
401
402		/* Barrier ensuring all CPUs see the updated r_nc_count value */
403		uasm_i_sync(&p, __SYNC_mb);
404
405		/*
406		 * If this is the last VPE to become ready for non-coherence
407		 * then it should branch below.
408		 */
409		uasm_il_beq(&p, &r, GPR_T1, r_online, lbl_disable_coherence);
410		uasm_i_nop(&p);
411
412		if (state < CPS_PM_POWER_GATED) {
413			/*
414			 * Otherwise this is not the last VPE to become ready
415			 * for non-coherence. It needs to wait until coherence
416			 * has been disabled before proceeding, which it will do
417			 * by polling for the top bit of ready_count being set.
418			 */
419			uasm_i_addiu(&p, GPR_T1, GPR_ZERO, -1);
420			uasm_build_label(&l, p, lbl_poll_cont);
421			uasm_i_lw(&p, GPR_T0, 0, r_nc_count);
422			uasm_il_bltz(&p, &r, GPR_T0, lbl_secondary_cont);
423			uasm_i_ehb(&p);
424			if (cpu_has_mipsmt)
425				uasm_i_yield(&p, GPR_ZERO, GPR_T1);
426			uasm_il_b(&p, &r, lbl_poll_cont);
427			uasm_i_nop(&p);
428		} else {
429			/*
430			 * The core will lose power & this VPE will not continue
431			 * so it can simply halt here.
432			 */
433			if (cpu_has_mipsmt) {
434				/* Halt the VPE via C0 tchalt register */
435				uasm_i_addiu(&p, GPR_T0, GPR_ZERO, TCHALT_H);
436				uasm_i_mtc0(&p, GPR_T0, 2, 4);
437			} else if (cpu_has_vp) {
438				/* Halt the VP via the CPC VP_STOP register */
439				unsigned int vpe_id;
440
441				vpe_id = cpu_vpe_id(&cpu_data[cpu]);
442				uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << vpe_id);
443				UASM_i_LA(&p, GPR_T1, (long)addr_cpc_cl_vp_stop());
444				uasm_i_sw(&p, GPR_T0, 0, GPR_T1);
445			} else {
446				BUG();
447			}
448			uasm_build_label(&l, p, lbl_secondary_hang);
449			uasm_il_b(&p, &r, lbl_secondary_hang);
450			uasm_i_nop(&p);
451		}
452	}
453
454	/*
455	 * This is the point of no return - this VPE will now proceed to
456	 * disable coherence. At this point we *must* be sure that no other
457	 * VPE within the core will interfere with the L1 dcache.
458	 */
459	uasm_build_label(&l, p, lbl_disable_coherence);
460
461	/* Invalidate the L1 icache */
462	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
463			      Index_Invalidate_I, lbl_invicache);
464
465	/* Writeback & invalidate the L1 dcache */
466	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
467			      Index_Writeback_Inv_D, lbl_flushdcache);
468
469	/* Barrier ensuring previous cache invalidates are complete */
470	uasm_i_sync(&p, __SYNC_full);
471	uasm_i_ehb(&p);
472
473	if (mips_cm_revision() < CM_REV_CM3) {
474		/*
475		* Disable all but self interventions. The load from COHCTL is
476		* defined by the interAptiv & proAptiv SUMs as ensuring that the
477		*  operation resulting from the preceding store is complete.
478		*/
479		uasm_i_addiu(&p, GPR_T0, GPR_ZERO, 1 << cpu_core(&cpu_data[cpu]));
480		uasm_i_sw(&p, GPR_T0, 0, r_pcohctl);
481		uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
482
483		/* Barrier to ensure write to coherence control is complete */
484		uasm_i_sync(&p, __SYNC_full);
485		uasm_i_ehb(&p);
486	}
487
488	/* Disable coherence */
489	uasm_i_sw(&p, GPR_ZERO, 0, r_pcohctl);
490	uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
491
492	if (state >= CPS_PM_CLOCK_GATED) {
493		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
494					lbl_flush_fsb);
495		if (err)
496			goto out_err;
497
498		/* Determine the CPC command to issue */
499		switch (state) {
500		case CPS_PM_CLOCK_GATED:
501			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
502			break;
503		case CPS_PM_POWER_GATED:
504			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
505			break;
506		default:
507			BUG();
508			goto out_err;
509		}
510
511		/* Issue the CPC command */
512		UASM_i_LA(&p, GPR_T0, (long)addr_cpc_cl_cmd());
513		uasm_i_addiu(&p, GPR_T1, GPR_ZERO, cpc_cmd);
514		uasm_i_sw(&p, GPR_T1, 0, GPR_T0);
515
516		if (state == CPS_PM_POWER_GATED) {
517			/* If anything goes wrong just hang */
518			uasm_build_label(&l, p, lbl_hang);
519			uasm_il_b(&p, &r, lbl_hang);
520			uasm_i_nop(&p);
521
522			/*
523			 * There's no point generating more code, the core is
524			 * powered down & if powered back up will run from the
525			 * reset vector not from here.
526			 */
527			goto gen_done;
528		}
529
530		/* Barrier to ensure write to CPC command is complete */
531		uasm_i_sync(&p, __SYNC_full);
532		uasm_i_ehb(&p);
533	}
534
535	if (state == CPS_PM_NC_WAIT) {
536		/*
537		 * At this point it is safe for all VPEs to proceed with
538		 * execution. This VPE will set the top bit of ready_count
539		 * to indicate to the other VPEs that they may continue.
540		 */
541		if (coupled_coherence)
542			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
543					    lbl_set_cont);
544
545		/*
546		 * VPEs which did not disable coherence will continue
547		 * executing, after coherence has been disabled, from this
548		 * point.
549		 */
550		uasm_build_label(&l, p, lbl_secondary_cont);
551
552		/* Now perform our wait */
553		uasm_i_wait(&p, 0);
554	}
555
556	/*
557	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
558	 * will run this. The first will actually re-enable coherence & the
559	 * rest will just be performing a rather unusual nop.
560	 */
561	uasm_i_addiu(&p, GPR_T0, GPR_ZERO, mips_cm_revision() < CM_REV_CM3
562				? CM_GCR_Cx_COHERENCE_COHDOMAINEN
563				: CM3_GCR_Cx_COHERENCE_COHEN);
564
565	uasm_i_sw(&p, GPR_T0, 0, r_pcohctl);
566	uasm_i_lw(&p, GPR_T0, 0, r_pcohctl);
567
568	/* Barrier to ensure write to coherence control is complete */
569	uasm_i_sync(&p, __SYNC_full);
570	uasm_i_ehb(&p);
571
572	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
573		/* Decrement ready_count */
574		uasm_build_label(&l, p, lbl_decready);
575		uasm_i_sync(&p, __SYNC_mb);
576		uasm_i_ll(&p, GPR_T1, 0, r_nc_count);
577		uasm_i_addiu(&p, GPR_T2, GPR_T1, -1);
578		uasm_i_sc(&p, GPR_T2, 0, r_nc_count);
579		uasm_il_beqz(&p, &r, GPR_T2, lbl_decready);
580		uasm_i_andi(&p, GPR_V0, GPR_T1, (1 << fls(smp_num_siblings)) - 1);
581
582		/* Barrier ensuring all CPUs see the updated r_nc_count value */
583		uasm_i_sync(&p, __SYNC_mb);
584	}
585
586	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
587		/*
588		 * At this point it is safe for all VPEs to proceed with
589		 * execution. This VPE will set the top bit of ready_count
590		 * to indicate to the other VPEs that they may continue.
591		 */
592		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
593
594		/*
595		 * This core will be reliant upon another core sending a
596		 * power-up command to the CPC in order to resume operation.
597		 * Thus an arbitrary VPE can't trigger the core leaving the
598		 * idle state and the one that disables coherence might as well
599		 * be the one to re-enable it. The rest will continue from here
600		 * after that has been done.
601		 */
602		uasm_build_label(&l, p, lbl_secondary_cont);
603
604		/* Barrier ensuring all CPUs see the updated r_nc_count value */
605		uasm_i_sync(&p, __SYNC_mb);
606	}
607
608	/* The core is coherent, time to return to C code */
609	uasm_i_jr(&p, GPR_RA);
610	uasm_i_nop(&p);
611
612gen_done:
613	/* Ensure the code didn't exceed the resources allocated for it */
614	BUG_ON((p - buf) > max_instrs);
615	BUG_ON((l - labels) > ARRAY_SIZE(labels));
616	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
617
618	/* Patch branch offsets */
619	uasm_resolve_relocs(relocs, labels);
620
621	/* Flush the icache */
622	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
623
624	return buf;
625out_err:
626	kfree(buf);
627	return NULL;
628}
629
630static int cps_pm_online_cpu(unsigned int cpu)
631{
632	enum cps_pm_state state;
633	unsigned core = cpu_core(&cpu_data[cpu]);
634	void *entry_fn, *core_rc;
635
636	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
637		if (per_cpu(nc_asm_enter, core)[state])
638			continue;
639		if (!test_bit(state, state_support))
640			continue;
641
642		entry_fn = cps_gen_entry_code(cpu, state);
643		if (!entry_fn) {
644			pr_err("Failed to generate core %u state %u entry\n",
645			       core, state);
646			clear_bit(state, state_support);
647		}
648
649		per_cpu(nc_asm_enter, core)[state] = entry_fn;
650	}
651
652	if (!per_cpu(ready_count, core)) {
653		core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
654		if (!core_rc) {
655			pr_err("Failed allocate core %u ready_count\n", core);
656			return -ENOMEM;
657		}
658		per_cpu(ready_count, core) = core_rc;
659	}
660
661	return 0;
662}
663
664static int cps_pm_power_notifier(struct notifier_block *this,
665				 unsigned long event, void *ptr)
666{
667	unsigned int stat;
668
669	switch (event) {
670	case PM_SUSPEND_PREPARE:
671		stat = read_cpc_cl_stat_conf();
672		/*
673		 * If we're attempting to suspend the system and power down all
674		 * of the cores, the JTAG detect bit indicates that the CPC will
675		 * instead put the cores into clock-off state. In this state
676		 * a connected debugger can cause the CPU to attempt
677		 * interactions with the powered down system. At best this will
678		 * fail. At worst, it can hang the NoC, requiring a hard reset.
679		 * To avoid this, just block system suspend if a JTAG probe
680		 * is detected.
681		 */
682		if (stat & CPC_Cx_STAT_CONF_EJTAG_PROBE) {
683			pr_warn("JTAG probe is connected - abort suspend\n");
684			return NOTIFY_BAD;
685		}
686		return NOTIFY_DONE;
687	default:
688		return NOTIFY_DONE;
689	}
690}
691
692static int __init cps_pm_init(void)
693{
694	/* A CM is required for all non-coherent states */
695	if (!mips_cm_present()) {
696		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
697		return 0;
698	}
699
700	/*
701	 * If interrupts were enabled whilst running a wait instruction on a
702	 * non-coherent core then the VPE may end up processing interrupts
703	 * whilst non-coherent. That would be bad.
704	 */
705	if (cpu_wait == r4k_wait_irqoff)
706		set_bit(CPS_PM_NC_WAIT, state_support);
707	else
708		pr_warn("pm-cps: non-coherent wait unavailable\n");
709
710	/* Detect whether a CPC is present */
711	if (mips_cpc_present()) {
712		/* Detect whether clock gating is implemented */
713		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
714			set_bit(CPS_PM_CLOCK_GATED, state_support);
715		else
716			pr_warn("pm-cps: CPC does not support clock gating\n");
717
718		/* Power gating is available with CPS SMP & any CPC */
719		if (mips_cps_smp_in_use())
720			set_bit(CPS_PM_POWER_GATED, state_support);
721		else
722			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
723	} else {
724		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
725	}
726
727	pm_notifier(cps_pm_power_notifier, 0);
728
729	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
730				 cps_pm_online_cpu, NULL);
731}
732arch_initcall(cps_pm_init);
733