1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
4 * Written by Hennus Bergman, 1992.
5 * High DMA channel support & info by Hannu Savolainen
6 * and John Boyd, Nov. 1992.
7 *
8 * NOTE: all this is true *only* for ISA/EISA expansions on Mips boards
9 * and can only be used for expansion cards. Onboard DMA controllers, such
10 * as the R4030 on Jazz boards behave totally different!
11 */
12
13#ifndef _ASM_DMA_H
14#define _ASM_DMA_H
15
16#include <asm/io.h>			/* need byte IO */
17#include <linux/spinlock.h>		/* And spinlocks */
18#include <linux/delay.h>
19
20
21#ifdef HAVE_REALLY_SLOW_DMA_CONTROLLER
22#define dma_outb	outb_p
23#else
24#define dma_outb	outb
25#endif
26
27#define dma_inb		inb
28
29/*
30 * NOTES about DMA transfers:
31 *
32 *  controller 1: channels 0-3, byte operations, ports 00-1F
33 *  controller 2: channels 4-7, word operations, ports C0-DF
34 *
35 *  - ALL registers are 8 bits only, regardless of transfer size
36 *  - channel 4 is not used - cascades 1 into 2.
37 *  - channels 0-3 are byte - addresses/counts are for physical bytes
38 *  - channels 5-7 are word - addresses/counts are for physical words
39 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
40 *  - transfer count loaded to registers is 1 less than actual count
41 *  - controller 2 offsets are all even (2x offsets for controller 1)
42 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
43 *  - page registers for 0-3 use bit 0, represent 64K pages
44 *
45 * DMA transfers are limited to the lower 16MB of _physical_ memory.
46 * Note that addresses loaded into registers must be _physical_ addresses,
47 * not logical addresses (which may differ if paging is active).
48 *
49 *  Address mapping for channels 0-3:
50 *
51 *   A23 ... A16 A15 ... A8  A7 ... A0	  (Physical addresses)
52 *    |	 ...  |	  |  ... |   |	... |
53 *    |	 ...  |	  |  ... |   |	... |
54 *    |	 ...  |	  |  ... |   |	... |
55 *   P7	 ...  P0  A7 ... A0  A7 ... A0
56 * |	Page	| Addr MSB | Addr LSB |	  (DMA registers)
57 *
58 *  Address mapping for channels 5-7:
59 *
60 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0	   (Physical addresses)
61 *    |	 ...  |	  \   \	  ... \	 \  \  ... \  \
62 *    |	 ...  |	   \   \   ... \  \  \	... \  (not used)
63 *    |	 ...  |	    \	\   ... \  \  \	 ... \
64 *   P7	 ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
65 * |	  Page	    |  Addr MSB	  |  Addr LSB  |   (DMA registers)
66 *
67 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
68 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
69 * the hardware level, so odd-byte transfers aren't possible).
70 *
71 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
72 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
73 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
74 *
75 */
76
77#ifndef CONFIG_GENERIC_ISA_DMA_SUPPORT_BROKEN
78#define MAX_DMA_CHANNELS	8
79#endif
80
81/*
82 * The maximum address in KSEG0 that we can perform a DMA transfer to on this
83 * platform.  This describes only the PC style part of the DMA logic like on
84 * Deskstations or Acer PICA but not the much more versatile DMA logic used
85 * for the local devices on Acer PICA or Magnums.
86 */
87#if defined(CONFIG_SGI_IP22) || defined(CONFIG_SGI_IP28)
88/* don't care; ISA bus master won't work, ISA slave DMA supports 32bit addr */
89#define MAX_DMA_ADDRESS		PAGE_OFFSET
90#else
91#define MAX_DMA_ADDRESS		(PAGE_OFFSET + 0x01000000)
92#endif
93#define MAX_DMA_PFN		PFN_DOWN(virt_to_phys((void *)MAX_DMA_ADDRESS))
94
95#ifndef MAX_DMA32_PFN
96#define MAX_DMA32_PFN		(1UL << (32 - PAGE_SHIFT))
97#endif
98
99/* 8237 DMA controllers */
100#define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
101#define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
102
103/* DMA controller registers */
104#define DMA1_CMD_REG		0x08	/* command register (w) */
105#define DMA1_STAT_REG		0x08	/* status register (r) */
106#define DMA1_REQ_REG		0x09	/* request register (w) */
107#define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
108#define DMA1_MODE_REG		0x0B	/* mode register (w) */
109#define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
110#define DMA1_TEMP_REG		0x0D	/* Temporary Register (r) */
111#define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
112#define DMA1_CLR_MASK_REG	0x0E	/* Clear Mask */
113#define DMA1_MASK_ALL_REG	0x0F	/* all-channels mask (w) */
114
115#define DMA2_CMD_REG		0xD0	/* command register (w) */
116#define DMA2_STAT_REG		0xD0	/* status register (r) */
117#define DMA2_REQ_REG		0xD2	/* request register (w) */
118#define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
119#define DMA2_MODE_REG		0xD6	/* mode register (w) */
120#define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
121#define DMA2_TEMP_REG		0xDA	/* Temporary Register (r) */
122#define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
123#define DMA2_CLR_MASK_REG	0xDC	/* Clear Mask */
124#define DMA2_MASK_ALL_REG	0xDE	/* all-channels mask (w) */
125
126#define DMA_ADDR_0		0x00	/* DMA address registers */
127#define DMA_ADDR_1		0x02
128#define DMA_ADDR_2		0x04
129#define DMA_ADDR_3		0x06
130#define DMA_ADDR_4		0xC0
131#define DMA_ADDR_5		0xC4
132#define DMA_ADDR_6		0xC8
133#define DMA_ADDR_7		0xCC
134
135#define DMA_CNT_0		0x01	/* DMA count registers */
136#define DMA_CNT_1		0x03
137#define DMA_CNT_2		0x05
138#define DMA_CNT_3		0x07
139#define DMA_CNT_4		0xC2
140#define DMA_CNT_5		0xC6
141#define DMA_CNT_6		0xCA
142#define DMA_CNT_7		0xCE
143
144#define DMA_PAGE_0		0x87	/* DMA page registers */
145#define DMA_PAGE_1		0x83
146#define DMA_PAGE_2		0x81
147#define DMA_PAGE_3		0x82
148#define DMA_PAGE_5		0x8B
149#define DMA_PAGE_6		0x89
150#define DMA_PAGE_7		0x8A
151
152#define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
153#define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
154#define DMA_MODE_CASCADE 0xC0	/* pass thru DREQ->HRQ, DACK<-HLDA only */
155
156#define DMA_AUTOINIT	0x10
157
158extern spinlock_t  dma_spin_lock;
159
160static __inline__ unsigned long claim_dma_lock(void)
161{
162	unsigned long flags;
163	spin_lock_irqsave(&dma_spin_lock, flags);
164	return flags;
165}
166
167static __inline__ void release_dma_lock(unsigned long flags)
168{
169	spin_unlock_irqrestore(&dma_spin_lock, flags);
170}
171
172/* enable/disable a specific DMA channel */
173static __inline__ void enable_dma(unsigned int dmanr)
174{
175	if (dmanr<=3)
176		dma_outb(dmanr,	 DMA1_MASK_REG);
177	else
178		dma_outb(dmanr & 3,  DMA2_MASK_REG);
179}
180
181static __inline__ void disable_dma(unsigned int dmanr)
182{
183	if (dmanr<=3)
184		dma_outb(dmanr | 4,  DMA1_MASK_REG);
185	else
186		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
187}
188
189/* Clear the 'DMA Pointer Flip Flop'.
190 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
191 * Use this once to initialize the FF to a known state.
192 * After that, keep track of it. :-)
193 * --- In order to do that, the DMA routines below should ---
194 * --- only be used while holding the DMA lock ! ---
195 */
196static __inline__ void clear_dma_ff(unsigned int dmanr)
197{
198	if (dmanr<=3)
199		dma_outb(0,  DMA1_CLEAR_FF_REG);
200	else
201		dma_outb(0,  DMA2_CLEAR_FF_REG);
202}
203
204/* set mode (above) for a specific DMA channel */
205static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
206{
207	if (dmanr<=3)
208		dma_outb(mode | dmanr,	DMA1_MODE_REG);
209	else
210		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
211}
212
213/* Set only the page register bits of the transfer address.
214 * This is used for successive transfers when we know the contents of
215 * the lower 16 bits of the DMA current address register, but a 64k boundary
216 * may have been crossed.
217 */
218static __inline__ void set_dma_page(unsigned int dmanr, char pagenr)
219{
220	switch(dmanr) {
221		case 0:
222			dma_outb(pagenr, DMA_PAGE_0);
223			break;
224		case 1:
225			dma_outb(pagenr, DMA_PAGE_1);
226			break;
227		case 2:
228			dma_outb(pagenr, DMA_PAGE_2);
229			break;
230		case 3:
231			dma_outb(pagenr, DMA_PAGE_3);
232			break;
233		case 5:
234			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
235			break;
236		case 6:
237			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
238			break;
239		case 7:
240			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
241			break;
242	}
243}
244
245
246/* Set transfer address & page bits for specific DMA channel.
247 * Assumes dma flipflop is clear.
248 */
249static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
250{
251	set_dma_page(dmanr, a>>16);
252	if (dmanr <= 3)	 {
253	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
254	    dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
255	}  else	 {
256	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
257	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
258	}
259}
260
261
262/* Set transfer size (max 64k for DMA0..3, 128k for DMA5..7) for
263 * a specific DMA channel.
264 * You must ensure the parameters are valid.
265 * NOTE: from a manual: "the number of transfers is one more
266 * than the initial word count"! This is taken into account.
267 * Assumes dma flip-flop is clear.
268 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
269 */
270static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
271{
272	count--;
273	if (dmanr <= 3)	 {
274	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
275	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
276	} else {
277	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
278	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
279	}
280}
281
282
283/* Get DMA residue count. After a DMA transfer, this
284 * should return zero. Reading this while a DMA transfer is
285 * still in progress will return unpredictable results.
286 * If called before the channel has been used, it may return 1.
287 * Otherwise, it returns the number of _bytes_ left to transfer.
288 *
289 * Assumes DMA flip-flop is clear.
290 */
291static __inline__ int get_dma_residue(unsigned int dmanr)
292{
293	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
294					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
295
296	/* using short to get 16-bit wrap around */
297	unsigned short count;
298
299	count = 1 + dma_inb(io_port);
300	count += dma_inb(io_port) << 8;
301
302	return (dmanr<=3)? count : (count<<1);
303}
304
305
306/* These are in kernel/dma.c: */
307extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
308extern void free_dma(unsigned int dmanr);	/* release it again */
309
310#endif /* _ASM_DMA_H */
311