1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/mm/fault.c
4 *
5 * Copyright (C) 1995  Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
8 */
9
10#include <linux/acpi.h>
11#include <linux/bitfield.h>
12#include <linux/extable.h>
13#include <linux/kfence.h>
14#include <linux/signal.h>
15#include <linux/mm.h>
16#include <linux/hardirq.h>
17#include <linux/init.h>
18#include <linux/kasan.h>
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
21#include <linux/page-flags.h>
22#include <linux/sched/signal.h>
23#include <linux/sched/debug.h>
24#include <linux/highmem.h>
25#include <linux/perf_event.h>
26#include <linux/preempt.h>
27#include <linux/hugetlb.h>
28
29#include <asm/acpi.h>
30#include <asm/bug.h>
31#include <asm/cmpxchg.h>
32#include <asm/cpufeature.h>
33#include <asm/efi.h>
34#include <asm/exception.h>
35#include <asm/daifflags.h>
36#include <asm/debug-monitors.h>
37#include <asm/esr.h>
38#include <asm/kprobes.h>
39#include <asm/mte.h>
40#include <asm/processor.h>
41#include <asm/sysreg.h>
42#include <asm/system_misc.h>
43#include <asm/tlbflush.h>
44#include <asm/traps.h>
45
46struct fault_info {
47	int	(*fn)(unsigned long far, unsigned long esr,
48		      struct pt_regs *regs);
49	int	sig;
50	int	code;
51	const char *name;
52};
53
54static const struct fault_info fault_info[];
55static struct fault_info debug_fault_info[];
56
57static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
58{
59	return fault_info + (esr & ESR_ELx_FSC);
60}
61
62static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
63{
64	return debug_fault_info + DBG_ESR_EVT(esr);
65}
66
67static void data_abort_decode(unsigned long esr)
68{
69	unsigned long iss2 = ESR_ELx_ISS2(esr);
70
71	pr_alert("Data abort info:\n");
72
73	if (esr & ESR_ELx_ISV) {
74		pr_alert("  Access size = %u byte(s)\n",
75			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
76		pr_alert("  SSE = %lu, SRT = %lu\n",
77			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
78			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
79		pr_alert("  SF = %lu, AR = %lu\n",
80			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
81			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
82	} else {
83		pr_alert("  ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
84			 esr & ESR_ELx_ISS_MASK, iss2);
85	}
86
87	pr_alert("  CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
88		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
89		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
90		 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
91		 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
92
93	pr_alert("  GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
94		 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
95		 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
96		 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
97		 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
98}
99
100static void mem_abort_decode(unsigned long esr)
101{
102	pr_alert("Mem abort info:\n");
103
104	pr_alert("  ESR = 0x%016lx\n", esr);
105	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
106		 ESR_ELx_EC(esr), esr_get_class_string(esr),
107		 (esr & ESR_ELx_IL) ? 32 : 16);
108	pr_alert("  SET = %lu, FnV = %lu\n",
109		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
110		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
111	pr_alert("  EA = %lu, S1PTW = %lu\n",
112		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
113		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
114	pr_alert("  FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
115		 esr_to_fault_info(esr)->name);
116
117	if (esr_is_data_abort(esr))
118		data_abort_decode(esr);
119}
120
121static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
122{
123	/* Either init_pg_dir or swapper_pg_dir */
124	if (mm == &init_mm)
125		return __pa_symbol(mm->pgd);
126
127	return (unsigned long)virt_to_phys(mm->pgd);
128}
129
130/*
131 * Dump out the page tables associated with 'addr' in the currently active mm.
132 */
133static void show_pte(unsigned long addr)
134{
135	struct mm_struct *mm;
136	pgd_t *pgdp;
137	pgd_t pgd;
138
139	if (is_ttbr0_addr(addr)) {
140		/* TTBR0 */
141		mm = current->active_mm;
142		if (mm == &init_mm) {
143			pr_alert("[%016lx] user address but active_mm is swapper\n",
144				 addr);
145			return;
146		}
147	} else if (is_ttbr1_addr(addr)) {
148		/* TTBR1 */
149		mm = &init_mm;
150	} else {
151		pr_alert("[%016lx] address between user and kernel address ranges\n",
152			 addr);
153		return;
154	}
155
156	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
157		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
158		 vabits_actual, mm_to_pgd_phys(mm));
159	pgdp = pgd_offset(mm, addr);
160	pgd = READ_ONCE(*pgdp);
161	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
162
163	do {
164		p4d_t *p4dp, p4d;
165		pud_t *pudp, pud;
166		pmd_t *pmdp, pmd;
167		pte_t *ptep, pte;
168
169		if (pgd_none(pgd) || pgd_bad(pgd))
170			break;
171
172		p4dp = p4d_offset(pgdp, addr);
173		p4d = READ_ONCE(*p4dp);
174		pr_cont(", p4d=%016llx", p4d_val(p4d));
175		if (p4d_none(p4d) || p4d_bad(p4d))
176			break;
177
178		pudp = pud_offset(p4dp, addr);
179		pud = READ_ONCE(*pudp);
180		pr_cont(", pud=%016llx", pud_val(pud));
181		if (pud_none(pud) || pud_bad(pud))
182			break;
183
184		pmdp = pmd_offset(pudp, addr);
185		pmd = READ_ONCE(*pmdp);
186		pr_cont(", pmd=%016llx", pmd_val(pmd));
187		if (pmd_none(pmd) || pmd_bad(pmd))
188			break;
189
190		ptep = pte_offset_map(pmdp, addr);
191		if (!ptep)
192			break;
193
194		pte = __ptep_get(ptep);
195		pr_cont(", pte=%016llx", pte_val(pte));
196		pte_unmap(ptep);
197	} while(0);
198
199	pr_cont("\n");
200}
201
202/*
203 * This function sets the access flags (dirty, accessed), as well as write
204 * permission, and only to a more permissive setting.
205 *
206 * It needs to cope with hardware update of the accessed/dirty state by other
207 * agents in the system and can safely skip the __sync_icache_dcache() call as,
208 * like __set_ptes(), the PTE is never changed from no-exec to exec here.
209 *
210 * Returns whether or not the PTE actually changed.
211 */
212int __ptep_set_access_flags(struct vm_area_struct *vma,
213			    unsigned long address, pte_t *ptep,
214			    pte_t entry, int dirty)
215{
216	pteval_t old_pteval, pteval;
217	pte_t pte = __ptep_get(ptep);
218
219	if (pte_same(pte, entry))
220		return 0;
221
222	/* only preserve the access flags and write permission */
223	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
224
225	/*
226	 * Setting the flags must be done atomically to avoid racing with the
227	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
228	 * be set to the most permissive (lowest value) of *ptep and entry
229	 * (calculated as: a & b == ~(~a | ~b)).
230	 */
231	pte_val(entry) ^= PTE_RDONLY;
232	pteval = pte_val(pte);
233	do {
234		old_pteval = pteval;
235		pteval ^= PTE_RDONLY;
236		pteval |= pte_val(entry);
237		pteval ^= PTE_RDONLY;
238		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
239	} while (pteval != old_pteval);
240
241	/* Invalidate a stale read-only entry */
242	if (dirty)
243		flush_tlb_page(vma, address);
244	return 1;
245}
246
247static bool is_el1_instruction_abort(unsigned long esr)
248{
249	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
250}
251
252static bool is_el1_data_abort(unsigned long esr)
253{
254	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
255}
256
257static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
258					   struct pt_regs *regs)
259{
260	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
261		return false;
262
263	if (esr_fsc_is_permission_fault(esr))
264		return true;
265
266	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
267		return esr_fsc_is_translation_fault(esr) &&
268			(regs->pstate & PSR_PAN_BIT);
269
270	return false;
271}
272
273static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
274							unsigned long esr,
275							struct pt_regs *regs)
276{
277	unsigned long flags;
278	u64 par, dfsc;
279
280	if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr))
281		return false;
282
283	local_irq_save(flags);
284	asm volatile("at s1e1r, %0" :: "r" (addr));
285	isb();
286	par = read_sysreg_par();
287	local_irq_restore(flags);
288
289	/*
290	 * If we now have a valid translation, treat the translation fault as
291	 * spurious.
292	 */
293	if (!(par & SYS_PAR_EL1_F))
294		return true;
295
296	/*
297	 * If we got a different type of fault from the AT instruction,
298	 * treat the translation fault as spurious.
299	 */
300	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
301	return !esr_fsc_is_translation_fault(dfsc);
302}
303
304static void die_kernel_fault(const char *msg, unsigned long addr,
305			     unsigned long esr, struct pt_regs *regs)
306{
307	bust_spinlocks(1);
308
309	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
310		 addr);
311
312	kasan_non_canonical_hook(addr);
313
314	mem_abort_decode(esr);
315
316	show_pte(addr);
317	die("Oops", regs, esr);
318	bust_spinlocks(0);
319	make_task_dead(SIGKILL);
320}
321
322#ifdef CONFIG_KASAN_HW_TAGS
323static void report_tag_fault(unsigned long addr, unsigned long esr,
324			     struct pt_regs *regs)
325{
326	/*
327	 * SAS bits aren't set for all faults reported in EL1, so we can't
328	 * find out access size.
329	 */
330	bool is_write = !!(esr & ESR_ELx_WNR);
331	kasan_report((void *)addr, 0, is_write, regs->pc);
332}
333#else
334/* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
335static inline void report_tag_fault(unsigned long addr, unsigned long esr,
336				    struct pt_regs *regs) { }
337#endif
338
339static void do_tag_recovery(unsigned long addr, unsigned long esr,
340			   struct pt_regs *regs)
341{
342
343	report_tag_fault(addr, esr, regs);
344
345	/*
346	 * Disable MTE Tag Checking on the local CPU for the current EL.
347	 * It will be done lazily on the other CPUs when they will hit a
348	 * tag fault.
349	 */
350	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
351			 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
352	isb();
353}
354
355static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
356{
357	unsigned long fsc = esr & ESR_ELx_FSC;
358
359	if (!is_el1_data_abort(esr))
360		return false;
361
362	if (fsc == ESR_ELx_FSC_MTE)
363		return true;
364
365	return false;
366}
367
368static void __do_kernel_fault(unsigned long addr, unsigned long esr,
369			      struct pt_regs *regs)
370{
371	const char *msg;
372
373	/*
374	 * Are we prepared to handle this kernel fault?
375	 * We are almost certainly not prepared to handle instruction faults.
376	 */
377	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
378		return;
379
380	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
381	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
382		return;
383
384	if (is_el1_mte_sync_tag_check_fault(esr)) {
385		do_tag_recovery(addr, esr, regs);
386
387		return;
388	}
389
390	if (is_el1_permission_fault(addr, esr, regs)) {
391		if (esr & ESR_ELx_WNR)
392			msg = "write to read-only memory";
393		else if (is_el1_instruction_abort(esr))
394			msg = "execute from non-executable memory";
395		else
396			msg = "read from unreadable memory";
397	} else if (addr < PAGE_SIZE) {
398		msg = "NULL pointer dereference";
399	} else {
400		if (esr_fsc_is_translation_fault(esr) &&
401		    kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
402			return;
403
404		msg = "paging request";
405	}
406
407	if (efi_runtime_fixup_exception(regs, msg))
408		return;
409
410	die_kernel_fault(msg, addr, esr, regs);
411}
412
413static void set_thread_esr(unsigned long address, unsigned long esr)
414{
415	current->thread.fault_address = address;
416
417	/*
418	 * If the faulting address is in the kernel, we must sanitize the ESR.
419	 * From userspace's point of view, kernel-only mappings don't exist
420	 * at all, so we report them as level 0 translation faults.
421	 * (This is not quite the way that "no mapping there at all" behaves:
422	 * an alignment fault not caused by the memory type would take
423	 * precedence over translation fault for a real access to empty
424	 * space. Unfortunately we can't easily distinguish "alignment fault
425	 * not caused by memory type" from "alignment fault caused by memory
426	 * type", so we ignore this wrinkle and just return the translation
427	 * fault.)
428	 */
429	if (!is_ttbr0_addr(current->thread.fault_address)) {
430		switch (ESR_ELx_EC(esr)) {
431		case ESR_ELx_EC_DABT_LOW:
432			/*
433			 * These bits provide only information about the
434			 * faulting instruction, which userspace knows already.
435			 * We explicitly clear bits which are architecturally
436			 * RES0 in case they are given meanings in future.
437			 * We always report the ESR as if the fault was taken
438			 * to EL1 and so ISV and the bits in ISS[23:14] are
439			 * clear. (In fact it always will be a fault to EL1.)
440			 */
441			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
442				ESR_ELx_CM | ESR_ELx_WNR;
443			esr |= ESR_ELx_FSC_FAULT;
444			break;
445		case ESR_ELx_EC_IABT_LOW:
446			/*
447			 * Claim a level 0 translation fault.
448			 * All other bits are architecturally RES0 for faults
449			 * reported with that DFSC value, so we clear them.
450			 */
451			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
452			esr |= ESR_ELx_FSC_FAULT;
453			break;
454		default:
455			/*
456			 * This should never happen (entry.S only brings us
457			 * into this code for insn and data aborts from a lower
458			 * exception level). Fail safe by not providing an ESR
459			 * context record at all.
460			 */
461			WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
462			esr = 0;
463			break;
464		}
465	}
466
467	current->thread.fault_code = esr;
468}
469
470static void do_bad_area(unsigned long far, unsigned long esr,
471			struct pt_regs *regs)
472{
473	unsigned long addr = untagged_addr(far);
474
475	/*
476	 * If we are in kernel mode at this point, we have no context to
477	 * handle this fault with.
478	 */
479	if (user_mode(regs)) {
480		const struct fault_info *inf = esr_to_fault_info(esr);
481
482		set_thread_esr(addr, esr);
483		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
484	} else {
485		__do_kernel_fault(addr, esr, regs);
486	}
487}
488
489#define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
490#define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
491
492static vm_fault_t __do_page_fault(struct mm_struct *mm,
493				  struct vm_area_struct *vma, unsigned long addr,
494				  unsigned int mm_flags, unsigned long vm_flags,
495				  struct pt_regs *regs)
496{
497	/*
498	 * Ok, we have a good vm_area for this memory access, so we can handle
499	 * it.
500	 * Check that the permissions on the VMA allow for the fault which
501	 * occurred.
502	 */
503	if (!(vma->vm_flags & vm_flags))
504		return VM_FAULT_BADACCESS;
505	return handle_mm_fault(vma, addr, mm_flags, regs);
506}
507
508static bool is_el0_instruction_abort(unsigned long esr)
509{
510	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
511}
512
513/*
514 * Note: not valid for EL1 DC IVAC, but we never use that such that it
515 * should fault. EL0 cannot issue DC IVAC (undef).
516 */
517static bool is_write_abort(unsigned long esr)
518{
519	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
520}
521
522static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
523				   struct pt_regs *regs)
524{
525	const struct fault_info *inf;
526	struct mm_struct *mm = current->mm;
527	vm_fault_t fault;
528	unsigned long vm_flags;
529	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
530	unsigned long addr = untagged_addr(far);
531	struct vm_area_struct *vma;
532
533	if (kprobe_page_fault(regs, esr))
534		return 0;
535
536	/*
537	 * If we're in an interrupt or have no user context, we must not take
538	 * the fault.
539	 */
540	if (faulthandler_disabled() || !mm)
541		goto no_context;
542
543	if (user_mode(regs))
544		mm_flags |= FAULT_FLAG_USER;
545
546	/*
547	 * vm_flags tells us what bits we must have in vma->vm_flags
548	 * for the fault to be benign, __do_page_fault() would check
549	 * vma->vm_flags & vm_flags and returns an error if the
550	 * intersection is empty
551	 */
552	if (is_el0_instruction_abort(esr)) {
553		/* It was exec fault */
554		vm_flags = VM_EXEC;
555		mm_flags |= FAULT_FLAG_INSTRUCTION;
556	} else if (is_write_abort(esr)) {
557		/* It was write fault */
558		vm_flags = VM_WRITE;
559		mm_flags |= FAULT_FLAG_WRITE;
560	} else {
561		/* It was read fault */
562		vm_flags = VM_READ;
563		/* Write implies read */
564		vm_flags |= VM_WRITE;
565		/* If EPAN is absent then exec implies read */
566		if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
567			vm_flags |= VM_EXEC;
568	}
569
570	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
571		if (is_el1_instruction_abort(esr))
572			die_kernel_fault("execution of user memory",
573					 addr, esr, regs);
574
575		if (!search_exception_tables(regs->pc))
576			die_kernel_fault("access to user memory outside uaccess routines",
577					 addr, esr, regs);
578	}
579
580	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
581
582	if (!(mm_flags & FAULT_FLAG_USER))
583		goto lock_mmap;
584
585	vma = lock_vma_under_rcu(mm, addr);
586	if (!vma)
587		goto lock_mmap;
588
589	if (!(vma->vm_flags & vm_flags)) {
590		vma_end_read(vma);
591		goto lock_mmap;
592	}
593	fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
594	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
595		vma_end_read(vma);
596
597	if (!(fault & VM_FAULT_RETRY)) {
598		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
599		goto done;
600	}
601	count_vm_vma_lock_event(VMA_LOCK_RETRY);
602	if (fault & VM_FAULT_MAJOR)
603		mm_flags |= FAULT_FLAG_TRIED;
604
605	/* Quick path to respond to signals */
606	if (fault_signal_pending(fault, regs)) {
607		if (!user_mode(regs))
608			goto no_context;
609		return 0;
610	}
611lock_mmap:
612
613retry:
614	vma = lock_mm_and_find_vma(mm, addr, regs);
615	if (unlikely(!vma)) {
616		fault = VM_FAULT_BADMAP;
617		goto done;
618	}
619
620	fault = __do_page_fault(mm, vma, addr, mm_flags, vm_flags, regs);
621
622	/* Quick path to respond to signals */
623	if (fault_signal_pending(fault, regs)) {
624		if (!user_mode(regs))
625			goto no_context;
626		return 0;
627	}
628
629	/* The fault is fully completed (including releasing mmap lock) */
630	if (fault & VM_FAULT_COMPLETED)
631		return 0;
632
633	if (fault & VM_FAULT_RETRY) {
634		mm_flags |= FAULT_FLAG_TRIED;
635		goto retry;
636	}
637	mmap_read_unlock(mm);
638
639done:
640	/*
641	 * Handle the "normal" (no error) case first.
642	 */
643	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
644			      VM_FAULT_BADACCESS))))
645		return 0;
646
647	/*
648	 * If we are in kernel mode at this point, we have no context to
649	 * handle this fault with.
650	 */
651	if (!user_mode(regs))
652		goto no_context;
653
654	if (fault & VM_FAULT_OOM) {
655		/*
656		 * We ran out of memory, call the OOM killer, and return to
657		 * userspace (which will retry the fault, or kill us if we got
658		 * oom-killed).
659		 */
660		pagefault_out_of_memory();
661		return 0;
662	}
663
664	inf = esr_to_fault_info(esr);
665	set_thread_esr(addr, esr);
666	if (fault & VM_FAULT_SIGBUS) {
667		/*
668		 * We had some memory, but were unable to successfully fix up
669		 * this page fault.
670		 */
671		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
672	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
673		unsigned int lsb;
674
675		lsb = PAGE_SHIFT;
676		if (fault & VM_FAULT_HWPOISON_LARGE)
677			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
678
679		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
680	} else {
681		/*
682		 * Something tried to access memory that isn't in our memory
683		 * map.
684		 */
685		arm64_force_sig_fault(SIGSEGV,
686				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
687				      far, inf->name);
688	}
689
690	return 0;
691
692no_context:
693	__do_kernel_fault(addr, esr, regs);
694	return 0;
695}
696
697static int __kprobes do_translation_fault(unsigned long far,
698					  unsigned long esr,
699					  struct pt_regs *regs)
700{
701	unsigned long addr = untagged_addr(far);
702
703	if (is_ttbr0_addr(addr))
704		return do_page_fault(far, esr, regs);
705
706	do_bad_area(far, esr, regs);
707	return 0;
708}
709
710static int do_alignment_fault(unsigned long far, unsigned long esr,
711			      struct pt_regs *regs)
712{
713	if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
714	    compat_user_mode(regs))
715		return do_compat_alignment_fixup(far, regs);
716	do_bad_area(far, esr, regs);
717	return 0;
718}
719
720static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
721{
722	return 1; /* "fault" */
723}
724
725static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
726{
727	const struct fault_info *inf;
728	unsigned long siaddr;
729
730	inf = esr_to_fault_info(esr);
731
732	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
733		/*
734		 * APEI claimed this as a firmware-first notification.
735		 * Some processing deferred to task_work before ret_to_user().
736		 */
737		return 0;
738	}
739
740	if (esr & ESR_ELx_FnV) {
741		siaddr = 0;
742	} else {
743		/*
744		 * The architecture specifies that the tag bits of FAR_EL1 are
745		 * UNKNOWN for synchronous external aborts. Mask them out now
746		 * so that userspace doesn't see them.
747		 */
748		siaddr  = untagged_addr(far);
749	}
750	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
751
752	return 0;
753}
754
755static int do_tag_check_fault(unsigned long far, unsigned long esr,
756			      struct pt_regs *regs)
757{
758	/*
759	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
760	 * for tag check faults. Set them to corresponding bits in the untagged
761	 * address.
762	 */
763	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
764	do_bad_area(far, esr, regs);
765	return 0;
766}
767
768static const struct fault_info fault_info[] = {
769	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
770	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
771	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
772	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
773	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
774	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
775	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
776	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
777	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 0 access flag fault"	},
778	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
779	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
780	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
781	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 0 permission fault"	},
782	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
783	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
784	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
785	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
786	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
787	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
788	{ do_sea,		SIGKILL, SI_KERNEL,	"level -1 (translation table walk)"	},
789	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
790	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
791	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
792	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
793	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
794	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
795	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
796	{ do_sea,		SIGKILL, SI_KERNEL,	"level -1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
797	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
798	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
799	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
800	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
801	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
802	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
803	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
804	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
805	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
806	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
807	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
808	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
809	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
810	{ do_bad,		SIGKILL, SI_KERNEL,	"level -1 address size fault"	},
811	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
812	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level -1 translation fault"	},
813	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
814	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
815	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
816	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
817	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
818	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
819	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
820	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
821	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
822	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
823	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
824	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
825	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
826	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
827	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
828	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
829	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
830	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
831	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
832	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
833};
834
835void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
836{
837	const struct fault_info *inf = esr_to_fault_info(esr);
838	unsigned long addr = untagged_addr(far);
839
840	if (!inf->fn(far, esr, regs))
841		return;
842
843	if (!user_mode(regs))
844		die_kernel_fault(inf->name, addr, esr, regs);
845
846	/*
847	 * At this point we have an unrecognized fault type whose tag bits may
848	 * have been defined as UNKNOWN. Therefore we only expose the untagged
849	 * address to the signal handler.
850	 */
851	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
852}
853NOKPROBE_SYMBOL(do_mem_abort);
854
855void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
856{
857	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
858			 addr, esr);
859}
860NOKPROBE_SYMBOL(do_sp_pc_abort);
861
862/*
863 * __refdata because early_brk64 is __init, but the reference to it is
864 * clobbered at arch_initcall time.
865 * See traps.c and debug-monitors.c:debug_traps_init().
866 */
867static struct fault_info __refdata debug_fault_info[] = {
868	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
869	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
870	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
871	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
872	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
873	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
874	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
875	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
876};
877
878void __init hook_debug_fault_code(int nr,
879				  int (*fn)(unsigned long, unsigned long, struct pt_regs *),
880				  int sig, int code, const char *name)
881{
882	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
883
884	debug_fault_info[nr].fn		= fn;
885	debug_fault_info[nr].sig	= sig;
886	debug_fault_info[nr].code	= code;
887	debug_fault_info[nr].name	= name;
888}
889
890/*
891 * In debug exception context, we explicitly disable preemption despite
892 * having interrupts disabled.
893 * This serves two purposes: it makes it much less likely that we would
894 * accidentally schedule in exception context and it will force a warning
895 * if we somehow manage to schedule by accident.
896 */
897static void debug_exception_enter(struct pt_regs *regs)
898{
899	preempt_disable();
900
901	/* This code is a bit fragile.  Test it. */
902	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
903}
904NOKPROBE_SYMBOL(debug_exception_enter);
905
906static void debug_exception_exit(struct pt_regs *regs)
907{
908	preempt_enable_no_resched();
909}
910NOKPROBE_SYMBOL(debug_exception_exit);
911
912void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
913			struct pt_regs *regs)
914{
915	const struct fault_info *inf = esr_to_debug_fault_info(esr);
916	unsigned long pc = instruction_pointer(regs);
917
918	debug_exception_enter(regs);
919
920	if (user_mode(regs) && !is_ttbr0_addr(pc))
921		arm64_apply_bp_hardening();
922
923	if (inf->fn(addr_if_watchpoint, esr, regs)) {
924		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
925	}
926
927	debug_exception_exit(regs);
928}
929NOKPROBE_SYMBOL(do_debug_exception);
930
931/*
932 * Used during anonymous page fault handling.
933 */
934struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
935						unsigned long vaddr)
936{
937	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
938
939	/*
940	 * If the page is mapped with PROT_MTE, initialise the tags at the
941	 * point of allocation and page zeroing as this is usually faster than
942	 * separate DC ZVA and STGM.
943	 */
944	if (vma->vm_flags & VM_MTE)
945		flags |= __GFP_ZEROTAGS;
946
947	return vma_alloc_folio(flags, 0, vma, vaddr, false);
948}
949
950void tag_clear_highpage(struct page *page)
951{
952	/* Newly allocated page, shouldn't have been tagged yet */
953	WARN_ON_ONCE(!try_page_mte_tagging(page));
954	mte_zero_clear_page_tags(page_address(page));
955	set_page_mte_tagged(page);
956}
957