1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012-2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7#include <hyp/adjust_pc.h>
8
9#include <linux/compiler.h>
10#include <linux/irqchip/arm-gic-v3.h>
11#include <linux/kvm_host.h>
12
13#include <asm/kvm_emulate.h>
14#include <asm/kvm_hyp.h>
15#include <asm/kvm_mmu.h>
16
17#define vtr_to_max_lr_idx(v)		((v) & 0xf)
18#define vtr_to_nr_pre_bits(v)		((((u32)(v) >> 26) & 7) + 1)
19#define vtr_to_nr_apr_regs(v)		(1 << (vtr_to_nr_pre_bits(v) - 5))
20
21static u64 __gic_v3_get_lr(unsigned int lr)
22{
23	switch (lr & 0xf) {
24	case 0:
25		return read_gicreg(ICH_LR0_EL2);
26	case 1:
27		return read_gicreg(ICH_LR1_EL2);
28	case 2:
29		return read_gicreg(ICH_LR2_EL2);
30	case 3:
31		return read_gicreg(ICH_LR3_EL2);
32	case 4:
33		return read_gicreg(ICH_LR4_EL2);
34	case 5:
35		return read_gicreg(ICH_LR5_EL2);
36	case 6:
37		return read_gicreg(ICH_LR6_EL2);
38	case 7:
39		return read_gicreg(ICH_LR7_EL2);
40	case 8:
41		return read_gicreg(ICH_LR8_EL2);
42	case 9:
43		return read_gicreg(ICH_LR9_EL2);
44	case 10:
45		return read_gicreg(ICH_LR10_EL2);
46	case 11:
47		return read_gicreg(ICH_LR11_EL2);
48	case 12:
49		return read_gicreg(ICH_LR12_EL2);
50	case 13:
51		return read_gicreg(ICH_LR13_EL2);
52	case 14:
53		return read_gicreg(ICH_LR14_EL2);
54	case 15:
55		return read_gicreg(ICH_LR15_EL2);
56	}
57
58	unreachable();
59}
60
61static void __gic_v3_set_lr(u64 val, int lr)
62{
63	switch (lr & 0xf) {
64	case 0:
65		write_gicreg(val, ICH_LR0_EL2);
66		break;
67	case 1:
68		write_gicreg(val, ICH_LR1_EL2);
69		break;
70	case 2:
71		write_gicreg(val, ICH_LR2_EL2);
72		break;
73	case 3:
74		write_gicreg(val, ICH_LR3_EL2);
75		break;
76	case 4:
77		write_gicreg(val, ICH_LR4_EL2);
78		break;
79	case 5:
80		write_gicreg(val, ICH_LR5_EL2);
81		break;
82	case 6:
83		write_gicreg(val, ICH_LR6_EL2);
84		break;
85	case 7:
86		write_gicreg(val, ICH_LR7_EL2);
87		break;
88	case 8:
89		write_gicreg(val, ICH_LR8_EL2);
90		break;
91	case 9:
92		write_gicreg(val, ICH_LR9_EL2);
93		break;
94	case 10:
95		write_gicreg(val, ICH_LR10_EL2);
96		break;
97	case 11:
98		write_gicreg(val, ICH_LR11_EL2);
99		break;
100	case 12:
101		write_gicreg(val, ICH_LR12_EL2);
102		break;
103	case 13:
104		write_gicreg(val, ICH_LR13_EL2);
105		break;
106	case 14:
107		write_gicreg(val, ICH_LR14_EL2);
108		break;
109	case 15:
110		write_gicreg(val, ICH_LR15_EL2);
111		break;
112	}
113}
114
115static void __vgic_v3_write_ap0rn(u32 val, int n)
116{
117	switch (n) {
118	case 0:
119		write_gicreg(val, ICH_AP0R0_EL2);
120		break;
121	case 1:
122		write_gicreg(val, ICH_AP0R1_EL2);
123		break;
124	case 2:
125		write_gicreg(val, ICH_AP0R2_EL2);
126		break;
127	case 3:
128		write_gicreg(val, ICH_AP0R3_EL2);
129		break;
130	}
131}
132
133static void __vgic_v3_write_ap1rn(u32 val, int n)
134{
135	switch (n) {
136	case 0:
137		write_gicreg(val, ICH_AP1R0_EL2);
138		break;
139	case 1:
140		write_gicreg(val, ICH_AP1R1_EL2);
141		break;
142	case 2:
143		write_gicreg(val, ICH_AP1R2_EL2);
144		break;
145	case 3:
146		write_gicreg(val, ICH_AP1R3_EL2);
147		break;
148	}
149}
150
151static u32 __vgic_v3_read_ap0rn(int n)
152{
153	u32 val;
154
155	switch (n) {
156	case 0:
157		val = read_gicreg(ICH_AP0R0_EL2);
158		break;
159	case 1:
160		val = read_gicreg(ICH_AP0R1_EL2);
161		break;
162	case 2:
163		val = read_gicreg(ICH_AP0R2_EL2);
164		break;
165	case 3:
166		val = read_gicreg(ICH_AP0R3_EL2);
167		break;
168	default:
169		unreachable();
170	}
171
172	return val;
173}
174
175static u32 __vgic_v3_read_ap1rn(int n)
176{
177	u32 val;
178
179	switch (n) {
180	case 0:
181		val = read_gicreg(ICH_AP1R0_EL2);
182		break;
183	case 1:
184		val = read_gicreg(ICH_AP1R1_EL2);
185		break;
186	case 2:
187		val = read_gicreg(ICH_AP1R2_EL2);
188		break;
189	case 3:
190		val = read_gicreg(ICH_AP1R3_EL2);
191		break;
192	default:
193		unreachable();
194	}
195
196	return val;
197}
198
199void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
200{
201	u64 used_lrs = cpu_if->used_lrs;
202
203	/*
204	 * Make sure stores to the GIC via the memory mapped interface
205	 * are now visible to the system register interface when reading the
206	 * LRs, and when reading back the VMCR on non-VHE systems.
207	 */
208	if (used_lrs || !has_vhe()) {
209		if (!cpu_if->vgic_sre) {
210			dsb(sy);
211			isb();
212		}
213	}
214
215	if (used_lrs || cpu_if->its_vpe.its_vm) {
216		int i;
217		u32 elrsr;
218
219		elrsr = read_gicreg(ICH_ELRSR_EL2);
220
221		write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EN, ICH_HCR_EL2);
222
223		for (i = 0; i < used_lrs; i++) {
224			if (elrsr & (1 << i))
225				cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
226			else
227				cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
228
229			__gic_v3_set_lr(0, i);
230		}
231	}
232}
233
234void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
235{
236	u64 used_lrs = cpu_if->used_lrs;
237	int i;
238
239	if (used_lrs || cpu_if->its_vpe.its_vm) {
240		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
241
242		for (i = 0; i < used_lrs; i++)
243			__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
244	}
245
246	/*
247	 * Ensure that writes to the LRs, and on non-VHE systems ensure that
248	 * the write to the VMCR in __vgic_v3_activate_traps(), will have
249	 * reached the (re)distributors. This ensure the guest will read the
250	 * correct values from the memory-mapped interface.
251	 */
252	if (used_lrs || !has_vhe()) {
253		if (!cpu_if->vgic_sre) {
254			isb();
255			dsb(sy);
256		}
257	}
258}
259
260void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
261{
262	/*
263	 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
264	 * Group0 interrupt (as generated in GICv2 mode) to be
265	 * delivered as a FIQ to the guest, with potentially fatal
266	 * consequences. So we must make sure that ICC_SRE_EL1 has
267	 * been actually programmed with the value we want before
268	 * starting to mess with the rest of the GIC, and VMCR_EL2 in
269	 * particular.  This logic must be called before
270	 * __vgic_v3_restore_state().
271	 */
272	if (!cpu_if->vgic_sre) {
273		write_gicreg(0, ICC_SRE_EL1);
274		isb();
275		write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
276
277
278		if (has_vhe()) {
279			/*
280			 * Ensure that the write to the VMCR will have reached
281			 * the (re)distributors. This ensure the guest will
282			 * read the correct values from the memory-mapped
283			 * interface.
284			 */
285			isb();
286			dsb(sy);
287		}
288	}
289
290	/*
291	 * Prevent the guest from touching the GIC system registers if
292	 * SRE isn't enabled for GICv3 emulation.
293	 */
294	write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
295		     ICC_SRE_EL2);
296
297	/*
298	 * If we need to trap system registers, we must write
299	 * ICH_HCR_EL2 anyway, even if no interrupts are being
300	 * injected,
301	 */
302	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
303	    cpu_if->its_vpe.its_vm)
304		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
305}
306
307void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
308{
309	u64 val;
310
311	if (!cpu_if->vgic_sre) {
312		cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
313	}
314
315	val = read_gicreg(ICC_SRE_EL2);
316	write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
317
318	if (!cpu_if->vgic_sre) {
319		/* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
320		isb();
321		write_gicreg(1, ICC_SRE_EL1);
322	}
323
324	/*
325	 * If we were trapping system registers, we enabled the VGIC even if
326	 * no interrupts were being injected, and we disable it again here.
327	 */
328	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
329	    cpu_if->its_vpe.its_vm)
330		write_gicreg(0, ICH_HCR_EL2);
331}
332
333void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
334{
335	u64 val;
336	u32 nr_pre_bits;
337
338	val = read_gicreg(ICH_VTR_EL2);
339	nr_pre_bits = vtr_to_nr_pre_bits(val);
340
341	switch (nr_pre_bits) {
342	case 7:
343		cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
344		cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
345		fallthrough;
346	case 6:
347		cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
348		fallthrough;
349	default:
350		cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
351	}
352
353	switch (nr_pre_bits) {
354	case 7:
355		cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
356		cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
357		fallthrough;
358	case 6:
359		cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
360		fallthrough;
361	default:
362		cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
363	}
364}
365
366void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
367{
368	u64 val;
369	u32 nr_pre_bits;
370
371	val = read_gicreg(ICH_VTR_EL2);
372	nr_pre_bits = vtr_to_nr_pre_bits(val);
373
374	switch (nr_pre_bits) {
375	case 7:
376		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
377		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
378		fallthrough;
379	case 6:
380		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
381		fallthrough;
382	default:
383		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
384	}
385
386	switch (nr_pre_bits) {
387	case 7:
388		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
389		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
390		fallthrough;
391	case 6:
392		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
393		fallthrough;
394	default:
395		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
396	}
397}
398
399void __vgic_v3_init_lrs(void)
400{
401	int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
402	int i;
403
404	for (i = 0; i <= max_lr_idx; i++)
405		__gic_v3_set_lr(0, i);
406}
407
408/*
409 * Return the GIC CPU configuration:
410 * - [31:0]  ICH_VTR_EL2
411 * - [62:32] RES0
412 * - [63]    MMIO (GICv2) capable
413 */
414u64 __vgic_v3_get_gic_config(void)
415{
416	u64 val, sre = read_gicreg(ICC_SRE_EL1);
417	unsigned long flags = 0;
418
419	/*
420	 * To check whether we have a MMIO-based (GICv2 compatible)
421	 * CPU interface, we need to disable the system register
422	 * view. To do that safely, we have to prevent any interrupt
423	 * from firing (which would be deadly).
424	 *
425	 * Note that this only makes sense on VHE, as interrupts are
426	 * already masked for nVHE as part of the exception entry to
427	 * EL2.
428	 */
429	if (has_vhe())
430		flags = local_daif_save();
431
432	/*
433	 * Table 11-2 "Permitted ICC_SRE_ELx.SRE settings" indicates
434	 * that to be able to set ICC_SRE_EL1.SRE to 0, all the
435	 * interrupt overrides must be set. You've got to love this.
436	 */
437	sysreg_clear_set(hcr_el2, 0, HCR_AMO | HCR_FMO | HCR_IMO);
438	isb();
439	write_gicreg(0, ICC_SRE_EL1);
440	isb();
441
442	val = read_gicreg(ICC_SRE_EL1);
443
444	write_gicreg(sre, ICC_SRE_EL1);
445	isb();
446	sysreg_clear_set(hcr_el2, HCR_AMO | HCR_FMO | HCR_IMO, 0);
447	isb();
448
449	if (has_vhe())
450		local_daif_restore(flags);
451
452	val  = (val & ICC_SRE_EL1_SRE) ? 0 : (1ULL << 63);
453	val |= read_gicreg(ICH_VTR_EL2);
454
455	return val;
456}
457
458u64 __vgic_v3_read_vmcr(void)
459{
460	return read_gicreg(ICH_VMCR_EL2);
461}
462
463void __vgic_v3_write_vmcr(u32 vmcr)
464{
465	write_gicreg(vmcr, ICH_VMCR_EL2);
466}
467
468static int __vgic_v3_bpr_min(void)
469{
470	/* See Pseudocode for VPriorityGroup */
471	return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
472}
473
474static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
475{
476	u64 esr = kvm_vcpu_get_esr(vcpu);
477	u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
478
479	return crm != 8;
480}
481
482#define GICv3_IDLE_PRIORITY	0xff
483
484static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
485					 u64 *lr_val)
486{
487	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
488	u8 priority = GICv3_IDLE_PRIORITY;
489	int i, lr = -1;
490
491	for (i = 0; i < used_lrs; i++) {
492		u64 val = __gic_v3_get_lr(i);
493		u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
494
495		/* Not pending in the state? */
496		if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
497			continue;
498
499		/* Group-0 interrupt, but Group-0 disabled? */
500		if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
501			continue;
502
503		/* Group-1 interrupt, but Group-1 disabled? */
504		if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
505			continue;
506
507		/* Not the highest priority? */
508		if (lr_prio >= priority)
509			continue;
510
511		/* This is a candidate */
512		priority = lr_prio;
513		*lr_val = val;
514		lr = i;
515	}
516
517	if (lr == -1)
518		*lr_val = ICC_IAR1_EL1_SPURIOUS;
519
520	return lr;
521}
522
523static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
524				    u64 *lr_val)
525{
526	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
527	int i;
528
529	for (i = 0; i < used_lrs; i++) {
530		u64 val = __gic_v3_get_lr(i);
531
532		if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
533		    (val & ICH_LR_ACTIVE_BIT)) {
534			*lr_val = val;
535			return i;
536		}
537	}
538
539	*lr_val = ICC_IAR1_EL1_SPURIOUS;
540	return -1;
541}
542
543static int __vgic_v3_get_highest_active_priority(void)
544{
545	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
546	u32 hap = 0;
547	int i;
548
549	for (i = 0; i < nr_apr_regs; i++) {
550		u32 val;
551
552		/*
553		 * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
554		 * contain the active priority levels for this VCPU
555		 * for the maximum number of supported priority
556		 * levels, and we return the full priority level only
557		 * if the BPR is programmed to its minimum, otherwise
558		 * we return a combination of the priority level and
559		 * subpriority, as determined by the setting of the
560		 * BPR, but without the full subpriority.
561		 */
562		val  = __vgic_v3_read_ap0rn(i);
563		val |= __vgic_v3_read_ap1rn(i);
564		if (!val) {
565			hap += 32;
566			continue;
567		}
568
569		return (hap + __ffs(val)) << __vgic_v3_bpr_min();
570	}
571
572	return GICv3_IDLE_PRIORITY;
573}
574
575static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
576{
577	return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
578}
579
580static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
581{
582	unsigned int bpr;
583
584	if (vmcr & ICH_VMCR_CBPR_MASK) {
585		bpr = __vgic_v3_get_bpr0(vmcr);
586		if (bpr < 7)
587			bpr++;
588	} else {
589		bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
590	}
591
592	return bpr;
593}
594
595/*
596 * Convert a priority to a preemption level, taking the relevant BPR
597 * into account by zeroing the sub-priority bits.
598 */
599static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
600{
601	unsigned int bpr;
602
603	if (!grp)
604		bpr = __vgic_v3_get_bpr0(vmcr) + 1;
605	else
606		bpr = __vgic_v3_get_bpr1(vmcr);
607
608	return pri & (GENMASK(7, 0) << bpr);
609}
610
611/*
612 * The priority value is independent of any of the BPR values, so we
613 * normalize it using the minimal BPR value. This guarantees that no
614 * matter what the guest does with its BPR, we can always set/get the
615 * same value of a priority.
616 */
617static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
618{
619	u8 pre, ap;
620	u32 val;
621	int apr;
622
623	pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
624	ap = pre >> __vgic_v3_bpr_min();
625	apr = ap / 32;
626
627	if (!grp) {
628		val = __vgic_v3_read_ap0rn(apr);
629		__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
630	} else {
631		val = __vgic_v3_read_ap1rn(apr);
632		__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
633	}
634}
635
636static int __vgic_v3_clear_highest_active_priority(void)
637{
638	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
639	u32 hap = 0;
640	int i;
641
642	for (i = 0; i < nr_apr_regs; i++) {
643		u32 ap0, ap1;
644		int c0, c1;
645
646		ap0 = __vgic_v3_read_ap0rn(i);
647		ap1 = __vgic_v3_read_ap1rn(i);
648		if (!ap0 && !ap1) {
649			hap += 32;
650			continue;
651		}
652
653		c0 = ap0 ? __ffs(ap0) : 32;
654		c1 = ap1 ? __ffs(ap1) : 32;
655
656		/* Always clear the LSB, which is the highest priority */
657		if (c0 < c1) {
658			ap0 &= ~BIT(c0);
659			__vgic_v3_write_ap0rn(ap0, i);
660			hap += c0;
661		} else {
662			ap1 &= ~BIT(c1);
663			__vgic_v3_write_ap1rn(ap1, i);
664			hap += c1;
665		}
666
667		/* Rescale to 8 bits of priority */
668		return hap << __vgic_v3_bpr_min();
669	}
670
671	return GICv3_IDLE_PRIORITY;
672}
673
674static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
675{
676	u64 lr_val;
677	u8 lr_prio, pmr;
678	int lr, grp;
679
680	grp = __vgic_v3_get_group(vcpu);
681
682	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
683	if (lr < 0)
684		goto spurious;
685
686	if (grp != !!(lr_val & ICH_LR_GROUP))
687		goto spurious;
688
689	pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
690	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
691	if (pmr <= lr_prio)
692		goto spurious;
693
694	if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
695		goto spurious;
696
697	lr_val &= ~ICH_LR_STATE;
698	lr_val |= ICH_LR_ACTIVE_BIT;
699	__gic_v3_set_lr(lr_val, lr);
700	__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
701	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
702	return;
703
704spurious:
705	vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
706}
707
708static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
709{
710	lr_val &= ~ICH_LR_ACTIVE_BIT;
711	if (lr_val & ICH_LR_HW) {
712		u32 pid;
713
714		pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
715		gic_write_dir(pid);
716	}
717
718	__gic_v3_set_lr(lr_val, lr);
719}
720
721static void __vgic_v3_bump_eoicount(void)
722{
723	u32 hcr;
724
725	hcr = read_gicreg(ICH_HCR_EL2);
726	hcr += 1 << ICH_HCR_EOIcount_SHIFT;
727	write_gicreg(hcr, ICH_HCR_EL2);
728}
729
730static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
731{
732	u32 vid = vcpu_get_reg(vcpu, rt);
733	u64 lr_val;
734	int lr;
735
736	/* EOImode == 0, nothing to be done here */
737	if (!(vmcr & ICH_VMCR_EOIM_MASK))
738		return;
739
740	/* No deactivate to be performed on an LPI */
741	if (vid >= VGIC_MIN_LPI)
742		return;
743
744	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
745	if (lr == -1) {
746		__vgic_v3_bump_eoicount();
747		return;
748	}
749
750	__vgic_v3_clear_active_lr(lr, lr_val);
751}
752
753static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
754{
755	u32 vid = vcpu_get_reg(vcpu, rt);
756	u64 lr_val;
757	u8 lr_prio, act_prio;
758	int lr, grp;
759
760	grp = __vgic_v3_get_group(vcpu);
761
762	/* Drop priority in any case */
763	act_prio = __vgic_v3_clear_highest_active_priority();
764
765	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
766	if (lr == -1) {
767		/* Do not bump EOIcount for LPIs that aren't in the LRs */
768		if (!(vid >= VGIC_MIN_LPI))
769			__vgic_v3_bump_eoicount();
770		return;
771	}
772
773	/* EOImode == 1 and not an LPI, nothing to be done here */
774	if ((vmcr & ICH_VMCR_EOIM_MASK) && !(vid >= VGIC_MIN_LPI))
775		return;
776
777	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
778
779	/* If priorities or group do not match, the guest has fscked-up. */
780	if (grp != !!(lr_val & ICH_LR_GROUP) ||
781	    __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
782		return;
783
784	/* Let's now perform the deactivation */
785	__vgic_v3_clear_active_lr(lr, lr_val);
786}
787
788static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
789{
790	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
791}
792
793static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
794{
795	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
796}
797
798static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
799{
800	u64 val = vcpu_get_reg(vcpu, rt);
801
802	if (val & 1)
803		vmcr |= ICH_VMCR_ENG0_MASK;
804	else
805		vmcr &= ~ICH_VMCR_ENG0_MASK;
806
807	__vgic_v3_write_vmcr(vmcr);
808}
809
810static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
811{
812	u64 val = vcpu_get_reg(vcpu, rt);
813
814	if (val & 1)
815		vmcr |= ICH_VMCR_ENG1_MASK;
816	else
817		vmcr &= ~ICH_VMCR_ENG1_MASK;
818
819	__vgic_v3_write_vmcr(vmcr);
820}
821
822static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
823{
824	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
825}
826
827static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
828{
829	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
830}
831
832static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
833{
834	u64 val = vcpu_get_reg(vcpu, rt);
835	u8 bpr_min = __vgic_v3_bpr_min() - 1;
836
837	/* Enforce BPR limiting */
838	if (val < bpr_min)
839		val = bpr_min;
840
841	val <<= ICH_VMCR_BPR0_SHIFT;
842	val &= ICH_VMCR_BPR0_MASK;
843	vmcr &= ~ICH_VMCR_BPR0_MASK;
844	vmcr |= val;
845
846	__vgic_v3_write_vmcr(vmcr);
847}
848
849static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
850{
851	u64 val = vcpu_get_reg(vcpu, rt);
852	u8 bpr_min = __vgic_v3_bpr_min();
853
854	if (vmcr & ICH_VMCR_CBPR_MASK)
855		return;
856
857	/* Enforce BPR limiting */
858	if (val < bpr_min)
859		val = bpr_min;
860
861	val <<= ICH_VMCR_BPR1_SHIFT;
862	val &= ICH_VMCR_BPR1_MASK;
863	vmcr &= ~ICH_VMCR_BPR1_MASK;
864	vmcr |= val;
865
866	__vgic_v3_write_vmcr(vmcr);
867}
868
869static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
870{
871	u32 val;
872
873	if (!__vgic_v3_get_group(vcpu))
874		val = __vgic_v3_read_ap0rn(n);
875	else
876		val = __vgic_v3_read_ap1rn(n);
877
878	vcpu_set_reg(vcpu, rt, val);
879}
880
881static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
882{
883	u32 val = vcpu_get_reg(vcpu, rt);
884
885	if (!__vgic_v3_get_group(vcpu))
886		__vgic_v3_write_ap0rn(val, n);
887	else
888		__vgic_v3_write_ap1rn(val, n);
889}
890
891static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
892					    u32 vmcr, int rt)
893{
894	__vgic_v3_read_apxrn(vcpu, rt, 0);
895}
896
897static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
898					    u32 vmcr, int rt)
899{
900	__vgic_v3_read_apxrn(vcpu, rt, 1);
901}
902
903static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
904{
905	__vgic_v3_read_apxrn(vcpu, rt, 2);
906}
907
908static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
909{
910	__vgic_v3_read_apxrn(vcpu, rt, 3);
911}
912
913static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
914{
915	__vgic_v3_write_apxrn(vcpu, rt, 0);
916}
917
918static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
919{
920	__vgic_v3_write_apxrn(vcpu, rt, 1);
921}
922
923static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
924{
925	__vgic_v3_write_apxrn(vcpu, rt, 2);
926}
927
928static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
929{
930	__vgic_v3_write_apxrn(vcpu, rt, 3);
931}
932
933static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
934{
935	u64 lr_val;
936	int lr, lr_grp, grp;
937
938	grp = __vgic_v3_get_group(vcpu);
939
940	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
941	if (lr == -1)
942		goto spurious;
943
944	lr_grp = !!(lr_val & ICH_LR_GROUP);
945	if (lr_grp != grp)
946		lr_val = ICC_IAR1_EL1_SPURIOUS;
947
948spurious:
949	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
950}
951
952static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
953{
954	vmcr &= ICH_VMCR_PMR_MASK;
955	vmcr >>= ICH_VMCR_PMR_SHIFT;
956	vcpu_set_reg(vcpu, rt, vmcr);
957}
958
959static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
960{
961	u32 val = vcpu_get_reg(vcpu, rt);
962
963	val <<= ICH_VMCR_PMR_SHIFT;
964	val &= ICH_VMCR_PMR_MASK;
965	vmcr &= ~ICH_VMCR_PMR_MASK;
966	vmcr |= val;
967
968	write_gicreg(vmcr, ICH_VMCR_EL2);
969}
970
971static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
972{
973	u32 val = __vgic_v3_get_highest_active_priority();
974	vcpu_set_reg(vcpu, rt, val);
975}
976
977static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
978{
979	u32 vtr, val;
980
981	vtr = read_gicreg(ICH_VTR_EL2);
982	/* PRIbits */
983	val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
984	/* IDbits */
985	val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
986	/* SEIS */
987	if (kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK)
988		val |= BIT(ICC_CTLR_EL1_SEIS_SHIFT);
989	/* A3V */
990	val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
991	/* EOImode */
992	val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
993	/* CBPR */
994	val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
995
996	vcpu_set_reg(vcpu, rt, val);
997}
998
999static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
1000{
1001	u32 val = vcpu_get_reg(vcpu, rt);
1002
1003	if (val & ICC_CTLR_EL1_CBPR_MASK)
1004		vmcr |= ICH_VMCR_CBPR_MASK;
1005	else
1006		vmcr &= ~ICH_VMCR_CBPR_MASK;
1007
1008	if (val & ICC_CTLR_EL1_EOImode_MASK)
1009		vmcr |= ICH_VMCR_EOIM_MASK;
1010	else
1011		vmcr &= ~ICH_VMCR_EOIM_MASK;
1012
1013	write_gicreg(vmcr, ICH_VMCR_EL2);
1014}
1015
1016int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
1017{
1018	int rt;
1019	u64 esr;
1020	u32 vmcr;
1021	void (*fn)(struct kvm_vcpu *, u32, int);
1022	bool is_read;
1023	u32 sysreg;
1024
1025	esr = kvm_vcpu_get_esr(vcpu);
1026	if (vcpu_mode_is_32bit(vcpu)) {
1027		if (!kvm_condition_valid(vcpu)) {
1028			__kvm_skip_instr(vcpu);
1029			return 1;
1030		}
1031
1032		sysreg = esr_cp15_to_sysreg(esr);
1033	} else {
1034		sysreg = esr_sys64_to_sysreg(esr);
1035	}
1036
1037	is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
1038
1039	switch (sysreg) {
1040	case SYS_ICC_IAR0_EL1:
1041	case SYS_ICC_IAR1_EL1:
1042		if (unlikely(!is_read))
1043			return 0;
1044		fn = __vgic_v3_read_iar;
1045		break;
1046	case SYS_ICC_EOIR0_EL1:
1047	case SYS_ICC_EOIR1_EL1:
1048		if (unlikely(is_read))
1049			return 0;
1050		fn = __vgic_v3_write_eoir;
1051		break;
1052	case SYS_ICC_IGRPEN1_EL1:
1053		if (is_read)
1054			fn = __vgic_v3_read_igrpen1;
1055		else
1056			fn = __vgic_v3_write_igrpen1;
1057		break;
1058	case SYS_ICC_BPR1_EL1:
1059		if (is_read)
1060			fn = __vgic_v3_read_bpr1;
1061		else
1062			fn = __vgic_v3_write_bpr1;
1063		break;
1064	case SYS_ICC_AP0Rn_EL1(0):
1065	case SYS_ICC_AP1Rn_EL1(0):
1066		if (is_read)
1067			fn = __vgic_v3_read_apxr0;
1068		else
1069			fn = __vgic_v3_write_apxr0;
1070		break;
1071	case SYS_ICC_AP0Rn_EL1(1):
1072	case SYS_ICC_AP1Rn_EL1(1):
1073		if (is_read)
1074			fn = __vgic_v3_read_apxr1;
1075		else
1076			fn = __vgic_v3_write_apxr1;
1077		break;
1078	case SYS_ICC_AP0Rn_EL1(2):
1079	case SYS_ICC_AP1Rn_EL1(2):
1080		if (is_read)
1081			fn = __vgic_v3_read_apxr2;
1082		else
1083			fn = __vgic_v3_write_apxr2;
1084		break;
1085	case SYS_ICC_AP0Rn_EL1(3):
1086	case SYS_ICC_AP1Rn_EL1(3):
1087		if (is_read)
1088			fn = __vgic_v3_read_apxr3;
1089		else
1090			fn = __vgic_v3_write_apxr3;
1091		break;
1092	case SYS_ICC_HPPIR0_EL1:
1093	case SYS_ICC_HPPIR1_EL1:
1094		if (unlikely(!is_read))
1095			return 0;
1096		fn = __vgic_v3_read_hppir;
1097		break;
1098	case SYS_ICC_IGRPEN0_EL1:
1099		if (is_read)
1100			fn = __vgic_v3_read_igrpen0;
1101		else
1102			fn = __vgic_v3_write_igrpen0;
1103		break;
1104	case SYS_ICC_BPR0_EL1:
1105		if (is_read)
1106			fn = __vgic_v3_read_bpr0;
1107		else
1108			fn = __vgic_v3_write_bpr0;
1109		break;
1110	case SYS_ICC_DIR_EL1:
1111		if (unlikely(is_read))
1112			return 0;
1113		fn = __vgic_v3_write_dir;
1114		break;
1115	case SYS_ICC_RPR_EL1:
1116		if (unlikely(!is_read))
1117			return 0;
1118		fn = __vgic_v3_read_rpr;
1119		break;
1120	case SYS_ICC_CTLR_EL1:
1121		if (is_read)
1122			fn = __vgic_v3_read_ctlr;
1123		else
1124			fn = __vgic_v3_write_ctlr;
1125		break;
1126	case SYS_ICC_PMR_EL1:
1127		if (is_read)
1128			fn = __vgic_v3_read_pmr;
1129		else
1130			fn = __vgic_v3_write_pmr;
1131		break;
1132	default:
1133		return 0;
1134	}
1135
1136	vmcr = __vgic_v3_read_vmcr();
1137	rt = kvm_vcpu_sys_get_rt(vcpu);
1138	fn(vcpu, vmcr, rt);
1139
1140	__kvm_skip_instr(vcpu);
1141
1142	return 1;
1143}
1144