1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/guest.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11#include <linux/bits.h>
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/nospec.h>
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/stddef.h>
18#include <linux/string.h>
19#include <linux/vmalloc.h>
20#include <linux/fs.h>
21#include <kvm/arm_hypercalls.h>
22#include <asm/cputype.h>
23#include <linux/uaccess.h>
24#include <asm/fpsimd.h>
25#include <asm/kvm.h>
26#include <asm/kvm_emulate.h>
27#include <asm/kvm_nested.h>
28#include <asm/sigcontext.h>
29
30#include "trace.h"
31
32const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
33	KVM_GENERIC_VM_STATS()
34};
35
36const struct kvm_stats_header kvm_vm_stats_header = {
37	.name_size = KVM_STATS_NAME_SIZE,
38	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
39	.id_offset =  sizeof(struct kvm_stats_header),
40	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
41	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
42		       sizeof(kvm_vm_stats_desc),
43};
44
45const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
46	KVM_GENERIC_VCPU_STATS(),
47	STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
48	STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
49	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
50	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
51	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
52	STATS_DESC_COUNTER(VCPU, signal_exits),
53	STATS_DESC_COUNTER(VCPU, exits)
54};
55
56const struct kvm_stats_header kvm_vcpu_stats_header = {
57	.name_size = KVM_STATS_NAME_SIZE,
58	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
59	.id_offset = sizeof(struct kvm_stats_header),
60	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
61	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
62		       sizeof(kvm_vcpu_stats_desc),
63};
64
65static bool core_reg_offset_is_vreg(u64 off)
66{
67	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
68		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
69}
70
71static u64 core_reg_offset_from_id(u64 id)
72{
73	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
74}
75
76static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
77{
78	int size;
79
80	switch (off) {
81	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
82	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
83	case KVM_REG_ARM_CORE_REG(regs.sp):
84	case KVM_REG_ARM_CORE_REG(regs.pc):
85	case KVM_REG_ARM_CORE_REG(regs.pstate):
86	case KVM_REG_ARM_CORE_REG(sp_el1):
87	case KVM_REG_ARM_CORE_REG(elr_el1):
88	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
89	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
90		size = sizeof(__u64);
91		break;
92
93	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
94	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
95		size = sizeof(__uint128_t);
96		break;
97
98	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
99	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
100		size = sizeof(__u32);
101		break;
102
103	default:
104		return -EINVAL;
105	}
106
107	if (!IS_ALIGNED(off, size / sizeof(__u32)))
108		return -EINVAL;
109
110	/*
111	 * The KVM_REG_ARM64_SVE regs must be used instead of
112	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
113	 * SVE-enabled vcpus:
114	 */
115	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
116		return -EINVAL;
117
118	return size;
119}
120
121static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
122{
123	u64 off = core_reg_offset_from_id(reg->id);
124	int size = core_reg_size_from_offset(vcpu, off);
125
126	if (size < 0)
127		return NULL;
128
129	if (KVM_REG_SIZE(reg->id) != size)
130		return NULL;
131
132	switch (off) {
133	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
134	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
135		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
136		off /= 2;
137		return &vcpu->arch.ctxt.regs.regs[off];
138
139	case KVM_REG_ARM_CORE_REG(regs.sp):
140		return &vcpu->arch.ctxt.regs.sp;
141
142	case KVM_REG_ARM_CORE_REG(regs.pc):
143		return &vcpu->arch.ctxt.regs.pc;
144
145	case KVM_REG_ARM_CORE_REG(regs.pstate):
146		return &vcpu->arch.ctxt.regs.pstate;
147
148	case KVM_REG_ARM_CORE_REG(sp_el1):
149		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
150
151	case KVM_REG_ARM_CORE_REG(elr_el1):
152		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
153
154	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
155		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
156
157	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
158		return &vcpu->arch.ctxt.spsr_abt;
159
160	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
161		return &vcpu->arch.ctxt.spsr_und;
162
163	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
164		return &vcpu->arch.ctxt.spsr_irq;
165
166	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
167		return &vcpu->arch.ctxt.spsr_fiq;
168
169	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
170	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
171		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
172		off /= 4;
173		return &vcpu->arch.ctxt.fp_regs.vregs[off];
174
175	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
176		return &vcpu->arch.ctxt.fp_regs.fpsr;
177
178	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
179		return &vcpu->arch.ctxt.fp_regs.fpcr;
180
181	default:
182		return NULL;
183	}
184}
185
186static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
187{
188	/*
189	 * Because the kvm_regs structure is a mix of 32, 64 and
190	 * 128bit fields, we index it as if it was a 32bit
191	 * array. Hence below, nr_regs is the number of entries, and
192	 * off the index in the "array".
193	 */
194	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
195	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
196	void *addr;
197	u32 off;
198
199	/* Our ID is an index into the kvm_regs struct. */
200	off = core_reg_offset_from_id(reg->id);
201	if (off >= nr_regs ||
202	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
203		return -ENOENT;
204
205	addr = core_reg_addr(vcpu, reg);
206	if (!addr)
207		return -EINVAL;
208
209	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
210		return -EFAULT;
211
212	return 0;
213}
214
215static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
216{
217	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
218	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
219	__uint128_t tmp;
220	void *valp = &tmp, *addr;
221	u64 off;
222	int err = 0;
223
224	/* Our ID is an index into the kvm_regs struct. */
225	off = core_reg_offset_from_id(reg->id);
226	if (off >= nr_regs ||
227	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
228		return -ENOENT;
229
230	addr = core_reg_addr(vcpu, reg);
231	if (!addr)
232		return -EINVAL;
233
234	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
235		return -EINVAL;
236
237	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
238		err = -EFAULT;
239		goto out;
240	}
241
242	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
243		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
244		switch (mode) {
245		case PSR_AA32_MODE_USR:
246			if (!kvm_supports_32bit_el0())
247				return -EINVAL;
248			break;
249		case PSR_AA32_MODE_FIQ:
250		case PSR_AA32_MODE_IRQ:
251		case PSR_AA32_MODE_SVC:
252		case PSR_AA32_MODE_ABT:
253		case PSR_AA32_MODE_UND:
254			if (!vcpu_el1_is_32bit(vcpu))
255				return -EINVAL;
256			break;
257		case PSR_MODE_EL2h:
258		case PSR_MODE_EL2t:
259			if (!vcpu_has_nv(vcpu))
260				return -EINVAL;
261			fallthrough;
262		case PSR_MODE_EL0t:
263		case PSR_MODE_EL1t:
264		case PSR_MODE_EL1h:
265			if (vcpu_el1_is_32bit(vcpu))
266				return -EINVAL;
267			break;
268		default:
269			err = -EINVAL;
270			goto out;
271		}
272	}
273
274	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
275
276	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
277		int i, nr_reg;
278
279		switch (*vcpu_cpsr(vcpu)) {
280		/*
281		 * Either we are dealing with user mode, and only the
282		 * first 15 registers (+ PC) must be narrowed to 32bit.
283		 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
284		 */
285		case PSR_AA32_MODE_USR:
286		case PSR_AA32_MODE_SYS:
287			nr_reg = 15;
288			break;
289
290		/*
291		 * Otherwise, this is a privileged mode, and *all* the
292		 * registers must be narrowed to 32bit.
293		 */
294		default:
295			nr_reg = 31;
296			break;
297		}
298
299		for (i = 0; i < nr_reg; i++)
300			vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
301
302		*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
303	}
304out:
305	return err;
306}
307
308#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
309#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
310#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
311
312static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
313{
314	unsigned int max_vq, vq;
315	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
316
317	if (!vcpu_has_sve(vcpu))
318		return -ENOENT;
319
320	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
321		return -EINVAL;
322
323	memset(vqs, 0, sizeof(vqs));
324
325	max_vq = vcpu_sve_max_vq(vcpu);
326	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
327		if (sve_vq_available(vq))
328			vqs[vq_word(vq)] |= vq_mask(vq);
329
330	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
331		return -EFAULT;
332
333	return 0;
334}
335
336static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
337{
338	unsigned int max_vq, vq;
339	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
340
341	if (!vcpu_has_sve(vcpu))
342		return -ENOENT;
343
344	if (kvm_arm_vcpu_sve_finalized(vcpu))
345		return -EPERM; /* too late! */
346
347	if (WARN_ON(vcpu->arch.sve_state))
348		return -EINVAL;
349
350	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
351		return -EFAULT;
352
353	max_vq = 0;
354	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
355		if (vq_present(vqs, vq))
356			max_vq = vq;
357
358	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
359		return -EINVAL;
360
361	/*
362	 * Vector lengths supported by the host can't currently be
363	 * hidden from the guest individually: instead we can only set a
364	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
365	 * lengths match the set requested exactly up to the requested
366	 * maximum:
367	 */
368	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
369		if (vq_present(vqs, vq) != sve_vq_available(vq))
370			return -EINVAL;
371
372	/* Can't run with no vector lengths at all: */
373	if (max_vq < SVE_VQ_MIN)
374		return -EINVAL;
375
376	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
377	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
378
379	return 0;
380}
381
382#define SVE_REG_SLICE_SHIFT	0
383#define SVE_REG_SLICE_BITS	5
384#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
385#define SVE_REG_ID_BITS		5
386
387#define SVE_REG_SLICE_MASK					\
388	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
389		SVE_REG_SLICE_SHIFT)
390#define SVE_REG_ID_MASK							\
391	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
392
393#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
394
395#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
396#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
397
398/*
399 * Number of register slices required to cover each whole SVE register.
400 * NOTE: Only the first slice every exists, for now.
401 * If you are tempted to modify this, you must also rework sve_reg_to_region()
402 * to match:
403 */
404#define vcpu_sve_slices(vcpu) 1
405
406/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
407struct sve_state_reg_region {
408	unsigned int koffset;	/* offset into sve_state in kernel memory */
409	unsigned int klen;	/* length in kernel memory */
410	unsigned int upad;	/* extra trailing padding in user memory */
411};
412
413/*
414 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
415 * register copy
416 */
417static int sve_reg_to_region(struct sve_state_reg_region *region,
418			     struct kvm_vcpu *vcpu,
419			     const struct kvm_one_reg *reg)
420{
421	/* reg ID ranges for Z- registers */
422	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
423	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
424						       SVE_NUM_SLICES - 1);
425
426	/* reg ID ranges for P- registers and FFR (which are contiguous) */
427	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
428	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
429
430	unsigned int vq;
431	unsigned int reg_num;
432
433	unsigned int reqoffset, reqlen; /* User-requested offset and length */
434	unsigned int maxlen; /* Maximum permitted length */
435
436	size_t sve_state_size;
437
438	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
439							SVE_NUM_SLICES - 1);
440
441	/* Verify that the P-regs and FFR really do have contiguous IDs: */
442	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
443
444	/* Verify that we match the UAPI header: */
445	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
446
447	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
448
449	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
450		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
451			return -ENOENT;
452
453		vq = vcpu_sve_max_vq(vcpu);
454
455		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
456				SVE_SIG_REGS_OFFSET;
457		reqlen = KVM_SVE_ZREG_SIZE;
458		maxlen = SVE_SIG_ZREG_SIZE(vq);
459	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
460		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
461			return -ENOENT;
462
463		vq = vcpu_sve_max_vq(vcpu);
464
465		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
466				SVE_SIG_REGS_OFFSET;
467		reqlen = KVM_SVE_PREG_SIZE;
468		maxlen = SVE_SIG_PREG_SIZE(vq);
469	} else {
470		return -EINVAL;
471	}
472
473	sve_state_size = vcpu_sve_state_size(vcpu);
474	if (WARN_ON(!sve_state_size))
475		return -EINVAL;
476
477	region->koffset = array_index_nospec(reqoffset, sve_state_size);
478	region->klen = min(maxlen, reqlen);
479	region->upad = reqlen - region->klen;
480
481	return 0;
482}
483
484static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
485{
486	int ret;
487	struct sve_state_reg_region region;
488	char __user *uptr = (char __user *)reg->addr;
489
490	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
491	if (reg->id == KVM_REG_ARM64_SVE_VLS)
492		return get_sve_vls(vcpu, reg);
493
494	/* Try to interpret reg ID as an architectural SVE register... */
495	ret = sve_reg_to_region(&region, vcpu, reg);
496	if (ret)
497		return ret;
498
499	if (!kvm_arm_vcpu_sve_finalized(vcpu))
500		return -EPERM;
501
502	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
503			 region.klen) ||
504	    clear_user(uptr + region.klen, region.upad))
505		return -EFAULT;
506
507	return 0;
508}
509
510static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
511{
512	int ret;
513	struct sve_state_reg_region region;
514	const char __user *uptr = (const char __user *)reg->addr;
515
516	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
517	if (reg->id == KVM_REG_ARM64_SVE_VLS)
518		return set_sve_vls(vcpu, reg);
519
520	/* Try to interpret reg ID as an architectural SVE register... */
521	ret = sve_reg_to_region(&region, vcpu, reg);
522	if (ret)
523		return ret;
524
525	if (!kvm_arm_vcpu_sve_finalized(vcpu))
526		return -EPERM;
527
528	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
529			   region.klen))
530		return -EFAULT;
531
532	return 0;
533}
534
535int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
536{
537	return -EINVAL;
538}
539
540int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
541{
542	return -EINVAL;
543}
544
545static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
546				 u64 __user *uindices)
547{
548	unsigned int i;
549	int n = 0;
550
551	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
552		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
553		int size = core_reg_size_from_offset(vcpu, i);
554
555		if (size < 0)
556			continue;
557
558		switch (size) {
559		case sizeof(__u32):
560			reg |= KVM_REG_SIZE_U32;
561			break;
562
563		case sizeof(__u64):
564			reg |= KVM_REG_SIZE_U64;
565			break;
566
567		case sizeof(__uint128_t):
568			reg |= KVM_REG_SIZE_U128;
569			break;
570
571		default:
572			WARN_ON(1);
573			continue;
574		}
575
576		if (uindices) {
577			if (put_user(reg, uindices))
578				return -EFAULT;
579			uindices++;
580		}
581
582		n++;
583	}
584
585	return n;
586}
587
588static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
589{
590	return copy_core_reg_indices(vcpu, NULL);
591}
592
593static const u64 timer_reg_list[] = {
594	KVM_REG_ARM_TIMER_CTL,
595	KVM_REG_ARM_TIMER_CNT,
596	KVM_REG_ARM_TIMER_CVAL,
597	KVM_REG_ARM_PTIMER_CTL,
598	KVM_REG_ARM_PTIMER_CNT,
599	KVM_REG_ARM_PTIMER_CVAL,
600};
601
602#define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list)
603
604static bool is_timer_reg(u64 index)
605{
606	switch (index) {
607	case KVM_REG_ARM_TIMER_CTL:
608	case KVM_REG_ARM_TIMER_CNT:
609	case KVM_REG_ARM_TIMER_CVAL:
610	case KVM_REG_ARM_PTIMER_CTL:
611	case KVM_REG_ARM_PTIMER_CNT:
612	case KVM_REG_ARM_PTIMER_CVAL:
613		return true;
614	}
615	return false;
616}
617
618static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
619{
620	for (int i = 0; i < NUM_TIMER_REGS; i++) {
621		if (put_user(timer_reg_list[i], uindices))
622			return -EFAULT;
623		uindices++;
624	}
625
626	return 0;
627}
628
629static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
630{
631	void __user *uaddr = (void __user *)(long)reg->addr;
632	u64 val;
633	int ret;
634
635	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
636	if (ret != 0)
637		return -EFAULT;
638
639	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
640}
641
642static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
643{
644	void __user *uaddr = (void __user *)(long)reg->addr;
645	u64 val;
646
647	val = kvm_arm_timer_get_reg(vcpu, reg->id);
648	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
649}
650
651static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
652{
653	const unsigned int slices = vcpu_sve_slices(vcpu);
654
655	if (!vcpu_has_sve(vcpu))
656		return 0;
657
658	/* Policed by KVM_GET_REG_LIST: */
659	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
660
661	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
662		+ 1; /* KVM_REG_ARM64_SVE_VLS */
663}
664
665static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
666				u64 __user *uindices)
667{
668	const unsigned int slices = vcpu_sve_slices(vcpu);
669	u64 reg;
670	unsigned int i, n;
671	int num_regs = 0;
672
673	if (!vcpu_has_sve(vcpu))
674		return 0;
675
676	/* Policed by KVM_GET_REG_LIST: */
677	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
678
679	/*
680	 * Enumerate this first, so that userspace can save/restore in
681	 * the order reported by KVM_GET_REG_LIST:
682	 */
683	reg = KVM_REG_ARM64_SVE_VLS;
684	if (put_user(reg, uindices++))
685		return -EFAULT;
686	++num_regs;
687
688	for (i = 0; i < slices; i++) {
689		for (n = 0; n < SVE_NUM_ZREGS; n++) {
690			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
691			if (put_user(reg, uindices++))
692				return -EFAULT;
693			num_regs++;
694		}
695
696		for (n = 0; n < SVE_NUM_PREGS; n++) {
697			reg = KVM_REG_ARM64_SVE_PREG(n, i);
698			if (put_user(reg, uindices++))
699				return -EFAULT;
700			num_regs++;
701		}
702
703		reg = KVM_REG_ARM64_SVE_FFR(i);
704		if (put_user(reg, uindices++))
705			return -EFAULT;
706		num_regs++;
707	}
708
709	return num_regs;
710}
711
712/**
713 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
714 * @vcpu: the vCPU pointer
715 *
716 * This is for all registers.
717 */
718unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
719{
720	unsigned long res = 0;
721
722	res += num_core_regs(vcpu);
723	res += num_sve_regs(vcpu);
724	res += kvm_arm_num_sys_reg_descs(vcpu);
725	res += kvm_arm_get_fw_num_regs(vcpu);
726	res += NUM_TIMER_REGS;
727
728	return res;
729}
730
731/**
732 * kvm_arm_copy_reg_indices - get indices of all registers.
733 * @vcpu: the vCPU pointer
734 * @uindices: register list to copy
735 *
736 * We do core registers right here, then we append system regs.
737 */
738int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
739{
740	int ret;
741
742	ret = copy_core_reg_indices(vcpu, uindices);
743	if (ret < 0)
744		return ret;
745	uindices += ret;
746
747	ret = copy_sve_reg_indices(vcpu, uindices);
748	if (ret < 0)
749		return ret;
750	uindices += ret;
751
752	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
753	if (ret < 0)
754		return ret;
755	uindices += kvm_arm_get_fw_num_regs(vcpu);
756
757	ret = copy_timer_indices(vcpu, uindices);
758	if (ret < 0)
759		return ret;
760	uindices += NUM_TIMER_REGS;
761
762	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
763}
764
765int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
766{
767	/* We currently use nothing arch-specific in upper 32 bits */
768	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
769		return -EINVAL;
770
771	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
772	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
773	case KVM_REG_ARM_FW:
774	case KVM_REG_ARM_FW_FEAT_BMAP:
775		return kvm_arm_get_fw_reg(vcpu, reg);
776	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
777	}
778
779	if (is_timer_reg(reg->id))
780		return get_timer_reg(vcpu, reg);
781
782	return kvm_arm_sys_reg_get_reg(vcpu, reg);
783}
784
785int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
786{
787	/* We currently use nothing arch-specific in upper 32 bits */
788	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
789		return -EINVAL;
790
791	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
792	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
793	case KVM_REG_ARM_FW:
794	case KVM_REG_ARM_FW_FEAT_BMAP:
795		return kvm_arm_set_fw_reg(vcpu, reg);
796	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
797	}
798
799	if (is_timer_reg(reg->id))
800		return set_timer_reg(vcpu, reg);
801
802	return kvm_arm_sys_reg_set_reg(vcpu, reg);
803}
804
805int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
806				  struct kvm_sregs *sregs)
807{
808	return -EINVAL;
809}
810
811int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
812				  struct kvm_sregs *sregs)
813{
814	return -EINVAL;
815}
816
817int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
818			      struct kvm_vcpu_events *events)
819{
820	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
821	events->exception.serror_has_esr = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
822
823	if (events->exception.serror_pending && events->exception.serror_has_esr)
824		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
825
826	/*
827	 * We never return a pending ext_dabt here because we deliver it to
828	 * the virtual CPU directly when setting the event and it's no longer
829	 * 'pending' at this point.
830	 */
831
832	return 0;
833}
834
835int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
836			      struct kvm_vcpu_events *events)
837{
838	bool serror_pending = events->exception.serror_pending;
839	bool has_esr = events->exception.serror_has_esr;
840	bool ext_dabt_pending = events->exception.ext_dabt_pending;
841
842	if (serror_pending && has_esr) {
843		if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
844			return -EINVAL;
845
846		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
847			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
848		else
849			return -EINVAL;
850	} else if (serror_pending) {
851		kvm_inject_vabt(vcpu);
852	}
853
854	if (ext_dabt_pending)
855		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
856
857	return 0;
858}
859
860u32 __attribute_const__ kvm_target_cpu(void)
861{
862	unsigned long implementor = read_cpuid_implementor();
863	unsigned long part_number = read_cpuid_part_number();
864
865	switch (implementor) {
866	case ARM_CPU_IMP_ARM:
867		switch (part_number) {
868		case ARM_CPU_PART_AEM_V8:
869			return KVM_ARM_TARGET_AEM_V8;
870		case ARM_CPU_PART_FOUNDATION:
871			return KVM_ARM_TARGET_FOUNDATION_V8;
872		case ARM_CPU_PART_CORTEX_A53:
873			return KVM_ARM_TARGET_CORTEX_A53;
874		case ARM_CPU_PART_CORTEX_A57:
875			return KVM_ARM_TARGET_CORTEX_A57;
876		}
877		break;
878	case ARM_CPU_IMP_APM:
879		switch (part_number) {
880		case APM_CPU_PART_XGENE:
881			return KVM_ARM_TARGET_XGENE_POTENZA;
882		}
883		break;
884	}
885
886	/* Return a default generic target */
887	return KVM_ARM_TARGET_GENERIC_V8;
888}
889
890int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
891{
892	return -EINVAL;
893}
894
895int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
896{
897	return -EINVAL;
898}
899
900int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
901				  struct kvm_translation *tr)
902{
903	return -EINVAL;
904}
905
906/**
907 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
908 * @vcpu: the vCPU pointer
909 * @dbg: the ioctl data buffer
910 *
911 * This sets up and enables the VM for guest debugging. Userspace
912 * passes in a control flag to enable different debug types and
913 * potentially other architecture specific information in the rest of
914 * the structure.
915 */
916int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
917					struct kvm_guest_debug *dbg)
918{
919	int ret = 0;
920
921	trace_kvm_set_guest_debug(vcpu, dbg->control);
922
923	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
924		ret = -EINVAL;
925		goto out;
926	}
927
928	if (dbg->control & KVM_GUESTDBG_ENABLE) {
929		vcpu->guest_debug = dbg->control;
930
931		/* Hardware assisted Break and Watch points */
932		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
933			vcpu->arch.external_debug_state = dbg->arch;
934		}
935
936	} else {
937		/* If not enabled clear all flags */
938		vcpu->guest_debug = 0;
939		vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
940	}
941
942out:
943	return ret;
944}
945
946int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
947			       struct kvm_device_attr *attr)
948{
949	int ret;
950
951	switch (attr->group) {
952	case KVM_ARM_VCPU_PMU_V3_CTRL:
953		mutex_lock(&vcpu->kvm->arch.config_lock);
954		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
955		mutex_unlock(&vcpu->kvm->arch.config_lock);
956		break;
957	case KVM_ARM_VCPU_TIMER_CTRL:
958		ret = kvm_arm_timer_set_attr(vcpu, attr);
959		break;
960	case KVM_ARM_VCPU_PVTIME_CTRL:
961		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
962		break;
963	default:
964		ret = -ENXIO;
965		break;
966	}
967
968	return ret;
969}
970
971int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
972			       struct kvm_device_attr *attr)
973{
974	int ret;
975
976	switch (attr->group) {
977	case KVM_ARM_VCPU_PMU_V3_CTRL:
978		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
979		break;
980	case KVM_ARM_VCPU_TIMER_CTRL:
981		ret = kvm_arm_timer_get_attr(vcpu, attr);
982		break;
983	case KVM_ARM_VCPU_PVTIME_CTRL:
984		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
985		break;
986	default:
987		ret = -ENXIO;
988		break;
989	}
990
991	return ret;
992}
993
994int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
995			       struct kvm_device_attr *attr)
996{
997	int ret;
998
999	switch (attr->group) {
1000	case KVM_ARM_VCPU_PMU_V3_CTRL:
1001		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1002		break;
1003	case KVM_ARM_VCPU_TIMER_CTRL:
1004		ret = kvm_arm_timer_has_attr(vcpu, attr);
1005		break;
1006	case KVM_ARM_VCPU_PVTIME_CTRL:
1007		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1008		break;
1009	default:
1010		ret = -ENXIO;
1011		break;
1012	}
1013
1014	return ret;
1015}
1016
1017int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1018			       struct kvm_arm_copy_mte_tags *copy_tags)
1019{
1020	gpa_t guest_ipa = copy_tags->guest_ipa;
1021	size_t length = copy_tags->length;
1022	void __user *tags = copy_tags->addr;
1023	gpa_t gfn;
1024	bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1025	int ret = 0;
1026
1027	if (!kvm_has_mte(kvm))
1028		return -EINVAL;
1029
1030	if (copy_tags->reserved[0] || copy_tags->reserved[1])
1031		return -EINVAL;
1032
1033	if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1034		return -EINVAL;
1035
1036	if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1037		return -EINVAL;
1038
1039	/* Lengths above INT_MAX cannot be represented in the return value */
1040	if (length > INT_MAX)
1041		return -EINVAL;
1042
1043	gfn = gpa_to_gfn(guest_ipa);
1044
1045	mutex_lock(&kvm->slots_lock);
1046
1047	while (length > 0) {
1048		kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1049		void *maddr;
1050		unsigned long num_tags;
1051		struct page *page;
1052
1053		if (is_error_noslot_pfn(pfn)) {
1054			ret = -EFAULT;
1055			goto out;
1056		}
1057
1058		page = pfn_to_online_page(pfn);
1059		if (!page) {
1060			/* Reject ZONE_DEVICE memory */
1061			ret = -EFAULT;
1062			goto out;
1063		}
1064		maddr = page_address(page);
1065
1066		if (!write) {
1067			if (page_mte_tagged(page))
1068				num_tags = mte_copy_tags_to_user(tags, maddr,
1069							MTE_GRANULES_PER_PAGE);
1070			else
1071				/* No tags in memory, so write zeros */
1072				num_tags = MTE_GRANULES_PER_PAGE -
1073					clear_user(tags, MTE_GRANULES_PER_PAGE);
1074			kvm_release_pfn_clean(pfn);
1075		} else {
1076			/*
1077			 * Only locking to serialise with a concurrent
1078			 * __set_ptes() in the VMM but still overriding the
1079			 * tags, hence ignoring the return value.
1080			 */
1081			try_page_mte_tagging(page);
1082			num_tags = mte_copy_tags_from_user(maddr, tags,
1083							MTE_GRANULES_PER_PAGE);
1084
1085			/* uaccess failed, don't leave stale tags */
1086			if (num_tags != MTE_GRANULES_PER_PAGE)
1087				mte_clear_page_tags(maddr);
1088			set_page_mte_tagged(page);
1089
1090			kvm_release_pfn_dirty(pfn);
1091		}
1092
1093		if (num_tags != MTE_GRANULES_PER_PAGE) {
1094			ret = -EFAULT;
1095			goto out;
1096		}
1097
1098		gfn++;
1099		tags += num_tags;
1100		length -= PAGE_SIZE;
1101	}
1102
1103out:
1104	mutex_unlock(&kvm->slots_lock);
1105	/* If some data has been copied report the number of bytes copied */
1106	if (length != copy_tags->length)
1107		return copy_tags->length - length;
1108	return ret;
1109}
1110