1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7#include <linux/bug.h>
8#include <linux/cpu_pm.h>
9#include <linux/entry-kvm.h>
10#include <linux/errno.h>
11#include <linux/err.h>
12#include <linux/kvm_host.h>
13#include <linux/list.h>
14#include <linux/module.h>
15#include <linux/vmalloc.h>
16#include <linux/fs.h>
17#include <linux/mman.h>
18#include <linux/sched.h>
19#include <linux/kvm.h>
20#include <linux/kvm_irqfd.h>
21#include <linux/irqbypass.h>
22#include <linux/sched/stat.h>
23#include <linux/psci.h>
24#include <trace/events/kvm.h>
25
26#define CREATE_TRACE_POINTS
27#include "trace_arm.h"
28
29#include <linux/uaccess.h>
30#include <asm/ptrace.h>
31#include <asm/mman.h>
32#include <asm/tlbflush.h>
33#include <asm/cacheflush.h>
34#include <asm/cpufeature.h>
35#include <asm/virt.h>
36#include <asm/kvm_arm.h>
37#include <asm/kvm_asm.h>
38#include <asm/kvm_mmu.h>
39#include <asm/kvm_nested.h>
40#include <asm/kvm_pkvm.h>
41#include <asm/kvm_emulate.h>
42#include <asm/sections.h>
43
44#include <kvm/arm_hypercalls.h>
45#include <kvm/arm_pmu.h>
46#include <kvm/arm_psci.h>
47
48static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49
50DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
54
55DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
56
57static bool vgic_present, kvm_arm_initialised;
58
59static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
60DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61
62bool is_kvm_arm_initialised(void)
63{
64	return kvm_arm_initialised;
65}
66
67int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
68{
69	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
70}
71
72int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
73			    struct kvm_enable_cap *cap)
74{
75	int r;
76	u64 new_cap;
77
78	if (cap->flags)
79		return -EINVAL;
80
81	switch (cap->cap) {
82	case KVM_CAP_ARM_NISV_TO_USER:
83		r = 0;
84		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
85			&kvm->arch.flags);
86		break;
87	case KVM_CAP_ARM_MTE:
88		mutex_lock(&kvm->lock);
89		if (!system_supports_mte() || kvm->created_vcpus) {
90			r = -EINVAL;
91		} else {
92			r = 0;
93			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
94		}
95		mutex_unlock(&kvm->lock);
96		break;
97	case KVM_CAP_ARM_SYSTEM_SUSPEND:
98		r = 0;
99		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
100		break;
101	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
102		new_cap = cap->args[0];
103
104		mutex_lock(&kvm->slots_lock);
105		/*
106		 * To keep things simple, allow changing the chunk
107		 * size only when no memory slots have been created.
108		 */
109		if (!kvm_are_all_memslots_empty(kvm)) {
110			r = -EINVAL;
111		} else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
112			r = -EINVAL;
113		} else {
114			r = 0;
115			kvm->arch.mmu.split_page_chunk_size = new_cap;
116		}
117		mutex_unlock(&kvm->slots_lock);
118		break;
119	default:
120		r = -EINVAL;
121		break;
122	}
123
124	return r;
125}
126
127static int kvm_arm_default_max_vcpus(void)
128{
129	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
130}
131
132/**
133 * kvm_arch_init_vm - initializes a VM data structure
134 * @kvm:	pointer to the KVM struct
135 */
136int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
137{
138	int ret;
139
140	mutex_init(&kvm->arch.config_lock);
141
142#ifdef CONFIG_LOCKDEP
143	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
144	mutex_lock(&kvm->lock);
145	mutex_lock(&kvm->arch.config_lock);
146	mutex_unlock(&kvm->arch.config_lock);
147	mutex_unlock(&kvm->lock);
148#endif
149
150	ret = kvm_share_hyp(kvm, kvm + 1);
151	if (ret)
152		return ret;
153
154	ret = pkvm_init_host_vm(kvm);
155	if (ret)
156		goto err_unshare_kvm;
157
158	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
159		ret = -ENOMEM;
160		goto err_unshare_kvm;
161	}
162	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
163
164	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
165	if (ret)
166		goto err_free_cpumask;
167
168	kvm_vgic_early_init(kvm);
169
170	kvm_timer_init_vm(kvm);
171
172	/* The maximum number of VCPUs is limited by the host's GIC model */
173	kvm->max_vcpus = kvm_arm_default_max_vcpus();
174
175	kvm_arm_init_hypercalls(kvm);
176
177	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
178
179	return 0;
180
181err_free_cpumask:
182	free_cpumask_var(kvm->arch.supported_cpus);
183err_unshare_kvm:
184	kvm_unshare_hyp(kvm, kvm + 1);
185	return ret;
186}
187
188vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
189{
190	return VM_FAULT_SIGBUS;
191}
192
193void kvm_arch_create_vm_debugfs(struct kvm *kvm)
194{
195	kvm_sys_regs_create_debugfs(kvm);
196}
197
198/**
199 * kvm_arch_destroy_vm - destroy the VM data structure
200 * @kvm:	pointer to the KVM struct
201 */
202void kvm_arch_destroy_vm(struct kvm *kvm)
203{
204	bitmap_free(kvm->arch.pmu_filter);
205	free_cpumask_var(kvm->arch.supported_cpus);
206
207	kvm_vgic_destroy(kvm);
208
209	if (is_protected_kvm_enabled())
210		pkvm_destroy_hyp_vm(kvm);
211
212	kfree(kvm->arch.mpidr_data);
213	kfree(kvm->arch.sysreg_masks);
214	kvm_destroy_vcpus(kvm);
215
216	kvm_unshare_hyp(kvm, kvm + 1);
217
218	kvm_arm_teardown_hypercalls(kvm);
219}
220
221int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
222{
223	int r;
224	switch (ext) {
225	case KVM_CAP_IRQCHIP:
226		r = vgic_present;
227		break;
228	case KVM_CAP_IOEVENTFD:
229	case KVM_CAP_USER_MEMORY:
230	case KVM_CAP_SYNC_MMU:
231	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
232	case KVM_CAP_ONE_REG:
233	case KVM_CAP_ARM_PSCI:
234	case KVM_CAP_ARM_PSCI_0_2:
235	case KVM_CAP_READONLY_MEM:
236	case KVM_CAP_MP_STATE:
237	case KVM_CAP_IMMEDIATE_EXIT:
238	case KVM_CAP_VCPU_EVENTS:
239	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
240	case KVM_CAP_ARM_NISV_TO_USER:
241	case KVM_CAP_ARM_INJECT_EXT_DABT:
242	case KVM_CAP_SET_GUEST_DEBUG:
243	case KVM_CAP_VCPU_ATTRIBUTES:
244	case KVM_CAP_PTP_KVM:
245	case KVM_CAP_ARM_SYSTEM_SUSPEND:
246	case KVM_CAP_IRQFD_RESAMPLE:
247	case KVM_CAP_COUNTER_OFFSET:
248		r = 1;
249		break;
250	case KVM_CAP_SET_GUEST_DEBUG2:
251		return KVM_GUESTDBG_VALID_MASK;
252	case KVM_CAP_ARM_SET_DEVICE_ADDR:
253		r = 1;
254		break;
255	case KVM_CAP_NR_VCPUS:
256		/*
257		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
258		 * architectures, as it does not always bound it to
259		 * KVM_CAP_MAX_VCPUS. It should not matter much because
260		 * this is just an advisory value.
261		 */
262		r = min_t(unsigned int, num_online_cpus(),
263			  kvm_arm_default_max_vcpus());
264		break;
265	case KVM_CAP_MAX_VCPUS:
266	case KVM_CAP_MAX_VCPU_ID:
267		if (kvm)
268			r = kvm->max_vcpus;
269		else
270			r = kvm_arm_default_max_vcpus();
271		break;
272	case KVM_CAP_MSI_DEVID:
273		if (!kvm)
274			r = -EINVAL;
275		else
276			r = kvm->arch.vgic.msis_require_devid;
277		break;
278	case KVM_CAP_ARM_USER_IRQ:
279		/*
280		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
281		 * (bump this number if adding more devices)
282		 */
283		r = 1;
284		break;
285	case KVM_CAP_ARM_MTE:
286		r = system_supports_mte();
287		break;
288	case KVM_CAP_STEAL_TIME:
289		r = kvm_arm_pvtime_supported();
290		break;
291	case KVM_CAP_ARM_EL1_32BIT:
292		r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
293		break;
294	case KVM_CAP_GUEST_DEBUG_HW_BPS:
295		r = get_num_brps();
296		break;
297	case KVM_CAP_GUEST_DEBUG_HW_WPS:
298		r = get_num_wrps();
299		break;
300	case KVM_CAP_ARM_PMU_V3:
301		r = kvm_arm_support_pmu_v3();
302		break;
303	case KVM_CAP_ARM_INJECT_SERROR_ESR:
304		r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
305		break;
306	case KVM_CAP_ARM_VM_IPA_SIZE:
307		r = get_kvm_ipa_limit();
308		break;
309	case KVM_CAP_ARM_SVE:
310		r = system_supports_sve();
311		break;
312	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
313	case KVM_CAP_ARM_PTRAUTH_GENERIC:
314		r = system_has_full_ptr_auth();
315		break;
316	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
317		if (kvm)
318			r = kvm->arch.mmu.split_page_chunk_size;
319		else
320			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
321		break;
322	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
323		r = kvm_supported_block_sizes();
324		break;
325	case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
326		r = BIT(0);
327		break;
328	default:
329		r = 0;
330	}
331
332	return r;
333}
334
335long kvm_arch_dev_ioctl(struct file *filp,
336			unsigned int ioctl, unsigned long arg)
337{
338	return -EINVAL;
339}
340
341struct kvm *kvm_arch_alloc_vm(void)
342{
343	size_t sz = sizeof(struct kvm);
344
345	if (!has_vhe())
346		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
347
348	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
349}
350
351int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
352{
353	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
354		return -EBUSY;
355
356	if (id >= kvm->max_vcpus)
357		return -EINVAL;
358
359	return 0;
360}
361
362int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
363{
364	int err;
365
366	spin_lock_init(&vcpu->arch.mp_state_lock);
367
368#ifdef CONFIG_LOCKDEP
369	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
370	mutex_lock(&vcpu->mutex);
371	mutex_lock(&vcpu->kvm->arch.config_lock);
372	mutex_unlock(&vcpu->kvm->arch.config_lock);
373	mutex_unlock(&vcpu->mutex);
374#endif
375
376	/* Force users to call KVM_ARM_VCPU_INIT */
377	vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
378
379	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
380
381	/*
382	 * Default value for the FP state, will be overloaded at load
383	 * time if we support FP (pretty likely)
384	 */
385	vcpu->arch.fp_state = FP_STATE_FREE;
386
387	/* Set up the timer */
388	kvm_timer_vcpu_init(vcpu);
389
390	kvm_pmu_vcpu_init(vcpu);
391
392	kvm_arm_reset_debug_ptr(vcpu);
393
394	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
395
396	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
397
398	err = kvm_vgic_vcpu_init(vcpu);
399	if (err)
400		return err;
401
402	return kvm_share_hyp(vcpu, vcpu + 1);
403}
404
405void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
406{
407}
408
409void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
410{
411	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
412		static_branch_dec(&userspace_irqchip_in_use);
413
414	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
415	kvm_timer_vcpu_terminate(vcpu);
416	kvm_pmu_vcpu_destroy(vcpu);
417	kvm_vgic_vcpu_destroy(vcpu);
418	kvm_arm_vcpu_destroy(vcpu);
419}
420
421void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
422{
423
424}
425
426void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
427{
428
429}
430
431void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
432{
433	struct kvm_s2_mmu *mmu;
434	int *last_ran;
435
436	mmu = vcpu->arch.hw_mmu;
437	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
438
439	/*
440	 * We guarantee that both TLBs and I-cache are private to each
441	 * vcpu. If detecting that a vcpu from the same VM has
442	 * previously run on the same physical CPU, call into the
443	 * hypervisor code to nuke the relevant contexts.
444	 *
445	 * We might get preempted before the vCPU actually runs, but
446	 * over-invalidation doesn't affect correctness.
447	 */
448	if (*last_ran != vcpu->vcpu_idx) {
449		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
450		*last_ran = vcpu->vcpu_idx;
451	}
452
453	vcpu->cpu = cpu;
454
455	kvm_vgic_load(vcpu);
456	kvm_timer_vcpu_load(vcpu);
457	if (has_vhe())
458		kvm_vcpu_load_vhe(vcpu);
459	kvm_arch_vcpu_load_fp(vcpu);
460	kvm_vcpu_pmu_restore_guest(vcpu);
461	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
462		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
463
464	if (single_task_running())
465		vcpu_clear_wfx_traps(vcpu);
466	else
467		vcpu_set_wfx_traps(vcpu);
468
469	if (vcpu_has_ptrauth(vcpu))
470		vcpu_ptrauth_disable(vcpu);
471	kvm_arch_vcpu_load_debug_state_flags(vcpu);
472
473	if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
474		vcpu_set_on_unsupported_cpu(vcpu);
475}
476
477void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
478{
479	kvm_arch_vcpu_put_debug_state_flags(vcpu);
480	kvm_arch_vcpu_put_fp(vcpu);
481	if (has_vhe())
482		kvm_vcpu_put_vhe(vcpu);
483	kvm_timer_vcpu_put(vcpu);
484	kvm_vgic_put(vcpu);
485	kvm_vcpu_pmu_restore_host(vcpu);
486	kvm_arm_vmid_clear_active();
487
488	vcpu_clear_on_unsupported_cpu(vcpu);
489	vcpu->cpu = -1;
490}
491
492static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
493{
494	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
495	kvm_make_request(KVM_REQ_SLEEP, vcpu);
496	kvm_vcpu_kick(vcpu);
497}
498
499void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
500{
501	spin_lock(&vcpu->arch.mp_state_lock);
502	__kvm_arm_vcpu_power_off(vcpu);
503	spin_unlock(&vcpu->arch.mp_state_lock);
504}
505
506bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
507{
508	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
509}
510
511static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
512{
513	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
514	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
515	kvm_vcpu_kick(vcpu);
516}
517
518static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
519{
520	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
521}
522
523int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
524				    struct kvm_mp_state *mp_state)
525{
526	*mp_state = READ_ONCE(vcpu->arch.mp_state);
527
528	return 0;
529}
530
531int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
532				    struct kvm_mp_state *mp_state)
533{
534	int ret = 0;
535
536	spin_lock(&vcpu->arch.mp_state_lock);
537
538	switch (mp_state->mp_state) {
539	case KVM_MP_STATE_RUNNABLE:
540		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
541		break;
542	case KVM_MP_STATE_STOPPED:
543		__kvm_arm_vcpu_power_off(vcpu);
544		break;
545	case KVM_MP_STATE_SUSPENDED:
546		kvm_arm_vcpu_suspend(vcpu);
547		break;
548	default:
549		ret = -EINVAL;
550	}
551
552	spin_unlock(&vcpu->arch.mp_state_lock);
553
554	return ret;
555}
556
557/**
558 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
559 * @v:		The VCPU pointer
560 *
561 * If the guest CPU is not waiting for interrupts or an interrupt line is
562 * asserted, the CPU is by definition runnable.
563 */
564int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
565{
566	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
567	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
568		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
569}
570
571bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
572{
573	return vcpu_mode_priv(vcpu);
574}
575
576#ifdef CONFIG_GUEST_PERF_EVENTS
577unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
578{
579	return *vcpu_pc(vcpu);
580}
581#endif
582
583static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
584{
585	return vcpu_get_flag(vcpu, VCPU_INITIALIZED);
586}
587
588static void kvm_init_mpidr_data(struct kvm *kvm)
589{
590	struct kvm_mpidr_data *data = NULL;
591	unsigned long c, mask, nr_entries;
592	u64 aff_set = 0, aff_clr = ~0UL;
593	struct kvm_vcpu *vcpu;
594
595	mutex_lock(&kvm->arch.config_lock);
596
597	if (kvm->arch.mpidr_data || atomic_read(&kvm->online_vcpus) == 1)
598		goto out;
599
600	kvm_for_each_vcpu(c, vcpu, kvm) {
601		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
602		aff_set |= aff;
603		aff_clr &= aff;
604	}
605
606	/*
607	 * A significant bit can be either 0 or 1, and will only appear in
608	 * aff_set. Use aff_clr to weed out the useless stuff.
609	 */
610	mask = aff_set ^ aff_clr;
611	nr_entries = BIT_ULL(hweight_long(mask));
612
613	/*
614	 * Don't let userspace fool us. If we need more than a single page
615	 * to describe the compressed MPIDR array, just fall back to the
616	 * iterative method. Single vcpu VMs do not need this either.
617	 */
618	if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
619		data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
620			       GFP_KERNEL_ACCOUNT);
621
622	if (!data)
623		goto out;
624
625	data->mpidr_mask = mask;
626
627	kvm_for_each_vcpu(c, vcpu, kvm) {
628		u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
629		u16 index = kvm_mpidr_index(data, aff);
630
631		data->cmpidr_to_idx[index] = c;
632	}
633
634	kvm->arch.mpidr_data = data;
635out:
636	mutex_unlock(&kvm->arch.config_lock);
637}
638
639/*
640 * Handle both the initialisation that is being done when the vcpu is
641 * run for the first time, as well as the updates that must be
642 * performed each time we get a new thread dealing with this vcpu.
643 */
644int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
645{
646	struct kvm *kvm = vcpu->kvm;
647	int ret;
648
649	if (!kvm_vcpu_initialized(vcpu))
650		return -ENOEXEC;
651
652	if (!kvm_arm_vcpu_is_finalized(vcpu))
653		return -EPERM;
654
655	ret = kvm_arch_vcpu_run_map_fp(vcpu);
656	if (ret)
657		return ret;
658
659	if (likely(vcpu_has_run_once(vcpu)))
660		return 0;
661
662	kvm_init_mpidr_data(kvm);
663
664	kvm_arm_vcpu_init_debug(vcpu);
665
666	if (likely(irqchip_in_kernel(kvm))) {
667		/*
668		 * Map the VGIC hardware resources before running a vcpu the
669		 * first time on this VM.
670		 */
671		ret = kvm_vgic_map_resources(kvm);
672		if (ret)
673			return ret;
674	}
675
676	if (vcpu_has_nv(vcpu)) {
677		ret = kvm_init_nv_sysregs(vcpu->kvm);
678		if (ret)
679			return ret;
680	}
681
682	/*
683	 * This needs to happen after NV has imposed its own restrictions on
684	 * the feature set
685	 */
686	kvm_init_sysreg(vcpu);
687
688	ret = kvm_timer_enable(vcpu);
689	if (ret)
690		return ret;
691
692	ret = kvm_arm_pmu_v3_enable(vcpu);
693	if (ret)
694		return ret;
695
696	if (is_protected_kvm_enabled()) {
697		ret = pkvm_create_hyp_vm(kvm);
698		if (ret)
699			return ret;
700	}
701
702	if (!irqchip_in_kernel(kvm)) {
703		/*
704		 * Tell the rest of the code that there are userspace irqchip
705		 * VMs in the wild.
706		 */
707		static_branch_inc(&userspace_irqchip_in_use);
708	}
709
710	/*
711	 * Initialize traps for protected VMs.
712	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
713	 * the code is in place for first run initialization at EL2.
714	 */
715	if (kvm_vm_is_protected(kvm))
716		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
717
718	mutex_lock(&kvm->arch.config_lock);
719	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
720	mutex_unlock(&kvm->arch.config_lock);
721
722	return ret;
723}
724
725bool kvm_arch_intc_initialized(struct kvm *kvm)
726{
727	return vgic_initialized(kvm);
728}
729
730void kvm_arm_halt_guest(struct kvm *kvm)
731{
732	unsigned long i;
733	struct kvm_vcpu *vcpu;
734
735	kvm_for_each_vcpu(i, vcpu, kvm)
736		vcpu->arch.pause = true;
737	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
738}
739
740void kvm_arm_resume_guest(struct kvm *kvm)
741{
742	unsigned long i;
743	struct kvm_vcpu *vcpu;
744
745	kvm_for_each_vcpu(i, vcpu, kvm) {
746		vcpu->arch.pause = false;
747		__kvm_vcpu_wake_up(vcpu);
748	}
749}
750
751static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
752{
753	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
754
755	rcuwait_wait_event(wait,
756			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
757			   TASK_INTERRUPTIBLE);
758
759	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
760		/* Awaken to handle a signal, request we sleep again later. */
761		kvm_make_request(KVM_REQ_SLEEP, vcpu);
762	}
763
764	/*
765	 * Make sure we will observe a potential reset request if we've
766	 * observed a change to the power state. Pairs with the smp_wmb() in
767	 * kvm_psci_vcpu_on().
768	 */
769	smp_rmb();
770}
771
772/**
773 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
774 * @vcpu:	The VCPU pointer
775 *
776 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
777 * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
778 * on when a wake event arrives, e.g. there may already be a pending wake event.
779 */
780void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
781{
782	/*
783	 * Sync back the state of the GIC CPU interface so that we have
784	 * the latest PMR and group enables. This ensures that
785	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
786	 * we have pending interrupts, e.g. when determining if the
787	 * vCPU should block.
788	 *
789	 * For the same reason, we want to tell GICv4 that we need
790	 * doorbells to be signalled, should an interrupt become pending.
791	 */
792	preempt_disable();
793	kvm_vgic_vmcr_sync(vcpu);
794	vcpu_set_flag(vcpu, IN_WFI);
795	vgic_v4_put(vcpu);
796	preempt_enable();
797
798	kvm_vcpu_halt(vcpu);
799	vcpu_clear_flag(vcpu, IN_WFIT);
800
801	preempt_disable();
802	vcpu_clear_flag(vcpu, IN_WFI);
803	vgic_v4_load(vcpu);
804	preempt_enable();
805}
806
807static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
808{
809	if (!kvm_arm_vcpu_suspended(vcpu))
810		return 1;
811
812	kvm_vcpu_wfi(vcpu);
813
814	/*
815	 * The suspend state is sticky; we do not leave it until userspace
816	 * explicitly marks the vCPU as runnable. Request that we suspend again
817	 * later.
818	 */
819	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
820
821	/*
822	 * Check to make sure the vCPU is actually runnable. If so, exit to
823	 * userspace informing it of the wakeup condition.
824	 */
825	if (kvm_arch_vcpu_runnable(vcpu)) {
826		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
827		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
828		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
829		return 0;
830	}
831
832	/*
833	 * Otherwise, we were unblocked to process a different event, such as a
834	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
835	 * process the event.
836	 */
837	return 1;
838}
839
840/**
841 * check_vcpu_requests - check and handle pending vCPU requests
842 * @vcpu:	the VCPU pointer
843 *
844 * Return: 1 if we should enter the guest
845 *	   0 if we should exit to userspace
846 *	   < 0 if we should exit to userspace, where the return value indicates
847 *	   an error
848 */
849static int check_vcpu_requests(struct kvm_vcpu *vcpu)
850{
851	if (kvm_request_pending(vcpu)) {
852		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
853			kvm_vcpu_sleep(vcpu);
854
855		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
856			kvm_reset_vcpu(vcpu);
857
858		/*
859		 * Clear IRQ_PENDING requests that were made to guarantee
860		 * that a VCPU sees new virtual interrupts.
861		 */
862		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
863
864		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
865			kvm_update_stolen_time(vcpu);
866
867		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
868			/* The distributor enable bits were changed */
869			preempt_disable();
870			vgic_v4_put(vcpu);
871			vgic_v4_load(vcpu);
872			preempt_enable();
873		}
874
875		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
876			kvm_vcpu_reload_pmu(vcpu);
877
878		if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
879			kvm_vcpu_pmu_restore_guest(vcpu);
880
881		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
882			return kvm_vcpu_suspend(vcpu);
883
884		if (kvm_dirty_ring_check_request(vcpu))
885			return 0;
886	}
887
888	return 1;
889}
890
891static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
892{
893	if (likely(!vcpu_mode_is_32bit(vcpu)))
894		return false;
895
896	if (vcpu_has_nv(vcpu))
897		return true;
898
899	return !kvm_supports_32bit_el0();
900}
901
902/**
903 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
904 * @vcpu:	The VCPU pointer
905 * @ret:	Pointer to write optional return code
906 *
907 * Returns: true if the VCPU needs to return to a preemptible + interruptible
908 *	    and skip guest entry.
909 *
910 * This function disambiguates between two different types of exits: exits to a
911 * preemptible + interruptible kernel context and exits to userspace. For an
912 * exit to userspace, this function will write the return code to ret and return
913 * true. For an exit to preemptible + interruptible kernel context (i.e. check
914 * for pending work and re-enter), return true without writing to ret.
915 */
916static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
917{
918	struct kvm_run *run = vcpu->run;
919
920	/*
921	 * If we're using a userspace irqchip, then check if we need
922	 * to tell a userspace irqchip about timer or PMU level
923	 * changes and if so, exit to userspace (the actual level
924	 * state gets updated in kvm_timer_update_run and
925	 * kvm_pmu_update_run below).
926	 */
927	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
928		if (kvm_timer_should_notify_user(vcpu) ||
929		    kvm_pmu_should_notify_user(vcpu)) {
930			*ret = -EINTR;
931			run->exit_reason = KVM_EXIT_INTR;
932			return true;
933		}
934	}
935
936	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
937		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
938		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
939		run->fail_entry.cpu = smp_processor_id();
940		*ret = 0;
941		return true;
942	}
943
944	return kvm_request_pending(vcpu) ||
945			xfer_to_guest_mode_work_pending();
946}
947
948/*
949 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
950 * the vCPU is running.
951 *
952 * This must be noinstr as instrumentation may make use of RCU, and this is not
953 * safe during the EQS.
954 */
955static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
956{
957	int ret;
958
959	guest_state_enter_irqoff();
960	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
961	guest_state_exit_irqoff();
962
963	return ret;
964}
965
966/**
967 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
968 * @vcpu:	The VCPU pointer
969 *
970 * This function is called through the VCPU_RUN ioctl called from user space. It
971 * will execute VM code in a loop until the time slice for the process is used
972 * or some emulation is needed from user space in which case the function will
973 * return with return value 0 and with the kvm_run structure filled in with the
974 * required data for the requested emulation.
975 */
976int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
977{
978	struct kvm_run *run = vcpu->run;
979	int ret;
980
981	if (run->exit_reason == KVM_EXIT_MMIO) {
982		ret = kvm_handle_mmio_return(vcpu);
983		if (ret)
984			return ret;
985	}
986
987	vcpu_load(vcpu);
988
989	if (run->immediate_exit) {
990		ret = -EINTR;
991		goto out;
992	}
993
994	kvm_sigset_activate(vcpu);
995
996	ret = 1;
997	run->exit_reason = KVM_EXIT_UNKNOWN;
998	run->flags = 0;
999	while (ret > 0) {
1000		/*
1001		 * Check conditions before entering the guest
1002		 */
1003		ret = xfer_to_guest_mode_handle_work(vcpu);
1004		if (!ret)
1005			ret = 1;
1006
1007		if (ret > 0)
1008			ret = check_vcpu_requests(vcpu);
1009
1010		/*
1011		 * Preparing the interrupts to be injected also
1012		 * involves poking the GIC, which must be done in a
1013		 * non-preemptible context.
1014		 */
1015		preempt_disable();
1016
1017		/*
1018		 * The VMID allocator only tracks active VMIDs per
1019		 * physical CPU, and therefore the VMID allocated may not be
1020		 * preserved on VMID roll-over if the task was preempted,
1021		 * making a thread's VMID inactive. So we need to call
1022		 * kvm_arm_vmid_update() in non-premptible context.
1023		 */
1024		if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1025		    has_vhe())
1026			__load_stage2(vcpu->arch.hw_mmu,
1027				      vcpu->arch.hw_mmu->arch);
1028
1029		kvm_pmu_flush_hwstate(vcpu);
1030
1031		local_irq_disable();
1032
1033		kvm_vgic_flush_hwstate(vcpu);
1034
1035		kvm_pmu_update_vcpu_events(vcpu);
1036
1037		/*
1038		 * Ensure we set mode to IN_GUEST_MODE after we disable
1039		 * interrupts and before the final VCPU requests check.
1040		 * See the comment in kvm_vcpu_exiting_guest_mode() and
1041		 * Documentation/virt/kvm/vcpu-requests.rst
1042		 */
1043		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1044
1045		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1046			vcpu->mode = OUTSIDE_GUEST_MODE;
1047			isb(); /* Ensure work in x_flush_hwstate is committed */
1048			kvm_pmu_sync_hwstate(vcpu);
1049			if (static_branch_unlikely(&userspace_irqchip_in_use))
1050				kvm_timer_sync_user(vcpu);
1051			kvm_vgic_sync_hwstate(vcpu);
1052			local_irq_enable();
1053			preempt_enable();
1054			continue;
1055		}
1056
1057		kvm_arm_setup_debug(vcpu);
1058		kvm_arch_vcpu_ctxflush_fp(vcpu);
1059
1060		/**************************************************************
1061		 * Enter the guest
1062		 */
1063		trace_kvm_entry(*vcpu_pc(vcpu));
1064		guest_timing_enter_irqoff();
1065
1066		ret = kvm_arm_vcpu_enter_exit(vcpu);
1067
1068		vcpu->mode = OUTSIDE_GUEST_MODE;
1069		vcpu->stat.exits++;
1070		/*
1071		 * Back from guest
1072		 *************************************************************/
1073
1074		kvm_arm_clear_debug(vcpu);
1075
1076		/*
1077		 * We must sync the PMU state before the vgic state so
1078		 * that the vgic can properly sample the updated state of the
1079		 * interrupt line.
1080		 */
1081		kvm_pmu_sync_hwstate(vcpu);
1082
1083		/*
1084		 * Sync the vgic state before syncing the timer state because
1085		 * the timer code needs to know if the virtual timer
1086		 * interrupts are active.
1087		 */
1088		kvm_vgic_sync_hwstate(vcpu);
1089
1090		/*
1091		 * Sync the timer hardware state before enabling interrupts as
1092		 * we don't want vtimer interrupts to race with syncing the
1093		 * timer virtual interrupt state.
1094		 */
1095		if (static_branch_unlikely(&userspace_irqchip_in_use))
1096			kvm_timer_sync_user(vcpu);
1097
1098		kvm_arch_vcpu_ctxsync_fp(vcpu);
1099
1100		/*
1101		 * We must ensure that any pending interrupts are taken before
1102		 * we exit guest timing so that timer ticks are accounted as
1103		 * guest time. Transiently unmask interrupts so that any
1104		 * pending interrupts are taken.
1105		 *
1106		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1107		 * context synchronization event) is necessary to ensure that
1108		 * pending interrupts are taken.
1109		 */
1110		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1111			local_irq_enable();
1112			isb();
1113			local_irq_disable();
1114		}
1115
1116		guest_timing_exit_irqoff();
1117
1118		local_irq_enable();
1119
1120		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1121
1122		/* Exit types that need handling before we can be preempted */
1123		handle_exit_early(vcpu, ret);
1124
1125		preempt_enable();
1126
1127		/*
1128		 * The ARMv8 architecture doesn't give the hypervisor
1129		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1130		 * if implemented by the CPU. If we spot the guest in such
1131		 * state and that we decided it wasn't supposed to do so (like
1132		 * with the asymmetric AArch32 case), return to userspace with
1133		 * a fatal error.
1134		 */
1135		if (vcpu_mode_is_bad_32bit(vcpu)) {
1136			/*
1137			 * As we have caught the guest red-handed, decide that
1138			 * it isn't fit for purpose anymore by making the vcpu
1139			 * invalid. The VMM can try and fix it by issuing  a
1140			 * KVM_ARM_VCPU_INIT if it really wants to.
1141			 */
1142			vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1143			ret = ARM_EXCEPTION_IL;
1144		}
1145
1146		ret = handle_exit(vcpu, ret);
1147	}
1148
1149	/* Tell userspace about in-kernel device output levels */
1150	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1151		kvm_timer_update_run(vcpu);
1152		kvm_pmu_update_run(vcpu);
1153	}
1154
1155	kvm_sigset_deactivate(vcpu);
1156
1157out:
1158	/*
1159	 * In the unlikely event that we are returning to userspace
1160	 * with pending exceptions or PC adjustment, commit these
1161	 * adjustments in order to give userspace a consistent view of
1162	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1163	 * being preempt-safe on VHE.
1164	 */
1165	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1166		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1167		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1168
1169	vcpu_put(vcpu);
1170	return ret;
1171}
1172
1173static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1174{
1175	int bit_index;
1176	bool set;
1177	unsigned long *hcr;
1178
1179	if (number == KVM_ARM_IRQ_CPU_IRQ)
1180		bit_index = __ffs(HCR_VI);
1181	else /* KVM_ARM_IRQ_CPU_FIQ */
1182		bit_index = __ffs(HCR_VF);
1183
1184	hcr = vcpu_hcr(vcpu);
1185	if (level)
1186		set = test_and_set_bit(bit_index, hcr);
1187	else
1188		set = test_and_clear_bit(bit_index, hcr);
1189
1190	/*
1191	 * If we didn't change anything, no need to wake up or kick other CPUs
1192	 */
1193	if (set == level)
1194		return 0;
1195
1196	/*
1197	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1198	 * trigger a world-switch round on the running physical CPU to set the
1199	 * virtual IRQ/FIQ fields in the HCR appropriately.
1200	 */
1201	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1202	kvm_vcpu_kick(vcpu);
1203
1204	return 0;
1205}
1206
1207int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1208			  bool line_status)
1209{
1210	u32 irq = irq_level->irq;
1211	unsigned int irq_type, vcpu_id, irq_num;
1212	struct kvm_vcpu *vcpu = NULL;
1213	bool level = irq_level->level;
1214
1215	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1216	vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1217	vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1218	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1219
1220	trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1221
1222	switch (irq_type) {
1223	case KVM_ARM_IRQ_TYPE_CPU:
1224		if (irqchip_in_kernel(kvm))
1225			return -ENXIO;
1226
1227		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1228		if (!vcpu)
1229			return -EINVAL;
1230
1231		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1232			return -EINVAL;
1233
1234		return vcpu_interrupt_line(vcpu, irq_num, level);
1235	case KVM_ARM_IRQ_TYPE_PPI:
1236		if (!irqchip_in_kernel(kvm))
1237			return -ENXIO;
1238
1239		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1240		if (!vcpu)
1241			return -EINVAL;
1242
1243		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1244			return -EINVAL;
1245
1246		return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1247	case KVM_ARM_IRQ_TYPE_SPI:
1248		if (!irqchip_in_kernel(kvm))
1249			return -ENXIO;
1250
1251		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1252			return -EINVAL;
1253
1254		return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1255	}
1256
1257	return -EINVAL;
1258}
1259
1260static unsigned long system_supported_vcpu_features(void)
1261{
1262	unsigned long features = KVM_VCPU_VALID_FEATURES;
1263
1264	if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1265		clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1266
1267	if (!kvm_arm_support_pmu_v3())
1268		clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1269
1270	if (!system_supports_sve())
1271		clear_bit(KVM_ARM_VCPU_SVE, &features);
1272
1273	if (!system_has_full_ptr_auth()) {
1274		clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1275		clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1276	}
1277
1278	if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1279		clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1280
1281	return features;
1282}
1283
1284static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1285					const struct kvm_vcpu_init *init)
1286{
1287	unsigned long features = init->features[0];
1288	int i;
1289
1290	if (features & ~KVM_VCPU_VALID_FEATURES)
1291		return -ENOENT;
1292
1293	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1294		if (init->features[i])
1295			return -ENOENT;
1296	}
1297
1298	if (features & ~system_supported_vcpu_features())
1299		return -EINVAL;
1300
1301	/*
1302	 * For now make sure that both address/generic pointer authentication
1303	 * features are requested by the userspace together.
1304	 */
1305	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1306	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1307		return -EINVAL;
1308
1309	/* Disallow NV+SVE for the time being */
1310	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features) &&
1311	    test_bit(KVM_ARM_VCPU_SVE, &features))
1312		return -EINVAL;
1313
1314	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1315		return 0;
1316
1317	/* MTE is incompatible with AArch32 */
1318	if (kvm_has_mte(vcpu->kvm))
1319		return -EINVAL;
1320
1321	/* NV is incompatible with AArch32 */
1322	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1323		return -EINVAL;
1324
1325	return 0;
1326}
1327
1328static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1329				  const struct kvm_vcpu_init *init)
1330{
1331	unsigned long features = init->features[0];
1332
1333	return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1334			     KVM_VCPU_MAX_FEATURES);
1335}
1336
1337static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1338{
1339	struct kvm *kvm = vcpu->kvm;
1340	int ret = 0;
1341
1342	/*
1343	 * When the vCPU has a PMU, but no PMU is set for the guest
1344	 * yet, set the default one.
1345	 */
1346	if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1347		ret = kvm_arm_set_default_pmu(kvm);
1348
1349	return ret;
1350}
1351
1352static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1353				 const struct kvm_vcpu_init *init)
1354{
1355	unsigned long features = init->features[0];
1356	struct kvm *kvm = vcpu->kvm;
1357	int ret = -EINVAL;
1358
1359	mutex_lock(&kvm->arch.config_lock);
1360
1361	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1362	    kvm_vcpu_init_changed(vcpu, init))
1363		goto out_unlock;
1364
1365	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1366
1367	ret = kvm_setup_vcpu(vcpu);
1368	if (ret)
1369		goto out_unlock;
1370
1371	/* Now we know what it is, we can reset it. */
1372	kvm_reset_vcpu(vcpu);
1373
1374	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1375	vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1376	ret = 0;
1377out_unlock:
1378	mutex_unlock(&kvm->arch.config_lock);
1379	return ret;
1380}
1381
1382static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1383			       const struct kvm_vcpu_init *init)
1384{
1385	int ret;
1386
1387	if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1388	    init->target != kvm_target_cpu())
1389		return -EINVAL;
1390
1391	ret = kvm_vcpu_init_check_features(vcpu, init);
1392	if (ret)
1393		return ret;
1394
1395	if (!kvm_vcpu_initialized(vcpu))
1396		return __kvm_vcpu_set_target(vcpu, init);
1397
1398	if (kvm_vcpu_init_changed(vcpu, init))
1399		return -EINVAL;
1400
1401	kvm_reset_vcpu(vcpu);
1402	return 0;
1403}
1404
1405static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1406					 struct kvm_vcpu_init *init)
1407{
1408	bool power_off = false;
1409	int ret;
1410
1411	/*
1412	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1413	 * reflecting it in the finalized feature set, thus limiting its scope
1414	 * to a single KVM_ARM_VCPU_INIT call.
1415	 */
1416	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1417		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1418		power_off = true;
1419	}
1420
1421	ret = kvm_vcpu_set_target(vcpu, init);
1422	if (ret)
1423		return ret;
1424
1425	/*
1426	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1427	 * guest MMU is turned off and flush the caches as needed.
1428	 *
1429	 * S2FWB enforces all memory accesses to RAM being cacheable,
1430	 * ensuring that the data side is always coherent. We still
1431	 * need to invalidate the I-cache though, as FWB does *not*
1432	 * imply CTR_EL0.DIC.
1433	 */
1434	if (vcpu_has_run_once(vcpu)) {
1435		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1436			stage2_unmap_vm(vcpu->kvm);
1437		else
1438			icache_inval_all_pou();
1439	}
1440
1441	vcpu_reset_hcr(vcpu);
1442	vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1443
1444	/*
1445	 * Handle the "start in power-off" case.
1446	 */
1447	spin_lock(&vcpu->arch.mp_state_lock);
1448
1449	if (power_off)
1450		__kvm_arm_vcpu_power_off(vcpu);
1451	else
1452		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1453
1454	spin_unlock(&vcpu->arch.mp_state_lock);
1455
1456	return 0;
1457}
1458
1459static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1460				 struct kvm_device_attr *attr)
1461{
1462	int ret = -ENXIO;
1463
1464	switch (attr->group) {
1465	default:
1466		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1467		break;
1468	}
1469
1470	return ret;
1471}
1472
1473static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1474				 struct kvm_device_attr *attr)
1475{
1476	int ret = -ENXIO;
1477
1478	switch (attr->group) {
1479	default:
1480		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1481		break;
1482	}
1483
1484	return ret;
1485}
1486
1487static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1488				 struct kvm_device_attr *attr)
1489{
1490	int ret = -ENXIO;
1491
1492	switch (attr->group) {
1493	default:
1494		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1495		break;
1496	}
1497
1498	return ret;
1499}
1500
1501static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1502				   struct kvm_vcpu_events *events)
1503{
1504	memset(events, 0, sizeof(*events));
1505
1506	return __kvm_arm_vcpu_get_events(vcpu, events);
1507}
1508
1509static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1510				   struct kvm_vcpu_events *events)
1511{
1512	int i;
1513
1514	/* check whether the reserved field is zero */
1515	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1516		if (events->reserved[i])
1517			return -EINVAL;
1518
1519	/* check whether the pad field is zero */
1520	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1521		if (events->exception.pad[i])
1522			return -EINVAL;
1523
1524	return __kvm_arm_vcpu_set_events(vcpu, events);
1525}
1526
1527long kvm_arch_vcpu_ioctl(struct file *filp,
1528			 unsigned int ioctl, unsigned long arg)
1529{
1530	struct kvm_vcpu *vcpu = filp->private_data;
1531	void __user *argp = (void __user *)arg;
1532	struct kvm_device_attr attr;
1533	long r;
1534
1535	switch (ioctl) {
1536	case KVM_ARM_VCPU_INIT: {
1537		struct kvm_vcpu_init init;
1538
1539		r = -EFAULT;
1540		if (copy_from_user(&init, argp, sizeof(init)))
1541			break;
1542
1543		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1544		break;
1545	}
1546	case KVM_SET_ONE_REG:
1547	case KVM_GET_ONE_REG: {
1548		struct kvm_one_reg reg;
1549
1550		r = -ENOEXEC;
1551		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1552			break;
1553
1554		r = -EFAULT;
1555		if (copy_from_user(&reg, argp, sizeof(reg)))
1556			break;
1557
1558		/*
1559		 * We could owe a reset due to PSCI. Handle the pending reset
1560		 * here to ensure userspace register accesses are ordered after
1561		 * the reset.
1562		 */
1563		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1564			kvm_reset_vcpu(vcpu);
1565
1566		if (ioctl == KVM_SET_ONE_REG)
1567			r = kvm_arm_set_reg(vcpu, &reg);
1568		else
1569			r = kvm_arm_get_reg(vcpu, &reg);
1570		break;
1571	}
1572	case KVM_GET_REG_LIST: {
1573		struct kvm_reg_list __user *user_list = argp;
1574		struct kvm_reg_list reg_list;
1575		unsigned n;
1576
1577		r = -ENOEXEC;
1578		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1579			break;
1580
1581		r = -EPERM;
1582		if (!kvm_arm_vcpu_is_finalized(vcpu))
1583			break;
1584
1585		r = -EFAULT;
1586		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1587			break;
1588		n = reg_list.n;
1589		reg_list.n = kvm_arm_num_regs(vcpu);
1590		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1591			break;
1592		r = -E2BIG;
1593		if (n < reg_list.n)
1594			break;
1595		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1596		break;
1597	}
1598	case KVM_SET_DEVICE_ATTR: {
1599		r = -EFAULT;
1600		if (copy_from_user(&attr, argp, sizeof(attr)))
1601			break;
1602		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1603		break;
1604	}
1605	case KVM_GET_DEVICE_ATTR: {
1606		r = -EFAULT;
1607		if (copy_from_user(&attr, argp, sizeof(attr)))
1608			break;
1609		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1610		break;
1611	}
1612	case KVM_HAS_DEVICE_ATTR: {
1613		r = -EFAULT;
1614		if (copy_from_user(&attr, argp, sizeof(attr)))
1615			break;
1616		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1617		break;
1618	}
1619	case KVM_GET_VCPU_EVENTS: {
1620		struct kvm_vcpu_events events;
1621
1622		if (kvm_arm_vcpu_get_events(vcpu, &events))
1623			return -EINVAL;
1624
1625		if (copy_to_user(argp, &events, sizeof(events)))
1626			return -EFAULT;
1627
1628		return 0;
1629	}
1630	case KVM_SET_VCPU_EVENTS: {
1631		struct kvm_vcpu_events events;
1632
1633		if (copy_from_user(&events, argp, sizeof(events)))
1634			return -EFAULT;
1635
1636		return kvm_arm_vcpu_set_events(vcpu, &events);
1637	}
1638	case KVM_ARM_VCPU_FINALIZE: {
1639		int what;
1640
1641		if (!kvm_vcpu_initialized(vcpu))
1642			return -ENOEXEC;
1643
1644		if (get_user(what, (const int __user *)argp))
1645			return -EFAULT;
1646
1647		return kvm_arm_vcpu_finalize(vcpu, what);
1648	}
1649	default:
1650		r = -EINVAL;
1651	}
1652
1653	return r;
1654}
1655
1656void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1657{
1658
1659}
1660
1661static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1662					struct kvm_arm_device_addr *dev_addr)
1663{
1664	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1665	case KVM_ARM_DEVICE_VGIC_V2:
1666		if (!vgic_present)
1667			return -ENXIO;
1668		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1669	default:
1670		return -ENODEV;
1671	}
1672}
1673
1674static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1675{
1676	switch (attr->group) {
1677	case KVM_ARM_VM_SMCCC_CTRL:
1678		return kvm_vm_smccc_has_attr(kvm, attr);
1679	default:
1680		return -ENXIO;
1681	}
1682}
1683
1684static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1685{
1686	switch (attr->group) {
1687	case KVM_ARM_VM_SMCCC_CTRL:
1688		return kvm_vm_smccc_set_attr(kvm, attr);
1689	default:
1690		return -ENXIO;
1691	}
1692}
1693
1694int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1695{
1696	struct kvm *kvm = filp->private_data;
1697	void __user *argp = (void __user *)arg;
1698	struct kvm_device_attr attr;
1699
1700	switch (ioctl) {
1701	case KVM_CREATE_IRQCHIP: {
1702		int ret;
1703		if (!vgic_present)
1704			return -ENXIO;
1705		mutex_lock(&kvm->lock);
1706		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1707		mutex_unlock(&kvm->lock);
1708		return ret;
1709	}
1710	case KVM_ARM_SET_DEVICE_ADDR: {
1711		struct kvm_arm_device_addr dev_addr;
1712
1713		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1714			return -EFAULT;
1715		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1716	}
1717	case KVM_ARM_PREFERRED_TARGET: {
1718		struct kvm_vcpu_init init = {
1719			.target = KVM_ARM_TARGET_GENERIC_V8,
1720		};
1721
1722		if (copy_to_user(argp, &init, sizeof(init)))
1723			return -EFAULT;
1724
1725		return 0;
1726	}
1727	case KVM_ARM_MTE_COPY_TAGS: {
1728		struct kvm_arm_copy_mte_tags copy_tags;
1729
1730		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1731			return -EFAULT;
1732		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1733	}
1734	case KVM_ARM_SET_COUNTER_OFFSET: {
1735		struct kvm_arm_counter_offset offset;
1736
1737		if (copy_from_user(&offset, argp, sizeof(offset)))
1738			return -EFAULT;
1739		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1740	}
1741	case KVM_HAS_DEVICE_ATTR: {
1742		if (copy_from_user(&attr, argp, sizeof(attr)))
1743			return -EFAULT;
1744
1745		return kvm_vm_has_attr(kvm, &attr);
1746	}
1747	case KVM_SET_DEVICE_ATTR: {
1748		if (copy_from_user(&attr, argp, sizeof(attr)))
1749			return -EFAULT;
1750
1751		return kvm_vm_set_attr(kvm, &attr);
1752	}
1753	case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1754		struct reg_mask_range range;
1755
1756		if (copy_from_user(&range, argp, sizeof(range)))
1757			return -EFAULT;
1758		return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1759	}
1760	default:
1761		return -EINVAL;
1762	}
1763}
1764
1765/* unlocks vcpus from @vcpu_lock_idx and smaller */
1766static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1767{
1768	struct kvm_vcpu *tmp_vcpu;
1769
1770	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1771		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1772		mutex_unlock(&tmp_vcpu->mutex);
1773	}
1774}
1775
1776void unlock_all_vcpus(struct kvm *kvm)
1777{
1778	lockdep_assert_held(&kvm->lock);
1779
1780	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1781}
1782
1783/* Returns true if all vcpus were locked, false otherwise */
1784bool lock_all_vcpus(struct kvm *kvm)
1785{
1786	struct kvm_vcpu *tmp_vcpu;
1787	unsigned long c;
1788
1789	lockdep_assert_held(&kvm->lock);
1790
1791	/*
1792	 * Any time a vcpu is in an ioctl (including running), the
1793	 * core KVM code tries to grab the vcpu->mutex.
1794	 *
1795	 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1796	 * other VCPUs can fiddle with the state while we access it.
1797	 */
1798	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1799		if (!mutex_trylock(&tmp_vcpu->mutex)) {
1800			unlock_vcpus(kvm, c - 1);
1801			return false;
1802		}
1803	}
1804
1805	return true;
1806}
1807
1808static unsigned long nvhe_percpu_size(void)
1809{
1810	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1811		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1812}
1813
1814static unsigned long nvhe_percpu_order(void)
1815{
1816	unsigned long size = nvhe_percpu_size();
1817
1818	return size ? get_order(size) : 0;
1819}
1820
1821/* A lookup table holding the hypervisor VA for each vector slot */
1822static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1823
1824static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1825{
1826	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1827}
1828
1829static int kvm_init_vector_slots(void)
1830{
1831	int err;
1832	void *base;
1833
1834	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1835	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1836
1837	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1838	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1839
1840	if (kvm_system_needs_idmapped_vectors() &&
1841	    !is_protected_kvm_enabled()) {
1842		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1843					       __BP_HARDEN_HYP_VECS_SZ, &base);
1844		if (err)
1845			return err;
1846	}
1847
1848	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1849	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1850	return 0;
1851}
1852
1853static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1854{
1855	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1856	u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1857	unsigned long tcr;
1858
1859	/*
1860	 * Calculate the raw per-cpu offset without a translation from the
1861	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1862	 * so that we can use adr_l to access per-cpu variables in EL2.
1863	 * Also drop the KASAN tag which gets in the way...
1864	 */
1865	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1866			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1867
1868	params->mair_el2 = read_sysreg(mair_el1);
1869
1870	tcr = read_sysreg(tcr_el1);
1871	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1872		tcr |= TCR_EPD1_MASK;
1873	} else {
1874		tcr &= TCR_EL2_MASK;
1875		tcr |= TCR_EL2_RES1;
1876	}
1877	tcr &= ~TCR_T0SZ_MASK;
1878	tcr |= TCR_T0SZ(hyp_va_bits);
1879	tcr &= ~TCR_EL2_PS_MASK;
1880	tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
1881	if (kvm_lpa2_is_enabled())
1882		tcr |= TCR_EL2_DS;
1883	params->tcr_el2 = tcr;
1884
1885	params->pgd_pa = kvm_mmu_get_httbr();
1886	if (is_protected_kvm_enabled())
1887		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1888	else
1889		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1890	if (cpus_have_final_cap(ARM64_KVM_HVHE))
1891		params->hcr_el2 |= HCR_E2H;
1892	params->vttbr = params->vtcr = 0;
1893
1894	/*
1895	 * Flush the init params from the data cache because the struct will
1896	 * be read while the MMU is off.
1897	 */
1898	kvm_flush_dcache_to_poc(params, sizeof(*params));
1899}
1900
1901static void hyp_install_host_vector(void)
1902{
1903	struct kvm_nvhe_init_params *params;
1904	struct arm_smccc_res res;
1905
1906	/* Switch from the HYP stub to our own HYP init vector */
1907	__hyp_set_vectors(kvm_get_idmap_vector());
1908
1909	/*
1910	 * Call initialization code, and switch to the full blown HYP code.
1911	 * If the cpucaps haven't been finalized yet, something has gone very
1912	 * wrong, and hyp will crash and burn when it uses any
1913	 * cpus_have_*_cap() wrapper.
1914	 */
1915	BUG_ON(!system_capabilities_finalized());
1916	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1917	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1918	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1919}
1920
1921static void cpu_init_hyp_mode(void)
1922{
1923	hyp_install_host_vector();
1924
1925	/*
1926	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1927	 * at EL2.
1928	 */
1929	if (this_cpu_has_cap(ARM64_SSBS) &&
1930	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1931		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1932	}
1933}
1934
1935static void cpu_hyp_reset(void)
1936{
1937	if (!is_kernel_in_hyp_mode())
1938		__hyp_reset_vectors();
1939}
1940
1941/*
1942 * EL2 vectors can be mapped and rerouted in a number of ways,
1943 * depending on the kernel configuration and CPU present:
1944 *
1945 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1946 *   placed in one of the vector slots, which is executed before jumping
1947 *   to the real vectors.
1948 *
1949 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1950 *   containing the hardening sequence is mapped next to the idmap page,
1951 *   and executed before jumping to the real vectors.
1952 *
1953 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1954 *   empty slot is selected, mapped next to the idmap page, and
1955 *   executed before jumping to the real vectors.
1956 *
1957 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1958 * VHE, as we don't have hypervisor-specific mappings. If the system
1959 * is VHE and yet selects this capability, it will be ignored.
1960 */
1961static void cpu_set_hyp_vector(void)
1962{
1963	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1964	void *vector = hyp_spectre_vector_selector[data->slot];
1965
1966	if (!is_protected_kvm_enabled())
1967		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1968	else
1969		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1970}
1971
1972static void cpu_hyp_init_context(void)
1973{
1974	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1975
1976	if (!is_kernel_in_hyp_mode())
1977		cpu_init_hyp_mode();
1978}
1979
1980static void cpu_hyp_init_features(void)
1981{
1982	cpu_set_hyp_vector();
1983	kvm_arm_init_debug();
1984
1985	if (is_kernel_in_hyp_mode())
1986		kvm_timer_init_vhe();
1987
1988	if (vgic_present)
1989		kvm_vgic_init_cpu_hardware();
1990}
1991
1992static void cpu_hyp_reinit(void)
1993{
1994	cpu_hyp_reset();
1995	cpu_hyp_init_context();
1996	cpu_hyp_init_features();
1997}
1998
1999static void cpu_hyp_init(void *discard)
2000{
2001	if (!__this_cpu_read(kvm_hyp_initialized)) {
2002		cpu_hyp_reinit();
2003		__this_cpu_write(kvm_hyp_initialized, 1);
2004	}
2005}
2006
2007static void cpu_hyp_uninit(void *discard)
2008{
2009	if (__this_cpu_read(kvm_hyp_initialized)) {
2010		cpu_hyp_reset();
2011		__this_cpu_write(kvm_hyp_initialized, 0);
2012	}
2013}
2014
2015int kvm_arch_hardware_enable(void)
2016{
2017	/*
2018	 * Most calls to this function are made with migration
2019	 * disabled, but not with preemption disabled. The former is
2020	 * enough to ensure correctness, but most of the helpers
2021	 * expect the later and will throw a tantrum otherwise.
2022	 */
2023	preempt_disable();
2024
2025	cpu_hyp_init(NULL);
2026
2027	kvm_vgic_cpu_up();
2028	kvm_timer_cpu_up();
2029
2030	preempt_enable();
2031
2032	return 0;
2033}
2034
2035void kvm_arch_hardware_disable(void)
2036{
2037	kvm_timer_cpu_down();
2038	kvm_vgic_cpu_down();
2039
2040	if (!is_protected_kvm_enabled())
2041		cpu_hyp_uninit(NULL);
2042}
2043
2044#ifdef CONFIG_CPU_PM
2045static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2046				    unsigned long cmd,
2047				    void *v)
2048{
2049	/*
2050	 * kvm_hyp_initialized is left with its old value over
2051	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2052	 * re-enable hyp.
2053	 */
2054	switch (cmd) {
2055	case CPU_PM_ENTER:
2056		if (__this_cpu_read(kvm_hyp_initialized))
2057			/*
2058			 * don't update kvm_hyp_initialized here
2059			 * so that the hyp will be re-enabled
2060			 * when we resume. See below.
2061			 */
2062			cpu_hyp_reset();
2063
2064		return NOTIFY_OK;
2065	case CPU_PM_ENTER_FAILED:
2066	case CPU_PM_EXIT:
2067		if (__this_cpu_read(kvm_hyp_initialized))
2068			/* The hyp was enabled before suspend. */
2069			cpu_hyp_reinit();
2070
2071		return NOTIFY_OK;
2072
2073	default:
2074		return NOTIFY_DONE;
2075	}
2076}
2077
2078static struct notifier_block hyp_init_cpu_pm_nb = {
2079	.notifier_call = hyp_init_cpu_pm_notifier,
2080};
2081
2082static void __init hyp_cpu_pm_init(void)
2083{
2084	if (!is_protected_kvm_enabled())
2085		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2086}
2087static void __init hyp_cpu_pm_exit(void)
2088{
2089	if (!is_protected_kvm_enabled())
2090		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2091}
2092#else
2093static inline void __init hyp_cpu_pm_init(void)
2094{
2095}
2096static inline void __init hyp_cpu_pm_exit(void)
2097{
2098}
2099#endif
2100
2101static void __init init_cpu_logical_map(void)
2102{
2103	unsigned int cpu;
2104
2105	/*
2106	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2107	 * Only copy the set of online CPUs whose features have been checked
2108	 * against the finalized system capabilities. The hypervisor will not
2109	 * allow any other CPUs from the `possible` set to boot.
2110	 */
2111	for_each_online_cpu(cpu)
2112		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2113}
2114
2115#define init_psci_0_1_impl_state(config, what)	\
2116	config.psci_0_1_ ## what ## _implemented = psci_ops.what
2117
2118static bool __init init_psci_relay(void)
2119{
2120	/*
2121	 * If PSCI has not been initialized, protected KVM cannot install
2122	 * itself on newly booted CPUs.
2123	 */
2124	if (!psci_ops.get_version) {
2125		kvm_err("Cannot initialize protected mode without PSCI\n");
2126		return false;
2127	}
2128
2129	kvm_host_psci_config.version = psci_ops.get_version();
2130	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2131
2132	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2133		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2134		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2135		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2136		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2137		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2138	}
2139	return true;
2140}
2141
2142static int __init init_subsystems(void)
2143{
2144	int err = 0;
2145
2146	/*
2147	 * Enable hardware so that subsystem initialisation can access EL2.
2148	 */
2149	on_each_cpu(cpu_hyp_init, NULL, 1);
2150
2151	/*
2152	 * Register CPU lower-power notifier
2153	 */
2154	hyp_cpu_pm_init();
2155
2156	/*
2157	 * Init HYP view of VGIC
2158	 */
2159	err = kvm_vgic_hyp_init();
2160	switch (err) {
2161	case 0:
2162		vgic_present = true;
2163		break;
2164	case -ENODEV:
2165	case -ENXIO:
2166		vgic_present = false;
2167		err = 0;
2168		break;
2169	default:
2170		goto out;
2171	}
2172
2173	/*
2174	 * Init HYP architected timer support
2175	 */
2176	err = kvm_timer_hyp_init(vgic_present);
2177	if (err)
2178		goto out;
2179
2180	kvm_register_perf_callbacks(NULL);
2181
2182out:
2183	if (err)
2184		hyp_cpu_pm_exit();
2185
2186	if (err || !is_protected_kvm_enabled())
2187		on_each_cpu(cpu_hyp_uninit, NULL, 1);
2188
2189	return err;
2190}
2191
2192static void __init teardown_subsystems(void)
2193{
2194	kvm_unregister_perf_callbacks();
2195	hyp_cpu_pm_exit();
2196}
2197
2198static void __init teardown_hyp_mode(void)
2199{
2200	int cpu;
2201
2202	free_hyp_pgds();
2203	for_each_possible_cpu(cpu) {
2204		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2205		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2206	}
2207}
2208
2209static int __init do_pkvm_init(u32 hyp_va_bits)
2210{
2211	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2212	int ret;
2213
2214	preempt_disable();
2215	cpu_hyp_init_context();
2216	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2217				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2218				hyp_va_bits);
2219	cpu_hyp_init_features();
2220
2221	/*
2222	 * The stub hypercalls are now disabled, so set our local flag to
2223	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2224	 */
2225	__this_cpu_write(kvm_hyp_initialized, 1);
2226	preempt_enable();
2227
2228	return ret;
2229}
2230
2231static u64 get_hyp_id_aa64pfr0_el1(void)
2232{
2233	/*
2234	 * Track whether the system isn't affected by spectre/meltdown in the
2235	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2236	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2237	 * to have to worry about vcpu migration.
2238	 *
2239	 * Unlike for non-protected VMs, userspace cannot override this for
2240	 * protected VMs.
2241	 */
2242	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2243
2244	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2245		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2246
2247	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2248			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2249	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2250			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2251
2252	return val;
2253}
2254
2255static void kvm_hyp_init_symbols(void)
2256{
2257	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2258	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2259	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2260	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2261	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2262	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2263	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2264	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2265	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2266	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2267	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2268}
2269
2270static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2271{
2272	void *addr = phys_to_virt(hyp_mem_base);
2273	int ret;
2274
2275	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2276	if (ret)
2277		return ret;
2278
2279	ret = do_pkvm_init(hyp_va_bits);
2280	if (ret)
2281		return ret;
2282
2283	free_hyp_pgds();
2284
2285	return 0;
2286}
2287
2288static void pkvm_hyp_init_ptrauth(void)
2289{
2290	struct kvm_cpu_context *hyp_ctxt;
2291	int cpu;
2292
2293	for_each_possible_cpu(cpu) {
2294		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2295		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2296		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2297		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2298		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2299		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2300		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2301		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2302		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2303		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2304		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2305	}
2306}
2307
2308/* Inits Hyp-mode on all online CPUs */
2309static int __init init_hyp_mode(void)
2310{
2311	u32 hyp_va_bits;
2312	int cpu;
2313	int err = -ENOMEM;
2314
2315	/*
2316	 * The protected Hyp-mode cannot be initialized if the memory pool
2317	 * allocation has failed.
2318	 */
2319	if (is_protected_kvm_enabled() && !hyp_mem_base)
2320		goto out_err;
2321
2322	/*
2323	 * Allocate Hyp PGD and setup Hyp identity mapping
2324	 */
2325	err = kvm_mmu_init(&hyp_va_bits);
2326	if (err)
2327		goto out_err;
2328
2329	/*
2330	 * Allocate stack pages for Hypervisor-mode
2331	 */
2332	for_each_possible_cpu(cpu) {
2333		unsigned long stack_page;
2334
2335		stack_page = __get_free_page(GFP_KERNEL);
2336		if (!stack_page) {
2337			err = -ENOMEM;
2338			goto out_err;
2339		}
2340
2341		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2342	}
2343
2344	/*
2345	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2346	 */
2347	for_each_possible_cpu(cpu) {
2348		struct page *page;
2349		void *page_addr;
2350
2351		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2352		if (!page) {
2353			err = -ENOMEM;
2354			goto out_err;
2355		}
2356
2357		page_addr = page_address(page);
2358		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2359		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2360	}
2361
2362	/*
2363	 * Map the Hyp-code called directly from the host
2364	 */
2365	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2366				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2367	if (err) {
2368		kvm_err("Cannot map world-switch code\n");
2369		goto out_err;
2370	}
2371
2372	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2373				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2374	if (err) {
2375		kvm_err("Cannot map .hyp.rodata section\n");
2376		goto out_err;
2377	}
2378
2379	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2380				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2381	if (err) {
2382		kvm_err("Cannot map rodata section\n");
2383		goto out_err;
2384	}
2385
2386	/*
2387	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2388	 * section thanks to an assertion in the linker script. Map it RW and
2389	 * the rest of .bss RO.
2390	 */
2391	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2392				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2393	if (err) {
2394		kvm_err("Cannot map hyp bss section: %d\n", err);
2395		goto out_err;
2396	}
2397
2398	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2399				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2400	if (err) {
2401		kvm_err("Cannot map bss section\n");
2402		goto out_err;
2403	}
2404
2405	/*
2406	 * Map the Hyp stack pages
2407	 */
2408	for_each_possible_cpu(cpu) {
2409		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2410		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2411
2412		err = create_hyp_stack(__pa(stack_page), &params->stack_hyp_va);
2413		if (err) {
2414			kvm_err("Cannot map hyp stack\n");
2415			goto out_err;
2416		}
2417
2418		/*
2419		 * Save the stack PA in nvhe_init_params. This will be needed
2420		 * to recreate the stack mapping in protected nVHE mode.
2421		 * __hyp_pa() won't do the right thing there, since the stack
2422		 * has been mapped in the flexible private VA space.
2423		 */
2424		params->stack_pa = __pa(stack_page);
2425	}
2426
2427	for_each_possible_cpu(cpu) {
2428		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2429		char *percpu_end = percpu_begin + nvhe_percpu_size();
2430
2431		/* Map Hyp percpu pages */
2432		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2433		if (err) {
2434			kvm_err("Cannot map hyp percpu region\n");
2435			goto out_err;
2436		}
2437
2438		/* Prepare the CPU initialization parameters */
2439		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2440	}
2441
2442	kvm_hyp_init_symbols();
2443
2444	if (is_protected_kvm_enabled()) {
2445		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2446		    cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2447			pkvm_hyp_init_ptrauth();
2448
2449		init_cpu_logical_map();
2450
2451		if (!init_psci_relay()) {
2452			err = -ENODEV;
2453			goto out_err;
2454		}
2455
2456		err = kvm_hyp_init_protection(hyp_va_bits);
2457		if (err) {
2458			kvm_err("Failed to init hyp memory protection\n");
2459			goto out_err;
2460		}
2461	}
2462
2463	return 0;
2464
2465out_err:
2466	teardown_hyp_mode();
2467	kvm_err("error initializing Hyp mode: %d\n", err);
2468	return err;
2469}
2470
2471struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2472{
2473	struct kvm_vcpu *vcpu;
2474	unsigned long i;
2475
2476	mpidr &= MPIDR_HWID_BITMASK;
2477
2478	if (kvm->arch.mpidr_data) {
2479		u16 idx = kvm_mpidr_index(kvm->arch.mpidr_data, mpidr);
2480
2481		vcpu = kvm_get_vcpu(kvm,
2482				    kvm->arch.mpidr_data->cmpidr_to_idx[idx]);
2483		if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2484			vcpu = NULL;
2485
2486		return vcpu;
2487	}
2488
2489	kvm_for_each_vcpu(i, vcpu, kvm) {
2490		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2491			return vcpu;
2492	}
2493	return NULL;
2494}
2495
2496bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2497{
2498	return irqchip_in_kernel(kvm);
2499}
2500
2501bool kvm_arch_has_irq_bypass(void)
2502{
2503	return true;
2504}
2505
2506int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2507				      struct irq_bypass_producer *prod)
2508{
2509	struct kvm_kernel_irqfd *irqfd =
2510		container_of(cons, struct kvm_kernel_irqfd, consumer);
2511
2512	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2513					  &irqfd->irq_entry);
2514}
2515void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2516				      struct irq_bypass_producer *prod)
2517{
2518	struct kvm_kernel_irqfd *irqfd =
2519		container_of(cons, struct kvm_kernel_irqfd, consumer);
2520
2521	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2522				     &irqfd->irq_entry);
2523}
2524
2525void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2526{
2527	struct kvm_kernel_irqfd *irqfd =
2528		container_of(cons, struct kvm_kernel_irqfd, consumer);
2529
2530	kvm_arm_halt_guest(irqfd->kvm);
2531}
2532
2533void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2534{
2535	struct kvm_kernel_irqfd *irqfd =
2536		container_of(cons, struct kvm_kernel_irqfd, consumer);
2537
2538	kvm_arm_resume_guest(irqfd->kvm);
2539}
2540
2541/* Initialize Hyp-mode and memory mappings on all CPUs */
2542static __init int kvm_arm_init(void)
2543{
2544	int err;
2545	bool in_hyp_mode;
2546
2547	if (!is_hyp_mode_available()) {
2548		kvm_info("HYP mode not available\n");
2549		return -ENODEV;
2550	}
2551
2552	if (kvm_get_mode() == KVM_MODE_NONE) {
2553		kvm_info("KVM disabled from command line\n");
2554		return -ENODEV;
2555	}
2556
2557	err = kvm_sys_reg_table_init();
2558	if (err) {
2559		kvm_info("Error initializing system register tables");
2560		return err;
2561	}
2562
2563	in_hyp_mode = is_kernel_in_hyp_mode();
2564
2565	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2566	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2567		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2568			 "Only trusted guests should be used on this system.\n");
2569
2570	err = kvm_set_ipa_limit();
2571	if (err)
2572		return err;
2573
2574	err = kvm_arm_init_sve();
2575	if (err)
2576		return err;
2577
2578	err = kvm_arm_vmid_alloc_init();
2579	if (err) {
2580		kvm_err("Failed to initialize VMID allocator.\n");
2581		return err;
2582	}
2583
2584	if (!in_hyp_mode) {
2585		err = init_hyp_mode();
2586		if (err)
2587			goto out_err;
2588	}
2589
2590	err = kvm_init_vector_slots();
2591	if (err) {
2592		kvm_err("Cannot initialise vector slots\n");
2593		goto out_hyp;
2594	}
2595
2596	err = init_subsystems();
2597	if (err)
2598		goto out_hyp;
2599
2600	kvm_info("%s%sVHE mode initialized successfully\n",
2601		 in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2602				     "Protected " : "Hyp "),
2603		 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2604				     "h" : "n"));
2605
2606	/*
2607	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2608	 * hypervisor protection is finalized.
2609	 */
2610	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2611	if (err)
2612		goto out_subs;
2613
2614	kvm_arm_initialised = true;
2615
2616	return 0;
2617
2618out_subs:
2619	teardown_subsystems();
2620out_hyp:
2621	if (!in_hyp_mode)
2622		teardown_hyp_mode();
2623out_err:
2624	kvm_arm_vmid_alloc_free();
2625	return err;
2626}
2627
2628static int __init early_kvm_mode_cfg(char *arg)
2629{
2630	if (!arg)
2631		return -EINVAL;
2632
2633	if (strcmp(arg, "none") == 0) {
2634		kvm_mode = KVM_MODE_NONE;
2635		return 0;
2636	}
2637
2638	if (!is_hyp_mode_available()) {
2639		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2640		return 0;
2641	}
2642
2643	if (strcmp(arg, "protected") == 0) {
2644		if (!is_kernel_in_hyp_mode())
2645			kvm_mode = KVM_MODE_PROTECTED;
2646		else
2647			pr_warn_once("Protected KVM not available with VHE\n");
2648
2649		return 0;
2650	}
2651
2652	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2653		kvm_mode = KVM_MODE_DEFAULT;
2654		return 0;
2655	}
2656
2657	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2658		kvm_mode = KVM_MODE_NV;
2659		return 0;
2660	}
2661
2662	return -EINVAL;
2663}
2664early_param("kvm-arm.mode", early_kvm_mode_cfg);
2665
2666enum kvm_mode kvm_get_mode(void)
2667{
2668	return kvm_mode;
2669}
2670
2671module_init(kvm_arm_init);
2672