1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2020 ARM Ltd.
4 */
5
6#include <linux/bitops.h>
7#include <linux/cpu.h>
8#include <linux/kernel.h>
9#include <linux/mm.h>
10#include <linux/prctl.h>
11#include <linux/sched.h>
12#include <linux/sched/mm.h>
13#include <linux/string.h>
14#include <linux/swap.h>
15#include <linux/swapops.h>
16#include <linux/thread_info.h>
17#include <linux/types.h>
18#include <linux/uaccess.h>
19#include <linux/uio.h>
20
21#include <asm/barrier.h>
22#include <asm/cpufeature.h>
23#include <asm/mte.h>
24#include <asm/ptrace.h>
25#include <asm/sysreg.h>
26
27static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28
29#ifdef CONFIG_KASAN_HW_TAGS
30/*
31 * The asynchronous and asymmetric MTE modes have the same behavior for
32 * store operations. This flag is set when either of these modes is enabled.
33 */
34DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36#endif
37
38void mte_sync_tags(pte_t pte, unsigned int nr_pages)
39{
40	struct page *page = pte_page(pte);
41	unsigned int i;
42
43	/* if PG_mte_tagged is set, tags have already been initialised */
44	for (i = 0; i < nr_pages; i++, page++) {
45		if (try_page_mte_tagging(page)) {
46			mte_clear_page_tags(page_address(page));
47			set_page_mte_tagged(page);
48		}
49	}
50
51	/* ensure the tags are visible before the PTE is set */
52	smp_wmb();
53}
54
55int memcmp_pages(struct page *page1, struct page *page2)
56{
57	char *addr1, *addr2;
58	int ret;
59
60	addr1 = page_address(page1);
61	addr2 = page_address(page2);
62	ret = memcmp(addr1, addr2, PAGE_SIZE);
63
64	if (!system_supports_mte() || ret)
65		return ret;
66
67	/*
68	 * If the page content is identical but at least one of the pages is
69	 * tagged, return non-zero to avoid KSM merging. If only one of the
70	 * pages is tagged, __set_ptes() may zero or change the tags of the
71	 * other page via mte_sync_tags().
72	 */
73	if (page_mte_tagged(page1) || page_mte_tagged(page2))
74		return addr1 != addr2;
75
76	return ret;
77}
78
79static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
80{
81	/* Enable MTE Sync Mode for EL1. */
82	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
83			 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
84	isb();
85
86	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
87}
88
89#ifdef CONFIG_KASAN_HW_TAGS
90void mte_enable_kernel_sync(void)
91{
92	/*
93	 * Make sure we enter this function when no PE has set
94	 * async mode previously.
95	 */
96	WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
97			"MTE async mode enabled system wide!");
98
99	__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
100}
101
102void mte_enable_kernel_async(void)
103{
104	__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
105
106	/*
107	 * MTE async mode is set system wide by the first PE that
108	 * executes this function.
109	 *
110	 * Note: If in future KASAN acquires a runtime switching
111	 * mode in between sync and async, this strategy needs
112	 * to be reviewed.
113	 */
114	if (!system_uses_mte_async_or_asymm_mode())
115		static_branch_enable(&mte_async_or_asymm_mode);
116}
117
118void mte_enable_kernel_asymm(void)
119{
120	if (cpus_have_cap(ARM64_MTE_ASYMM)) {
121		__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
122
123		/*
124		 * MTE asymm mode behaves as async mode for store
125		 * operations. The mode is set system wide by the
126		 * first PE that executes this function.
127		 *
128		 * Note: If in future KASAN acquires a runtime switching
129		 * mode in between sync and async, this strategy needs
130		 * to be reviewed.
131		 */
132		if (!system_uses_mte_async_or_asymm_mode())
133			static_branch_enable(&mte_async_or_asymm_mode);
134	} else {
135		/*
136		 * If the CPU does not support MTE asymmetric mode the
137		 * kernel falls back on synchronous mode which is the
138		 * default for kasan=on.
139		 */
140		mte_enable_kernel_sync();
141	}
142}
143#endif
144
145#ifdef CONFIG_KASAN_HW_TAGS
146void mte_check_tfsr_el1(void)
147{
148	u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
149
150	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
151		/*
152		 * Note: isb() is not required after this direct write
153		 * because there is no indirect read subsequent to it
154		 * (per ARM DDI 0487F.c table D13-1).
155		 */
156		write_sysreg_s(0, SYS_TFSR_EL1);
157
158		kasan_report_async();
159	}
160}
161#endif
162
163/*
164 * This is where we actually resolve the system and process MTE mode
165 * configuration into an actual value in SCTLR_EL1 that affects
166 * userspace.
167 */
168static void mte_update_sctlr_user(struct task_struct *task)
169{
170	/*
171	 * This must be called with preemption disabled and can only be called
172	 * on the current or next task since the CPU must match where the thread
173	 * is going to run. The caller is responsible for calling
174	 * update_sctlr_el1() later in the same preemption disabled block.
175	 */
176	unsigned long sctlr = task->thread.sctlr_user;
177	unsigned long mte_ctrl = task->thread.mte_ctrl;
178	unsigned long pref, resolved_mte_tcf;
179
180	pref = __this_cpu_read(mte_tcf_preferred);
181	/*
182	 * If there is no overlap between the system preferred and
183	 * program requested values go with what was requested.
184	 */
185	resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
186	sctlr &= ~SCTLR_EL1_TCF0_MASK;
187	/*
188	 * Pick an actual setting. The order in which we check for
189	 * set bits and map into register values determines our
190	 * default order.
191	 */
192	if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
193		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
194	else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
195		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
196	else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
197		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
198	task->thread.sctlr_user = sctlr;
199}
200
201static void mte_update_gcr_excl(struct task_struct *task)
202{
203	/*
204	 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
205	 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
206	 */
207	if (kasan_hw_tags_enabled())
208		return;
209
210	write_sysreg_s(
211		((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
212		 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
213		SYS_GCR_EL1);
214}
215
216#ifdef CONFIG_KASAN_HW_TAGS
217/* Only called from assembly, silence sparse */
218void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
219				 __le32 *updptr, int nr_inst);
220
221void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
222				 __le32 *updptr, int nr_inst)
223{
224	BUG_ON(nr_inst != 1); /* Branch -> NOP */
225
226	if (kasan_hw_tags_enabled())
227		*updptr = cpu_to_le32(aarch64_insn_gen_nop());
228}
229#endif
230
231void mte_thread_init_user(void)
232{
233	if (!system_supports_mte())
234		return;
235
236	/* clear any pending asynchronous tag fault */
237	dsb(ish);
238	write_sysreg_s(0, SYS_TFSRE0_EL1);
239	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
240	/* disable tag checking and reset tag generation mask */
241	set_mte_ctrl(current, 0);
242}
243
244void mte_thread_switch(struct task_struct *next)
245{
246	if (!system_supports_mte())
247		return;
248
249	mte_update_sctlr_user(next);
250	mte_update_gcr_excl(next);
251
252	/* TCO may not have been disabled on exception entry for the current task. */
253	mte_disable_tco_entry(next);
254
255	/*
256	 * Check if an async tag exception occurred at EL1.
257	 *
258	 * Note: On the context switch path we rely on the dsb() present
259	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
260	 * are synchronized before this point.
261	 */
262	isb();
263	mte_check_tfsr_el1();
264}
265
266void mte_cpu_setup(void)
267{
268	u64 rgsr;
269
270	/*
271	 * CnP must be enabled only after the MAIR_EL1 register has been set
272	 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
273	 * lead to the wrong memory type being used for a brief window during
274	 * CPU power-up.
275	 *
276	 * CnP is not a boot feature so MTE gets enabled before CnP, but let's
277	 * make sure that is the case.
278	 */
279	BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
280	BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
281
282	/* Normal Tagged memory type at the corresponding MAIR index */
283	sysreg_clear_set(mair_el1,
284			 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
285			 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
286				      MT_NORMAL_TAGGED));
287
288	write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
289
290	/*
291	 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
292	 * RGSR_EL1.SEED must be non-zero for IRG to produce
293	 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
294	 * must initialize it.
295	 */
296	rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
297	       SYS_RGSR_EL1_SEED_SHIFT;
298	if (rgsr == 0)
299		rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
300	write_sysreg_s(rgsr, SYS_RGSR_EL1);
301
302	/* clear any pending tag check faults in TFSR*_EL1 */
303	write_sysreg_s(0, SYS_TFSR_EL1);
304	write_sysreg_s(0, SYS_TFSRE0_EL1);
305
306	local_flush_tlb_all();
307}
308
309void mte_suspend_enter(void)
310{
311	if (!system_supports_mte())
312		return;
313
314	/*
315	 * The barriers are required to guarantee that the indirect writes
316	 * to TFSR_EL1 are synchronized before we report the state.
317	 */
318	dsb(nsh);
319	isb();
320
321	/* Report SYS_TFSR_EL1 before suspend entry */
322	mte_check_tfsr_el1();
323}
324
325void mte_suspend_exit(void)
326{
327	if (!system_supports_mte())
328		return;
329
330	mte_cpu_setup();
331}
332
333long set_mte_ctrl(struct task_struct *task, unsigned long arg)
334{
335	u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
336			SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
337
338	if (!system_supports_mte())
339		return 0;
340
341	if (arg & PR_MTE_TCF_ASYNC)
342		mte_ctrl |= MTE_CTRL_TCF_ASYNC;
343	if (arg & PR_MTE_TCF_SYNC)
344		mte_ctrl |= MTE_CTRL_TCF_SYNC;
345
346	/*
347	 * If the system supports it and both sync and async modes are
348	 * specified then implicitly enable asymmetric mode.
349	 * Userspace could see a mix of both sync and async anyway due
350	 * to differing or changing defaults on CPUs.
351	 */
352	if (cpus_have_cap(ARM64_MTE_ASYMM) &&
353	    (arg & PR_MTE_TCF_ASYNC) &&
354	    (arg & PR_MTE_TCF_SYNC))
355		mte_ctrl |= MTE_CTRL_TCF_ASYMM;
356
357	task->thread.mte_ctrl = mte_ctrl;
358	if (task == current) {
359		preempt_disable();
360		mte_update_sctlr_user(task);
361		mte_update_gcr_excl(task);
362		update_sctlr_el1(task->thread.sctlr_user);
363		preempt_enable();
364	}
365
366	return 0;
367}
368
369long get_mte_ctrl(struct task_struct *task)
370{
371	unsigned long ret;
372	u64 mte_ctrl = task->thread.mte_ctrl;
373	u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
374		   SYS_GCR_EL1_EXCL_MASK;
375
376	if (!system_supports_mte())
377		return 0;
378
379	ret = incl << PR_MTE_TAG_SHIFT;
380	if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
381		ret |= PR_MTE_TCF_ASYNC;
382	if (mte_ctrl & MTE_CTRL_TCF_SYNC)
383		ret |= PR_MTE_TCF_SYNC;
384
385	return ret;
386}
387
388/*
389 * Access MTE tags in another process' address space as given in mm. Update
390 * the number of tags copied. Return 0 if any tags copied, error otherwise.
391 * Inspired by __access_remote_vm().
392 */
393static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
394				struct iovec *kiov, unsigned int gup_flags)
395{
396	void __user *buf = kiov->iov_base;
397	size_t len = kiov->iov_len;
398	int err = 0;
399	int write = gup_flags & FOLL_WRITE;
400
401	if (!access_ok(buf, len))
402		return -EFAULT;
403
404	if (mmap_read_lock_killable(mm))
405		return -EIO;
406
407	while (len) {
408		struct vm_area_struct *vma;
409		unsigned long tags, offset;
410		void *maddr;
411		struct page *page = get_user_page_vma_remote(mm, addr,
412							     gup_flags, &vma);
413
414		if (IS_ERR(page)) {
415			err = PTR_ERR(page);
416			break;
417		}
418
419		/*
420		 * Only copy tags if the page has been mapped as PROT_MTE
421		 * (PG_mte_tagged set). Otherwise the tags are not valid and
422		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
423		 * would cause the existing tags to be cleared if the page
424		 * was never mapped with PROT_MTE.
425		 */
426		if (!(vma->vm_flags & VM_MTE)) {
427			err = -EOPNOTSUPP;
428			put_page(page);
429			break;
430		}
431		WARN_ON_ONCE(!page_mte_tagged(page));
432
433		/* limit access to the end of the page */
434		offset = offset_in_page(addr);
435		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
436
437		maddr = page_address(page);
438		if (write) {
439			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
440			set_page_dirty_lock(page);
441		} else {
442			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
443		}
444		put_page(page);
445
446		/* error accessing the tracer's buffer */
447		if (!tags)
448			break;
449
450		len -= tags;
451		buf += tags;
452		addr += tags * MTE_GRANULE_SIZE;
453	}
454	mmap_read_unlock(mm);
455
456	/* return an error if no tags copied */
457	kiov->iov_len = buf - kiov->iov_base;
458	if (!kiov->iov_len) {
459		/* check for error accessing the tracee's address space */
460		if (err)
461			return -EIO;
462		else
463			return -EFAULT;
464	}
465
466	return 0;
467}
468
469/*
470 * Copy MTE tags in another process' address space at 'addr' to/from tracer's
471 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
472 */
473static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
474			      struct iovec *kiov, unsigned int gup_flags)
475{
476	struct mm_struct *mm;
477	int ret;
478
479	mm = get_task_mm(tsk);
480	if (!mm)
481		return -EPERM;
482
483	if (!tsk->ptrace || (current != tsk->parent) ||
484	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
485	     !ptracer_capable(tsk, mm->user_ns))) {
486		mmput(mm);
487		return -EPERM;
488	}
489
490	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
491	mmput(mm);
492
493	return ret;
494}
495
496int mte_ptrace_copy_tags(struct task_struct *child, long request,
497			 unsigned long addr, unsigned long data)
498{
499	int ret;
500	struct iovec kiov;
501	struct iovec __user *uiov = (void __user *)data;
502	unsigned int gup_flags = FOLL_FORCE;
503
504	if (!system_supports_mte())
505		return -EIO;
506
507	if (get_user(kiov.iov_base, &uiov->iov_base) ||
508	    get_user(kiov.iov_len, &uiov->iov_len))
509		return -EFAULT;
510
511	if (request == PTRACE_POKEMTETAGS)
512		gup_flags |= FOLL_WRITE;
513
514	/* align addr to the MTE tag granule */
515	addr &= MTE_GRANULE_MASK;
516
517	ret = access_remote_tags(child, addr, &kiov, gup_flags);
518	if (!ret)
519		ret = put_user(kiov.iov_len, &uiov->iov_len);
520
521	return ret;
522}
523
524static ssize_t mte_tcf_preferred_show(struct device *dev,
525				      struct device_attribute *attr, char *buf)
526{
527	switch (per_cpu(mte_tcf_preferred, dev->id)) {
528	case MTE_CTRL_TCF_ASYNC:
529		return sysfs_emit(buf, "async\n");
530	case MTE_CTRL_TCF_SYNC:
531		return sysfs_emit(buf, "sync\n");
532	case MTE_CTRL_TCF_ASYMM:
533		return sysfs_emit(buf, "asymm\n");
534	default:
535		return sysfs_emit(buf, "???\n");
536	}
537}
538
539static ssize_t mte_tcf_preferred_store(struct device *dev,
540				       struct device_attribute *attr,
541				       const char *buf, size_t count)
542{
543	u64 tcf;
544
545	if (sysfs_streq(buf, "async"))
546		tcf = MTE_CTRL_TCF_ASYNC;
547	else if (sysfs_streq(buf, "sync"))
548		tcf = MTE_CTRL_TCF_SYNC;
549	else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
550		tcf = MTE_CTRL_TCF_ASYMM;
551	else
552		return -EINVAL;
553
554	device_lock(dev);
555	per_cpu(mte_tcf_preferred, dev->id) = tcf;
556	device_unlock(dev);
557
558	return count;
559}
560static DEVICE_ATTR_RW(mte_tcf_preferred);
561
562static int register_mte_tcf_preferred_sysctl(void)
563{
564	unsigned int cpu;
565
566	if (!system_supports_mte())
567		return 0;
568
569	for_each_possible_cpu(cpu) {
570		per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
571		device_create_file(get_cpu_device(cpu),
572				   &dev_attr_mte_tcf_preferred);
573	}
574
575	return 0;
576}
577subsys_initcall(register_mte_tcf_preferred_sysctl);
578
579/*
580 * Return 0 on success, the number of bytes not probed otherwise.
581 */
582size_t mte_probe_user_range(const char __user *uaddr, size_t size)
583{
584	const char __user *end = uaddr + size;
585	int err = 0;
586	char val;
587
588	__raw_get_user(val, uaddr, err);
589	if (err)
590		return size;
591
592	uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
593	while (uaddr < end) {
594		/*
595		 * A read is sufficient for mte, the caller should have probed
596		 * for the pte write permission if required.
597		 */
598		__raw_get_user(val, uaddr, err);
599		if (err)
600			return end - uaddr;
601		uaddr += MTE_GRANULE_SIZE;
602	}
603	(void)val;
604
605	return 0;
606}
607