1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AArch64 loadable module support.
4 *
5 * Copyright (C) 2012 ARM Limited
6 *
7 * Author: Will Deacon <will.deacon@arm.com>
8 */
9
10#define pr_fmt(fmt) "Modules: " fmt
11
12#include <linux/bitops.h>
13#include <linux/elf.h>
14#include <linux/ftrace.h>
15#include <linux/gfp.h>
16#include <linux/kasan.h>
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/moduleloader.h>
20#include <linux/random.h>
21#include <linux/scs.h>
22#include <linux/vmalloc.h>
23
24#include <asm/alternative.h>
25#include <asm/insn.h>
26#include <asm/scs.h>
27#include <asm/sections.h>
28
29static u64 module_direct_base __ro_after_init = 0;
30static u64 module_plt_base __ro_after_init = 0;
31
32/*
33 * Choose a random page-aligned base address for a window of 'size' bytes which
34 * entirely contains the interval [start, end - 1].
35 */
36static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
37{
38	u64 max_pgoff, pgoff;
39
40	if ((end - start) >= size)
41		return 0;
42
43	max_pgoff = (size - (end - start)) / PAGE_SIZE;
44	pgoff = get_random_u32_inclusive(0, max_pgoff);
45
46	return start - pgoff * PAGE_SIZE;
47}
48
49/*
50 * Modules may directly reference data and text anywhere within the kernel
51 * image and other modules. References using PREL32 relocations have a +/-2G
52 * range, and so we need to ensure that the entire kernel image and all modules
53 * fall within a 2G window such that these are always within range.
54 *
55 * Modules may directly branch to functions and code within the kernel text,
56 * and to functions and code within other modules. These branches will use
57 * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
58 * that the entire kernel text and all module text falls within a 128M window
59 * such that these are always within range. With PLTs, we can expand this to a
60 * 2G window.
61 *
62 * We chose the 128M region to surround the entire kernel image (rather than
63 * just the text) as using the same bounds for the 128M and 2G regions ensures
64 * by construction that we never select a 128M region that is not a subset of
65 * the 2G region. For very large and unusual kernel configurations this means
66 * we may fall back to PLTs where they could have been avoided, but this keeps
67 * the logic significantly simpler.
68 */
69static int __init module_init_limits(void)
70{
71	u64 kernel_end = (u64)_end;
72	u64 kernel_start = (u64)_text;
73	u64 kernel_size = kernel_end - kernel_start;
74
75	/*
76	 * The default modules region is placed immediately below the kernel
77	 * image, and is large enough to use the full 2G relocation range.
78	 */
79	BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
80	BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
81
82	if (!kaslr_enabled()) {
83		if (kernel_size < SZ_128M)
84			module_direct_base = kernel_end - SZ_128M;
85		if (kernel_size < SZ_2G)
86			module_plt_base = kernel_end - SZ_2G;
87	} else {
88		u64 min = kernel_start;
89		u64 max = kernel_end;
90
91		if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
92			pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
93		} else {
94			module_direct_base = random_bounding_box(SZ_128M, min, max);
95			if (module_direct_base) {
96				min = module_direct_base;
97				max = module_direct_base + SZ_128M;
98			}
99		}
100
101		module_plt_base = random_bounding_box(SZ_2G, min, max);
102	}
103
104	pr_info("%llu pages in range for non-PLT usage",
105		module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
106	pr_info("%llu pages in range for PLT usage",
107		module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
108
109	return 0;
110}
111subsys_initcall(module_init_limits);
112
113void *module_alloc(unsigned long size)
114{
115	void *p = NULL;
116
117	/*
118	 * Where possible, prefer to allocate within direct branch range of the
119	 * kernel such that no PLTs are necessary.
120	 */
121	if (module_direct_base) {
122		p = __vmalloc_node_range(size, MODULE_ALIGN,
123					 module_direct_base,
124					 module_direct_base + SZ_128M,
125					 GFP_KERNEL | __GFP_NOWARN,
126					 PAGE_KERNEL, 0, NUMA_NO_NODE,
127					 __builtin_return_address(0));
128	}
129
130	if (!p && module_plt_base) {
131		p = __vmalloc_node_range(size, MODULE_ALIGN,
132					 module_plt_base,
133					 module_plt_base + SZ_2G,
134					 GFP_KERNEL | __GFP_NOWARN,
135					 PAGE_KERNEL, 0, NUMA_NO_NODE,
136					 __builtin_return_address(0));
137	}
138
139	if (!p) {
140		pr_warn_ratelimited("%s: unable to allocate memory\n",
141				    __func__);
142	}
143
144	if (p && (kasan_alloc_module_shadow(p, size, GFP_KERNEL) < 0)) {
145		vfree(p);
146		return NULL;
147	}
148
149	/* Memory is intended to be executable, reset the pointer tag. */
150	return kasan_reset_tag(p);
151}
152
153enum aarch64_reloc_op {
154	RELOC_OP_NONE,
155	RELOC_OP_ABS,
156	RELOC_OP_PREL,
157	RELOC_OP_PAGE,
158};
159
160static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
161{
162	switch (reloc_op) {
163	case RELOC_OP_ABS:
164		return val;
165	case RELOC_OP_PREL:
166		return val - (u64)place;
167	case RELOC_OP_PAGE:
168		return (val & ~0xfff) - ((u64)place & ~0xfff);
169	case RELOC_OP_NONE:
170		return 0;
171	}
172
173	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
174	return 0;
175}
176
177static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
178{
179	s64 sval = do_reloc(op, place, val);
180
181	/*
182	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
183	 * relative and absolute relocations as having a range of [-2^15, 2^16)
184	 * or [-2^31, 2^32), respectively. However, in order to be able to
185	 * detect overflows reliably, we have to choose whether we interpret
186	 * such quantities as signed or as unsigned, and stick with it.
187	 * The way we organize our address space requires a signed
188	 * interpretation of 32-bit relative references, so let's use that
189	 * for all R_AARCH64_PRELxx relocations. This means our upper
190	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
191	 */
192
193	switch (len) {
194	case 16:
195		*(s16 *)place = sval;
196		switch (op) {
197		case RELOC_OP_ABS:
198			if (sval < 0 || sval > U16_MAX)
199				return -ERANGE;
200			break;
201		case RELOC_OP_PREL:
202			if (sval < S16_MIN || sval > S16_MAX)
203				return -ERANGE;
204			break;
205		default:
206			pr_err("Invalid 16-bit data relocation (%d)\n", op);
207			return 0;
208		}
209		break;
210	case 32:
211		*(s32 *)place = sval;
212		switch (op) {
213		case RELOC_OP_ABS:
214			if (sval < 0 || sval > U32_MAX)
215				return -ERANGE;
216			break;
217		case RELOC_OP_PREL:
218			if (sval < S32_MIN || sval > S32_MAX)
219				return -ERANGE;
220			break;
221		default:
222			pr_err("Invalid 32-bit data relocation (%d)\n", op);
223			return 0;
224		}
225		break;
226	case 64:
227		*(s64 *)place = sval;
228		break;
229	default:
230		pr_err("Invalid length (%d) for data relocation\n", len);
231		return 0;
232	}
233	return 0;
234}
235
236enum aarch64_insn_movw_imm_type {
237	AARCH64_INSN_IMM_MOVNZ,
238	AARCH64_INSN_IMM_MOVKZ,
239};
240
241static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
242			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
243{
244	u64 imm;
245	s64 sval;
246	u32 insn = le32_to_cpu(*place);
247
248	sval = do_reloc(op, place, val);
249	imm = sval >> lsb;
250
251	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
252		/*
253		 * For signed MOVW relocations, we have to manipulate the
254		 * instruction encoding depending on whether or not the
255		 * immediate is less than zero.
256		 */
257		insn &= ~(3 << 29);
258		if (sval >= 0) {
259			/* >=0: Set the instruction to MOVZ (opcode 10b). */
260			insn |= 2 << 29;
261		} else {
262			/*
263			 * <0: Set the instruction to MOVN (opcode 00b).
264			 *     Since we've masked the opcode already, we
265			 *     don't need to do anything other than
266			 *     inverting the new immediate field.
267			 */
268			imm = ~imm;
269		}
270	}
271
272	/* Update the instruction with the new encoding. */
273	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
274	*place = cpu_to_le32(insn);
275
276	if (imm > U16_MAX)
277		return -ERANGE;
278
279	return 0;
280}
281
282static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
283			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
284{
285	u64 imm, imm_mask;
286	s64 sval;
287	u32 insn = le32_to_cpu(*place);
288
289	/* Calculate the relocation value. */
290	sval = do_reloc(op, place, val);
291	sval >>= lsb;
292
293	/* Extract the value bits and shift them to bit 0. */
294	imm_mask = (BIT(lsb + len) - 1) >> lsb;
295	imm = sval & imm_mask;
296
297	/* Update the instruction's immediate field. */
298	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
299	*place = cpu_to_le32(insn);
300
301	/*
302	 * Extract the upper value bits (including the sign bit) and
303	 * shift them to bit 0.
304	 */
305	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
306
307	/*
308	 * Overflow has occurred if the upper bits are not all equal to
309	 * the sign bit of the value.
310	 */
311	if ((u64)(sval + 1) >= 2)
312		return -ERANGE;
313
314	return 0;
315}
316
317static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
318			   __le32 *place, u64 val)
319{
320	u32 insn;
321
322	if (!is_forbidden_offset_for_adrp(place))
323		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
324				      AARCH64_INSN_IMM_ADR);
325
326	/* patch ADRP to ADR if it is in range */
327	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
328			    AARCH64_INSN_IMM_ADR)) {
329		insn = le32_to_cpu(*place);
330		insn &= ~BIT(31);
331	} else {
332		/* out of range for ADR -> emit a veneer */
333		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
334		if (!val)
335			return -ENOEXEC;
336		insn = aarch64_insn_gen_branch_imm((u64)place, val,
337						   AARCH64_INSN_BRANCH_NOLINK);
338	}
339
340	*place = cpu_to_le32(insn);
341	return 0;
342}
343
344int apply_relocate_add(Elf64_Shdr *sechdrs,
345		       const char *strtab,
346		       unsigned int symindex,
347		       unsigned int relsec,
348		       struct module *me)
349{
350	unsigned int i;
351	int ovf;
352	bool overflow_check;
353	Elf64_Sym *sym;
354	void *loc;
355	u64 val;
356	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
357
358	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
359		/* loc corresponds to P in the AArch64 ELF document. */
360		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
361			+ rel[i].r_offset;
362
363		/* sym is the ELF symbol we're referring to. */
364		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
365			+ ELF64_R_SYM(rel[i].r_info);
366
367		/* val corresponds to (S + A) in the AArch64 ELF document. */
368		val = sym->st_value + rel[i].r_addend;
369
370		/* Check for overflow by default. */
371		overflow_check = true;
372
373		/* Perform the static relocation. */
374		switch (ELF64_R_TYPE(rel[i].r_info)) {
375		/* Null relocations. */
376		case R_ARM_NONE:
377		case R_AARCH64_NONE:
378			ovf = 0;
379			break;
380
381		/* Data relocations. */
382		case R_AARCH64_ABS64:
383			overflow_check = false;
384			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
385			break;
386		case R_AARCH64_ABS32:
387			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
388			break;
389		case R_AARCH64_ABS16:
390			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
391			break;
392		case R_AARCH64_PREL64:
393			overflow_check = false;
394			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
395			break;
396		case R_AARCH64_PREL32:
397			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
398			break;
399		case R_AARCH64_PREL16:
400			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
401			break;
402
403		/* MOVW instruction relocations. */
404		case R_AARCH64_MOVW_UABS_G0_NC:
405			overflow_check = false;
406			fallthrough;
407		case R_AARCH64_MOVW_UABS_G0:
408			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
409					      AARCH64_INSN_IMM_MOVKZ);
410			break;
411		case R_AARCH64_MOVW_UABS_G1_NC:
412			overflow_check = false;
413			fallthrough;
414		case R_AARCH64_MOVW_UABS_G1:
415			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
416					      AARCH64_INSN_IMM_MOVKZ);
417			break;
418		case R_AARCH64_MOVW_UABS_G2_NC:
419			overflow_check = false;
420			fallthrough;
421		case R_AARCH64_MOVW_UABS_G2:
422			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
423					      AARCH64_INSN_IMM_MOVKZ);
424			break;
425		case R_AARCH64_MOVW_UABS_G3:
426			/* We're using the top bits so we can't overflow. */
427			overflow_check = false;
428			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
429					      AARCH64_INSN_IMM_MOVKZ);
430			break;
431		case R_AARCH64_MOVW_SABS_G0:
432			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
433					      AARCH64_INSN_IMM_MOVNZ);
434			break;
435		case R_AARCH64_MOVW_SABS_G1:
436			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
437					      AARCH64_INSN_IMM_MOVNZ);
438			break;
439		case R_AARCH64_MOVW_SABS_G2:
440			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
441					      AARCH64_INSN_IMM_MOVNZ);
442			break;
443		case R_AARCH64_MOVW_PREL_G0_NC:
444			overflow_check = false;
445			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
446					      AARCH64_INSN_IMM_MOVKZ);
447			break;
448		case R_AARCH64_MOVW_PREL_G0:
449			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
450					      AARCH64_INSN_IMM_MOVNZ);
451			break;
452		case R_AARCH64_MOVW_PREL_G1_NC:
453			overflow_check = false;
454			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
455					      AARCH64_INSN_IMM_MOVKZ);
456			break;
457		case R_AARCH64_MOVW_PREL_G1:
458			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
459					      AARCH64_INSN_IMM_MOVNZ);
460			break;
461		case R_AARCH64_MOVW_PREL_G2_NC:
462			overflow_check = false;
463			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
464					      AARCH64_INSN_IMM_MOVKZ);
465			break;
466		case R_AARCH64_MOVW_PREL_G2:
467			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
468					      AARCH64_INSN_IMM_MOVNZ);
469			break;
470		case R_AARCH64_MOVW_PREL_G3:
471			/* We're using the top bits so we can't overflow. */
472			overflow_check = false;
473			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
474					      AARCH64_INSN_IMM_MOVNZ);
475			break;
476
477		/* Immediate instruction relocations. */
478		case R_AARCH64_LD_PREL_LO19:
479			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
480					     AARCH64_INSN_IMM_19);
481			break;
482		case R_AARCH64_ADR_PREL_LO21:
483			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
484					     AARCH64_INSN_IMM_ADR);
485			break;
486		case R_AARCH64_ADR_PREL_PG_HI21_NC:
487			overflow_check = false;
488			fallthrough;
489		case R_AARCH64_ADR_PREL_PG_HI21:
490			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
491			if (ovf && ovf != -ERANGE)
492				return ovf;
493			break;
494		case R_AARCH64_ADD_ABS_LO12_NC:
495		case R_AARCH64_LDST8_ABS_LO12_NC:
496			overflow_check = false;
497			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
498					     AARCH64_INSN_IMM_12);
499			break;
500		case R_AARCH64_LDST16_ABS_LO12_NC:
501			overflow_check = false;
502			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
503					     AARCH64_INSN_IMM_12);
504			break;
505		case R_AARCH64_LDST32_ABS_LO12_NC:
506			overflow_check = false;
507			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
508					     AARCH64_INSN_IMM_12);
509			break;
510		case R_AARCH64_LDST64_ABS_LO12_NC:
511			overflow_check = false;
512			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
513					     AARCH64_INSN_IMM_12);
514			break;
515		case R_AARCH64_LDST128_ABS_LO12_NC:
516			overflow_check = false;
517			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
518					     AARCH64_INSN_IMM_12);
519			break;
520		case R_AARCH64_TSTBR14:
521			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
522					     AARCH64_INSN_IMM_14);
523			break;
524		case R_AARCH64_CONDBR19:
525			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
526					     AARCH64_INSN_IMM_19);
527			break;
528		case R_AARCH64_JUMP26:
529		case R_AARCH64_CALL26:
530			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
531					     AARCH64_INSN_IMM_26);
532			if (ovf == -ERANGE) {
533				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
534				if (!val)
535					return -ENOEXEC;
536				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
537						     26, AARCH64_INSN_IMM_26);
538			}
539			break;
540
541		default:
542			pr_err("module %s: unsupported RELA relocation: %llu\n",
543			       me->name, ELF64_R_TYPE(rel[i].r_info));
544			return -ENOEXEC;
545		}
546
547		if (overflow_check && ovf == -ERANGE)
548			goto overflow;
549
550	}
551
552	return 0;
553
554overflow:
555	pr_err("module %s: overflow in relocation type %d val %Lx\n",
556	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
557	return -ENOEXEC;
558}
559
560static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
561{
562	*plt = get_plt_entry(addr, plt);
563}
564
565static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
566				  const Elf_Shdr *sechdrs,
567				  struct module *mod)
568{
569#if defined(CONFIG_DYNAMIC_FTRACE)
570	const Elf_Shdr *s;
571	struct plt_entry *plts;
572
573	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
574	if (!s)
575		return -ENOEXEC;
576
577	plts = (void *)s->sh_addr;
578
579	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
580
581	mod->arch.ftrace_trampolines = plts;
582#endif
583	return 0;
584}
585
586int module_finalize(const Elf_Ehdr *hdr,
587		    const Elf_Shdr *sechdrs,
588		    struct module *me)
589{
590	const Elf_Shdr *s;
591	s = find_section(hdr, sechdrs, ".altinstructions");
592	if (s)
593		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
594
595	if (scs_is_dynamic()) {
596		s = find_section(hdr, sechdrs, ".init.eh_frame");
597		if (s)
598			__pi_scs_patch((void *)s->sh_addr, s->sh_size);
599	}
600
601	return module_init_ftrace_plt(hdr, sechdrs, me);
602}
603