1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 *
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
11 *
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
21 *
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
28 *
29 * Some implementation details worth remembering:
30 *
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 *   usually indicates that the feature is not supported.
33 *
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 *   warning when onlining an offending CPU and the kernel will be tainted
36 *   with TAINT_CPU_OUT_OF_SPEC.
37 *
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 *   userspace. FTR_VISIBLE features in registers that are only visible
40 *   to EL0 by trapping *must* have a corresponding HWCAP so that late
41 *   onlining of CPUs cannot lead to features disappearing at runtime.
42 *
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 *   high-level description derived from the sanitised field value.
45 *
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 *   scheme for fields in ID registers") to understand when feature fields
48 *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49 *
50 * - KVM exposes its own view of the feature registers to guest operating
51 *   systems regardless of FTR_VISIBLE. This is typically driven from the
52 *   sanitised register values to allow virtual CPUs to be migrated between
53 *   arbitrary physical CPUs, but some features not present on the host are
54 *   also advertised and emulated. Look at sys_reg_descs[] for the gory
55 *   details.
56 *
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 *   This is stronger than FTR_HIDDEN and can be used to hide features from
60 *   KVM guests.
61 */
62
63#define pr_fmt(fmt) "CPU features: " fmt
64
65#include <linux/bsearch.h>
66#include <linux/cpumask.h>
67#include <linux/crash_dump.h>
68#include <linux/kstrtox.h>
69#include <linux/sort.h>
70#include <linux/stop_machine.h>
71#include <linux/sysfs.h>
72#include <linux/types.h>
73#include <linux/minmax.h>
74#include <linux/mm.h>
75#include <linux/cpu.h>
76#include <linux/kasan.h>
77#include <linux/percpu.h>
78
79#include <asm/cpu.h>
80#include <asm/cpufeature.h>
81#include <asm/cpu_ops.h>
82#include <asm/fpsimd.h>
83#include <asm/hwcap.h>
84#include <asm/insn.h>
85#include <asm/kvm_host.h>
86#include <asm/mmu_context.h>
87#include <asm/mte.h>
88#include <asm/processor.h>
89#include <asm/smp.h>
90#include <asm/sysreg.h>
91#include <asm/traps.h>
92#include <asm/vectors.h>
93#include <asm/virt.h>
94
95/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97
98#ifdef CONFIG_COMPAT
99#define COMPAT_ELF_HWCAP_DEFAULT	\
100				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103				 COMPAT_HWCAP_LPAE)
104unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105unsigned int compat_elf_hwcap2 __read_mostly;
106#endif
107
108DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
109EXPORT_SYMBOL(system_cpucaps);
110static struct arm64_cpu_capabilities const __ro_after_init *cpucap_ptrs[ARM64_NCAPS];
111
112DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
113
114bool arm64_use_ng_mappings = false;
115EXPORT_SYMBOL(arm64_use_ng_mappings);
116
117DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118
119/*
120 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121 * support it?
122 */
123static bool __read_mostly allow_mismatched_32bit_el0;
124
125/*
126 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127 * seen at least one CPU capable of 32-bit EL0.
128 */
129DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130
131/*
132 * Mask of CPUs supporting 32-bit EL0.
133 * Only valid if arm64_mismatched_32bit_el0 is enabled.
134 */
135static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136
137void dump_cpu_features(void)
138{
139	/* file-wide pr_fmt adds "CPU features: " prefix */
140	pr_emerg("0x%*pb\n", ARM64_NCAPS, &system_cpucaps);
141}
142
143#define __ARM64_MAX_POSITIVE(reg, field)				\
144		((reg##_##field##_SIGNED ?				\
145		  BIT(reg##_##field##_WIDTH - 1) :			\
146		  BIT(reg##_##field##_WIDTH)) - 1)
147
148#define __ARM64_MIN_NEGATIVE(reg, field)  BIT(reg##_##field##_WIDTH - 1)
149
150#define __ARM64_CPUID_FIELDS(reg, field, min_value, max_value)		\
151		.sys_reg = SYS_##reg,					\
152		.field_pos = reg##_##field##_SHIFT,			\
153		.field_width = reg##_##field##_WIDTH,			\
154		.sign = reg##_##field##_SIGNED,				\
155		.min_field_value = min_value,				\
156		.max_field_value = max_value,
157
158/*
159 * ARM64_CPUID_FIELDS() encodes a field with a range from min_value to
160 * an implicit maximum that depends on the sign-ess of the field.
161 *
162 * An unsigned field will be capped at all ones, while a signed field
163 * will be limited to the positive half only.
164 */
165#define ARM64_CPUID_FIELDS(reg, field, min_value)			\
166	__ARM64_CPUID_FIELDS(reg, field,				\
167			     SYS_FIELD_VALUE(reg, field, min_value),	\
168			     __ARM64_MAX_POSITIVE(reg, field))
169
170/*
171 * ARM64_CPUID_FIELDS_NEG() encodes a field with a range from an
172 * implicit minimal value to max_value. This should be used when
173 * matching a non-implemented property.
174 */
175#define ARM64_CPUID_FIELDS_NEG(reg, field, max_value)			\
176	__ARM64_CPUID_FIELDS(reg, field,				\
177			     __ARM64_MIN_NEGATIVE(reg, field),		\
178			     SYS_FIELD_VALUE(reg, field, max_value))
179
180#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
181	{						\
182		.sign = SIGNED,				\
183		.visible = VISIBLE,			\
184		.strict = STRICT,			\
185		.type = TYPE,				\
186		.shift = SHIFT,				\
187		.width = WIDTH,				\
188		.safe_val = SAFE_VAL,			\
189	}
190
191/* Define a feature with unsigned values */
192#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
193	__ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
194
195/* Define a feature with a signed value */
196#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
197	__ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
198
199#define ARM64_FTR_END					\
200	{						\
201		.width = 0,				\
202	}
203
204static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
205
206static bool __system_matches_cap(unsigned int n);
207
208/*
209 * NOTE: Any changes to the visibility of features should be kept in
210 * sync with the documentation of the CPU feature register ABI.
211 */
212static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
213	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
214	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
215	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
216	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
217	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
218	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
219	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
220	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
221	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
222	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
223	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
224	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
225	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
226	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
227	ARM64_FTR_END,
228};
229
230static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
231	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
232	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
233	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
234	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
235	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
236	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
237	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
238		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
239	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
240		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
241	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
242	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
243	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
244	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
245		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
246	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
247		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
248	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
249	ARM64_FTR_END,
250};
251
252static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
253	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_LUT_SHIFT, 4, 0),
254	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
255	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
256	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CLRBHB_SHIFT, 4, 0),
257	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
258	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_MOPS_SHIFT, 4, 0),
259	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
260		       FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
261	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
262		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
263	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
264	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
265	ARM64_FTR_END,
266};
267
268static const struct arm64_ftr_bits ftr_id_aa64isar3[] = {
269	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR3_EL1_FAMINMAX_SHIFT, 4, 0),
270	ARM64_FTR_END,
271};
272
273static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
274	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
275	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
276	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
277	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
278	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
279	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
280	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
281				   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
282	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
283	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
284	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
285	S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
286	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
287	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
288	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
289	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
290	ARM64_FTR_END,
291};
292
293static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
294	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
295		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
296	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
297	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
298	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
299		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
300	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
301	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
302				    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
303	ARM64_FTR_END,
304};
305
306static const struct arm64_ftr_bits ftr_id_aa64pfr2[] = {
307	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR2_EL1_FPMR_SHIFT, 4, 0),
308	ARM64_FTR_END,
309};
310
311static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
312	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
313		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
314	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
315		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
316	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
317		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
318	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
319		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
320	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
321		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
322	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
323		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_B16B16_SHIFT, 4, 0),
324	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
325		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
326	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
327		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
328	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
329		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
330	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
331		       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
332	ARM64_FTR_END,
333};
334
335static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
336	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
337		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
338	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
339		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_LUTv2_SHIFT, 1, 0),
340	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
341		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
342	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
343		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
344	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
345		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
346	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
347		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
348	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
349		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
350	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
351		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
352	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
353		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F16_SHIFT, 1, 0),
354	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
355		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F8F32_SHIFT, 1, 0),
356	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
357		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
358	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
359		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
360	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
361		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
362	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
363		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
364	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
365		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
366	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
367		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8FMA_SHIFT, 1, 0),
368	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
369		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP4_SHIFT, 1, 0),
370	ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
371		       FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SF8DP2_SHIFT, 1, 0),
372	ARM64_FTR_END,
373};
374
375static const struct arm64_ftr_bits ftr_id_aa64fpfr0[] = {
376	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8CVT_SHIFT, 1, 0),
377	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8FMA_SHIFT, 1, 0),
378	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP4_SHIFT, 1, 0),
379	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8DP2_SHIFT, 1, 0),
380	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E4M3_SHIFT, 1, 0),
381	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64FPFR0_EL1_F8E5M2_SHIFT, 1, 0),
382	ARM64_FTR_END,
383};
384
385static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
386	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
387	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
388	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
389	/*
390	 * Page size not being supported at Stage-2 is not fatal. You
391	 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
392	 * your favourite nesting hypervisor.
393	 *
394	 * There is a small corner case where the hypervisor explicitly
395	 * advertises a given granule size at Stage-2 (value 2) on some
396	 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
397	 * vCPUs. Although this is not forbidden by the architecture, it
398	 * indicates that the hypervisor is being silly (or buggy).
399	 *
400	 * We make no effort to cope with this and pretend that if these
401	 * fields are inconsistent across vCPUs, then it isn't worth
402	 * trying to bring KVM up.
403	 */
404	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
405	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
406	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
407	/*
408	 * We already refuse to boot CPUs that don't support our configured
409	 * page size, so we can only detect mismatches for a page size other
410	 * than the one we're currently using. Unfortunately, SoCs like this
411	 * exist in the wild so, even though we don't like it, we'll have to go
412	 * along with it and treat them as non-strict.
413	 */
414	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
415	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
416	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
417
418	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
419	/* Linux shouldn't care about secure memory */
420	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
421	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
422	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
423	/*
424	 * Differing PARange is fine as long as all peripherals and memory are mapped
425	 * within the minimum PARange of all CPUs
426	 */
427	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
428	ARM64_FTR_END,
429};
430
431static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
432	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
433	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
434	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HCX_SHIFT, 4, 0),
435	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
436	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
437	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
438	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
439	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
440	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
441	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
442	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
443	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
444	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
445	ARM64_FTR_END,
446};
447
448static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
449	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
450	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
451	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
452	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
453	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
454	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
455	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
456	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
457	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
458	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
459	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
460	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
461	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
462	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
463	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
464	ARM64_FTR_END,
465};
466
467static const struct arm64_ftr_bits ftr_id_aa64mmfr3[] = {
468	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_S1PIE_SHIFT, 4, 0),
469	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR3_EL1_TCRX_SHIFT, 4, 0),
470	ARM64_FTR_END,
471};
472
473static const struct arm64_ftr_bits ftr_id_aa64mmfr4[] = {
474	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR4_EL1_E2H0_SHIFT, 4, 0),
475	ARM64_FTR_END,
476};
477
478static const struct arm64_ftr_bits ftr_ctr[] = {
479	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
480	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
481	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
482	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
483	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
484	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
485	/*
486	 * Linux can handle differing I-cache policies. Userspace JITs will
487	 * make use of *minLine.
488	 * If we have differing I-cache policies, report it as the weakest - VIPT.
489	 */
490	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT),	/* L1Ip */
491	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
492	ARM64_FTR_END,
493};
494
495static struct arm64_ftr_override __ro_after_init no_override = { };
496
497struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
498	.name		= "SYS_CTR_EL0",
499	.ftr_bits	= ftr_ctr,
500	.override	= &no_override,
501};
502
503static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
504	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
505	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
506	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
507	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
508	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
509	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
510	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
511	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
512	ARM64_FTR_END,
513};
514
515static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
516	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
517	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
518	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
519	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
520	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
521	/*
522	 * We can instantiate multiple PMU instances with different levels
523	 * of support.
524	 */
525	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
526	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
527	ARM64_FTR_END,
528};
529
530static const struct arm64_ftr_bits ftr_mvfr0[] = {
531	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
532	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
533	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
534	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
535	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
536	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
537	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
538	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
539	ARM64_FTR_END,
540};
541
542static const struct arm64_ftr_bits ftr_mvfr1[] = {
543	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
544	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
545	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
546	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
547	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
548	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
549	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
550	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
551	ARM64_FTR_END,
552};
553
554static const struct arm64_ftr_bits ftr_mvfr2[] = {
555	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
556	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
557	ARM64_FTR_END,
558};
559
560static const struct arm64_ftr_bits ftr_dczid[] = {
561	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
562	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
563	ARM64_FTR_END,
564};
565
566static const struct arm64_ftr_bits ftr_gmid[] = {
567	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
568	ARM64_FTR_END,
569};
570
571static const struct arm64_ftr_bits ftr_id_isar0[] = {
572	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
573	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
574	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
575	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
576	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
577	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
578	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
579	ARM64_FTR_END,
580};
581
582static const struct arm64_ftr_bits ftr_id_isar5[] = {
583	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
584	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
585	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
586	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
587	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
588	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
589	ARM64_FTR_END,
590};
591
592static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
593	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
594	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
595	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
596	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
597	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
598	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
599	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
600
601	/*
602	 * SpecSEI = 1 indicates that the PE might generate an SError on an
603	 * external abort on speculative read. It is safe to assume that an
604	 * SError might be generated than it will not be. Hence it has been
605	 * classified as FTR_HIGHER_SAFE.
606	 */
607	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
608	ARM64_FTR_END,
609};
610
611static const struct arm64_ftr_bits ftr_id_isar4[] = {
612	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
613	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
614	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
615	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
616	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
617	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
618	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
619	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
620	ARM64_FTR_END,
621};
622
623static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
624	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
625	ARM64_FTR_END,
626};
627
628static const struct arm64_ftr_bits ftr_id_isar6[] = {
629	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
630	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
631	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
632	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
633	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
634	ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
635	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
636	ARM64_FTR_END,
637};
638
639static const struct arm64_ftr_bits ftr_id_pfr0[] = {
640	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
641	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
642	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
643	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
644	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
645	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
646	ARM64_FTR_END,
647};
648
649static const struct arm64_ftr_bits ftr_id_pfr1[] = {
650	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
651	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
652	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
653	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
654	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
655	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
656	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
657	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
658	ARM64_FTR_END,
659};
660
661static const struct arm64_ftr_bits ftr_id_pfr2[] = {
662	ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
663	ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
664	ARM64_FTR_END,
665};
666
667static const struct arm64_ftr_bits ftr_id_dfr0[] = {
668	/* [31:28] TraceFilt */
669	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
670	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
671	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
672	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
673	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
674	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
675	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
676	ARM64_FTR_END,
677};
678
679static const struct arm64_ftr_bits ftr_id_dfr1[] = {
680	S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
681	ARM64_FTR_END,
682};
683
684/*
685 * Common ftr bits for a 32bit register with all hidden, strict
686 * attributes, with 4bit feature fields and a default safe value of
687 * 0. Covers the following 32bit registers:
688 * id_isar[1-3], id_mmfr[1-3]
689 */
690static const struct arm64_ftr_bits ftr_generic_32bits[] = {
691	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
692	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
693	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
694	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
695	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
696	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
697	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
698	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
699	ARM64_FTR_END,
700};
701
702/* Table for a single 32bit feature value */
703static const struct arm64_ftr_bits ftr_single32[] = {
704	ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
705	ARM64_FTR_END,
706};
707
708static const struct arm64_ftr_bits ftr_raz[] = {
709	ARM64_FTR_END,
710};
711
712#define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) {	\
713		.sys_id = id,					\
714		.reg = 	&(struct arm64_ftr_reg){		\
715			.name = id_str,				\
716			.override = (ovr),			\
717			.ftr_bits = &((table)[0]),		\
718	}}
719
720#define ARM64_FTR_REG_OVERRIDE(id, table, ovr)	\
721	__ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
722
723#define ARM64_FTR_REG(id, table)		\
724	__ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
725
726struct arm64_ftr_override id_aa64mmfr0_override;
727struct arm64_ftr_override id_aa64mmfr1_override;
728struct arm64_ftr_override id_aa64mmfr2_override;
729struct arm64_ftr_override id_aa64pfr0_override;
730struct arm64_ftr_override id_aa64pfr1_override;
731struct arm64_ftr_override id_aa64zfr0_override;
732struct arm64_ftr_override id_aa64smfr0_override;
733struct arm64_ftr_override id_aa64isar1_override;
734struct arm64_ftr_override id_aa64isar2_override;
735
736struct arm64_ftr_override arm64_sw_feature_override;
737
738static const struct __ftr_reg_entry {
739	u32			sys_id;
740	struct arm64_ftr_reg 	*reg;
741} arm64_ftr_regs[] = {
742
743	/* Op1 = 0, CRn = 0, CRm = 1 */
744	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
745	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
746	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
747	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
748	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
749	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
750	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
751
752	/* Op1 = 0, CRn = 0, CRm = 2 */
753	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
754	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
755	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
756	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
757	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
758	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
759	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
760	ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
761
762	/* Op1 = 0, CRn = 0, CRm = 3 */
763	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
764	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
765	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
766	ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
767	ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
768	ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
769
770	/* Op1 = 0, CRn = 0, CRm = 4 */
771	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
772			       &id_aa64pfr0_override),
773	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
774			       &id_aa64pfr1_override),
775	ARM64_FTR_REG(SYS_ID_AA64PFR2_EL1, ftr_id_aa64pfr2),
776	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
777			       &id_aa64zfr0_override),
778	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
779			       &id_aa64smfr0_override),
780	ARM64_FTR_REG(SYS_ID_AA64FPFR0_EL1, ftr_id_aa64fpfr0),
781
782	/* Op1 = 0, CRn = 0, CRm = 5 */
783	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
784	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
785
786	/* Op1 = 0, CRn = 0, CRm = 6 */
787	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
788	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
789			       &id_aa64isar1_override),
790	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
791			       &id_aa64isar2_override),
792	ARM64_FTR_REG(SYS_ID_AA64ISAR3_EL1, ftr_id_aa64isar3),
793
794	/* Op1 = 0, CRn = 0, CRm = 7 */
795	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0,
796			       &id_aa64mmfr0_override),
797	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
798			       &id_aa64mmfr1_override),
799	ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2,
800			       &id_aa64mmfr2_override),
801	ARM64_FTR_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3),
802	ARM64_FTR_REG(SYS_ID_AA64MMFR4_EL1, ftr_id_aa64mmfr4),
803
804	/* Op1 = 1, CRn = 0, CRm = 0 */
805	ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
806
807	/* Op1 = 3, CRn = 0, CRm = 0 */
808	{ SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
809	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
810
811	/* Op1 = 3, CRn = 14, CRm = 0 */
812	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
813};
814
815static int search_cmp_ftr_reg(const void *id, const void *regp)
816{
817	return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
818}
819
820/*
821 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
822 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
823 * ascending order of sys_id, we use binary search to find a matching
824 * entry.
825 *
826 * returns - Upon success,  matching ftr_reg entry for id.
827 *         - NULL on failure. It is upto the caller to decide
828 *	     the impact of a failure.
829 */
830static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
831{
832	const struct __ftr_reg_entry *ret;
833
834	ret = bsearch((const void *)(unsigned long)sys_id,
835			arm64_ftr_regs,
836			ARRAY_SIZE(arm64_ftr_regs),
837			sizeof(arm64_ftr_regs[0]),
838			search_cmp_ftr_reg);
839	if (ret)
840		return ret->reg;
841	return NULL;
842}
843
844/*
845 * get_arm64_ftr_reg - Looks up a feature register entry using
846 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
847 *
848 * returns - Upon success,  matching ftr_reg entry for id.
849 *         - NULL on failure but with an WARN_ON().
850 */
851struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
852{
853	struct arm64_ftr_reg *reg;
854
855	reg = get_arm64_ftr_reg_nowarn(sys_id);
856
857	/*
858	 * Requesting a non-existent register search is an error. Warn
859	 * and let the caller handle it.
860	 */
861	WARN_ON(!reg);
862	return reg;
863}
864
865static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
866			       s64 ftr_val)
867{
868	u64 mask = arm64_ftr_mask(ftrp);
869
870	reg &= ~mask;
871	reg |= (ftr_val << ftrp->shift) & mask;
872	return reg;
873}
874
875s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
876				s64 cur)
877{
878	s64 ret = 0;
879
880	switch (ftrp->type) {
881	case FTR_EXACT:
882		ret = ftrp->safe_val;
883		break;
884	case FTR_LOWER_SAFE:
885		ret = min(new, cur);
886		break;
887	case FTR_HIGHER_OR_ZERO_SAFE:
888		if (!cur || !new)
889			break;
890		fallthrough;
891	case FTR_HIGHER_SAFE:
892		ret = max(new, cur);
893		break;
894	default:
895		BUG();
896	}
897
898	return ret;
899}
900
901static void __init sort_ftr_regs(void)
902{
903	unsigned int i;
904
905	for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
906		const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
907		const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
908		unsigned int j = 0;
909
910		/*
911		 * Features here must be sorted in descending order with respect
912		 * to their shift values and should not overlap with each other.
913		 */
914		for (; ftr_bits->width != 0; ftr_bits++, j++) {
915			unsigned int width = ftr_reg->ftr_bits[j].width;
916			unsigned int shift = ftr_reg->ftr_bits[j].shift;
917			unsigned int prev_shift;
918
919			WARN((shift  + width) > 64,
920				"%s has invalid feature at shift %d\n",
921				ftr_reg->name, shift);
922
923			/*
924			 * Skip the first feature. There is nothing to
925			 * compare against for now.
926			 */
927			if (j == 0)
928				continue;
929
930			prev_shift = ftr_reg->ftr_bits[j - 1].shift;
931			WARN((shift + width) > prev_shift,
932				"%s has feature overlap at shift %d\n",
933				ftr_reg->name, shift);
934		}
935
936		/*
937		 * Skip the first register. There is nothing to
938		 * compare against for now.
939		 */
940		if (i == 0)
941			continue;
942		/*
943		 * Registers here must be sorted in ascending order with respect
944		 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
945		 * to work correctly.
946		 */
947		BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
948	}
949}
950
951/*
952 * Initialise the CPU feature register from Boot CPU values.
953 * Also initiliases the strict_mask for the register.
954 * Any bits that are not covered by an arm64_ftr_bits entry are considered
955 * RES0 for the system-wide value, and must strictly match.
956 */
957static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
958{
959	u64 val = 0;
960	u64 strict_mask = ~0x0ULL;
961	u64 user_mask = 0;
962	u64 valid_mask = 0;
963
964	const struct arm64_ftr_bits *ftrp;
965	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
966
967	if (!reg)
968		return;
969
970	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
971		u64 ftr_mask = arm64_ftr_mask(ftrp);
972		s64 ftr_new = arm64_ftr_value(ftrp, new);
973		s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
974
975		if ((ftr_mask & reg->override->mask) == ftr_mask) {
976			s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
977			char *str = NULL;
978
979			if (ftr_ovr != tmp) {
980				/* Unsafe, remove the override */
981				reg->override->mask &= ~ftr_mask;
982				reg->override->val &= ~ftr_mask;
983				tmp = ftr_ovr;
984				str = "ignoring override";
985			} else if (ftr_new != tmp) {
986				/* Override was valid */
987				ftr_new = tmp;
988				str = "forced";
989			} else if (ftr_ovr == tmp) {
990				/* Override was the safe value */
991				str = "already set";
992			}
993
994			if (str)
995				pr_warn("%s[%d:%d]: %s to %llx\n",
996					reg->name,
997					ftrp->shift + ftrp->width - 1,
998					ftrp->shift, str,
999					tmp & (BIT(ftrp->width) - 1));
1000		} else if ((ftr_mask & reg->override->val) == ftr_mask) {
1001			reg->override->val &= ~ftr_mask;
1002			pr_warn("%s[%d:%d]: impossible override, ignored\n",
1003				reg->name,
1004				ftrp->shift + ftrp->width - 1,
1005				ftrp->shift);
1006		}
1007
1008		val = arm64_ftr_set_value(ftrp, val, ftr_new);
1009
1010		valid_mask |= ftr_mask;
1011		if (!ftrp->strict)
1012			strict_mask &= ~ftr_mask;
1013		if (ftrp->visible)
1014			user_mask |= ftr_mask;
1015		else
1016			reg->user_val = arm64_ftr_set_value(ftrp,
1017							    reg->user_val,
1018							    ftrp->safe_val);
1019	}
1020
1021	val &= valid_mask;
1022
1023	reg->sys_val = val;
1024	reg->strict_mask = strict_mask;
1025	reg->user_mask = user_mask;
1026}
1027
1028extern const struct arm64_cpu_capabilities arm64_errata[];
1029static const struct arm64_cpu_capabilities arm64_features[];
1030
1031static void __init
1032init_cpucap_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
1033{
1034	for (; caps->matches; caps++) {
1035		if (WARN(caps->capability >= ARM64_NCAPS,
1036			"Invalid capability %d\n", caps->capability))
1037			continue;
1038		if (WARN(cpucap_ptrs[caps->capability],
1039			"Duplicate entry for capability %d\n",
1040			caps->capability))
1041			continue;
1042		cpucap_ptrs[caps->capability] = caps;
1043	}
1044}
1045
1046static void __init init_cpucap_indirect_list(void)
1047{
1048	init_cpucap_indirect_list_from_array(arm64_features);
1049	init_cpucap_indirect_list_from_array(arm64_errata);
1050}
1051
1052static void __init setup_boot_cpu_capabilities(void);
1053
1054static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
1055{
1056	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
1057	init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
1058	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
1059	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
1060	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
1061	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
1062	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
1063	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
1064	init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
1065	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
1066	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
1067	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
1068	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
1069	init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
1070	init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
1071	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
1072	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
1073	init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
1074	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1075	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1076	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1077}
1078
1079#ifdef CONFIG_ARM64_PSEUDO_NMI
1080static bool enable_pseudo_nmi;
1081
1082static int __init early_enable_pseudo_nmi(char *p)
1083{
1084	return kstrtobool(p, &enable_pseudo_nmi);
1085}
1086early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1087
1088static __init void detect_system_supports_pseudo_nmi(void)
1089{
1090	struct device_node *np;
1091
1092	if (!enable_pseudo_nmi)
1093		return;
1094
1095	/*
1096	 * Detect broken MediaTek firmware that doesn't properly save and
1097	 * restore GIC priorities.
1098	 */
1099	np = of_find_compatible_node(NULL, NULL, "arm,gic-v3");
1100	if (np && of_property_read_bool(np, "mediatek,broken-save-restore-fw")) {
1101		pr_info("Pseudo-NMI disabled due to MediaTek Chromebook GICR save problem\n");
1102		enable_pseudo_nmi = false;
1103	}
1104	of_node_put(np);
1105}
1106#else /* CONFIG_ARM64_PSEUDO_NMI */
1107static inline void detect_system_supports_pseudo_nmi(void) { }
1108#endif
1109
1110void __init init_cpu_features(struct cpuinfo_arm64 *info)
1111{
1112	/* Before we start using the tables, make sure it is sorted */
1113	sort_ftr_regs();
1114
1115	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1116	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1117	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1118	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1119	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1120	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1121	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1122	init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1123	init_cpu_ftr_reg(SYS_ID_AA64ISAR3_EL1, info->reg_id_aa64isar3);
1124	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1125	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1126	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1127	init_cpu_ftr_reg(SYS_ID_AA64MMFR3_EL1, info->reg_id_aa64mmfr3);
1128	init_cpu_ftr_reg(SYS_ID_AA64MMFR4_EL1, info->reg_id_aa64mmfr4);
1129	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1130	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1131	init_cpu_ftr_reg(SYS_ID_AA64PFR2_EL1, info->reg_id_aa64pfr2);
1132	init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1133	init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1134	init_cpu_ftr_reg(SYS_ID_AA64FPFR0_EL1, info->reg_id_aa64fpfr0);
1135
1136	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1137		init_32bit_cpu_features(&info->aarch32);
1138
1139	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1140	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1141		unsigned long cpacr = cpacr_save_enable_kernel_sve();
1142
1143		vec_init_vq_map(ARM64_VEC_SVE);
1144
1145		cpacr_restore(cpacr);
1146	}
1147
1148	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1149	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1150		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1151
1152		/*
1153		 * We mask out SMPS since even if the hardware
1154		 * supports priorities the kernel does not at present
1155		 * and we block access to them.
1156		 */
1157		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1158		vec_init_vq_map(ARM64_VEC_SME);
1159
1160		cpacr_restore(cpacr);
1161	}
1162
1163	if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1164		init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1165}
1166
1167static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1168{
1169	const struct arm64_ftr_bits *ftrp;
1170
1171	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1172		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1173		s64 ftr_new = arm64_ftr_value(ftrp, new);
1174
1175		if (ftr_cur == ftr_new)
1176			continue;
1177		/* Find a safe value */
1178		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1179		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1180	}
1181
1182}
1183
1184static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1185{
1186	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1187
1188	if (!regp)
1189		return 0;
1190
1191	update_cpu_ftr_reg(regp, val);
1192	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1193		return 0;
1194	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1195			regp->name, boot, cpu, val);
1196	return 1;
1197}
1198
1199static void relax_cpu_ftr_reg(u32 sys_id, int field)
1200{
1201	const struct arm64_ftr_bits *ftrp;
1202	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1203
1204	if (!regp)
1205		return;
1206
1207	for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1208		if (ftrp->shift == field) {
1209			regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1210			break;
1211		}
1212	}
1213
1214	/* Bogus field? */
1215	WARN_ON(!ftrp->width);
1216}
1217
1218static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1219					 struct cpuinfo_arm64 *boot)
1220{
1221	static bool boot_cpu_32bit_regs_overridden = false;
1222
1223	if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1224		return;
1225
1226	if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1227		return;
1228
1229	boot->aarch32 = info->aarch32;
1230	init_32bit_cpu_features(&boot->aarch32);
1231	boot_cpu_32bit_regs_overridden = true;
1232}
1233
1234static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1235				     struct cpuinfo_32bit *boot)
1236{
1237	int taint = 0;
1238	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1239
1240	/*
1241	 * If we don't have AArch32 at EL1, then relax the strictness of
1242	 * EL1-dependent register fields to avoid spurious sanity check fails.
1243	 */
1244	if (!id_aa64pfr0_32bit_el1(pfr0)) {
1245		relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1246		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1247		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1248		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1249		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1250		relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1251	}
1252
1253	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1254				      info->reg_id_dfr0, boot->reg_id_dfr0);
1255	taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1256				      info->reg_id_dfr1, boot->reg_id_dfr1);
1257	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1258				      info->reg_id_isar0, boot->reg_id_isar0);
1259	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1260				      info->reg_id_isar1, boot->reg_id_isar1);
1261	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1262				      info->reg_id_isar2, boot->reg_id_isar2);
1263	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1264				      info->reg_id_isar3, boot->reg_id_isar3);
1265	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1266				      info->reg_id_isar4, boot->reg_id_isar4);
1267	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1268				      info->reg_id_isar5, boot->reg_id_isar5);
1269	taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1270				      info->reg_id_isar6, boot->reg_id_isar6);
1271
1272	/*
1273	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1274	 * ACTLR formats could differ across CPUs and therefore would have to
1275	 * be trapped for virtualization anyway.
1276	 */
1277	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1278				      info->reg_id_mmfr0, boot->reg_id_mmfr0);
1279	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1280				      info->reg_id_mmfr1, boot->reg_id_mmfr1);
1281	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1282				      info->reg_id_mmfr2, boot->reg_id_mmfr2);
1283	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1284				      info->reg_id_mmfr3, boot->reg_id_mmfr3);
1285	taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1286				      info->reg_id_mmfr4, boot->reg_id_mmfr4);
1287	taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1288				      info->reg_id_mmfr5, boot->reg_id_mmfr5);
1289	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1290				      info->reg_id_pfr0, boot->reg_id_pfr0);
1291	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1292				      info->reg_id_pfr1, boot->reg_id_pfr1);
1293	taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1294				      info->reg_id_pfr2, boot->reg_id_pfr2);
1295	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1296				      info->reg_mvfr0, boot->reg_mvfr0);
1297	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1298				      info->reg_mvfr1, boot->reg_mvfr1);
1299	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1300				      info->reg_mvfr2, boot->reg_mvfr2);
1301
1302	return taint;
1303}
1304
1305/*
1306 * Update system wide CPU feature registers with the values from a
1307 * non-boot CPU. Also performs SANITY checks to make sure that there
1308 * aren't any insane variations from that of the boot CPU.
1309 */
1310void update_cpu_features(int cpu,
1311			 struct cpuinfo_arm64 *info,
1312			 struct cpuinfo_arm64 *boot)
1313{
1314	int taint = 0;
1315
1316	/*
1317	 * The kernel can handle differing I-cache policies, but otherwise
1318	 * caches should look identical. Userspace JITs will make use of
1319	 * *minLine.
1320	 */
1321	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1322				      info->reg_ctr, boot->reg_ctr);
1323
1324	/*
1325	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1326	 * could result in too much or too little memory being zeroed if a
1327	 * process is preempted and migrated between CPUs.
1328	 */
1329	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1330				      info->reg_dczid, boot->reg_dczid);
1331
1332	/* If different, timekeeping will be broken (especially with KVM) */
1333	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1334				      info->reg_cntfrq, boot->reg_cntfrq);
1335
1336	/*
1337	 * The kernel uses self-hosted debug features and expects CPUs to
1338	 * support identical debug features. We presently need CTX_CMPs, WRPs,
1339	 * and BRPs to be identical.
1340	 * ID_AA64DFR1 is currently RES0.
1341	 */
1342	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1343				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1344	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1345				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1346	/*
1347	 * Even in big.LITTLE, processors should be identical instruction-set
1348	 * wise.
1349	 */
1350	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1351				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1352	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1353				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1354	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1355				      info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1356	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR3_EL1, cpu,
1357				      info->reg_id_aa64isar3, boot->reg_id_aa64isar3);
1358
1359	/*
1360	 * Differing PARange support is fine as long as all peripherals and
1361	 * memory are mapped within the minimum PARange of all CPUs.
1362	 * Linux should not care about secure memory.
1363	 */
1364	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1365				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1366	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1367				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1368	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1369				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1370	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR3_EL1, cpu,
1371				      info->reg_id_aa64mmfr3, boot->reg_id_aa64mmfr3);
1372
1373	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1374				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1375	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1376				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1377	taint |= check_update_ftr_reg(SYS_ID_AA64PFR2_EL1, cpu,
1378				      info->reg_id_aa64pfr2, boot->reg_id_aa64pfr2);
1379
1380	taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1381				      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1382
1383	taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1384				      info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1385
1386	taint |= check_update_ftr_reg(SYS_ID_AA64FPFR0_EL1, cpu,
1387				      info->reg_id_aa64fpfr0, boot->reg_id_aa64fpfr0);
1388
1389	/* Probe vector lengths */
1390	if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1391	    id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1392		if (!system_capabilities_finalized()) {
1393			unsigned long cpacr = cpacr_save_enable_kernel_sve();
1394
1395			vec_update_vq_map(ARM64_VEC_SVE);
1396
1397			cpacr_restore(cpacr);
1398		}
1399	}
1400
1401	if (IS_ENABLED(CONFIG_ARM64_SME) &&
1402	    id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1403		unsigned long cpacr = cpacr_save_enable_kernel_sme();
1404
1405		/*
1406		 * We mask out SMPS since even if the hardware
1407		 * supports priorities the kernel does not at present
1408		 * and we block access to them.
1409		 */
1410		info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1411
1412		/* Probe vector lengths */
1413		if (!system_capabilities_finalized())
1414			vec_update_vq_map(ARM64_VEC_SME);
1415
1416		cpacr_restore(cpacr);
1417	}
1418
1419	/*
1420	 * The kernel uses the LDGM/STGM instructions and the number of tags
1421	 * they read/write depends on the GMID_EL1.BS field. Check that the
1422	 * value is the same on all CPUs.
1423	 */
1424	if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1425	    id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1426		taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1427					      info->reg_gmid, boot->reg_gmid);
1428	}
1429
1430	/*
1431	 * If we don't have AArch32 at all then skip the checks entirely
1432	 * as the register values may be UNKNOWN and we're not going to be
1433	 * using them for anything.
1434	 *
1435	 * This relies on a sanitised view of the AArch64 ID registers
1436	 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1437	 */
1438	if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1439		lazy_init_32bit_cpu_features(info, boot);
1440		taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1441						   &boot->aarch32);
1442	}
1443
1444	/*
1445	 * Mismatched CPU features are a recipe for disaster. Don't even
1446	 * pretend to support them.
1447	 */
1448	if (taint) {
1449		pr_warn_once("Unsupported CPU feature variation detected.\n");
1450		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1451	}
1452}
1453
1454u64 read_sanitised_ftr_reg(u32 id)
1455{
1456	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1457
1458	if (!regp)
1459		return 0;
1460	return regp->sys_val;
1461}
1462EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1463
1464#define read_sysreg_case(r)	\
1465	case r:		val = read_sysreg_s(r); break;
1466
1467/*
1468 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1469 * Read the system register on the current CPU
1470 */
1471u64 __read_sysreg_by_encoding(u32 sys_id)
1472{
1473	struct arm64_ftr_reg *regp;
1474	u64 val;
1475
1476	switch (sys_id) {
1477	read_sysreg_case(SYS_ID_PFR0_EL1);
1478	read_sysreg_case(SYS_ID_PFR1_EL1);
1479	read_sysreg_case(SYS_ID_PFR2_EL1);
1480	read_sysreg_case(SYS_ID_DFR0_EL1);
1481	read_sysreg_case(SYS_ID_DFR1_EL1);
1482	read_sysreg_case(SYS_ID_MMFR0_EL1);
1483	read_sysreg_case(SYS_ID_MMFR1_EL1);
1484	read_sysreg_case(SYS_ID_MMFR2_EL1);
1485	read_sysreg_case(SYS_ID_MMFR3_EL1);
1486	read_sysreg_case(SYS_ID_MMFR4_EL1);
1487	read_sysreg_case(SYS_ID_MMFR5_EL1);
1488	read_sysreg_case(SYS_ID_ISAR0_EL1);
1489	read_sysreg_case(SYS_ID_ISAR1_EL1);
1490	read_sysreg_case(SYS_ID_ISAR2_EL1);
1491	read_sysreg_case(SYS_ID_ISAR3_EL1);
1492	read_sysreg_case(SYS_ID_ISAR4_EL1);
1493	read_sysreg_case(SYS_ID_ISAR5_EL1);
1494	read_sysreg_case(SYS_ID_ISAR6_EL1);
1495	read_sysreg_case(SYS_MVFR0_EL1);
1496	read_sysreg_case(SYS_MVFR1_EL1);
1497	read_sysreg_case(SYS_MVFR2_EL1);
1498
1499	read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1500	read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1501	read_sysreg_case(SYS_ID_AA64PFR2_EL1);
1502	read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1503	read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1504	read_sysreg_case(SYS_ID_AA64FPFR0_EL1);
1505	read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1506	read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1507	read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1508	read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1509	read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1510	read_sysreg_case(SYS_ID_AA64MMFR3_EL1);
1511	read_sysreg_case(SYS_ID_AA64MMFR4_EL1);
1512	read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1513	read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1514	read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1515	read_sysreg_case(SYS_ID_AA64ISAR3_EL1);
1516
1517	read_sysreg_case(SYS_CNTFRQ_EL0);
1518	read_sysreg_case(SYS_CTR_EL0);
1519	read_sysreg_case(SYS_DCZID_EL0);
1520
1521	default:
1522		BUG();
1523		return 0;
1524	}
1525
1526	regp  = get_arm64_ftr_reg(sys_id);
1527	if (regp) {
1528		val &= ~regp->override->mask;
1529		val |= (regp->override->val & regp->override->mask);
1530	}
1531
1532	return val;
1533}
1534
1535#include <linux/irqchip/arm-gic-v3.h>
1536
1537static bool
1538has_always(const struct arm64_cpu_capabilities *entry, int scope)
1539{
1540	return true;
1541}
1542
1543static bool
1544feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1545{
1546	int val, min, max;
1547	u64 tmp;
1548
1549	val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1550						entry->field_width,
1551						entry->sign);
1552
1553	tmp = entry->min_field_value;
1554	tmp <<= entry->field_pos;
1555
1556	min = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1557						entry->field_width,
1558						entry->sign);
1559
1560	tmp = entry->max_field_value;
1561	tmp <<= entry->field_pos;
1562
1563	max = cpuid_feature_extract_field_width(tmp, entry->field_pos,
1564						entry->field_width,
1565						entry->sign);
1566
1567	return val >= min && val <= max;
1568}
1569
1570static u64
1571read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1572{
1573	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1574	if (scope == SCOPE_SYSTEM)
1575		return read_sanitised_ftr_reg(entry->sys_reg);
1576	else
1577		return __read_sysreg_by_encoding(entry->sys_reg);
1578}
1579
1580static bool
1581has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1582{
1583	int mask;
1584	struct arm64_ftr_reg *regp;
1585	u64 val = read_scoped_sysreg(entry, scope);
1586
1587	regp = get_arm64_ftr_reg(entry->sys_reg);
1588	if (!regp)
1589		return false;
1590
1591	mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1592							  entry->field_pos,
1593							  entry->field_width);
1594	if (!mask)
1595		return false;
1596
1597	return feature_matches(val, entry);
1598}
1599
1600static bool
1601has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1602{
1603	u64 val = read_scoped_sysreg(entry, scope);
1604	return feature_matches(val, entry);
1605}
1606
1607const struct cpumask *system_32bit_el0_cpumask(void)
1608{
1609	if (!system_supports_32bit_el0())
1610		return cpu_none_mask;
1611
1612	if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1613		return cpu_32bit_el0_mask;
1614
1615	return cpu_possible_mask;
1616}
1617
1618static int __init parse_32bit_el0_param(char *str)
1619{
1620	allow_mismatched_32bit_el0 = true;
1621	return 0;
1622}
1623early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1624
1625static ssize_t aarch32_el0_show(struct device *dev,
1626				struct device_attribute *attr, char *buf)
1627{
1628	const struct cpumask *mask = system_32bit_el0_cpumask();
1629
1630	return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1631}
1632static const DEVICE_ATTR_RO(aarch32_el0);
1633
1634static int __init aarch32_el0_sysfs_init(void)
1635{
1636	struct device *dev_root;
1637	int ret = 0;
1638
1639	if (!allow_mismatched_32bit_el0)
1640		return 0;
1641
1642	dev_root = bus_get_dev_root(&cpu_subsys);
1643	if (dev_root) {
1644		ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1645		put_device(dev_root);
1646	}
1647	return ret;
1648}
1649device_initcall(aarch32_el0_sysfs_init);
1650
1651static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1652{
1653	if (!has_cpuid_feature(entry, scope))
1654		return allow_mismatched_32bit_el0;
1655
1656	if (scope == SCOPE_SYSTEM)
1657		pr_info("detected: 32-bit EL0 Support\n");
1658
1659	return true;
1660}
1661
1662static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1663{
1664	bool has_sre;
1665
1666	if (!has_cpuid_feature(entry, scope))
1667		return false;
1668
1669	has_sre = gic_enable_sre();
1670	if (!has_sre)
1671		pr_warn_once("%s present but disabled by higher exception level\n",
1672			     entry->desc);
1673
1674	return has_sre;
1675}
1676
1677static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1678			  int scope)
1679{
1680	u64 ctr;
1681
1682	if (scope == SCOPE_SYSTEM)
1683		ctr = arm64_ftr_reg_ctrel0.sys_val;
1684	else
1685		ctr = read_cpuid_effective_cachetype();
1686
1687	return ctr & BIT(CTR_EL0_IDC_SHIFT);
1688}
1689
1690static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1691{
1692	/*
1693	 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1694	 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1695	 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1696	 * value.
1697	 */
1698	if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1699		sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1700}
1701
1702static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1703			  int scope)
1704{
1705	u64 ctr;
1706
1707	if (scope == SCOPE_SYSTEM)
1708		ctr = arm64_ftr_reg_ctrel0.sys_val;
1709	else
1710		ctr = read_cpuid_cachetype();
1711
1712	return ctr & BIT(CTR_EL0_DIC_SHIFT);
1713}
1714
1715static bool __maybe_unused
1716has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1717{
1718	/*
1719	 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1720	 * may share TLB entries with a CPU stuck in the crashed
1721	 * kernel.
1722	 */
1723	if (is_kdump_kernel())
1724		return false;
1725
1726	if (cpus_have_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1727		return false;
1728
1729	return has_cpuid_feature(entry, scope);
1730}
1731
1732static bool __meltdown_safe = true;
1733static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1734
1735static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1736				int scope)
1737{
1738	/* List of CPUs that are not vulnerable and don't need KPTI */
1739	static const struct midr_range kpti_safe_list[] = {
1740		MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1741		MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1742		MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1743		MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1744		MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1745		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1746		MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1747		MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1748		MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1749		MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1750		MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1751		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1752		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1753		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1754		MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1755		{ /* sentinel */ }
1756	};
1757	char const *str = "kpti command line option";
1758	bool meltdown_safe;
1759
1760	meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1761
1762	/* Defer to CPU feature registers */
1763	if (has_cpuid_feature(entry, scope))
1764		meltdown_safe = true;
1765
1766	if (!meltdown_safe)
1767		__meltdown_safe = false;
1768
1769	/*
1770	 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1771	 * ThunderX leads to apparent I-cache corruption of kernel text, which
1772	 * ends as well as you might imagine. Don't even try. We cannot rely
1773	 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1774	 * because cpucap detection order may change. However, since we know
1775	 * affected CPUs are always in a homogeneous configuration, it is
1776	 * safe to rely on this_cpu_has_cap() here.
1777	 */
1778	if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1779		str = "ARM64_WORKAROUND_CAVIUM_27456";
1780		__kpti_forced = -1;
1781	}
1782
1783	/* Useful for KASLR robustness */
1784	if (kaslr_enabled() && kaslr_requires_kpti()) {
1785		if (!__kpti_forced) {
1786			str = "KASLR";
1787			__kpti_forced = 1;
1788		}
1789	}
1790
1791	if (cpu_mitigations_off() && !__kpti_forced) {
1792		str = "mitigations=off";
1793		__kpti_forced = -1;
1794	}
1795
1796	if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1797		pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1798		return false;
1799	}
1800
1801	/* Forced? */
1802	if (__kpti_forced) {
1803		pr_info_once("kernel page table isolation forced %s by %s\n",
1804			     __kpti_forced > 0 ? "ON" : "OFF", str);
1805		return __kpti_forced > 0;
1806	}
1807
1808	return !meltdown_safe;
1809}
1810
1811static bool has_nv1(const struct arm64_cpu_capabilities *entry, int scope)
1812{
1813	/*
1814	 * Although the Apple M2 family appears to support NV1, the
1815	 * PTW barfs on the nVHE EL2 S1 page table format. Pretend
1816	 * that it doesn't support NV1 at all.
1817	 */
1818	static const struct midr_range nv1_ni_list[] = {
1819		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD),
1820		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE),
1821		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO),
1822		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO),
1823		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX),
1824		MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX),
1825		{}
1826	};
1827
1828	return (__system_matches_cap(ARM64_HAS_NESTED_VIRT) &&
1829		!(has_cpuid_feature(entry, scope) ||
1830		  is_midr_in_range_list(read_cpuid_id(), nv1_ni_list)));
1831}
1832
1833#if defined(ID_AA64MMFR0_EL1_TGRAN_LPA2) && defined(ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2)
1834static bool has_lpa2_at_stage1(u64 mmfr0)
1835{
1836	unsigned int tgran;
1837
1838	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1839					ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1840	return tgran == ID_AA64MMFR0_EL1_TGRAN_LPA2;
1841}
1842
1843static bool has_lpa2_at_stage2(u64 mmfr0)
1844{
1845	unsigned int tgran;
1846
1847	tgran = cpuid_feature_extract_unsigned_field(mmfr0,
1848					ID_AA64MMFR0_EL1_TGRAN_2_SHIFT);
1849	return tgran == ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_LPA2;
1850}
1851
1852static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1853{
1854	u64 mmfr0;
1855
1856	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1857	return has_lpa2_at_stage1(mmfr0) && has_lpa2_at_stage2(mmfr0);
1858}
1859#else
1860static bool has_lpa2(const struct arm64_cpu_capabilities *entry, int scope)
1861{
1862	return false;
1863}
1864#endif
1865
1866#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1867#define KPTI_NG_TEMP_VA		(-(1UL << PMD_SHIFT))
1868
1869extern
1870void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1871			     phys_addr_t size, pgprot_t prot,
1872			     phys_addr_t (*pgtable_alloc)(int), int flags);
1873
1874static phys_addr_t __initdata kpti_ng_temp_alloc;
1875
1876static phys_addr_t __init kpti_ng_pgd_alloc(int shift)
1877{
1878	kpti_ng_temp_alloc -= PAGE_SIZE;
1879	return kpti_ng_temp_alloc;
1880}
1881
1882static int __init __kpti_install_ng_mappings(void *__unused)
1883{
1884	typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1885	extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1886	kpti_remap_fn *remap_fn;
1887
1888	int cpu = smp_processor_id();
1889	int levels = CONFIG_PGTABLE_LEVELS;
1890	int order = order_base_2(levels);
1891	u64 kpti_ng_temp_pgd_pa = 0;
1892	pgd_t *kpti_ng_temp_pgd;
1893	u64 alloc = 0;
1894
1895	if (levels == 5 && !pgtable_l5_enabled())
1896		levels = 4;
1897	else if (levels == 4 && !pgtable_l4_enabled())
1898		levels = 3;
1899
1900	remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1901
1902	if (!cpu) {
1903		alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1904		kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1905		kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1906
1907		//
1908		// Create a minimal page table hierarchy that permits us to map
1909		// the swapper page tables temporarily as we traverse them.
1910		//
1911		// The physical pages are laid out as follows:
1912		//
1913		// +--------+-/-------+-/------ +-/------ +-\\\--------+
1914		// :  PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[]  :
1915		// +--------+-\-------+-\------ +-\------ +-///--------+
1916		//      ^
1917		// The first page is mapped into this hierarchy at a PMD_SHIFT
1918		// aligned virtual address, so that we can manipulate the PTE
1919		// level entries while the mapping is active. The first entry
1920		// covers the PTE[] page itself, the remaining entries are free
1921		// to be used as a ad-hoc fixmap.
1922		//
1923		create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1924					KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1925					kpti_ng_pgd_alloc, 0);
1926	}
1927
1928	cpu_install_idmap();
1929	remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1930	cpu_uninstall_idmap();
1931
1932	if (!cpu) {
1933		free_pages(alloc, order);
1934		arm64_use_ng_mappings = true;
1935	}
1936
1937	return 0;
1938}
1939
1940static void __init kpti_install_ng_mappings(void)
1941{
1942	/* Check whether KPTI is going to be used */
1943	if (!arm64_kernel_unmapped_at_el0())
1944		return;
1945
1946	/*
1947	 * We don't need to rewrite the page-tables if either we've done
1948	 * it already or we have KASLR enabled and therefore have not
1949	 * created any global mappings at all.
1950	 */
1951	if (arm64_use_ng_mappings)
1952		return;
1953
1954	stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1955}
1956
1957#else
1958static inline void kpti_install_ng_mappings(void)
1959{
1960}
1961#endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
1962
1963static void cpu_enable_kpti(struct arm64_cpu_capabilities const *cap)
1964{
1965	if (__this_cpu_read(this_cpu_vector) == vectors) {
1966		const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1967
1968		__this_cpu_write(this_cpu_vector, v);
1969	}
1970
1971}
1972
1973static int __init parse_kpti(char *str)
1974{
1975	bool enabled;
1976	int ret = kstrtobool(str, &enabled);
1977
1978	if (ret)
1979		return ret;
1980
1981	__kpti_forced = enabled ? 1 : -1;
1982	return 0;
1983}
1984early_param("kpti", parse_kpti);
1985
1986#ifdef CONFIG_ARM64_HW_AFDBM
1987static struct cpumask dbm_cpus __read_mostly;
1988
1989static inline void __cpu_enable_hw_dbm(void)
1990{
1991	u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1992
1993	write_sysreg(tcr, tcr_el1);
1994	isb();
1995	local_flush_tlb_all();
1996}
1997
1998static bool cpu_has_broken_dbm(void)
1999{
2000	/* List of CPUs which have broken DBM support. */
2001	static const struct midr_range cpus[] = {
2002#ifdef CONFIG_ARM64_ERRATUM_1024718
2003		MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
2004		/* Kryo4xx Silver (rdpe => r1p0) */
2005		MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
2006#endif
2007#ifdef CONFIG_ARM64_ERRATUM_2051678
2008		MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
2009#endif
2010		{},
2011	};
2012
2013	return is_midr_in_range_list(read_cpuid_id(), cpus);
2014}
2015
2016static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
2017{
2018	return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
2019	       !cpu_has_broken_dbm();
2020}
2021
2022static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
2023{
2024	if (cpu_can_use_dbm(cap)) {
2025		__cpu_enable_hw_dbm();
2026		cpumask_set_cpu(smp_processor_id(), &dbm_cpus);
2027	}
2028}
2029
2030static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
2031		       int __unused)
2032{
2033	/*
2034	 * DBM is a non-conflicting feature. i.e, the kernel can safely
2035	 * run a mix of CPUs with and without the feature. So, we
2036	 * unconditionally enable the capability to allow any late CPU
2037	 * to use the feature. We only enable the control bits on the
2038	 * CPU, if it is supported.
2039	 */
2040
2041	return true;
2042}
2043
2044#endif
2045
2046#ifdef CONFIG_ARM64_AMU_EXTN
2047
2048/*
2049 * The "amu_cpus" cpumask only signals that the CPU implementation for the
2050 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
2051 * information regarding all the events that it supports. When a CPU bit is
2052 * set in the cpumask, the user of this feature can only rely on the presence
2053 * of the 4 fixed counters for that CPU. But this does not guarantee that the
2054 * counters are enabled or access to these counters is enabled by code
2055 * executed at higher exception levels (firmware).
2056 */
2057static struct cpumask amu_cpus __read_mostly;
2058
2059bool cpu_has_amu_feat(int cpu)
2060{
2061	return cpumask_test_cpu(cpu, &amu_cpus);
2062}
2063
2064int get_cpu_with_amu_feat(void)
2065{
2066	return cpumask_any(&amu_cpus);
2067}
2068
2069static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
2070{
2071	if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
2072		cpumask_set_cpu(smp_processor_id(), &amu_cpus);
2073
2074		/* 0 reference values signal broken/disabled counters */
2075		if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
2076			update_freq_counters_refs();
2077	}
2078}
2079
2080static bool has_amu(const struct arm64_cpu_capabilities *cap,
2081		    int __unused)
2082{
2083	/*
2084	 * The AMU extension is a non-conflicting feature: the kernel can
2085	 * safely run a mix of CPUs with and without support for the
2086	 * activity monitors extension. Therefore, unconditionally enable
2087	 * the capability to allow any late CPU to use the feature.
2088	 *
2089	 * With this feature unconditionally enabled, the cpu_enable
2090	 * function will be called for all CPUs that match the criteria,
2091	 * including secondary and hotplugged, marking this feature as
2092	 * present on that respective CPU. The enable function will also
2093	 * print a detection message.
2094	 */
2095
2096	return true;
2097}
2098#else
2099int get_cpu_with_amu_feat(void)
2100{
2101	return nr_cpu_ids;
2102}
2103#endif
2104
2105static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
2106{
2107	return is_kernel_in_hyp_mode();
2108}
2109
2110static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
2111{
2112	/*
2113	 * Copy register values that aren't redirected by hardware.
2114	 *
2115	 * Before code patching, we only set tpidr_el1, all CPUs need to copy
2116	 * this value to tpidr_el2 before we patch the code. Once we've done
2117	 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
2118	 * do anything here.
2119	 */
2120	if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
2121		write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
2122}
2123
2124static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
2125				    int scope)
2126{
2127	if (kvm_get_mode() != KVM_MODE_NV)
2128		return false;
2129
2130	if (!has_cpuid_feature(cap, scope)) {
2131		pr_warn("unavailable: %s\n", cap->desc);
2132		return false;
2133	}
2134
2135	return true;
2136}
2137
2138static bool hvhe_possible(const struct arm64_cpu_capabilities *entry,
2139			  int __unused)
2140{
2141	return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_HVHE);
2142}
2143
2144#ifdef CONFIG_ARM64_PAN
2145static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2146{
2147	/*
2148	 * We modify PSTATE. This won't work from irq context as the PSTATE
2149	 * is discarded once we return from the exception.
2150	 */
2151	WARN_ON_ONCE(in_interrupt());
2152
2153	sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2154	set_pstate_pan(1);
2155}
2156#endif /* CONFIG_ARM64_PAN */
2157
2158#ifdef CONFIG_ARM64_RAS_EXTN
2159static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2160{
2161	/* Firmware may have left a deferred SError in this register. */
2162	write_sysreg_s(0, SYS_DISR_EL1);
2163}
2164#endif /* CONFIG_ARM64_RAS_EXTN */
2165
2166#ifdef CONFIG_ARM64_PTR_AUTH
2167static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2168{
2169	int boot_val, sec_val;
2170
2171	/* We don't expect to be called with SCOPE_SYSTEM */
2172	WARN_ON(scope == SCOPE_SYSTEM);
2173	/*
2174	 * The ptr-auth feature levels are not intercompatible with lower
2175	 * levels. Hence we must match ptr-auth feature level of the secondary
2176	 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2177	 * from the sanitised register whereas direct register read is done for
2178	 * the secondary CPUs.
2179	 * The sanitised feature state is guaranteed to match that of the
2180	 * boot CPU as a mismatched secondary CPU is parked before it gets
2181	 * a chance to update the state, with the capability.
2182	 */
2183	boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2184					       entry->field_pos, entry->sign);
2185	if (scope & SCOPE_BOOT_CPU)
2186		return boot_val >= entry->min_field_value;
2187	/* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2188	sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2189					      entry->field_pos, entry->sign);
2190	return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2191}
2192
2193static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2194				     int scope)
2195{
2196	bool api = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2197	bool apa = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2198	bool apa3 = has_address_auth_cpucap(cpucap_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2199
2200	return apa || apa3 || api;
2201}
2202
2203static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2204			     int __unused)
2205{
2206	bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2207	bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2208	bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2209
2210	return gpa || gpa3 || gpi;
2211}
2212#endif /* CONFIG_ARM64_PTR_AUTH */
2213
2214#ifdef CONFIG_ARM64_E0PD
2215static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2216{
2217	if (this_cpu_has_cap(ARM64_HAS_E0PD))
2218		sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2219}
2220#endif /* CONFIG_ARM64_E0PD */
2221
2222#ifdef CONFIG_ARM64_PSEUDO_NMI
2223static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2224				   int scope)
2225{
2226	/*
2227	 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2228	 * feature, so will be detected earlier.
2229	 */
2230	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2231	if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2232		return false;
2233
2234	return enable_pseudo_nmi;
2235}
2236
2237static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2238				      int scope)
2239{
2240	/*
2241	 * If we're not using priority masking then we won't be poking PMR_EL1,
2242	 * and there's no need to relax synchronization of writes to it, and
2243	 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2244	 * that.
2245	 *
2246	 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2247	 * feature, so will be detected earlier.
2248	 */
2249	BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2250	if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2251		return false;
2252
2253	/*
2254	 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2255	 * hint for interrupt distribution, a DSB is not necessary when
2256	 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2257	 *
2258	 * Linux itself doesn't use 1:N distribution, so has no need to
2259	 * set PMHE. The only reason to have it set is if EL3 requires it
2260	 * (and we can't change it).
2261	 */
2262	return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2263}
2264#endif
2265
2266#ifdef CONFIG_ARM64_BTI
2267static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2268{
2269	/*
2270	 * Use of X16/X17 for tail-calls and trampolines that jump to
2271	 * function entry points using BR is a requirement for
2272	 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2273	 * So, be strict and forbid other BRs using other registers to
2274	 * jump onto a PACIxSP instruction:
2275	 */
2276	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2277	isb();
2278}
2279#endif /* CONFIG_ARM64_BTI */
2280
2281#ifdef CONFIG_ARM64_MTE
2282static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2283{
2284	sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2285
2286	mte_cpu_setup();
2287
2288	/*
2289	 * Clear the tags in the zero page. This needs to be done via the
2290	 * linear map which has the Tagged attribute.
2291	 */
2292	if (try_page_mte_tagging(ZERO_PAGE(0))) {
2293		mte_clear_page_tags(lm_alias(empty_zero_page));
2294		set_page_mte_tagged(ZERO_PAGE(0));
2295	}
2296
2297	kasan_init_hw_tags_cpu();
2298}
2299#endif /* CONFIG_ARM64_MTE */
2300
2301static void user_feature_fixup(void)
2302{
2303	if (cpus_have_cap(ARM64_WORKAROUND_2658417)) {
2304		struct arm64_ftr_reg *regp;
2305
2306		regp = get_arm64_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2307		if (regp)
2308			regp->user_mask &= ~ID_AA64ISAR1_EL1_BF16_MASK;
2309	}
2310}
2311
2312static void elf_hwcap_fixup(void)
2313{
2314#ifdef CONFIG_COMPAT
2315	if (cpus_have_cap(ARM64_WORKAROUND_1742098))
2316		compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2317#endif /* CONFIG_COMPAT */
2318}
2319
2320#ifdef CONFIG_KVM
2321static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2322{
2323	return kvm_get_mode() == KVM_MODE_PROTECTED;
2324}
2325#endif /* CONFIG_KVM */
2326
2327static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2328{
2329	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2330}
2331
2332static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2333{
2334	set_pstate_dit(1);
2335}
2336
2337static void cpu_enable_mops(const struct arm64_cpu_capabilities *__unused)
2338{
2339	sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_MSCEn);
2340}
2341
2342/* Internal helper functions to match cpu capability type */
2343static bool
2344cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2345{
2346	return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2347}
2348
2349static bool
2350cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2351{
2352	return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2353}
2354
2355static bool
2356cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2357{
2358	return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2359}
2360
2361static const struct arm64_cpu_capabilities arm64_features[] = {
2362	{
2363		.capability = ARM64_ALWAYS_BOOT,
2364		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2365		.matches = has_always,
2366	},
2367	{
2368		.capability = ARM64_ALWAYS_SYSTEM,
2369		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2370		.matches = has_always,
2371	},
2372	{
2373		.desc = "GIC system register CPU interface",
2374		.capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2375		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2376		.matches = has_useable_gicv3_cpuif,
2377		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2378	},
2379	{
2380		.desc = "Enhanced Counter Virtualization",
2381		.capability = ARM64_HAS_ECV,
2382		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2383		.matches = has_cpuid_feature,
2384		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2385	},
2386	{
2387		.desc = "Enhanced Counter Virtualization (CNTPOFF)",
2388		.capability = ARM64_HAS_ECV_CNTPOFF,
2389		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2390		.matches = has_cpuid_feature,
2391		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, CNTPOFF)
2392	},
2393#ifdef CONFIG_ARM64_PAN
2394	{
2395		.desc = "Privileged Access Never",
2396		.capability = ARM64_HAS_PAN,
2397		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2398		.matches = has_cpuid_feature,
2399		.cpu_enable = cpu_enable_pan,
2400		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2401	},
2402#endif /* CONFIG_ARM64_PAN */
2403#ifdef CONFIG_ARM64_EPAN
2404	{
2405		.desc = "Enhanced Privileged Access Never",
2406		.capability = ARM64_HAS_EPAN,
2407		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2408		.matches = has_cpuid_feature,
2409		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2410	},
2411#endif /* CONFIG_ARM64_EPAN */
2412#ifdef CONFIG_ARM64_LSE_ATOMICS
2413	{
2414		.desc = "LSE atomic instructions",
2415		.capability = ARM64_HAS_LSE_ATOMICS,
2416		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2417		.matches = has_cpuid_feature,
2418		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2419	},
2420#endif /* CONFIG_ARM64_LSE_ATOMICS */
2421	{
2422		.desc = "Virtualization Host Extensions",
2423		.capability = ARM64_HAS_VIRT_HOST_EXTN,
2424		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2425		.matches = runs_at_el2,
2426		.cpu_enable = cpu_copy_el2regs,
2427	},
2428	{
2429		.desc = "Nested Virtualization Support",
2430		.capability = ARM64_HAS_NESTED_VIRT,
2431		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2432		.matches = has_nested_virt_support,
2433		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, NV2)
2434	},
2435	{
2436		.capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2437		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2438		.matches = has_32bit_el0,
2439		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2440	},
2441#ifdef CONFIG_KVM
2442	{
2443		.desc = "32-bit EL1 Support",
2444		.capability = ARM64_HAS_32BIT_EL1,
2445		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2446		.matches = has_cpuid_feature,
2447		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2448	},
2449	{
2450		.desc = "Protected KVM",
2451		.capability = ARM64_KVM_PROTECTED_MODE,
2452		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2453		.matches = is_kvm_protected_mode,
2454	},
2455	{
2456		.desc = "HCRX_EL2 register",
2457		.capability = ARM64_HAS_HCX,
2458		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2459		.matches = has_cpuid_feature,
2460		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HCX, IMP)
2461	},
2462#endif
2463	{
2464		.desc = "Kernel page table isolation (KPTI)",
2465		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
2466		.type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2467		.cpu_enable = cpu_enable_kpti,
2468		.matches = unmap_kernel_at_el0,
2469		/*
2470		 * The ID feature fields below are used to indicate that
2471		 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2472		 * more details.
2473		 */
2474		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2475	},
2476	{
2477		.capability = ARM64_HAS_FPSIMD,
2478		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2479		.matches = has_cpuid_feature,
2480		.cpu_enable = cpu_enable_fpsimd,
2481		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, FP, IMP)
2482	},
2483#ifdef CONFIG_ARM64_PMEM
2484	{
2485		.desc = "Data cache clean to Point of Persistence",
2486		.capability = ARM64_HAS_DCPOP,
2487		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2488		.matches = has_cpuid_feature,
2489		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2490	},
2491	{
2492		.desc = "Data cache clean to Point of Deep Persistence",
2493		.capability = ARM64_HAS_DCPODP,
2494		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2495		.matches = has_cpuid_feature,
2496		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2497	},
2498#endif
2499#ifdef CONFIG_ARM64_SVE
2500	{
2501		.desc = "Scalable Vector Extension",
2502		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2503		.capability = ARM64_SVE,
2504		.cpu_enable = cpu_enable_sve,
2505		.matches = has_cpuid_feature,
2506		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2507	},
2508#endif /* CONFIG_ARM64_SVE */
2509#ifdef CONFIG_ARM64_RAS_EXTN
2510	{
2511		.desc = "RAS Extension Support",
2512		.capability = ARM64_HAS_RAS_EXTN,
2513		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2514		.matches = has_cpuid_feature,
2515		.cpu_enable = cpu_clear_disr,
2516		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2517	},
2518#endif /* CONFIG_ARM64_RAS_EXTN */
2519#ifdef CONFIG_ARM64_AMU_EXTN
2520	{
2521		.desc = "Activity Monitors Unit (AMU)",
2522		.capability = ARM64_HAS_AMU_EXTN,
2523		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2524		.matches = has_amu,
2525		.cpu_enable = cpu_amu_enable,
2526		.cpus = &amu_cpus,
2527		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2528	},
2529#endif /* CONFIG_ARM64_AMU_EXTN */
2530	{
2531		.desc = "Data cache clean to the PoU not required for I/D coherence",
2532		.capability = ARM64_HAS_CACHE_IDC,
2533		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2534		.matches = has_cache_idc,
2535		.cpu_enable = cpu_emulate_effective_ctr,
2536	},
2537	{
2538		.desc = "Instruction cache invalidation not required for I/D coherence",
2539		.capability = ARM64_HAS_CACHE_DIC,
2540		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2541		.matches = has_cache_dic,
2542	},
2543	{
2544		.desc = "Stage-2 Force Write-Back",
2545		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2546		.capability = ARM64_HAS_STAGE2_FWB,
2547		.matches = has_cpuid_feature,
2548		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2549	},
2550	{
2551		.desc = "ARMv8.4 Translation Table Level",
2552		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2553		.capability = ARM64_HAS_ARMv8_4_TTL,
2554		.matches = has_cpuid_feature,
2555		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2556	},
2557	{
2558		.desc = "TLB range maintenance instructions",
2559		.capability = ARM64_HAS_TLB_RANGE,
2560		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2561		.matches = has_cpuid_feature,
2562		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2563	},
2564#ifdef CONFIG_ARM64_HW_AFDBM
2565	{
2566		.desc = "Hardware dirty bit management",
2567		.type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2568		.capability = ARM64_HW_DBM,
2569		.matches = has_hw_dbm,
2570		.cpu_enable = cpu_enable_hw_dbm,
2571		.cpus = &dbm_cpus,
2572		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2573	},
2574#endif
2575	{
2576		.desc = "CRC32 instructions",
2577		.capability = ARM64_HAS_CRC32,
2578		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2579		.matches = has_cpuid_feature,
2580		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2581	},
2582	{
2583		.desc = "Speculative Store Bypassing Safe (SSBS)",
2584		.capability = ARM64_SSBS,
2585		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2586		.matches = has_cpuid_feature,
2587		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2588	},
2589#ifdef CONFIG_ARM64_CNP
2590	{
2591		.desc = "Common not Private translations",
2592		.capability = ARM64_HAS_CNP,
2593		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2594		.matches = has_useable_cnp,
2595		.cpu_enable = cpu_enable_cnp,
2596		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2597	},
2598#endif
2599	{
2600		.desc = "Speculation barrier (SB)",
2601		.capability = ARM64_HAS_SB,
2602		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2603		.matches = has_cpuid_feature,
2604		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2605	},
2606#ifdef CONFIG_ARM64_PTR_AUTH
2607	{
2608		.desc = "Address authentication (architected QARMA5 algorithm)",
2609		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2610		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2611		.matches = has_address_auth_cpucap,
2612		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2613	},
2614	{
2615		.desc = "Address authentication (architected QARMA3 algorithm)",
2616		.capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2617		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2618		.matches = has_address_auth_cpucap,
2619		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2620	},
2621	{
2622		.desc = "Address authentication (IMP DEF algorithm)",
2623		.capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2624		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2625		.matches = has_address_auth_cpucap,
2626		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2627	},
2628	{
2629		.capability = ARM64_HAS_ADDRESS_AUTH,
2630		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2631		.matches = has_address_auth_metacap,
2632	},
2633	{
2634		.desc = "Generic authentication (architected QARMA5 algorithm)",
2635		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2636		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2637		.matches = has_cpuid_feature,
2638		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2639	},
2640	{
2641		.desc = "Generic authentication (architected QARMA3 algorithm)",
2642		.capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2643		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2644		.matches = has_cpuid_feature,
2645		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2646	},
2647	{
2648		.desc = "Generic authentication (IMP DEF algorithm)",
2649		.capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2650		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2651		.matches = has_cpuid_feature,
2652		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2653	},
2654	{
2655		.capability = ARM64_HAS_GENERIC_AUTH,
2656		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2657		.matches = has_generic_auth,
2658	},
2659#endif /* CONFIG_ARM64_PTR_AUTH */
2660#ifdef CONFIG_ARM64_PSEUDO_NMI
2661	{
2662		/*
2663		 * Depends on having GICv3
2664		 */
2665		.desc = "IRQ priority masking",
2666		.capability = ARM64_HAS_GIC_PRIO_MASKING,
2667		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2668		.matches = can_use_gic_priorities,
2669	},
2670	{
2671		/*
2672		 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2673		 */
2674		.capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2675		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2676		.matches = has_gic_prio_relaxed_sync,
2677	},
2678#endif
2679#ifdef CONFIG_ARM64_E0PD
2680	{
2681		.desc = "E0PD",
2682		.capability = ARM64_HAS_E0PD,
2683		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2684		.cpu_enable = cpu_enable_e0pd,
2685		.matches = has_cpuid_feature,
2686		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2687	},
2688#endif
2689	{
2690		.desc = "Random Number Generator",
2691		.capability = ARM64_HAS_RNG,
2692		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2693		.matches = has_cpuid_feature,
2694		ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2695	},
2696#ifdef CONFIG_ARM64_BTI
2697	{
2698		.desc = "Branch Target Identification",
2699		.capability = ARM64_BTI,
2700#ifdef CONFIG_ARM64_BTI_KERNEL
2701		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2702#else
2703		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2704#endif
2705		.matches = has_cpuid_feature,
2706		.cpu_enable = bti_enable,
2707		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2708	},
2709#endif
2710#ifdef CONFIG_ARM64_MTE
2711	{
2712		.desc = "Memory Tagging Extension",
2713		.capability = ARM64_MTE,
2714		.type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2715		.matches = has_cpuid_feature,
2716		.cpu_enable = cpu_enable_mte,
2717		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2718	},
2719	{
2720		.desc = "Asymmetric MTE Tag Check Fault",
2721		.capability = ARM64_MTE_ASYMM,
2722		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2723		.matches = has_cpuid_feature,
2724		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2725	},
2726#endif /* CONFIG_ARM64_MTE */
2727	{
2728		.desc = "RCpc load-acquire (LDAPR)",
2729		.capability = ARM64_HAS_LDAPR,
2730		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2731		.matches = has_cpuid_feature,
2732		ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2733	},
2734	{
2735		.desc = "Fine Grained Traps",
2736		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2737		.capability = ARM64_HAS_FGT,
2738		.matches = has_cpuid_feature,
2739		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, FGT, IMP)
2740	},
2741#ifdef CONFIG_ARM64_SME
2742	{
2743		.desc = "Scalable Matrix Extension",
2744		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2745		.capability = ARM64_SME,
2746		.matches = has_cpuid_feature,
2747		.cpu_enable = cpu_enable_sme,
2748		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2749	},
2750	/* FA64 should be sorted after the base SME capability */
2751	{
2752		.desc = "FA64",
2753		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2754		.capability = ARM64_SME_FA64,
2755		.matches = has_cpuid_feature,
2756		.cpu_enable = cpu_enable_fa64,
2757		ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2758	},
2759	{
2760		.desc = "SME2",
2761		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2762		.capability = ARM64_SME2,
2763		.matches = has_cpuid_feature,
2764		.cpu_enable = cpu_enable_sme2,
2765		ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2766	},
2767#endif /* CONFIG_ARM64_SME */
2768	{
2769		.desc = "WFx with timeout",
2770		.capability = ARM64_HAS_WFXT,
2771		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2772		.matches = has_cpuid_feature,
2773		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2774	},
2775	{
2776		.desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2777		.capability = ARM64_HAS_TIDCP1,
2778		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2779		.matches = has_cpuid_feature,
2780		.cpu_enable = cpu_trap_el0_impdef,
2781		ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2782	},
2783	{
2784		.desc = "Data independent timing control (DIT)",
2785		.capability = ARM64_HAS_DIT,
2786		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2787		.matches = has_cpuid_feature,
2788		.cpu_enable = cpu_enable_dit,
2789		ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2790	},
2791	{
2792		.desc = "Memory Copy and Memory Set instructions",
2793		.capability = ARM64_HAS_MOPS,
2794		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2795		.matches = has_cpuid_feature,
2796		.cpu_enable = cpu_enable_mops,
2797		ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, MOPS, IMP)
2798	},
2799	{
2800		.capability = ARM64_HAS_TCR2,
2801		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2802		.matches = has_cpuid_feature,
2803		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, TCRX, IMP)
2804	},
2805	{
2806		.desc = "Stage-1 Permission Indirection Extension (S1PIE)",
2807		.capability = ARM64_HAS_S1PIE,
2808		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2809		.matches = has_cpuid_feature,
2810		ARM64_CPUID_FIELDS(ID_AA64MMFR3_EL1, S1PIE, IMP)
2811	},
2812	{
2813		.desc = "VHE for hypervisor only",
2814		.capability = ARM64_KVM_HVHE,
2815		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2816		.matches = hvhe_possible,
2817	},
2818	{
2819		.desc = "Enhanced Virtualization Traps",
2820		.capability = ARM64_HAS_EVT,
2821		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2822		.matches = has_cpuid_feature,
2823		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, EVT, IMP)
2824	},
2825	{
2826		.desc = "52-bit Virtual Addressing for KVM (LPA2)",
2827		.capability = ARM64_HAS_LPA2,
2828		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2829		.matches = has_lpa2,
2830	},
2831	{
2832		.desc = "FPMR",
2833		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2834		.capability = ARM64_HAS_FPMR,
2835		.matches = has_cpuid_feature,
2836		.cpu_enable = cpu_enable_fpmr,
2837		ARM64_CPUID_FIELDS(ID_AA64PFR2_EL1, FPMR, IMP)
2838	},
2839#ifdef CONFIG_ARM64_VA_BITS_52
2840	{
2841		.capability = ARM64_HAS_VA52,
2842		.type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2843		.matches = has_cpuid_feature,
2844#ifdef CONFIG_ARM64_64K_PAGES
2845		.desc = "52-bit Virtual Addressing (LVA)",
2846		ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, VARange, 52)
2847#else
2848		.desc = "52-bit Virtual Addressing (LPA2)",
2849#ifdef CONFIG_ARM64_4K_PAGES
2850		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN4, 52_BIT)
2851#else
2852		ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, TGRAN16, 52_BIT)
2853#endif
2854#endif
2855	},
2856#endif
2857	{
2858		.desc = "NV1",
2859		.capability = ARM64_HAS_HCR_NV1,
2860		.type = ARM64_CPUCAP_SYSTEM_FEATURE,
2861		.matches = has_nv1,
2862		ARM64_CPUID_FIELDS_NEG(ID_AA64MMFR4_EL1, E2H0, NI_NV1)
2863	},
2864	{},
2865};
2866
2867#define HWCAP_CPUID_MATCH(reg, field, min_value)			\
2868		.matches = has_user_cpuid_feature,			\
2869		ARM64_CPUID_FIELDS(reg, field, min_value)
2870
2871#define __HWCAP_CAP(name, cap_type, cap)					\
2872		.desc = name,							\
2873		.type = ARM64_CPUCAP_SYSTEM_FEATURE,				\
2874		.hwcap_type = cap_type,						\
2875		.hwcap = cap,							\
2876
2877#define HWCAP_CAP(reg, field, min_value, cap_type, cap)		\
2878	{									\
2879		__HWCAP_CAP(#cap, cap_type, cap)				\
2880		HWCAP_CPUID_MATCH(reg, field, min_value) 		\
2881	}
2882
2883#define HWCAP_MULTI_CAP(list, cap_type, cap)					\
2884	{									\
2885		__HWCAP_CAP(#cap, cap_type, cap)				\
2886		.matches = cpucap_multi_entry_cap_matches,			\
2887		.match_list = list,						\
2888	}
2889
2890#define HWCAP_CAP_MATCH(match, cap_type, cap)					\
2891	{									\
2892		__HWCAP_CAP(#cap, cap_type, cap)				\
2893		.matches = match,						\
2894	}
2895
2896#ifdef CONFIG_ARM64_PTR_AUTH
2897static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2898	{
2899		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2900	},
2901	{
2902		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2903	},
2904	{
2905		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2906	},
2907	{},
2908};
2909
2910static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2911	{
2912		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2913	},
2914	{
2915		HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2916	},
2917	{
2918		HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2919	},
2920	{},
2921};
2922#endif
2923
2924static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2925	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2926	HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2927	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2928	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2929	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2930	HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2931	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2932	HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, FEAT_LSE128, CAP_HWCAP, KERNEL_HWCAP_LSE128),
2933	HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2934	HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2935	HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2936	HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2937	HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2938	HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2939	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2940	HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2941	HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2942	HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2943	HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2944	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2945	HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2946	HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2947	HWCAP_CAP(ID_AA64PFR2_EL1, FPMR, IMP, CAP_HWCAP, KERNEL_HWCAP_FPMR),
2948	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2949	HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2950	HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2951	HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2952	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2953	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2954	HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC3, CAP_HWCAP, KERNEL_HWCAP_LRCPC3),
2955	HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2956	HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2957	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2958	HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2959	HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2960	HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2961	HWCAP_CAP(ID_AA64ISAR2_EL1, LUT, IMP, CAP_HWCAP, KERNEL_HWCAP_LUT),
2962	HWCAP_CAP(ID_AA64ISAR3_EL1, FAMINMAX, IMP, CAP_HWCAP, KERNEL_HWCAP_FAMINMAX),
2963	HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2964#ifdef CONFIG_ARM64_SVE
2965	HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2966	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2967	HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2968	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2969	HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2970	HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2971	HWCAP_CAP(ID_AA64ZFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE_B16B16),
2972	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2973	HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2974	HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2975	HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2976	HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2977	HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2978	HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2979#endif
2980	HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2981#ifdef CONFIG_ARM64_BTI
2982	HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2983#endif
2984#ifdef CONFIG_ARM64_PTR_AUTH
2985	HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2986	HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2987#endif
2988#ifdef CONFIG_ARM64_MTE
2989	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2990	HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2991#endif /* CONFIG_ARM64_MTE */
2992	HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
2993	HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
2994	HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
2995	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
2996	HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2997	HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2998	HWCAP_CAP(ID_AA64ISAR2_EL1, MOPS, IMP, CAP_HWCAP, KERNEL_HWCAP_MOPS),
2999	HWCAP_CAP(ID_AA64ISAR2_EL1, BC, IMP, CAP_HWCAP, KERNEL_HWCAP_HBC),
3000#ifdef CONFIG_ARM64_SME
3001	HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
3002	HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
3003	HWCAP_CAP(ID_AA64SMFR0_EL1, LUTv2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_LUTV2),
3004	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
3005	HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
3006	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
3007	HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
3008	HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
3009	HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
3010	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
3011	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F16),
3012	HWCAP_CAP(ID_AA64SMFR0_EL1, F8F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F8F32),
3013	HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
3014	HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
3015	HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
3016	HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
3017	HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
3018	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8FMA),
3019	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP4),
3020	HWCAP_CAP(ID_AA64SMFR0_EL1, SF8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_SF8DP2),
3021#endif /* CONFIG_ARM64_SME */
3022	HWCAP_CAP(ID_AA64FPFR0_EL1, F8CVT, IMP, CAP_HWCAP, KERNEL_HWCAP_F8CVT),
3023	HWCAP_CAP(ID_AA64FPFR0_EL1, F8FMA, IMP, CAP_HWCAP, KERNEL_HWCAP_F8FMA),
3024	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP4, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP4),
3025	HWCAP_CAP(ID_AA64FPFR0_EL1, F8DP2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8DP2),
3026	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E4M3, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E4M3),
3027	HWCAP_CAP(ID_AA64FPFR0_EL1, F8E5M2, IMP, CAP_HWCAP, KERNEL_HWCAP_F8E5M2),
3028	{},
3029};
3030
3031#ifdef CONFIG_COMPAT
3032static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
3033{
3034	/*
3035	 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
3036	 * in line with that of arm32 as in vfp_init(). We make sure that the
3037	 * check is future proof, by making sure value is non-zero.
3038	 */
3039	u32 mvfr1;
3040
3041	WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
3042	if (scope == SCOPE_SYSTEM)
3043		mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
3044	else
3045		mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
3046
3047	return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
3048		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
3049		cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
3050}
3051#endif
3052
3053static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
3054#ifdef CONFIG_COMPAT
3055	HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
3056	HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
3057	/* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
3058	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
3059	HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
3060	HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
3061	HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
3062	HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
3063	HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
3064	HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
3065	HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
3066	HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
3067	HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
3068	HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
3069	HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
3070	HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
3071	HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
3072	HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
3073#endif
3074	{},
3075};
3076
3077static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3078{
3079	switch (cap->hwcap_type) {
3080	case CAP_HWCAP:
3081		cpu_set_feature(cap->hwcap);
3082		break;
3083#ifdef CONFIG_COMPAT
3084	case CAP_COMPAT_HWCAP:
3085		compat_elf_hwcap |= (u32)cap->hwcap;
3086		break;
3087	case CAP_COMPAT_HWCAP2:
3088		compat_elf_hwcap2 |= (u32)cap->hwcap;
3089		break;
3090#endif
3091	default:
3092		WARN_ON(1);
3093		break;
3094	}
3095}
3096
3097/* Check if we have a particular HWCAP enabled */
3098static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
3099{
3100	bool rc;
3101
3102	switch (cap->hwcap_type) {
3103	case CAP_HWCAP:
3104		rc = cpu_have_feature(cap->hwcap);
3105		break;
3106#ifdef CONFIG_COMPAT
3107	case CAP_COMPAT_HWCAP:
3108		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
3109		break;
3110	case CAP_COMPAT_HWCAP2:
3111		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
3112		break;
3113#endif
3114	default:
3115		WARN_ON(1);
3116		rc = false;
3117	}
3118
3119	return rc;
3120}
3121
3122static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
3123{
3124	/* We support emulation of accesses to CPU ID feature registers */
3125	cpu_set_named_feature(CPUID);
3126	for (; hwcaps->matches; hwcaps++)
3127		if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
3128			cap_set_elf_hwcap(hwcaps);
3129}
3130
3131static void update_cpu_capabilities(u16 scope_mask)
3132{
3133	int i;
3134	const struct arm64_cpu_capabilities *caps;
3135
3136	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3137	for (i = 0; i < ARM64_NCAPS; i++) {
3138		caps = cpucap_ptrs[i];
3139		if (!caps || !(caps->type & scope_mask) ||
3140		    cpus_have_cap(caps->capability) ||
3141		    !caps->matches(caps, cpucap_default_scope(caps)))
3142			continue;
3143
3144		if (caps->desc && !caps->cpus)
3145			pr_info("detected: %s\n", caps->desc);
3146
3147		__set_bit(caps->capability, system_cpucaps);
3148
3149		if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
3150			set_bit(caps->capability, boot_cpucaps);
3151	}
3152}
3153
3154/*
3155 * Enable all the available capabilities on this CPU. The capabilities
3156 * with BOOT_CPU scope are handled separately and hence skipped here.
3157 */
3158static int cpu_enable_non_boot_scope_capabilities(void *__unused)
3159{
3160	int i;
3161	u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
3162
3163	for_each_available_cap(i) {
3164		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[i];
3165
3166		if (WARN_ON(!cap))
3167			continue;
3168
3169		if (!(cap->type & non_boot_scope))
3170			continue;
3171
3172		if (cap->cpu_enable)
3173			cap->cpu_enable(cap);
3174	}
3175	return 0;
3176}
3177
3178/*
3179 * Run through the enabled capabilities and enable() it on all active
3180 * CPUs
3181 */
3182static void __init enable_cpu_capabilities(u16 scope_mask)
3183{
3184	int i;
3185	const struct arm64_cpu_capabilities *caps;
3186	bool boot_scope;
3187
3188	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3189	boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
3190
3191	for (i = 0; i < ARM64_NCAPS; i++) {
3192		caps = cpucap_ptrs[i];
3193		if (!caps || !(caps->type & scope_mask) ||
3194		    !cpus_have_cap(caps->capability))
3195			continue;
3196
3197		if (boot_scope && caps->cpu_enable)
3198			/*
3199			 * Capabilities with SCOPE_BOOT_CPU scope are finalised
3200			 * before any secondary CPU boots. Thus, each secondary
3201			 * will enable the capability as appropriate via
3202			 * check_local_cpu_capabilities(). The only exception is
3203			 * the boot CPU, for which the capability must be
3204			 * enabled here. This approach avoids costly
3205			 * stop_machine() calls for this case.
3206			 */
3207			caps->cpu_enable(caps);
3208	}
3209
3210	/*
3211	 * For all non-boot scope capabilities, use stop_machine()
3212	 * as it schedules the work allowing us to modify PSTATE,
3213	 * instead of on_each_cpu() which uses an IPI, giving us a
3214	 * PSTATE that disappears when we return.
3215	 */
3216	if (!boot_scope)
3217		stop_machine(cpu_enable_non_boot_scope_capabilities,
3218			     NULL, cpu_online_mask);
3219}
3220
3221/*
3222 * Run through the list of capabilities to check for conflicts.
3223 * If the system has already detected a capability, take necessary
3224 * action on this CPU.
3225 */
3226static void verify_local_cpu_caps(u16 scope_mask)
3227{
3228	int i;
3229	bool cpu_has_cap, system_has_cap;
3230	const struct arm64_cpu_capabilities *caps;
3231
3232	scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
3233
3234	for (i = 0; i < ARM64_NCAPS; i++) {
3235		caps = cpucap_ptrs[i];
3236		if (!caps || !(caps->type & scope_mask))
3237			continue;
3238
3239		cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3240		system_has_cap = cpus_have_cap(caps->capability);
3241
3242		if (system_has_cap) {
3243			/*
3244			 * Check if the new CPU misses an advertised feature,
3245			 * which is not safe to miss.
3246			 */
3247			if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3248				break;
3249			/*
3250			 * We have to issue cpu_enable() irrespective of
3251			 * whether the CPU has it or not, as it is enabeld
3252			 * system wide. It is upto the call back to take
3253			 * appropriate action on this CPU.
3254			 */
3255			if (caps->cpu_enable)
3256				caps->cpu_enable(caps);
3257		} else {
3258			/*
3259			 * Check if the CPU has this capability if it isn't
3260			 * safe to have when the system doesn't.
3261			 */
3262			if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3263				break;
3264		}
3265	}
3266
3267	if (i < ARM64_NCAPS) {
3268		pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3269			smp_processor_id(), caps->capability,
3270			caps->desc, system_has_cap, cpu_has_cap);
3271
3272		if (cpucap_panic_on_conflict(caps))
3273			cpu_panic_kernel();
3274		else
3275			cpu_die_early();
3276	}
3277}
3278
3279/*
3280 * Check for CPU features that are used in early boot
3281 * based on the Boot CPU value.
3282 */
3283static void check_early_cpu_features(void)
3284{
3285	verify_cpu_asid_bits();
3286
3287	verify_local_cpu_caps(SCOPE_BOOT_CPU);
3288}
3289
3290static void
3291__verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3292{
3293
3294	for (; caps->matches; caps++)
3295		if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3296			pr_crit("CPU%d: missing HWCAP: %s\n",
3297					smp_processor_id(), caps->desc);
3298			cpu_die_early();
3299		}
3300}
3301
3302static void verify_local_elf_hwcaps(void)
3303{
3304	__verify_local_elf_hwcaps(arm64_elf_hwcaps);
3305
3306	if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3307		__verify_local_elf_hwcaps(compat_elf_hwcaps);
3308}
3309
3310static void verify_sve_features(void)
3311{
3312	unsigned long cpacr = cpacr_save_enable_kernel_sve();
3313
3314	if (vec_verify_vq_map(ARM64_VEC_SVE)) {
3315		pr_crit("CPU%d: SVE: vector length support mismatch\n",
3316			smp_processor_id());
3317		cpu_die_early();
3318	}
3319
3320	cpacr_restore(cpacr);
3321}
3322
3323static void verify_sme_features(void)
3324{
3325	unsigned long cpacr = cpacr_save_enable_kernel_sme();
3326
3327	if (vec_verify_vq_map(ARM64_VEC_SME)) {
3328		pr_crit("CPU%d: SME: vector length support mismatch\n",
3329			smp_processor_id());
3330		cpu_die_early();
3331	}
3332
3333	cpacr_restore(cpacr);
3334}
3335
3336static void verify_hyp_capabilities(void)
3337{
3338	u64 safe_mmfr1, mmfr0, mmfr1;
3339	int parange, ipa_max;
3340	unsigned int safe_vmid_bits, vmid_bits;
3341
3342	if (!IS_ENABLED(CONFIG_KVM))
3343		return;
3344
3345	safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3346	mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3347	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3348
3349	/* Verify VMID bits */
3350	safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3351	vmid_bits = get_vmid_bits(mmfr1);
3352	if (vmid_bits < safe_vmid_bits) {
3353		pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3354		cpu_die_early();
3355	}
3356
3357	/* Verify IPA range */
3358	parange = cpuid_feature_extract_unsigned_field(mmfr0,
3359				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3360	ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3361	if (ipa_max < get_kvm_ipa_limit()) {
3362		pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3363		cpu_die_early();
3364	}
3365}
3366
3367/*
3368 * Run through the enabled system capabilities and enable() it on this CPU.
3369 * The capabilities were decided based on the available CPUs at the boot time.
3370 * Any new CPU should match the system wide status of the capability. If the
3371 * new CPU doesn't have a capability which the system now has enabled, we
3372 * cannot do anything to fix it up and could cause unexpected failures. So
3373 * we park the CPU.
3374 */
3375static void verify_local_cpu_capabilities(void)
3376{
3377	/*
3378	 * The capabilities with SCOPE_BOOT_CPU are checked from
3379	 * check_early_cpu_features(), as they need to be verified
3380	 * on all secondary CPUs.
3381	 */
3382	verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3383	verify_local_elf_hwcaps();
3384
3385	if (system_supports_sve())
3386		verify_sve_features();
3387
3388	if (system_supports_sme())
3389		verify_sme_features();
3390
3391	if (is_hyp_mode_available())
3392		verify_hyp_capabilities();
3393}
3394
3395void check_local_cpu_capabilities(void)
3396{
3397	/*
3398	 * All secondary CPUs should conform to the early CPU features
3399	 * in use by the kernel based on boot CPU.
3400	 */
3401	check_early_cpu_features();
3402
3403	/*
3404	 * If we haven't finalised the system capabilities, this CPU gets
3405	 * a chance to update the errata work arounds and local features.
3406	 * Otherwise, this CPU should verify that it has all the system
3407	 * advertised capabilities.
3408	 */
3409	if (!system_capabilities_finalized())
3410		update_cpu_capabilities(SCOPE_LOCAL_CPU);
3411	else
3412		verify_local_cpu_capabilities();
3413}
3414
3415bool this_cpu_has_cap(unsigned int n)
3416{
3417	if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3418		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3419
3420		if (cap)
3421			return cap->matches(cap, SCOPE_LOCAL_CPU);
3422	}
3423
3424	return false;
3425}
3426EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3427
3428/*
3429 * This helper function is used in a narrow window when,
3430 * - The system wide safe registers are set with all the SMP CPUs and,
3431 * - The SYSTEM_FEATURE system_cpucaps may not have been set.
3432 */
3433static bool __maybe_unused __system_matches_cap(unsigned int n)
3434{
3435	if (n < ARM64_NCAPS) {
3436		const struct arm64_cpu_capabilities *cap = cpucap_ptrs[n];
3437
3438		if (cap)
3439			return cap->matches(cap, SCOPE_SYSTEM);
3440	}
3441	return false;
3442}
3443
3444void cpu_set_feature(unsigned int num)
3445{
3446	set_bit(num, elf_hwcap);
3447}
3448
3449bool cpu_have_feature(unsigned int num)
3450{
3451	return test_bit(num, elf_hwcap);
3452}
3453EXPORT_SYMBOL_GPL(cpu_have_feature);
3454
3455unsigned long cpu_get_elf_hwcap(void)
3456{
3457	/*
3458	 * We currently only populate the first 32 bits of AT_HWCAP. Please
3459	 * note that for userspace compatibility we guarantee that bits 62
3460	 * and 63 will always be returned as 0.
3461	 */
3462	return elf_hwcap[0];
3463}
3464
3465unsigned long cpu_get_elf_hwcap2(void)
3466{
3467	return elf_hwcap[1];
3468}
3469
3470static void __init setup_boot_cpu_capabilities(void)
3471{
3472	/*
3473	 * The boot CPU's feature register values have been recorded. Detect
3474	 * boot cpucaps and local cpucaps for the boot CPU, then enable and
3475	 * patch alternatives for the available boot cpucaps.
3476	 */
3477	update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3478	enable_cpu_capabilities(SCOPE_BOOT_CPU);
3479	apply_boot_alternatives();
3480}
3481
3482void __init setup_boot_cpu_features(void)
3483{
3484	/*
3485	 * Initialize the indirect array of CPU capabilities pointers before we
3486	 * handle the boot CPU.
3487	 */
3488	init_cpucap_indirect_list();
3489
3490	/*
3491	 * Detect broken pseudo-NMI. Must be called _before_ the call to
3492	 * setup_boot_cpu_capabilities() since it interacts with
3493	 * can_use_gic_priorities().
3494	 */
3495	detect_system_supports_pseudo_nmi();
3496
3497	setup_boot_cpu_capabilities();
3498}
3499
3500static void __init setup_system_capabilities(void)
3501{
3502	/*
3503	 * The system-wide safe feature register values have been finalized.
3504	 * Detect, enable, and patch alternatives for the available system
3505	 * cpucaps.
3506	 */
3507	update_cpu_capabilities(SCOPE_SYSTEM);
3508	enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3509	apply_alternatives_all();
3510
3511	/*
3512	 * Log any cpucaps with a cpumask as these aren't logged by
3513	 * update_cpu_capabilities().
3514	 */
3515	for (int i = 0; i < ARM64_NCAPS; i++) {
3516		const struct arm64_cpu_capabilities *caps = cpucap_ptrs[i];
3517
3518		if (caps && caps->cpus && caps->desc &&
3519			cpumask_any(caps->cpus) < nr_cpu_ids)
3520			pr_info("detected: %s on CPU%*pbl\n",
3521				caps->desc, cpumask_pr_args(caps->cpus));
3522	}
3523
3524	/*
3525	 * TTBR0 PAN doesn't have its own cpucap, so log it manually.
3526	 */
3527	if (system_uses_ttbr0_pan())
3528		pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3529}
3530
3531void __init setup_system_features(void)
3532{
3533	setup_system_capabilities();
3534
3535	kpti_install_ng_mappings();
3536
3537	sve_setup();
3538	sme_setup();
3539
3540	/*
3541	 * Check for sane CTR_EL0.CWG value.
3542	 */
3543	if (!cache_type_cwg())
3544		pr_warn("No Cache Writeback Granule information, assuming %d\n",
3545			ARCH_DMA_MINALIGN);
3546}
3547
3548void __init setup_user_features(void)
3549{
3550	user_feature_fixup();
3551
3552	setup_elf_hwcaps(arm64_elf_hwcaps);
3553
3554	if (system_supports_32bit_el0()) {
3555		setup_elf_hwcaps(compat_elf_hwcaps);
3556		elf_hwcap_fixup();
3557	}
3558
3559	minsigstksz_setup();
3560}
3561
3562static int enable_mismatched_32bit_el0(unsigned int cpu)
3563{
3564	/*
3565	 * The first 32-bit-capable CPU we detected and so can no longer
3566	 * be offlined by userspace. -1 indicates we haven't yet onlined
3567	 * a 32-bit-capable CPU.
3568	 */
3569	static int lucky_winner = -1;
3570
3571	struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3572	bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3573
3574	if (cpu_32bit) {
3575		cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3576		static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3577	}
3578
3579	if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3580		return 0;
3581
3582	if (lucky_winner >= 0)
3583		return 0;
3584
3585	/*
3586	 * We've detected a mismatch. We need to keep one of our CPUs with
3587	 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3588	 * every CPU in the system for a 32-bit task.
3589	 */
3590	lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3591							 cpu_active_mask);
3592	get_cpu_device(lucky_winner)->offline_disabled = true;
3593	setup_elf_hwcaps(compat_elf_hwcaps);
3594	elf_hwcap_fixup();
3595	pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3596		cpu, lucky_winner);
3597	return 0;
3598}
3599
3600static int __init init_32bit_el0_mask(void)
3601{
3602	if (!allow_mismatched_32bit_el0)
3603		return 0;
3604
3605	if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3606		return -ENOMEM;
3607
3608	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3609				 "arm64/mismatched_32bit_el0:online",
3610				 enable_mismatched_32bit_el0, NULL);
3611}
3612subsys_initcall_sync(init_32bit_el0_mask);
3613
3614static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3615{
3616	cpu_enable_swapper_cnp();
3617}
3618
3619/*
3620 * We emulate only the following system register space.
3621 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3622 * See Table C5-6 System instruction encodings for System register accesses,
3623 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3624 */
3625static inline bool __attribute_const__ is_emulated(u32 id)
3626{
3627	return (sys_reg_Op0(id) == 0x3 &&
3628		sys_reg_CRn(id) == 0x0 &&
3629		sys_reg_Op1(id) == 0x0 &&
3630		(sys_reg_CRm(id) == 0 ||
3631		 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3632}
3633
3634/*
3635 * With CRm == 0, reg should be one of :
3636 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3637 */
3638static inline int emulate_id_reg(u32 id, u64 *valp)
3639{
3640	switch (id) {
3641	case SYS_MIDR_EL1:
3642		*valp = read_cpuid_id();
3643		break;
3644	case SYS_MPIDR_EL1:
3645		*valp = SYS_MPIDR_SAFE_VAL;
3646		break;
3647	case SYS_REVIDR_EL1:
3648		/* IMPLEMENTATION DEFINED values are emulated with 0 */
3649		*valp = 0;
3650		break;
3651	default:
3652		return -EINVAL;
3653	}
3654
3655	return 0;
3656}
3657
3658static int emulate_sys_reg(u32 id, u64 *valp)
3659{
3660	struct arm64_ftr_reg *regp;
3661
3662	if (!is_emulated(id))
3663		return -EINVAL;
3664
3665	if (sys_reg_CRm(id) == 0)
3666		return emulate_id_reg(id, valp);
3667
3668	regp = get_arm64_ftr_reg_nowarn(id);
3669	if (regp)
3670		*valp = arm64_ftr_reg_user_value(regp);
3671	else
3672		/*
3673		 * The untracked registers are either IMPLEMENTATION DEFINED
3674		 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3675		 */
3676		*valp = 0;
3677	return 0;
3678}
3679
3680int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3681{
3682	int rc;
3683	u64 val;
3684
3685	rc = emulate_sys_reg(sys_reg, &val);
3686	if (!rc) {
3687		pt_regs_write_reg(regs, rt, val);
3688		arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3689	}
3690	return rc;
3691}
3692
3693bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3694{
3695	u32 sys_reg, rt;
3696
3697	if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3698		return false;
3699
3700	/*
3701	 * sys_reg values are defined as used in mrs/msr instruction.
3702	 * shift the imm value to get the encoding.
3703	 */
3704	sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3705	rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3706	return do_emulate_mrs(regs, sys_reg, rt) == 0;
3707}
3708
3709enum mitigation_state arm64_get_meltdown_state(void)
3710{
3711	if (__meltdown_safe)
3712		return SPECTRE_UNAFFECTED;
3713
3714	if (arm64_kernel_unmapped_at_el0())
3715		return SPECTRE_MITIGATED;
3716
3717	return SPECTRE_VULNERABLE;
3718}
3719
3720ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3721			  char *buf)
3722{
3723	switch (arm64_get_meltdown_state()) {
3724	case SPECTRE_UNAFFECTED:
3725		return sprintf(buf, "Not affected\n");
3726
3727	case SPECTRE_MITIGATED:
3728		return sprintf(buf, "Mitigation: PTI\n");
3729
3730	default:
3731		return sprintf(buf, "Vulnerable\n");
3732	}
3733}
3734