1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5#ifndef __ASM_PGTABLE_H
6#define __ASM_PGTABLE_H
7
8#include <asm/bug.h>
9#include <asm/proc-fns.h>
10
11#include <asm/memory.h>
12#include <asm/mte.h>
13#include <asm/pgtable-hwdef.h>
14#include <asm/pgtable-prot.h>
15#include <asm/tlbflush.h>
16
17/*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap
22 */
23#define VMALLOC_START		(MODULES_END)
24#if VA_BITS == VA_BITS_MIN
25#define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26#else
27#define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28#define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29#endif
30
31#define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32
33#ifndef __ASSEMBLY__
34
35#include <asm/cmpxchg.h>
36#include <asm/fixmap.h>
37#include <linux/mmdebug.h>
38#include <linux/mm_types.h>
39#include <linux/sched.h>
40#include <linux/page_table_check.h>
41
42#ifdef CONFIG_TRANSPARENT_HUGEPAGE
43#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
44
45/* Set stride and tlb_level in flush_*_tlb_range */
46#define flush_pmd_tlb_range(vma, addr, end)	\
47	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
48#define flush_pud_tlb_range(vma, addr, end)	\
49	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
50#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
51
52static inline bool arch_thp_swp_supported(void)
53{
54	return !system_supports_mte();
55}
56#define arch_thp_swp_supported arch_thp_swp_supported
57
58/*
59 * Outside of a few very special situations (e.g. hibernation), we always
60 * use broadcast TLB invalidation instructions, therefore a spurious page
61 * fault on one CPU which has been handled concurrently by another CPU
62 * does not need to perform additional invalidation.
63 */
64#define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
65
66/*
67 * ZERO_PAGE is a global shared page that is always zero: used
68 * for zero-mapped memory areas etc..
69 */
70extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
71#define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
72
73#define pte_ERROR(e)	\
74	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
75
76/*
77 * Macros to convert between a physical address and its placement in a
78 * page table entry, taking care of 52-bit addresses.
79 */
80#ifdef CONFIG_ARM64_PA_BITS_52
81static inline phys_addr_t __pte_to_phys(pte_t pte)
82{
83	pte_val(pte) &= ~PTE_MAYBE_SHARED;
84	return (pte_val(pte) & PTE_ADDR_LOW) |
85		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
86}
87static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
88{
89	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
90}
91#else
92#define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_LOW)
93#define __phys_to_pte_val(phys)	(phys)
94#endif
95
96#define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
97#define pfn_pte(pfn,prot)	\
98	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
99
100#define pte_none(pte)		(!pte_val(pte))
101#define __pte_clear(mm, addr, ptep) \
102				__set_pte(ptep, __pte(0))
103#define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
104
105/*
106 * The following only work if pte_present(). Undefined behaviour otherwise.
107 */
108#define pte_present(pte)	(!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
109#define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
110#define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
111#define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
112#define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
113#define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
114#define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
115#define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
116#define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
117#define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
118				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
119
120#define pte_cont_addr_end(addr, end)						\
121({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
122	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
123})
124
125#define pmd_cont_addr_end(addr, end)						\
126({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
127	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
128})
129
130#define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
131#define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
132#define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
133
134#define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
135/*
136 * Execute-only user mappings do not have the PTE_USER bit set. All valid
137 * kernel mappings have the PTE_UXN bit set.
138 */
139#define pte_valid_not_user(pte) \
140	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
141/*
142 * Returns true if the pte is valid and has the contiguous bit set.
143 */
144#define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
145/*
146 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
147 * so that we don't erroneously return false for pages that have been
148 * remapped as PROT_NONE but are yet to be flushed from the TLB.
149 * Note that we can't make any assumptions based on the state of the access
150 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
151 * TLB.
152 */
153#define pte_accessible(mm, pte)	\
154	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
155
156/*
157 * p??_access_permitted() is true for valid user mappings (PTE_USER
158 * bit set, subject to the write permission check). For execute-only
159 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
160 * not set) must return false. PROT_NONE mappings do not have the
161 * PTE_VALID bit set.
162 */
163#define pte_access_permitted(pte, write) \
164	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
165#define pmd_access_permitted(pmd, write) \
166	(pte_access_permitted(pmd_pte(pmd), (write)))
167#define pud_access_permitted(pud, write) \
168	(pte_access_permitted(pud_pte(pud), (write)))
169
170static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
171{
172	pte_val(pte) &= ~pgprot_val(prot);
173	return pte;
174}
175
176static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
177{
178	pte_val(pte) |= pgprot_val(prot);
179	return pte;
180}
181
182static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
183{
184	pmd_val(pmd) &= ~pgprot_val(prot);
185	return pmd;
186}
187
188static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
189{
190	pmd_val(pmd) |= pgprot_val(prot);
191	return pmd;
192}
193
194static inline pte_t pte_mkwrite_novma(pte_t pte)
195{
196	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
197	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
198	return pte;
199}
200
201static inline pte_t pte_mkclean(pte_t pte)
202{
203	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
204	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
205
206	return pte;
207}
208
209static inline pte_t pte_mkdirty(pte_t pte)
210{
211	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
212
213	if (pte_write(pte))
214		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
215
216	return pte;
217}
218
219static inline pte_t pte_wrprotect(pte_t pte)
220{
221	/*
222	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
223	 * clear), set the PTE_DIRTY bit.
224	 */
225	if (pte_hw_dirty(pte))
226		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
227
228	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
229	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
230	return pte;
231}
232
233static inline pte_t pte_mkold(pte_t pte)
234{
235	return clear_pte_bit(pte, __pgprot(PTE_AF));
236}
237
238static inline pte_t pte_mkyoung(pte_t pte)
239{
240	return set_pte_bit(pte, __pgprot(PTE_AF));
241}
242
243static inline pte_t pte_mkspecial(pte_t pte)
244{
245	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
246}
247
248static inline pte_t pte_mkcont(pte_t pte)
249{
250	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
251	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
252}
253
254static inline pte_t pte_mknoncont(pte_t pte)
255{
256	return clear_pte_bit(pte, __pgprot(PTE_CONT));
257}
258
259static inline pte_t pte_mkpresent(pte_t pte)
260{
261	return set_pte_bit(pte, __pgprot(PTE_VALID));
262}
263
264static inline pmd_t pmd_mkcont(pmd_t pmd)
265{
266	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
267}
268
269static inline pte_t pte_mkdevmap(pte_t pte)
270{
271	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
272}
273
274static inline void __set_pte(pte_t *ptep, pte_t pte)
275{
276	WRITE_ONCE(*ptep, pte);
277
278	/*
279	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
280	 * or update_mmu_cache() have the necessary barriers.
281	 */
282	if (pte_valid_not_user(pte)) {
283		dsb(ishst);
284		isb();
285	}
286}
287
288static inline pte_t __ptep_get(pte_t *ptep)
289{
290	return READ_ONCE(*ptep);
291}
292
293extern void __sync_icache_dcache(pte_t pteval);
294bool pgattr_change_is_safe(u64 old, u64 new);
295
296/*
297 * PTE bits configuration in the presence of hardware Dirty Bit Management
298 * (PTE_WRITE == PTE_DBM):
299 *
300 * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
301 *   0      0      |   1           0          0
302 *   0      1      |   1           1          0
303 *   1      0      |   1           0          1
304 *   1      1      |   0           1          x
305 *
306 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
307 * the page fault mechanism. Checking the dirty status of a pte becomes:
308 *
309 *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
310 */
311
312static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
313					   pte_t pte)
314{
315	pte_t old_pte;
316
317	if (!IS_ENABLED(CONFIG_DEBUG_VM))
318		return;
319
320	old_pte = __ptep_get(ptep);
321
322	if (!pte_valid(old_pte) || !pte_valid(pte))
323		return;
324	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
325		return;
326
327	/*
328	 * Check for potential race with hardware updates of the pte
329	 * (__ptep_set_access_flags safely changes valid ptes without going
330	 * through an invalid entry).
331	 */
332	VM_WARN_ONCE(!pte_young(pte),
333		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
334		     __func__, pte_val(old_pte), pte_val(pte));
335	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
336		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
337		     __func__, pte_val(old_pte), pte_val(pte));
338	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
339		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
340		     __func__, pte_val(old_pte), pte_val(pte));
341}
342
343static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
344{
345	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
346		__sync_icache_dcache(pte);
347
348	/*
349	 * If the PTE would provide user space access to the tags associated
350	 * with it then ensure that the MTE tags are synchronised.  Although
351	 * pte_access_permitted() returns false for exec only mappings, they
352	 * don't expose tags (instruction fetches don't check tags).
353	 */
354	if (system_supports_mte() && pte_access_permitted(pte, false) &&
355	    !pte_special(pte) && pte_tagged(pte))
356		mte_sync_tags(pte, nr_pages);
357}
358
359/*
360 * Select all bits except the pfn
361 */
362static inline pgprot_t pte_pgprot(pte_t pte)
363{
364	unsigned long pfn = pte_pfn(pte);
365
366	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
367}
368
369#define pte_advance_pfn pte_advance_pfn
370static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
371{
372	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
373}
374
375static inline void __set_ptes(struct mm_struct *mm,
376			      unsigned long __always_unused addr,
377			      pte_t *ptep, pte_t pte, unsigned int nr)
378{
379	page_table_check_ptes_set(mm, ptep, pte, nr);
380	__sync_cache_and_tags(pte, nr);
381
382	for (;;) {
383		__check_safe_pte_update(mm, ptep, pte);
384		__set_pte(ptep, pte);
385		if (--nr == 0)
386			break;
387		ptep++;
388		pte = pte_advance_pfn(pte, 1);
389	}
390}
391
392/*
393 * Huge pte definitions.
394 */
395#define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
396
397/*
398 * Hugetlb definitions.
399 */
400#define HUGE_MAX_HSTATE		4
401#define HPAGE_SHIFT		PMD_SHIFT
402#define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
403#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
404#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
405
406static inline pte_t pgd_pte(pgd_t pgd)
407{
408	return __pte(pgd_val(pgd));
409}
410
411static inline pte_t p4d_pte(p4d_t p4d)
412{
413	return __pte(p4d_val(p4d));
414}
415
416static inline pte_t pud_pte(pud_t pud)
417{
418	return __pte(pud_val(pud));
419}
420
421static inline pud_t pte_pud(pte_t pte)
422{
423	return __pud(pte_val(pte));
424}
425
426static inline pmd_t pud_pmd(pud_t pud)
427{
428	return __pmd(pud_val(pud));
429}
430
431static inline pte_t pmd_pte(pmd_t pmd)
432{
433	return __pte(pmd_val(pmd));
434}
435
436static inline pmd_t pte_pmd(pte_t pte)
437{
438	return __pmd(pte_val(pte));
439}
440
441static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
442{
443	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
444}
445
446static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
447{
448	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
449}
450
451static inline pte_t pte_swp_mkexclusive(pte_t pte)
452{
453	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
454}
455
456static inline int pte_swp_exclusive(pte_t pte)
457{
458	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
459}
460
461static inline pte_t pte_swp_clear_exclusive(pte_t pte)
462{
463	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
464}
465
466#ifdef CONFIG_NUMA_BALANCING
467/*
468 * See the comment in include/linux/pgtable.h
469 */
470static inline int pte_protnone(pte_t pte)
471{
472	return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
473}
474
475static inline int pmd_protnone(pmd_t pmd)
476{
477	return pte_protnone(pmd_pte(pmd));
478}
479#endif
480
481#define pmd_present_invalid(pmd)     (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
482
483static inline int pmd_present(pmd_t pmd)
484{
485	return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
486}
487
488/*
489 * THP definitions.
490 */
491
492#ifdef CONFIG_TRANSPARENT_HUGEPAGE
493static inline int pmd_trans_huge(pmd_t pmd)
494{
495	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
496}
497#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
498
499#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
500#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
501#define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
502#define pmd_user(pmd)		pte_user(pmd_pte(pmd))
503#define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
504#define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
505#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
506#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
507#define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
508#define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
509#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
510#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
511
512static inline pmd_t pmd_mkinvalid(pmd_t pmd)
513{
514	pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
515	pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
516
517	return pmd;
518}
519
520#define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
521
522#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
523
524#define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
525
526#ifdef CONFIG_TRANSPARENT_HUGEPAGE
527#define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
528#endif
529static inline pmd_t pmd_mkdevmap(pmd_t pmd)
530{
531	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
532}
533
534#define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
535#define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
536#define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
537#define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
538#define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
539
540#define pud_young(pud)		pte_young(pud_pte(pud))
541#define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
542#define pud_write(pud)		pte_write(pud_pte(pud))
543
544#define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
545
546#define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
547#define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
548#define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
549#define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
550
551static inline void __set_pte_at(struct mm_struct *mm,
552				unsigned long __always_unused addr,
553				pte_t *ptep, pte_t pte, unsigned int nr)
554{
555	__sync_cache_and_tags(pte, nr);
556	__check_safe_pte_update(mm, ptep, pte);
557	__set_pte(ptep, pte);
558}
559
560static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
561			      pmd_t *pmdp, pmd_t pmd)
562{
563	page_table_check_pmd_set(mm, pmdp, pmd);
564	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
565						PMD_SIZE >> PAGE_SHIFT);
566}
567
568static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
569			      pud_t *pudp, pud_t pud)
570{
571	page_table_check_pud_set(mm, pudp, pud);
572	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
573						PUD_SIZE >> PAGE_SHIFT);
574}
575
576#define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
577#define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
578
579#define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
580#define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
581
582#define __pgprot_modify(prot,mask,bits) \
583	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
584
585#define pgprot_nx(prot) \
586	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
587
588/*
589 * Mark the prot value as uncacheable and unbufferable.
590 */
591#define pgprot_noncached(prot) \
592	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
593#define pgprot_writecombine(prot) \
594	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
595#define pgprot_device(prot) \
596	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
597#define pgprot_tagged(prot) \
598	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
599#define pgprot_mhp	pgprot_tagged
600/*
601 * DMA allocations for non-coherent devices use what the Arm architecture calls
602 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
603 * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
604 * is intended for MMIO and thus forbids speculation, preserves access size,
605 * requires strict alignment and can also force write responses to come from the
606 * endpoint.
607 */
608#define pgprot_dmacoherent(prot) \
609	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
610			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
611
612#define __HAVE_PHYS_MEM_ACCESS_PROT
613struct file;
614extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
615				     unsigned long size, pgprot_t vma_prot);
616
617#define pmd_none(pmd)		(!pmd_val(pmd))
618
619#define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
620				 PMD_TYPE_TABLE)
621#define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
622				 PMD_TYPE_SECT)
623#define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
624#define pmd_bad(pmd)		(!pmd_table(pmd))
625
626#define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
627#define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
628
629#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
630static inline bool pud_sect(pud_t pud) { return false; }
631static inline bool pud_table(pud_t pud) { return true; }
632#else
633#define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
634				 PUD_TYPE_SECT)
635#define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
636				 PUD_TYPE_TABLE)
637#endif
638
639extern pgd_t init_pg_dir[];
640extern pgd_t init_pg_end[];
641extern pgd_t swapper_pg_dir[];
642extern pgd_t idmap_pg_dir[];
643extern pgd_t tramp_pg_dir[];
644extern pgd_t reserved_pg_dir[];
645
646extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
647
648static inline bool in_swapper_pgdir(void *addr)
649{
650	return ((unsigned long)addr & PAGE_MASK) ==
651	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
652}
653
654static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
655{
656#ifdef __PAGETABLE_PMD_FOLDED
657	if (in_swapper_pgdir(pmdp)) {
658		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
659		return;
660	}
661#endif /* __PAGETABLE_PMD_FOLDED */
662
663	WRITE_ONCE(*pmdp, pmd);
664
665	if (pmd_valid(pmd)) {
666		dsb(ishst);
667		isb();
668	}
669}
670
671static inline void pmd_clear(pmd_t *pmdp)
672{
673	set_pmd(pmdp, __pmd(0));
674}
675
676static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
677{
678	return __pmd_to_phys(pmd);
679}
680
681static inline unsigned long pmd_page_vaddr(pmd_t pmd)
682{
683	return (unsigned long)__va(pmd_page_paddr(pmd));
684}
685
686/* Find an entry in the third-level page table. */
687#define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
688
689#define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
690#define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
691#define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
692
693#define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
694
695/* use ONLY for statically allocated translation tables */
696#define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
697
698/*
699 * Conversion functions: convert a page and protection to a page entry,
700 * and a page entry and page directory to the page they refer to.
701 */
702#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
703
704#if CONFIG_PGTABLE_LEVELS > 2
705
706#define pmd_ERROR(e)	\
707	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
708
709#define pud_none(pud)		(!pud_val(pud))
710#define pud_bad(pud)		(!pud_table(pud))
711#define pud_present(pud)	pte_present(pud_pte(pud))
712#define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
713#define pud_valid(pud)		pte_valid(pud_pte(pud))
714#define pud_user(pud)		pte_user(pud_pte(pud))
715#define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
716
717static inline bool pgtable_l4_enabled(void);
718
719static inline void set_pud(pud_t *pudp, pud_t pud)
720{
721	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
722		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
723		return;
724	}
725
726	WRITE_ONCE(*pudp, pud);
727
728	if (pud_valid(pud)) {
729		dsb(ishst);
730		isb();
731	}
732}
733
734static inline void pud_clear(pud_t *pudp)
735{
736	set_pud(pudp, __pud(0));
737}
738
739static inline phys_addr_t pud_page_paddr(pud_t pud)
740{
741	return __pud_to_phys(pud);
742}
743
744static inline pmd_t *pud_pgtable(pud_t pud)
745{
746	return (pmd_t *)__va(pud_page_paddr(pud));
747}
748
749/* Find an entry in the second-level page table. */
750#define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
751
752#define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
753#define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
754#define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
755
756#define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
757
758/* use ONLY for statically allocated translation tables */
759#define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
760
761#else
762
763#define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
764#define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
765
766/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
767#define pmd_set_fixmap(addr)		NULL
768#define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
769#define pmd_clear_fixmap()
770
771#define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
772
773#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
774
775#if CONFIG_PGTABLE_LEVELS > 3
776
777static __always_inline bool pgtable_l4_enabled(void)
778{
779	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
780		return true;
781	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
782		return vabits_actual == VA_BITS;
783	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
784}
785
786static inline bool mm_pud_folded(const struct mm_struct *mm)
787{
788	return !pgtable_l4_enabled();
789}
790#define mm_pud_folded  mm_pud_folded
791
792#define pud_ERROR(e)	\
793	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
794
795#define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
796#define p4d_bad(p4d)		(pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
797#define p4d_present(p4d)	(!p4d_none(p4d))
798
799static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
800{
801	if (in_swapper_pgdir(p4dp)) {
802		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
803		return;
804	}
805
806	WRITE_ONCE(*p4dp, p4d);
807	dsb(ishst);
808	isb();
809}
810
811static inline void p4d_clear(p4d_t *p4dp)
812{
813	if (pgtable_l4_enabled())
814		set_p4d(p4dp, __p4d(0));
815}
816
817static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
818{
819	return __p4d_to_phys(p4d);
820}
821
822#define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
823
824static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
825{
826	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
827}
828
829static inline pud_t *p4d_pgtable(p4d_t p4d)
830{
831	return (pud_t *)__va(p4d_page_paddr(p4d));
832}
833
834static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
835{
836	BUG_ON(!pgtable_l4_enabled());
837
838	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
839}
840
841static inline
842pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
843{
844	if (!pgtable_l4_enabled())
845		return p4d_to_folded_pud(p4dp, addr);
846	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
847}
848#define pud_offset_lockless pud_offset_lockless
849
850static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
851{
852	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
853}
854#define pud_offset	pud_offset
855
856static inline pud_t *pud_set_fixmap(unsigned long addr)
857{
858	if (!pgtable_l4_enabled())
859		return NULL;
860	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
861}
862
863static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
864{
865	if (!pgtable_l4_enabled())
866		return p4d_to_folded_pud(p4dp, addr);
867	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
868}
869
870static inline void pud_clear_fixmap(void)
871{
872	if (pgtable_l4_enabled())
873		clear_fixmap(FIX_PUD);
874}
875
876/* use ONLY for statically allocated translation tables */
877static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
878{
879	if (!pgtable_l4_enabled())
880		return p4d_to_folded_pud(p4dp, addr);
881	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
882}
883
884#define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
885
886#else
887
888static inline bool pgtable_l4_enabled(void) { return false; }
889
890#define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
891
892/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
893#define pud_set_fixmap(addr)		NULL
894#define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
895#define pud_clear_fixmap()
896
897#define pud_offset_kimg(dir,addr)	((pud_t *)dir)
898
899#endif  /* CONFIG_PGTABLE_LEVELS > 3 */
900
901#if CONFIG_PGTABLE_LEVELS > 4
902
903static __always_inline bool pgtable_l5_enabled(void)
904{
905	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
906		return vabits_actual == VA_BITS;
907	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
908}
909
910static inline bool mm_p4d_folded(const struct mm_struct *mm)
911{
912	return !pgtable_l5_enabled();
913}
914#define mm_p4d_folded  mm_p4d_folded
915
916#define p4d_ERROR(e)	\
917	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
918
919#define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
920#define pgd_bad(pgd)		(pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
921#define pgd_present(pgd)	(!pgd_none(pgd))
922
923static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
924{
925	if (in_swapper_pgdir(pgdp)) {
926		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
927		return;
928	}
929
930	WRITE_ONCE(*pgdp, pgd);
931	dsb(ishst);
932	isb();
933}
934
935static inline void pgd_clear(pgd_t *pgdp)
936{
937	if (pgtable_l5_enabled())
938		set_pgd(pgdp, __pgd(0));
939}
940
941static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
942{
943	return __pgd_to_phys(pgd);
944}
945
946#define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
947
948static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
949{
950	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
951}
952
953static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
954{
955	BUG_ON(!pgtable_l5_enabled());
956
957	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
958}
959
960static inline
961p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
962{
963	if (!pgtable_l5_enabled())
964		return pgd_to_folded_p4d(pgdp, addr);
965	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
966}
967#define p4d_offset_lockless p4d_offset_lockless
968
969static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
970{
971	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
972}
973
974static inline p4d_t *p4d_set_fixmap(unsigned long addr)
975{
976	if (!pgtable_l5_enabled())
977		return NULL;
978	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
979}
980
981static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
982{
983	if (!pgtable_l5_enabled())
984		return pgd_to_folded_p4d(pgdp, addr);
985	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
986}
987
988static inline void p4d_clear_fixmap(void)
989{
990	if (pgtable_l5_enabled())
991		clear_fixmap(FIX_P4D);
992}
993
994/* use ONLY for statically allocated translation tables */
995static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
996{
997	if (!pgtable_l5_enabled())
998		return pgd_to_folded_p4d(pgdp, addr);
999	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1000}
1001
1002#define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1003
1004#else
1005
1006static inline bool pgtable_l5_enabled(void) { return false; }
1007
1008/* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1009#define p4d_set_fixmap(addr)		NULL
1010#define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1011#define p4d_clear_fixmap()
1012
1013#define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1014
1015#endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1016
1017#define pgd_ERROR(e)	\
1018	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1019
1020#define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1021#define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1022
1023static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1024{
1025	/*
1026	 * Normal and Normal-Tagged are two different memory types and indices
1027	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1028	 */
1029	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1030			      PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
1031			      PTE_ATTRINDX_MASK;
1032	/* preserve the hardware dirty information */
1033	if (pte_hw_dirty(pte))
1034		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1035
1036	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1037	/*
1038	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1039	 * dirtiness again.
1040	 */
1041	if (pte_sw_dirty(pte))
1042		pte = pte_mkdirty(pte);
1043	return pte;
1044}
1045
1046static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1047{
1048	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1049}
1050
1051extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1052				 unsigned long address, pte_t *ptep,
1053				 pte_t entry, int dirty);
1054
1055#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1056#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1057static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1058					unsigned long address, pmd_t *pmdp,
1059					pmd_t entry, int dirty)
1060{
1061	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1062							pmd_pte(entry), dirty);
1063}
1064
1065static inline int pud_devmap(pud_t pud)
1066{
1067	return 0;
1068}
1069
1070static inline int pgd_devmap(pgd_t pgd)
1071{
1072	return 0;
1073}
1074#endif
1075
1076#ifdef CONFIG_PAGE_TABLE_CHECK
1077static inline bool pte_user_accessible_page(pte_t pte)
1078{
1079	return pte_present(pte) && (pte_user(pte) || pte_user_exec(pte));
1080}
1081
1082static inline bool pmd_user_accessible_page(pmd_t pmd)
1083{
1084	return pmd_leaf(pmd) && !pmd_present_invalid(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1085}
1086
1087static inline bool pud_user_accessible_page(pud_t pud)
1088{
1089	return pud_leaf(pud) && (pud_user(pud) || pud_user_exec(pud));
1090}
1091#endif
1092
1093/*
1094 * Atomic pte/pmd modifications.
1095 */
1096static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1097					      unsigned long address,
1098					      pte_t *ptep)
1099{
1100	pte_t old_pte, pte;
1101
1102	pte = __ptep_get(ptep);
1103	do {
1104		old_pte = pte;
1105		pte = pte_mkold(pte);
1106		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1107					       pte_val(old_pte), pte_val(pte));
1108	} while (pte_val(pte) != pte_val(old_pte));
1109
1110	return pte_young(pte);
1111}
1112
1113static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1114					 unsigned long address, pte_t *ptep)
1115{
1116	int young = __ptep_test_and_clear_young(vma, address, ptep);
1117
1118	if (young) {
1119		/*
1120		 * We can elide the trailing DSB here since the worst that can
1121		 * happen is that a CPU continues to use the young entry in its
1122		 * TLB and we mistakenly reclaim the associated page. The
1123		 * window for such an event is bounded by the next
1124		 * context-switch, which provides a DSB to complete the TLB
1125		 * invalidation.
1126		 */
1127		flush_tlb_page_nosync(vma, address);
1128	}
1129
1130	return young;
1131}
1132
1133#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1134#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1135static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1136					    unsigned long address,
1137					    pmd_t *pmdp)
1138{
1139	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1140}
1141#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1142
1143static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1144				       unsigned long address, pte_t *ptep)
1145{
1146	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1147
1148	page_table_check_pte_clear(mm, pte);
1149
1150	return pte;
1151}
1152
1153static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1154				pte_t *ptep, unsigned int nr, int full)
1155{
1156	for (;;) {
1157		__ptep_get_and_clear(mm, addr, ptep);
1158		if (--nr == 0)
1159			break;
1160		ptep++;
1161		addr += PAGE_SIZE;
1162	}
1163}
1164
1165static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1166				unsigned long addr, pte_t *ptep,
1167				unsigned int nr, int full)
1168{
1169	pte_t pte, tmp_pte;
1170
1171	pte = __ptep_get_and_clear(mm, addr, ptep);
1172	while (--nr) {
1173		ptep++;
1174		addr += PAGE_SIZE;
1175		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1176		if (pte_dirty(tmp_pte))
1177			pte = pte_mkdirty(pte);
1178		if (pte_young(tmp_pte))
1179			pte = pte_mkyoung(pte);
1180	}
1181	return pte;
1182}
1183
1184#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1185#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1186static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1187					    unsigned long address, pmd_t *pmdp)
1188{
1189	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
1190
1191	page_table_check_pmd_clear(mm, pmd);
1192
1193	return pmd;
1194}
1195#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1196
1197static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1198					unsigned long address, pte_t *ptep,
1199					pte_t pte)
1200{
1201	pte_t old_pte;
1202
1203	do {
1204		old_pte = pte;
1205		pte = pte_wrprotect(pte);
1206		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1207					       pte_val(old_pte), pte_val(pte));
1208	} while (pte_val(pte) != pte_val(old_pte));
1209}
1210
1211/*
1212 * __ptep_set_wrprotect - mark read-only while trasferring potential hardware
1213 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1214 */
1215static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1216					unsigned long address, pte_t *ptep)
1217{
1218	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1219}
1220
1221static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1222				pte_t *ptep, unsigned int nr)
1223{
1224	unsigned int i;
1225
1226	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1227		__ptep_set_wrprotect(mm, address, ptep);
1228}
1229
1230#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1231#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1232static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1233				      unsigned long address, pmd_t *pmdp)
1234{
1235	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1236}
1237
1238#define pmdp_establish pmdp_establish
1239static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1240		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1241{
1242	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1243	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1244}
1245#endif
1246
1247/*
1248 * Encode and decode a swap entry:
1249 *	bits 0-1:	present (must be zero)
1250 *	bits 2:		remember PG_anon_exclusive
1251 *	bits 3-7:	swap type
1252 *	bits 8-57:	swap offset
1253 *	bit  58:	PTE_PROT_NONE (must be zero)
1254 */
1255#define __SWP_TYPE_SHIFT	3
1256#define __SWP_TYPE_BITS		5
1257#define __SWP_OFFSET_BITS	50
1258#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1259#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
1260#define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1261
1262#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1263#define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1264#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1265
1266#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1267#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1268
1269#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1270#define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1271#define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1272#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1273
1274/*
1275 * Ensure that there are not more swap files than can be encoded in the kernel
1276 * PTEs.
1277 */
1278#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1279
1280#ifdef CONFIG_ARM64_MTE
1281
1282#define __HAVE_ARCH_PREPARE_TO_SWAP
1283static inline int arch_prepare_to_swap(struct page *page)
1284{
1285	if (system_supports_mte())
1286		return mte_save_tags(page);
1287	return 0;
1288}
1289
1290#define __HAVE_ARCH_SWAP_INVALIDATE
1291static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1292{
1293	if (system_supports_mte())
1294		mte_invalidate_tags(type, offset);
1295}
1296
1297static inline void arch_swap_invalidate_area(int type)
1298{
1299	if (system_supports_mte())
1300		mte_invalidate_tags_area(type);
1301}
1302
1303#define __HAVE_ARCH_SWAP_RESTORE
1304static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1305{
1306	if (system_supports_mte())
1307		mte_restore_tags(entry, &folio->page);
1308}
1309
1310#endif /* CONFIG_ARM64_MTE */
1311
1312/*
1313 * On AArch64, the cache coherency is handled via the __set_ptes() function.
1314 */
1315static inline void update_mmu_cache_range(struct vm_fault *vmf,
1316		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1317		unsigned int nr)
1318{
1319	/*
1320	 * We don't do anything here, so there's a very small chance of
1321	 * us retaking a user fault which we just fixed up. The alternative
1322	 * is doing a dsb(ishst), but that penalises the fastpath.
1323	 */
1324}
1325
1326#define update_mmu_cache(vma, addr, ptep) \
1327	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1328#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1329
1330#ifdef CONFIG_ARM64_PA_BITS_52
1331#define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1332#else
1333#define phys_to_ttbr(addr)	(addr)
1334#endif
1335
1336/*
1337 * On arm64 without hardware Access Flag, copying from user will fail because
1338 * the pte is old and cannot be marked young. So we always end up with zeroed
1339 * page after fork() + CoW for pfn mappings. We don't always have a
1340 * hardware-managed access flag on arm64.
1341 */
1342#define arch_has_hw_pte_young		cpu_has_hw_af
1343
1344/*
1345 * Experimentally, it's cheap to set the access flag in hardware and we
1346 * benefit from prefaulting mappings as 'old' to start with.
1347 */
1348#define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1349
1350static inline bool pud_sect_supported(void)
1351{
1352	return PAGE_SIZE == SZ_4K;
1353}
1354
1355
1356#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1357#define ptep_modify_prot_start ptep_modify_prot_start
1358extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1359				    unsigned long addr, pte_t *ptep);
1360
1361#define ptep_modify_prot_commit ptep_modify_prot_commit
1362extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1363				    unsigned long addr, pte_t *ptep,
1364				    pte_t old_pte, pte_t new_pte);
1365
1366#ifdef CONFIG_ARM64_CONTPTE
1367
1368/*
1369 * The contpte APIs are used to transparently manage the contiguous bit in ptes
1370 * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1371 * a private implementation detail of the public ptep API (see below).
1372 */
1373extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1374				pte_t *ptep, pte_t pte);
1375extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1376				pte_t *ptep, pte_t pte);
1377extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1378extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1379extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1380				pte_t *ptep, pte_t pte, unsigned int nr);
1381extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1382				pte_t *ptep, unsigned int nr, int full);
1383extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1384				unsigned long addr, pte_t *ptep,
1385				unsigned int nr, int full);
1386extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1387				unsigned long addr, pte_t *ptep);
1388extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1389				unsigned long addr, pte_t *ptep);
1390extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1391				pte_t *ptep, unsigned int nr);
1392extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1393				unsigned long addr, pte_t *ptep,
1394				pte_t entry, int dirty);
1395
1396static __always_inline void contpte_try_fold(struct mm_struct *mm,
1397				unsigned long addr, pte_t *ptep, pte_t pte)
1398{
1399	/*
1400	 * Only bother trying if both the virtual and physical addresses are
1401	 * aligned and correspond to the last entry in a contig range. The core
1402	 * code mostly modifies ranges from low to high, so this is the likely
1403	 * the last modification in the contig range, so a good time to fold.
1404	 * We can't fold special mappings, because there is no associated folio.
1405	 */
1406
1407	const unsigned long contmask = CONT_PTES - 1;
1408	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1409
1410	if (unlikely(valign)) {
1411		bool palign = (pte_pfn(pte) & contmask) == contmask;
1412
1413		if (unlikely(palign &&
1414		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1415			__contpte_try_fold(mm, addr, ptep, pte);
1416	}
1417}
1418
1419static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1420				unsigned long addr, pte_t *ptep, pte_t pte)
1421{
1422	if (unlikely(pte_valid_cont(pte)))
1423		__contpte_try_unfold(mm, addr, ptep, pte);
1424}
1425
1426#define pte_batch_hint pte_batch_hint
1427static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1428{
1429	if (!pte_valid_cont(pte))
1430		return 1;
1431
1432	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1433}
1434
1435/*
1436 * The below functions constitute the public API that arm64 presents to the
1437 * core-mm to manipulate PTE entries within their page tables (or at least this
1438 * is the subset of the API that arm64 needs to implement). These public
1439 * versions will automatically and transparently apply the contiguous bit where
1440 * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1441 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1442 * private versions, which are prefixed with double underscore. All of these
1443 * APIs except for ptep_get_lockless() are expected to be called with the PTL
1444 * held. Although the contiguous bit is considered private to the
1445 * implementation, it is deliberately allowed to leak through the getters (e.g.
1446 * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1447 * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1448 * its possible a pte will be passed to a setter with the contiguous bit set, so
1449 * we explicitly clear the contiguous bit in those cases to prevent accidentally
1450 * setting it in the pgtable.
1451 */
1452
1453#define ptep_get ptep_get
1454static inline pte_t ptep_get(pte_t *ptep)
1455{
1456	pte_t pte = __ptep_get(ptep);
1457
1458	if (likely(!pte_valid_cont(pte)))
1459		return pte;
1460
1461	return contpte_ptep_get(ptep, pte);
1462}
1463
1464#define ptep_get_lockless ptep_get_lockless
1465static inline pte_t ptep_get_lockless(pte_t *ptep)
1466{
1467	pte_t pte = __ptep_get(ptep);
1468
1469	if (likely(!pte_valid_cont(pte)))
1470		return pte;
1471
1472	return contpte_ptep_get_lockless(ptep);
1473}
1474
1475static inline void set_pte(pte_t *ptep, pte_t pte)
1476{
1477	/*
1478	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1479	 * it requires tlb maintenance). set_pte() is not used in core code, so
1480	 * this should never even be called. Regardless do our best to service
1481	 * any call and emit a warning if there is any attempt to set a pte on
1482	 * top of an existing contig range.
1483	 */
1484	pte_t orig_pte = __ptep_get(ptep);
1485
1486	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1487	__set_pte(ptep, pte_mknoncont(pte));
1488}
1489
1490#define set_ptes set_ptes
1491static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1492				pte_t *ptep, pte_t pte, unsigned int nr)
1493{
1494	pte = pte_mknoncont(pte);
1495
1496	if (likely(nr == 1)) {
1497		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1498		__set_ptes(mm, addr, ptep, pte, 1);
1499		contpte_try_fold(mm, addr, ptep, pte);
1500	} else {
1501		contpte_set_ptes(mm, addr, ptep, pte, nr);
1502	}
1503}
1504
1505static inline void pte_clear(struct mm_struct *mm,
1506				unsigned long addr, pte_t *ptep)
1507{
1508	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1509	__pte_clear(mm, addr, ptep);
1510}
1511
1512#define clear_full_ptes clear_full_ptes
1513static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1514				pte_t *ptep, unsigned int nr, int full)
1515{
1516	if (likely(nr == 1)) {
1517		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1518		__clear_full_ptes(mm, addr, ptep, nr, full);
1519	} else {
1520		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1521	}
1522}
1523
1524#define get_and_clear_full_ptes get_and_clear_full_ptes
1525static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1526				unsigned long addr, pte_t *ptep,
1527				unsigned int nr, int full)
1528{
1529	pte_t pte;
1530
1531	if (likely(nr == 1)) {
1532		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1533		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1534	} else {
1535		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1536	}
1537
1538	return pte;
1539}
1540
1541#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1542static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1543				unsigned long addr, pte_t *ptep)
1544{
1545	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1546	return __ptep_get_and_clear(mm, addr, ptep);
1547}
1548
1549#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1550static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1551				unsigned long addr, pte_t *ptep)
1552{
1553	pte_t orig_pte = __ptep_get(ptep);
1554
1555	if (likely(!pte_valid_cont(orig_pte)))
1556		return __ptep_test_and_clear_young(vma, addr, ptep);
1557
1558	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1559}
1560
1561#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1562static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1563				unsigned long addr, pte_t *ptep)
1564{
1565	pte_t orig_pte = __ptep_get(ptep);
1566
1567	if (likely(!pte_valid_cont(orig_pte)))
1568		return __ptep_clear_flush_young(vma, addr, ptep);
1569
1570	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1571}
1572
1573#define wrprotect_ptes wrprotect_ptes
1574static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1575				unsigned long addr, pte_t *ptep, unsigned int nr)
1576{
1577	if (likely(nr == 1)) {
1578		/*
1579		 * Optimization: wrprotect_ptes() can only be called for present
1580		 * ptes so we only need to check contig bit as condition for
1581		 * unfold, and we can remove the contig bit from the pte we read
1582		 * to avoid re-reading. This speeds up fork() which is sensitive
1583		 * for order-0 folios. Equivalent to contpte_try_unfold().
1584		 */
1585		pte_t orig_pte = __ptep_get(ptep);
1586
1587		if (unlikely(pte_cont(orig_pte))) {
1588			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1589			orig_pte = pte_mknoncont(orig_pte);
1590		}
1591		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1592	} else {
1593		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1594	}
1595}
1596
1597#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1598static inline void ptep_set_wrprotect(struct mm_struct *mm,
1599				unsigned long addr, pte_t *ptep)
1600{
1601	wrprotect_ptes(mm, addr, ptep, 1);
1602}
1603
1604#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1605static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1606				unsigned long addr, pte_t *ptep,
1607				pte_t entry, int dirty)
1608{
1609	pte_t orig_pte = __ptep_get(ptep);
1610
1611	entry = pte_mknoncont(entry);
1612
1613	if (likely(!pte_valid_cont(orig_pte)))
1614		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1615
1616	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1617}
1618
1619#else /* CONFIG_ARM64_CONTPTE */
1620
1621#define ptep_get				__ptep_get
1622#define set_pte					__set_pte
1623#define set_ptes				__set_ptes
1624#define pte_clear				__pte_clear
1625#define clear_full_ptes				__clear_full_ptes
1626#define get_and_clear_full_ptes			__get_and_clear_full_ptes
1627#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1628#define ptep_get_and_clear			__ptep_get_and_clear
1629#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1630#define ptep_test_and_clear_young		__ptep_test_and_clear_young
1631#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1632#define ptep_clear_flush_young			__ptep_clear_flush_young
1633#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1634#define ptep_set_wrprotect			__ptep_set_wrprotect
1635#define wrprotect_ptes				__wrprotect_ptes
1636#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1637#define ptep_set_access_flags			__ptep_set_access_flags
1638
1639#endif /* CONFIG_ARM64_CONTPTE */
1640
1641#endif /* !__ASSEMBLY__ */
1642
1643#endif /* __ASM_PGTABLE_H */
1644