1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/include/asm/kvm_host.h:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11#ifndef __ARM64_KVM_HOST_H__
12#define __ARM64_KVM_HOST_H__
13
14#include <linux/arm-smccc.h>
15#include <linux/bitmap.h>
16#include <linux/types.h>
17#include <linux/jump_label.h>
18#include <linux/kvm_types.h>
19#include <linux/maple_tree.h>
20#include <linux/percpu.h>
21#include <linux/psci.h>
22#include <asm/arch_gicv3.h>
23#include <asm/barrier.h>
24#include <asm/cpufeature.h>
25#include <asm/cputype.h>
26#include <asm/daifflags.h>
27#include <asm/fpsimd.h>
28#include <asm/kvm.h>
29#include <asm/kvm_asm.h>
30#include <asm/vncr_mapping.h>
31
32#define __KVM_HAVE_ARCH_INTC_INITIALIZED
33
34#define KVM_HALT_POLL_NS_DEFAULT 500000
35
36#include <kvm/arm_vgic.h>
37#include <kvm/arm_arch_timer.h>
38#include <kvm/arm_pmu.h>
39
40#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
41
42#define KVM_VCPU_MAX_FEATURES 7
43#define KVM_VCPU_VALID_FEATURES	(BIT(KVM_VCPU_MAX_FEATURES) - 1)
44
45#define KVM_REQ_SLEEP \
46	KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
47#define KVM_REQ_IRQ_PENDING	KVM_ARCH_REQ(1)
48#define KVM_REQ_VCPU_RESET	KVM_ARCH_REQ(2)
49#define KVM_REQ_RECORD_STEAL	KVM_ARCH_REQ(3)
50#define KVM_REQ_RELOAD_GICv4	KVM_ARCH_REQ(4)
51#define KVM_REQ_RELOAD_PMU	KVM_ARCH_REQ(5)
52#define KVM_REQ_SUSPEND		KVM_ARCH_REQ(6)
53#define KVM_REQ_RESYNC_PMU_EL0	KVM_ARCH_REQ(7)
54
55#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
56				     KVM_DIRTY_LOG_INITIALLY_SET)
57
58#define KVM_HAVE_MMU_RWLOCK
59
60/*
61 * Mode of operation configurable with kvm-arm.mode early param.
62 * See Documentation/admin-guide/kernel-parameters.txt for more information.
63 */
64enum kvm_mode {
65	KVM_MODE_DEFAULT,
66	KVM_MODE_PROTECTED,
67	KVM_MODE_NV,
68	KVM_MODE_NONE,
69};
70#ifdef CONFIG_KVM
71enum kvm_mode kvm_get_mode(void);
72#else
73static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
74#endif
75
76DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
77
78extern unsigned int __ro_after_init kvm_sve_max_vl;
79int __init kvm_arm_init_sve(void);
80
81u32 __attribute_const__ kvm_target_cpu(void);
82void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
83void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
84
85struct kvm_hyp_memcache {
86	phys_addr_t head;
87	unsigned long nr_pages;
88};
89
90static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
91				     phys_addr_t *p,
92				     phys_addr_t (*to_pa)(void *virt))
93{
94	*p = mc->head;
95	mc->head = to_pa(p);
96	mc->nr_pages++;
97}
98
99static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
100				     void *(*to_va)(phys_addr_t phys))
101{
102	phys_addr_t *p = to_va(mc->head);
103
104	if (!mc->nr_pages)
105		return NULL;
106
107	mc->head = *p;
108	mc->nr_pages--;
109
110	return p;
111}
112
113static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
114				       unsigned long min_pages,
115				       void *(*alloc_fn)(void *arg),
116				       phys_addr_t (*to_pa)(void *virt),
117				       void *arg)
118{
119	while (mc->nr_pages < min_pages) {
120		phys_addr_t *p = alloc_fn(arg);
121
122		if (!p)
123			return -ENOMEM;
124		push_hyp_memcache(mc, p, to_pa);
125	}
126
127	return 0;
128}
129
130static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
131				       void (*free_fn)(void *virt, void *arg),
132				       void *(*to_va)(phys_addr_t phys),
133				       void *arg)
134{
135	while (mc->nr_pages)
136		free_fn(pop_hyp_memcache(mc, to_va), arg);
137}
138
139void free_hyp_memcache(struct kvm_hyp_memcache *mc);
140int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
141
142struct kvm_vmid {
143	atomic64_t id;
144};
145
146struct kvm_s2_mmu {
147	struct kvm_vmid vmid;
148
149	/*
150	 * stage2 entry level table
151	 *
152	 * Two kvm_s2_mmu structures in the same VM can point to the same
153	 * pgd here.  This happens when running a guest using a
154	 * translation regime that isn't affected by its own stage-2
155	 * translation, such as a non-VHE hypervisor running at vEL2, or
156	 * for vEL1/EL0 with vHCR_EL2.VM == 0.  In that case, we use the
157	 * canonical stage-2 page tables.
158	 */
159	phys_addr_t	pgd_phys;
160	struct kvm_pgtable *pgt;
161
162	/*
163	 * VTCR value used on the host. For a non-NV guest (or a NV
164	 * guest that runs in a context where its own S2 doesn't
165	 * apply), its T0SZ value reflects that of the IPA size.
166	 *
167	 * For a shadow S2 MMU, T0SZ reflects the PARange exposed to
168	 * the guest.
169	 */
170	u64	vtcr;
171
172	/* The last vcpu id that ran on each physical CPU */
173	int __percpu *last_vcpu_ran;
174
175#define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
176	/*
177	 * Memory cache used to split
178	 * KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
179	 * is used to allocate stage2 page tables while splitting huge
180	 * pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
181	 * influences both the capacity of the split page cache, and
182	 * how often KVM reschedules. Be wary of raising CHUNK_SIZE
183	 * too high.
184	 *
185	 * Protected by kvm->slots_lock.
186	 */
187	struct kvm_mmu_memory_cache split_page_cache;
188	uint64_t split_page_chunk_size;
189
190	struct kvm_arch *arch;
191};
192
193struct kvm_arch_memory_slot {
194};
195
196/**
197 * struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
198 *
199 * @std_bmap: Bitmap of standard secure service calls
200 * @std_hyp_bmap: Bitmap of standard hypervisor service calls
201 * @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
202 */
203struct kvm_smccc_features {
204	unsigned long std_bmap;
205	unsigned long std_hyp_bmap;
206	unsigned long vendor_hyp_bmap;
207};
208
209typedef unsigned int pkvm_handle_t;
210
211struct kvm_protected_vm {
212	pkvm_handle_t handle;
213	struct kvm_hyp_memcache teardown_mc;
214};
215
216struct kvm_mpidr_data {
217	u64			mpidr_mask;
218	DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
219};
220
221static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
222{
223	unsigned long mask = data->mpidr_mask;
224	u64 aff = mpidr & MPIDR_HWID_BITMASK;
225	int nbits, bit, bit_idx = 0;
226	u16 index = 0;
227
228	/*
229	 * If this looks like RISC-V's BEXT or x86's PEXT
230	 * instructions, it isn't by accident.
231	 */
232	nbits = fls(mask);
233	for_each_set_bit(bit, &mask, nbits) {
234		index |= (aff & BIT(bit)) >> (bit - bit_idx);
235		bit_idx++;
236	}
237
238	return index;
239}
240
241struct kvm_sysreg_masks;
242
243enum fgt_group_id {
244	__NO_FGT_GROUP__,
245	HFGxTR_GROUP,
246	HDFGRTR_GROUP,
247	HDFGWTR_GROUP = HDFGRTR_GROUP,
248	HFGITR_GROUP,
249	HAFGRTR_GROUP,
250
251	/* Must be last */
252	__NR_FGT_GROUP_IDS__
253};
254
255struct kvm_arch {
256	struct kvm_s2_mmu mmu;
257
258	/*
259	 * Fine-Grained UNDEF, mimicking the FGT layout defined by the
260	 * architecture. We track them globally, as we present the
261	 * same feature-set to all vcpus.
262	 *
263	 * Index 0 is currently spare.
264	 */
265	u64 fgu[__NR_FGT_GROUP_IDS__];
266
267	/* Interrupt controller */
268	struct vgic_dist	vgic;
269
270	/* Timers */
271	struct arch_timer_vm_data timer_data;
272
273	/* Mandated version of PSCI */
274	u32 psci_version;
275
276	/* Protects VM-scoped configuration data */
277	struct mutex config_lock;
278
279	/*
280	 * If we encounter a data abort without valid instruction syndrome
281	 * information, report this to user space.  User space can (and
282	 * should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
283	 * supported.
284	 */
285#define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER	0
286	/* Memory Tagging Extension enabled for the guest */
287#define KVM_ARCH_FLAG_MTE_ENABLED			1
288	/* At least one vCPU has ran in the VM */
289#define KVM_ARCH_FLAG_HAS_RAN_ONCE			2
290	/* The vCPU feature set for the VM is configured */
291#define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED		3
292	/* PSCI SYSTEM_SUSPEND enabled for the guest */
293#define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED		4
294	/* VM counter offset */
295#define KVM_ARCH_FLAG_VM_COUNTER_OFFSET			5
296	/* Timer PPIs made immutable */
297#define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE		6
298	/* Initial ID reg values loaded */
299#define KVM_ARCH_FLAG_ID_REGS_INITIALIZED		7
300	/* Fine-Grained UNDEF initialised */
301#define KVM_ARCH_FLAG_FGU_INITIALIZED			8
302	unsigned long flags;
303
304	/* VM-wide vCPU feature set */
305	DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
306
307	/* MPIDR to vcpu index mapping, optional */
308	struct kvm_mpidr_data *mpidr_data;
309
310	/*
311	 * VM-wide PMU filter, implemented as a bitmap and big enough for
312	 * up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
313	 */
314	unsigned long *pmu_filter;
315	struct arm_pmu *arm_pmu;
316
317	cpumask_var_t supported_cpus;
318
319	/* PMCR_EL0.N value for the guest */
320	u8 pmcr_n;
321
322	/* Iterator for idreg debugfs */
323	u8	idreg_debugfs_iter;
324
325	/* Hypercall features firmware registers' descriptor */
326	struct kvm_smccc_features smccc_feat;
327	struct maple_tree smccc_filter;
328
329	/*
330	 * Emulated CPU ID registers per VM
331	 * (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
332	 * is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
333	 *
334	 * These emulated idregs are VM-wide, but accessed from the context of a vCPU.
335	 * Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
336	 */
337#define IDREG_IDX(id)		(((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
338#define IDX_IDREG(idx)		sys_reg(3, 0, 0, ((idx) >> 3) + 1, (idx) & Op2_mask)
339#define IDREG(kvm, id)		((kvm)->arch.id_regs[IDREG_IDX(id)])
340#define KVM_ARM_ID_REG_NUM	(IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
341	u64 id_regs[KVM_ARM_ID_REG_NUM];
342
343	/* Masks for VNCR-baked sysregs */
344	struct kvm_sysreg_masks	*sysreg_masks;
345
346	/*
347	 * For an untrusted host VM, 'pkvm.handle' is used to lookup
348	 * the associated pKVM instance in the hypervisor.
349	 */
350	struct kvm_protected_vm pkvm;
351};
352
353struct kvm_vcpu_fault_info {
354	u64 esr_el2;		/* Hyp Syndrom Register */
355	u64 far_el2;		/* Hyp Fault Address Register */
356	u64 hpfar_el2;		/* Hyp IPA Fault Address Register */
357	u64 disr_el1;		/* Deferred [SError] Status Register */
358};
359
360/*
361 * VNCR() just places the VNCR_capable registers in the enum after
362 * __VNCR_START__, and the value (after correction) to be an 8-byte offset
363 * from the VNCR base. As we don't require the enum to be otherwise ordered,
364 * we need the terrible hack below to ensure that we correctly size the
365 * sys_regs array, no matter what.
366 *
367 * The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
368 * treasure trove of bit hacks:
369 * https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
370 */
371#define __MAX__(x,y)	((x) ^ (((x) ^ (y)) & -((x) < (y))))
372#define VNCR(r)						\
373	__before_##r,					\
374	r = __VNCR_START__ + ((VNCR_ ## r) / 8),	\
375	__after_##r = __MAX__(__before_##r - 1, r)
376
377enum vcpu_sysreg {
378	__INVALID_SYSREG__,   /* 0 is reserved as an invalid value */
379	MPIDR_EL1,	/* MultiProcessor Affinity Register */
380	CLIDR_EL1,	/* Cache Level ID Register */
381	CSSELR_EL1,	/* Cache Size Selection Register */
382	TPIDR_EL0,	/* Thread ID, User R/W */
383	TPIDRRO_EL0,	/* Thread ID, User R/O */
384	TPIDR_EL1,	/* Thread ID, Privileged */
385	CNTKCTL_EL1,	/* Timer Control Register (EL1) */
386	PAR_EL1,	/* Physical Address Register */
387	MDCCINT_EL1,	/* Monitor Debug Comms Channel Interrupt Enable Reg */
388	OSLSR_EL1,	/* OS Lock Status Register */
389	DISR_EL1,	/* Deferred Interrupt Status Register */
390
391	/* Performance Monitors Registers */
392	PMCR_EL0,	/* Control Register */
393	PMSELR_EL0,	/* Event Counter Selection Register */
394	PMEVCNTR0_EL0,	/* Event Counter Register (0-30) */
395	PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
396	PMCCNTR_EL0,	/* Cycle Counter Register */
397	PMEVTYPER0_EL0,	/* Event Type Register (0-30) */
398	PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
399	PMCCFILTR_EL0,	/* Cycle Count Filter Register */
400	PMCNTENSET_EL0,	/* Count Enable Set Register */
401	PMINTENSET_EL1,	/* Interrupt Enable Set Register */
402	PMOVSSET_EL0,	/* Overflow Flag Status Set Register */
403	PMUSERENR_EL0,	/* User Enable Register */
404
405	/* Pointer Authentication Registers in a strict increasing order. */
406	APIAKEYLO_EL1,
407	APIAKEYHI_EL1,
408	APIBKEYLO_EL1,
409	APIBKEYHI_EL1,
410	APDAKEYLO_EL1,
411	APDAKEYHI_EL1,
412	APDBKEYLO_EL1,
413	APDBKEYHI_EL1,
414	APGAKEYLO_EL1,
415	APGAKEYHI_EL1,
416
417	/* Memory Tagging Extension registers */
418	RGSR_EL1,	/* Random Allocation Tag Seed Register */
419	GCR_EL1,	/* Tag Control Register */
420	TFSRE0_EL1,	/* Tag Fault Status Register (EL0) */
421
422	/* 32bit specific registers. */
423	DACR32_EL2,	/* Domain Access Control Register */
424	IFSR32_EL2,	/* Instruction Fault Status Register */
425	FPEXC32_EL2,	/* Floating-Point Exception Control Register */
426	DBGVCR32_EL2,	/* Debug Vector Catch Register */
427
428	/* EL2 registers */
429	SCTLR_EL2,	/* System Control Register (EL2) */
430	ACTLR_EL2,	/* Auxiliary Control Register (EL2) */
431	MDCR_EL2,	/* Monitor Debug Configuration Register (EL2) */
432	CPTR_EL2,	/* Architectural Feature Trap Register (EL2) */
433	HACR_EL2,	/* Hypervisor Auxiliary Control Register */
434	TTBR0_EL2,	/* Translation Table Base Register 0 (EL2) */
435	TTBR1_EL2,	/* Translation Table Base Register 1 (EL2) */
436	TCR_EL2,	/* Translation Control Register (EL2) */
437	SPSR_EL2,	/* EL2 saved program status register */
438	ELR_EL2,	/* EL2 exception link register */
439	AFSR0_EL2,	/* Auxiliary Fault Status Register 0 (EL2) */
440	AFSR1_EL2,	/* Auxiliary Fault Status Register 1 (EL2) */
441	ESR_EL2,	/* Exception Syndrome Register (EL2) */
442	FAR_EL2,	/* Fault Address Register (EL2) */
443	HPFAR_EL2,	/* Hypervisor IPA Fault Address Register */
444	MAIR_EL2,	/* Memory Attribute Indirection Register (EL2) */
445	AMAIR_EL2,	/* Auxiliary Memory Attribute Indirection Register (EL2) */
446	VBAR_EL2,	/* Vector Base Address Register (EL2) */
447	RVBAR_EL2,	/* Reset Vector Base Address Register */
448	CONTEXTIDR_EL2,	/* Context ID Register (EL2) */
449	CNTHCTL_EL2,	/* Counter-timer Hypervisor Control register */
450	SP_EL2,		/* EL2 Stack Pointer */
451	CNTHP_CTL_EL2,
452	CNTHP_CVAL_EL2,
453	CNTHV_CTL_EL2,
454	CNTHV_CVAL_EL2,
455
456	__VNCR_START__,	/* Any VNCR-capable reg goes after this point */
457
458	VNCR(SCTLR_EL1),/* System Control Register */
459	VNCR(ACTLR_EL1),/* Auxiliary Control Register */
460	VNCR(CPACR_EL1),/* Coprocessor Access Control */
461	VNCR(ZCR_EL1),	/* SVE Control */
462	VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
463	VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
464	VNCR(TCR_EL1),	/* Translation Control Register */
465	VNCR(TCR2_EL1),	/* Extended Translation Control Register */
466	VNCR(ESR_EL1),	/* Exception Syndrome Register */
467	VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
468	VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
469	VNCR(FAR_EL1),	/* Fault Address Register */
470	VNCR(MAIR_EL1),	/* Memory Attribute Indirection Register */
471	VNCR(VBAR_EL1),	/* Vector Base Address Register */
472	VNCR(CONTEXTIDR_EL1),	/* Context ID Register */
473	VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
474	VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
475	VNCR(ELR_EL1),
476	VNCR(SP_EL1),
477	VNCR(SPSR_EL1),
478	VNCR(TFSR_EL1),	/* Tag Fault Status Register (EL1) */
479	VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
480	VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
481	VNCR(HCR_EL2),	/* Hypervisor Configuration Register */
482	VNCR(HSTR_EL2),	/* Hypervisor System Trap Register */
483	VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
484	VNCR(VTCR_EL2),	/* Virtualization Translation Control Register */
485	VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
486	VNCR(HCRX_EL2),	/* Extended Hypervisor Configuration Register */
487
488	/* Permission Indirection Extension registers */
489	VNCR(PIR_EL1),	 /* Permission Indirection Register 1 (EL1) */
490	VNCR(PIRE0_EL1), /*  Permission Indirection Register 0 (EL1) */
491
492	VNCR(HFGRTR_EL2),
493	VNCR(HFGWTR_EL2),
494	VNCR(HFGITR_EL2),
495	VNCR(HDFGRTR_EL2),
496	VNCR(HDFGWTR_EL2),
497	VNCR(HAFGRTR_EL2),
498
499	VNCR(CNTVOFF_EL2),
500	VNCR(CNTV_CVAL_EL0),
501	VNCR(CNTV_CTL_EL0),
502	VNCR(CNTP_CVAL_EL0),
503	VNCR(CNTP_CTL_EL0),
504
505	NR_SYS_REGS	/* Nothing after this line! */
506};
507
508struct kvm_sysreg_masks {
509	struct {
510		u64	res0;
511		u64	res1;
512	} mask[NR_SYS_REGS - __VNCR_START__];
513};
514
515struct kvm_cpu_context {
516	struct user_pt_regs regs;	/* sp = sp_el0 */
517
518	u64	spsr_abt;
519	u64	spsr_und;
520	u64	spsr_irq;
521	u64	spsr_fiq;
522
523	struct user_fpsimd_state fp_regs;
524
525	u64 sys_regs[NR_SYS_REGS];
526
527	struct kvm_vcpu *__hyp_running_vcpu;
528
529	/* This pointer has to be 4kB aligned. */
530	u64 *vncr_array;
531};
532
533struct kvm_host_data {
534	struct kvm_cpu_context host_ctxt;
535};
536
537struct kvm_host_psci_config {
538	/* PSCI version used by host. */
539	u32 version;
540	u32 smccc_version;
541
542	/* Function IDs used by host if version is v0.1. */
543	struct psci_0_1_function_ids function_ids_0_1;
544
545	bool psci_0_1_cpu_suspend_implemented;
546	bool psci_0_1_cpu_on_implemented;
547	bool psci_0_1_cpu_off_implemented;
548	bool psci_0_1_migrate_implemented;
549};
550
551extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
552#define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
553
554extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
555#define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
556
557extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
558#define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
559
560struct vcpu_reset_state {
561	unsigned long	pc;
562	unsigned long	r0;
563	bool		be;
564	bool		reset;
565};
566
567struct kvm_vcpu_arch {
568	struct kvm_cpu_context ctxt;
569
570	/*
571	 * Guest floating point state
572	 *
573	 * The architecture has two main floating point extensions,
574	 * the original FPSIMD and SVE.  These have overlapping
575	 * register views, with the FPSIMD V registers occupying the
576	 * low 128 bits of the SVE Z registers.  When the core
577	 * floating point code saves the register state of a task it
578	 * records which view it saved in fp_type.
579	 */
580	void *sve_state;
581	enum fp_type fp_type;
582	unsigned int sve_max_vl;
583	u64 svcr;
584	u64 fpmr;
585
586	/* Stage 2 paging state used by the hardware on next switch */
587	struct kvm_s2_mmu *hw_mmu;
588
589	/* Values of trap registers for the guest. */
590	u64 hcr_el2;
591	u64 hcrx_el2;
592	u64 mdcr_el2;
593	u64 cptr_el2;
594
595	/* Values of trap registers for the host before guest entry. */
596	u64 mdcr_el2_host;
597
598	/* Exception Information */
599	struct kvm_vcpu_fault_info fault;
600
601	/* Ownership of the FP regs */
602	enum {
603		FP_STATE_FREE,
604		FP_STATE_HOST_OWNED,
605		FP_STATE_GUEST_OWNED,
606	} fp_state;
607
608	/* Configuration flags, set once and for all before the vcpu can run */
609	u8 cflags;
610
611	/* Input flags to the hypervisor code, potentially cleared after use */
612	u8 iflags;
613
614	/* State flags for kernel bookkeeping, unused by the hypervisor code */
615	u8 sflags;
616
617	/*
618	 * Don't run the guest (internal implementation need).
619	 *
620	 * Contrary to the flags above, this is set/cleared outside of
621	 * a vcpu context, and thus cannot be mixed with the flags
622	 * themselves (or the flag accesses need to be made atomic).
623	 */
624	bool pause;
625
626	/*
627	 * We maintain more than a single set of debug registers to support
628	 * debugging the guest from the host and to maintain separate host and
629	 * guest state during world switches. vcpu_debug_state are the debug
630	 * registers of the vcpu as the guest sees them.  host_debug_state are
631	 * the host registers which are saved and restored during
632	 * world switches. external_debug_state contains the debug
633	 * values we want to debug the guest. This is set via the
634	 * KVM_SET_GUEST_DEBUG ioctl.
635	 *
636	 * debug_ptr points to the set of debug registers that should be loaded
637	 * onto the hardware when running the guest.
638	 */
639	struct kvm_guest_debug_arch *debug_ptr;
640	struct kvm_guest_debug_arch vcpu_debug_state;
641	struct kvm_guest_debug_arch external_debug_state;
642
643	struct user_fpsimd_state *host_fpsimd_state;	/* hyp VA */
644	struct task_struct *parent_task;
645
646	struct {
647		/* {Break,watch}point registers */
648		struct kvm_guest_debug_arch regs;
649		/* Statistical profiling extension */
650		u64 pmscr_el1;
651		/* Self-hosted trace */
652		u64 trfcr_el1;
653	} host_debug_state;
654
655	/* VGIC state */
656	struct vgic_cpu vgic_cpu;
657	struct arch_timer_cpu timer_cpu;
658	struct kvm_pmu pmu;
659
660	/*
661	 * Guest registers we preserve during guest debugging.
662	 *
663	 * These shadow registers are updated by the kvm_handle_sys_reg
664	 * trap handler if the guest accesses or updates them while we
665	 * are using guest debug.
666	 */
667	struct {
668		u32	mdscr_el1;
669		bool	pstate_ss;
670	} guest_debug_preserved;
671
672	/* vcpu power state */
673	struct kvm_mp_state mp_state;
674	spinlock_t mp_state_lock;
675
676	/* Cache some mmu pages needed inside spinlock regions */
677	struct kvm_mmu_memory_cache mmu_page_cache;
678
679	/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
680	u64 vsesr_el2;
681
682	/* Additional reset state */
683	struct vcpu_reset_state	reset_state;
684
685	/* Guest PV state */
686	struct {
687		u64 last_steal;
688		gpa_t base;
689	} steal;
690
691	/* Per-vcpu CCSIDR override or NULL */
692	u32 *ccsidr;
693};
694
695/*
696 * Each 'flag' is composed of a comma-separated triplet:
697 *
698 * - the flag-set it belongs to in the vcpu->arch structure
699 * - the value for that flag
700 * - the mask for that flag
701 *
702 *  __vcpu_single_flag() builds such a triplet for a single-bit flag.
703 * unpack_vcpu_flag() extract the flag value from the triplet for
704 * direct use outside of the flag accessors.
705 */
706#define __vcpu_single_flag(_set, _f)	_set, (_f), (_f)
707
708#define __unpack_flag(_set, _f, _m)	_f
709#define unpack_vcpu_flag(...)		__unpack_flag(__VA_ARGS__)
710
711#define __build_check_flag(v, flagset, f, m)			\
712	do {							\
713		typeof(v->arch.flagset) *_fset;			\
714								\
715		/* Check that the flags fit in the mask */	\
716		BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m)));	\
717		/* Check that the flags fit in the type */	\
718		BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m));	\
719	} while (0)
720
721#define __vcpu_get_flag(v, flagset, f, m)			\
722	({							\
723		__build_check_flag(v, flagset, f, m);		\
724								\
725		READ_ONCE(v->arch.flagset) & (m);		\
726	})
727
728/*
729 * Note that the set/clear accessors must be preempt-safe in order to
730 * avoid nesting them with load/put which also manipulate flags...
731 */
732#ifdef __KVM_NVHE_HYPERVISOR__
733/* the nVHE hypervisor is always non-preemptible */
734#define __vcpu_flags_preempt_disable()
735#define __vcpu_flags_preempt_enable()
736#else
737#define __vcpu_flags_preempt_disable()	preempt_disable()
738#define __vcpu_flags_preempt_enable()	preempt_enable()
739#endif
740
741#define __vcpu_set_flag(v, flagset, f, m)			\
742	do {							\
743		typeof(v->arch.flagset) *fset;			\
744								\
745		__build_check_flag(v, flagset, f, m);		\
746								\
747		fset = &v->arch.flagset;			\
748		__vcpu_flags_preempt_disable();			\
749		if (HWEIGHT(m) > 1)				\
750			*fset &= ~(m);				\
751		*fset |= (f);					\
752		__vcpu_flags_preempt_enable();			\
753	} while (0)
754
755#define __vcpu_clear_flag(v, flagset, f, m)			\
756	do {							\
757		typeof(v->arch.flagset) *fset;			\
758								\
759		__build_check_flag(v, flagset, f, m);		\
760								\
761		fset = &v->arch.flagset;			\
762		__vcpu_flags_preempt_disable();			\
763		*fset &= ~(m);					\
764		__vcpu_flags_preempt_enable();			\
765	} while (0)
766
767#define vcpu_get_flag(v, ...)	__vcpu_get_flag((v), __VA_ARGS__)
768#define vcpu_set_flag(v, ...)	__vcpu_set_flag((v), __VA_ARGS__)
769#define vcpu_clear_flag(v, ...)	__vcpu_clear_flag((v), __VA_ARGS__)
770
771/* SVE exposed to guest */
772#define GUEST_HAS_SVE		__vcpu_single_flag(cflags, BIT(0))
773/* SVE config completed */
774#define VCPU_SVE_FINALIZED	__vcpu_single_flag(cflags, BIT(1))
775/* PTRAUTH exposed to guest */
776#define GUEST_HAS_PTRAUTH	__vcpu_single_flag(cflags, BIT(2))
777/* KVM_ARM_VCPU_INIT completed */
778#define VCPU_INITIALIZED	__vcpu_single_flag(cflags, BIT(3))
779
780/* Exception pending */
781#define PENDING_EXCEPTION	__vcpu_single_flag(iflags, BIT(0))
782/*
783 * PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
784 * be set together with an exception...
785 */
786#define INCREMENT_PC		__vcpu_single_flag(iflags, BIT(1))
787/* Target EL/MODE (not a single flag, but let's abuse the macro) */
788#define EXCEPT_MASK		__vcpu_single_flag(iflags, GENMASK(3, 1))
789
790/* Helpers to encode exceptions with minimum fuss */
791#define __EXCEPT_MASK_VAL	unpack_vcpu_flag(EXCEPT_MASK)
792#define __EXCEPT_SHIFT		__builtin_ctzl(__EXCEPT_MASK_VAL)
793#define __vcpu_except_flags(_f)	iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
794
795/*
796 * When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
797 * values:
798 *
799 * For AArch32 EL1:
800 */
801#define EXCEPT_AA32_UND		__vcpu_except_flags(0)
802#define EXCEPT_AA32_IABT	__vcpu_except_flags(1)
803#define EXCEPT_AA32_DABT	__vcpu_except_flags(2)
804/* For AArch64: */
805#define EXCEPT_AA64_EL1_SYNC	__vcpu_except_flags(0)
806#define EXCEPT_AA64_EL1_IRQ	__vcpu_except_flags(1)
807#define EXCEPT_AA64_EL1_FIQ	__vcpu_except_flags(2)
808#define EXCEPT_AA64_EL1_SERR	__vcpu_except_flags(3)
809/* For AArch64 with NV: */
810#define EXCEPT_AA64_EL2_SYNC	__vcpu_except_flags(4)
811#define EXCEPT_AA64_EL2_IRQ	__vcpu_except_flags(5)
812#define EXCEPT_AA64_EL2_FIQ	__vcpu_except_flags(6)
813#define EXCEPT_AA64_EL2_SERR	__vcpu_except_flags(7)
814/* Guest debug is live */
815#define DEBUG_DIRTY		__vcpu_single_flag(iflags, BIT(4))
816/* Save SPE context if active  */
817#define DEBUG_STATE_SAVE_SPE	__vcpu_single_flag(iflags, BIT(5))
818/* Save TRBE context if active  */
819#define DEBUG_STATE_SAVE_TRBE	__vcpu_single_flag(iflags, BIT(6))
820/* vcpu running in HYP context */
821#define VCPU_HYP_CONTEXT	__vcpu_single_flag(iflags, BIT(7))
822
823/* SVE enabled for host EL0 */
824#define HOST_SVE_ENABLED	__vcpu_single_flag(sflags, BIT(0))
825/* SME enabled for EL0 */
826#define HOST_SME_ENABLED	__vcpu_single_flag(sflags, BIT(1))
827/* Physical CPU not in supported_cpus */
828#define ON_UNSUPPORTED_CPU	__vcpu_single_flag(sflags, BIT(2))
829/* WFIT instruction trapped */
830#define IN_WFIT			__vcpu_single_flag(sflags, BIT(3))
831/* vcpu system registers loaded on physical CPU */
832#define SYSREGS_ON_CPU		__vcpu_single_flag(sflags, BIT(4))
833/* Software step state is Active-pending */
834#define DBG_SS_ACTIVE_PENDING	__vcpu_single_flag(sflags, BIT(5))
835/* PMUSERENR for the guest EL0 is on physical CPU */
836#define PMUSERENR_ON_CPU	__vcpu_single_flag(sflags, BIT(6))
837/* WFI instruction trapped */
838#define IN_WFI			__vcpu_single_flag(sflags, BIT(7))
839
840
841/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
842#define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) +	\
843			     sve_ffr_offset((vcpu)->arch.sve_max_vl))
844
845#define vcpu_sve_max_vq(vcpu)	sve_vq_from_vl((vcpu)->arch.sve_max_vl)
846
847#define vcpu_sve_state_size(vcpu) ({					\
848	size_t __size_ret;						\
849	unsigned int __vcpu_vq;						\
850									\
851	if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) {		\
852		__size_ret = 0;						\
853	} else {							\
854		__vcpu_vq = vcpu_sve_max_vq(vcpu);			\
855		__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq);		\
856	}								\
857									\
858	__size_ret;							\
859})
860
861#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
862				 KVM_GUESTDBG_USE_SW_BP | \
863				 KVM_GUESTDBG_USE_HW | \
864				 KVM_GUESTDBG_SINGLESTEP)
865
866#define vcpu_has_sve(vcpu) (system_supports_sve() &&			\
867			    vcpu_get_flag(vcpu, GUEST_HAS_SVE))
868
869#ifdef CONFIG_ARM64_PTR_AUTH
870#define vcpu_has_ptrauth(vcpu)						\
871	((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) ||		\
872	  cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) &&		\
873	  vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
874#else
875#define vcpu_has_ptrauth(vcpu)		false
876#endif
877
878#define vcpu_on_unsupported_cpu(vcpu)					\
879	vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
880
881#define vcpu_set_on_unsupported_cpu(vcpu)				\
882	vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
883
884#define vcpu_clear_on_unsupported_cpu(vcpu)				\
885	vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
886
887#define vcpu_gp_regs(v)		(&(v)->arch.ctxt.regs)
888
889/*
890 * Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
891 * memory backed version of a register, and not the one most recently
892 * accessed by a running VCPU.  For example, for userspace access or
893 * for system registers that are never context switched, but only
894 * emulated.
895 *
896 * Don't bother with VNCR-based accesses in the nVHE code, it has no
897 * business dealing with NV.
898 */
899static inline u64 *__ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
900{
901#if !defined (__KVM_NVHE_HYPERVISOR__)
902	if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
903		     r >= __VNCR_START__ && ctxt->vncr_array))
904		return &ctxt->vncr_array[r - __VNCR_START__];
905#endif
906	return (u64 *)&ctxt->sys_regs[r];
907}
908
909#define ctxt_sys_reg(c,r)	(*__ctxt_sys_reg(c,r))
910
911u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *, enum vcpu_sysreg);
912#define __vcpu_sys_reg(v,r)						\
913	(*({								\
914		const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt;	\
915		u64 *__r = __ctxt_sys_reg(ctxt, (r));			\
916		if (vcpu_has_nv((v)) && (r) >= __VNCR_START__)		\
917			*__r = kvm_vcpu_sanitise_vncr_reg((v), (r));	\
918		__r;							\
919	}))
920
921u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
922void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
923
924static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
925{
926	/*
927	 * *** VHE ONLY ***
928	 *
929	 * System registers listed in the switch are not saved on every
930	 * exit from the guest but are only saved on vcpu_put.
931	 *
932	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
933	 * should never be listed below, because the guest cannot modify its
934	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
935	 * thread when emulating cross-VCPU communication.
936	 */
937	if (!has_vhe())
938		return false;
939
940	switch (reg) {
941	case SCTLR_EL1:		*val = read_sysreg_s(SYS_SCTLR_EL12);	break;
942	case CPACR_EL1:		*val = read_sysreg_s(SYS_CPACR_EL12);	break;
943	case TTBR0_EL1:		*val = read_sysreg_s(SYS_TTBR0_EL12);	break;
944	case TTBR1_EL1:		*val = read_sysreg_s(SYS_TTBR1_EL12);	break;
945	case TCR_EL1:		*val = read_sysreg_s(SYS_TCR_EL12);	break;
946	case ESR_EL1:		*val = read_sysreg_s(SYS_ESR_EL12);	break;
947	case AFSR0_EL1:		*val = read_sysreg_s(SYS_AFSR0_EL12);	break;
948	case AFSR1_EL1:		*val = read_sysreg_s(SYS_AFSR1_EL12);	break;
949	case FAR_EL1:		*val = read_sysreg_s(SYS_FAR_EL12);	break;
950	case MAIR_EL1:		*val = read_sysreg_s(SYS_MAIR_EL12);	break;
951	case VBAR_EL1:		*val = read_sysreg_s(SYS_VBAR_EL12);	break;
952	case CONTEXTIDR_EL1:	*val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
953	case TPIDR_EL0:		*val = read_sysreg_s(SYS_TPIDR_EL0);	break;
954	case TPIDRRO_EL0:	*val = read_sysreg_s(SYS_TPIDRRO_EL0);	break;
955	case TPIDR_EL1:		*val = read_sysreg_s(SYS_TPIDR_EL1);	break;
956	case AMAIR_EL1:		*val = read_sysreg_s(SYS_AMAIR_EL12);	break;
957	case CNTKCTL_EL1:	*val = read_sysreg_s(SYS_CNTKCTL_EL12);	break;
958	case ELR_EL1:		*val = read_sysreg_s(SYS_ELR_EL12);	break;
959	case SPSR_EL1:		*val = read_sysreg_s(SYS_SPSR_EL12);	break;
960	case PAR_EL1:		*val = read_sysreg_par();		break;
961	case DACR32_EL2:	*val = read_sysreg_s(SYS_DACR32_EL2);	break;
962	case IFSR32_EL2:	*val = read_sysreg_s(SYS_IFSR32_EL2);	break;
963	case DBGVCR32_EL2:	*val = read_sysreg_s(SYS_DBGVCR32_EL2);	break;
964	default:		return false;
965	}
966
967	return true;
968}
969
970static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
971{
972	/*
973	 * *** VHE ONLY ***
974	 *
975	 * System registers listed in the switch are not restored on every
976	 * entry to the guest but are only restored on vcpu_load.
977	 *
978	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
979	 * should never be listed below, because the MPIDR should only be set
980	 * once, before running the VCPU, and never changed later.
981	 */
982	if (!has_vhe())
983		return false;
984
985	switch (reg) {
986	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	break;
987	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	break;
988	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	break;
989	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	break;
990	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	break;
991	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	break;
992	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	break;
993	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	break;
994	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	break;
995	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	break;
996	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	break;
997	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
998	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	break;
999	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	break;
1000	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	break;
1001	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	break;
1002	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	break;
1003	case ELR_EL1:		write_sysreg_s(val, SYS_ELR_EL12);	break;
1004	case SPSR_EL1:		write_sysreg_s(val, SYS_SPSR_EL12);	break;
1005	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	break;
1006	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	break;
1007	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	break;
1008	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	break;
1009	default:		return false;
1010	}
1011
1012	return true;
1013}
1014
1015struct kvm_vm_stat {
1016	struct kvm_vm_stat_generic generic;
1017};
1018
1019struct kvm_vcpu_stat {
1020	struct kvm_vcpu_stat_generic generic;
1021	u64 hvc_exit_stat;
1022	u64 wfe_exit_stat;
1023	u64 wfi_exit_stat;
1024	u64 mmio_exit_user;
1025	u64 mmio_exit_kernel;
1026	u64 signal_exits;
1027	u64 exits;
1028};
1029
1030unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
1031int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
1032int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1033int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
1034
1035unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
1036int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
1037
1038int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1039			      struct kvm_vcpu_events *events);
1040
1041int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1042			      struct kvm_vcpu_events *events);
1043
1044void kvm_arm_halt_guest(struct kvm *kvm);
1045void kvm_arm_resume_guest(struct kvm *kvm);
1046
1047#define vcpu_has_run_once(vcpu)	!!rcu_access_pointer((vcpu)->pid)
1048
1049#ifndef __KVM_NVHE_HYPERVISOR__
1050#define kvm_call_hyp_nvhe(f, ...)						\
1051	({								\
1052		struct arm_smccc_res res;				\
1053									\
1054		arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f),		\
1055				  ##__VA_ARGS__, &res);			\
1056		WARN_ON(res.a0 != SMCCC_RET_SUCCESS);			\
1057									\
1058		res.a1;							\
1059	})
1060
1061/*
1062 * The couple of isb() below are there to guarantee the same behaviour
1063 * on VHE as on !VHE, where the eret to EL1 acts as a context
1064 * synchronization event.
1065 */
1066#define kvm_call_hyp(f, ...)						\
1067	do {								\
1068		if (has_vhe()) {					\
1069			f(__VA_ARGS__);					\
1070			isb();						\
1071		} else {						\
1072			kvm_call_hyp_nvhe(f, ##__VA_ARGS__);		\
1073		}							\
1074	} while(0)
1075
1076#define kvm_call_hyp_ret(f, ...)					\
1077	({								\
1078		typeof(f(__VA_ARGS__)) ret;				\
1079									\
1080		if (has_vhe()) {					\
1081			ret = f(__VA_ARGS__);				\
1082			isb();						\
1083		} else {						\
1084			ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__);	\
1085		}							\
1086									\
1087		ret;							\
1088	})
1089#else /* __KVM_NVHE_HYPERVISOR__ */
1090#define kvm_call_hyp(f, ...) f(__VA_ARGS__)
1091#define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
1092#define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
1093#endif /* __KVM_NVHE_HYPERVISOR__ */
1094
1095int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
1096void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
1097
1098int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
1099int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
1100int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
1101int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
1102int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
1103int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
1104int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
1105
1106void kvm_sys_regs_create_debugfs(struct kvm *kvm);
1107void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
1108
1109int __init kvm_sys_reg_table_init(void);
1110struct sys_reg_desc;
1111int __init populate_sysreg_config(const struct sys_reg_desc *sr,
1112				  unsigned int idx);
1113int __init populate_nv_trap_config(void);
1114
1115bool lock_all_vcpus(struct kvm *kvm);
1116void unlock_all_vcpus(struct kvm *kvm);
1117
1118void kvm_init_sysreg(struct kvm_vcpu *);
1119
1120/* MMIO helpers */
1121void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
1122unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
1123
1124int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
1125int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
1126
1127/*
1128 * Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
1129 * arrived in guest context.  For arm64, any event that arrives while a vCPU is
1130 * loaded is considered to be "in guest".
1131 */
1132static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
1133{
1134	return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
1135}
1136
1137long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
1138gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
1139void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
1140
1141bool kvm_arm_pvtime_supported(void);
1142int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
1143			    struct kvm_device_attr *attr);
1144int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
1145			    struct kvm_device_attr *attr);
1146int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
1147			    struct kvm_device_attr *attr);
1148
1149extern unsigned int __ro_after_init kvm_arm_vmid_bits;
1150int __init kvm_arm_vmid_alloc_init(void);
1151void __init kvm_arm_vmid_alloc_free(void);
1152bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
1153void kvm_arm_vmid_clear_active(void);
1154
1155static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
1156{
1157	vcpu_arch->steal.base = INVALID_GPA;
1158}
1159
1160static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
1161{
1162	return (vcpu_arch->steal.base != INVALID_GPA);
1163}
1164
1165void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
1166
1167struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
1168
1169DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
1170
1171static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
1172{
1173	/* The host's MPIDR is immutable, so let's set it up at boot time */
1174	ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
1175}
1176
1177static inline bool kvm_system_needs_idmapped_vectors(void)
1178{
1179	return cpus_have_final_cap(ARM64_SPECTRE_V3A);
1180}
1181
1182static inline void kvm_arch_sync_events(struct kvm *kvm) {}
1183static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
1184
1185void kvm_arm_init_debug(void);
1186void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
1187void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
1188void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
1189void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
1190
1191#define kvm_vcpu_os_lock_enabled(vcpu)		\
1192	(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
1193
1194int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
1195			       struct kvm_device_attr *attr);
1196int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
1197			       struct kvm_device_attr *attr);
1198int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
1199			       struct kvm_device_attr *attr);
1200
1201int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1202			       struct kvm_arm_copy_mte_tags *copy_tags);
1203int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
1204				    struct kvm_arm_counter_offset *offset);
1205int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
1206					struct reg_mask_range *range);
1207
1208/* Guest/host FPSIMD coordination helpers */
1209int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
1210void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
1211void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
1212void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
1213void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
1214void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu);
1215
1216static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
1217{
1218	return (!has_vhe() && attr->exclude_host);
1219}
1220
1221/* Flags for host debug state */
1222void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
1223void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
1224
1225#ifdef CONFIG_KVM
1226void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
1227void kvm_clr_pmu_events(u32 clr);
1228bool kvm_set_pmuserenr(u64 val);
1229#else
1230static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
1231static inline void kvm_clr_pmu_events(u32 clr) {}
1232static inline bool kvm_set_pmuserenr(u64 val)
1233{
1234	return false;
1235}
1236#endif
1237
1238void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
1239void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
1240
1241int __init kvm_set_ipa_limit(void);
1242
1243#define __KVM_HAVE_ARCH_VM_ALLOC
1244struct kvm *kvm_arch_alloc_vm(void);
1245
1246#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1247
1248#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1249
1250static inline bool kvm_vm_is_protected(struct kvm *kvm)
1251{
1252	return false;
1253}
1254
1255int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
1256bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
1257
1258#define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
1259
1260#define kvm_has_mte(kvm)					\
1261	(system_supports_mte() &&				\
1262	 test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
1263
1264#define kvm_supports_32bit_el0()				\
1265	(system_supports_32bit_el0() &&				\
1266	 !static_branch_unlikely(&arm64_mismatched_32bit_el0))
1267
1268#define kvm_vm_has_ran_once(kvm)					\
1269	(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
1270
1271static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
1272{
1273	return test_bit(feature, ka->vcpu_features);
1274}
1275
1276#define vcpu_has_feature(v, f)	__vcpu_has_feature(&(v)->kvm->arch, (f))
1277
1278int kvm_trng_call(struct kvm_vcpu *vcpu);
1279#ifdef CONFIG_KVM
1280extern phys_addr_t hyp_mem_base;
1281extern phys_addr_t hyp_mem_size;
1282void __init kvm_hyp_reserve(void);
1283#else
1284static inline void kvm_hyp_reserve(void) { }
1285#endif
1286
1287void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
1288bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
1289
1290#define __expand_field_sign_unsigned(id, fld, val)			\
1291	((u64)SYS_FIELD_VALUE(id, fld, val))
1292
1293#define __expand_field_sign_signed(id, fld, val)			\
1294	({								\
1295		u64 __val = SYS_FIELD_VALUE(id, fld, val);		\
1296		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1297	})
1298
1299#define expand_field_sign(id, fld, val)					\
1300	(id##_##fld##_SIGNED ?						\
1301	 __expand_field_sign_signed(id, fld, val) :			\
1302	 __expand_field_sign_unsigned(id, fld, val))
1303
1304#define get_idreg_field_unsigned(kvm, id, fld)				\
1305	({								\
1306		u64 __val = IDREG((kvm), SYS_##id);			\
1307		FIELD_GET(id##_##fld##_MASK, __val);			\
1308	})
1309
1310#define get_idreg_field_signed(kvm, id, fld)				\
1311	({								\
1312		u64 __val = get_idreg_field_unsigned(kvm, id, fld);	\
1313		sign_extend64(__val, id##_##fld##_WIDTH - 1);		\
1314	})
1315
1316#define get_idreg_field_enum(kvm, id, fld)				\
1317	get_idreg_field_unsigned(kvm, id, fld)
1318
1319#define get_idreg_field(kvm, id, fld)					\
1320	(id##_##fld##_SIGNED ?						\
1321	 get_idreg_field_signed(kvm, id, fld) :				\
1322	 get_idreg_field_unsigned(kvm, id, fld))
1323
1324#define kvm_has_feat(kvm, id, fld, limit)				\
1325	(get_idreg_field((kvm), id, fld) >= expand_field_sign(id, fld, limit))
1326
1327#define kvm_has_feat_enum(kvm, id, fld, val)				\
1328	(get_idreg_field_unsigned((kvm), id, fld) == __expand_field_sign_unsigned(id, fld, val))
1329
1330#define kvm_has_feat_range(kvm, id, fld, min, max)			\
1331	(get_idreg_field((kvm), id, fld) >= expand_field_sign(id, fld, min) && \
1332	 get_idreg_field((kvm), id, fld) <= expand_field_sign(id, fld, max))
1333
1334#endif /* __ARM64_KVM_HOST_H__ */
1335