1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7#ifndef __ARM64_KVM_ARM_H__
8#define __ARM64_KVM_ARM_H__
9
10#include <asm/esr.h>
11#include <asm/memory.h>
12#include <asm/sysreg.h>
13#include <asm/types.h>
14
15/* Hyp Configuration Register (HCR) bits */
16
17#define HCR_TID5	(UL(1) << 58)
18#define HCR_DCT		(UL(1) << 57)
19#define HCR_ATA_SHIFT	56
20#define HCR_ATA		(UL(1) << HCR_ATA_SHIFT)
21#define HCR_TTLBOS	(UL(1) << 55)
22#define HCR_TTLBIS	(UL(1) << 54)
23#define HCR_ENSCXT	(UL(1) << 53)
24#define HCR_TOCU	(UL(1) << 52)
25#define HCR_AMVOFFEN	(UL(1) << 51)
26#define HCR_TICAB	(UL(1) << 50)
27#define HCR_TID4	(UL(1) << 49)
28#define HCR_FIEN	(UL(1) << 47)
29#define HCR_FWB		(UL(1) << 46)
30#define HCR_NV2		(UL(1) << 45)
31#define HCR_AT		(UL(1) << 44)
32#define HCR_NV1		(UL(1) << 43)
33#define HCR_NV		(UL(1) << 42)
34#define HCR_API		(UL(1) << 41)
35#define HCR_APK		(UL(1) << 40)
36#define HCR_TEA		(UL(1) << 37)
37#define HCR_TERR	(UL(1) << 36)
38#define HCR_TLOR	(UL(1) << 35)
39#define HCR_E2H		(UL(1) << 34)
40#define HCR_ID		(UL(1) << 33)
41#define HCR_CD		(UL(1) << 32)
42#define HCR_RW_SHIFT	31
43#define HCR_RW		(UL(1) << HCR_RW_SHIFT)
44#define HCR_TRVM	(UL(1) << 30)
45#define HCR_HCD		(UL(1) << 29)
46#define HCR_TDZ		(UL(1) << 28)
47#define HCR_TGE		(UL(1) << 27)
48#define HCR_TVM		(UL(1) << 26)
49#define HCR_TTLB	(UL(1) << 25)
50#define HCR_TPU		(UL(1) << 24)
51#define HCR_TPC		(UL(1) << 23) /* HCR_TPCP if FEAT_DPB */
52#define HCR_TSW		(UL(1) << 22)
53#define HCR_TACR	(UL(1) << 21)
54#define HCR_TIDCP	(UL(1) << 20)
55#define HCR_TSC		(UL(1) << 19)
56#define HCR_TID3	(UL(1) << 18)
57#define HCR_TID2	(UL(1) << 17)
58#define HCR_TID1	(UL(1) << 16)
59#define HCR_TID0	(UL(1) << 15)
60#define HCR_TWE		(UL(1) << 14)
61#define HCR_TWI		(UL(1) << 13)
62#define HCR_DC		(UL(1) << 12)
63#define HCR_BSU		(3 << 10)
64#define HCR_BSU_IS	(UL(1) << 10)
65#define HCR_FB		(UL(1) << 9)
66#define HCR_VSE		(UL(1) << 8)
67#define HCR_VI		(UL(1) << 7)
68#define HCR_VF		(UL(1) << 6)
69#define HCR_AMO		(UL(1) << 5)
70#define HCR_IMO		(UL(1) << 4)
71#define HCR_FMO		(UL(1) << 3)
72#define HCR_PTW		(UL(1) << 2)
73#define HCR_SWIO	(UL(1) << 1)
74#define HCR_VM		(UL(1) << 0)
75#define HCR_RES0	((UL(1) << 48) | (UL(1) << 39))
76
77/*
78 * The bits we set in HCR:
79 * TLOR:	Trap LORegion register accesses
80 * RW:		64bit by default, can be overridden for 32bit VMs
81 * TACR:	Trap ACTLR
82 * TSC:		Trap SMC
83 * TSW:		Trap cache operations by set/way
84 * TWE:		Trap WFE
85 * TWI:		Trap WFI
86 * TIDCP:	Trap L2CTLR/L2ECTLR
87 * BSU_IS:	Upgrade barriers to the inner shareable domain
88 * FB:		Force broadcast of all maintenance operations
89 * AMO:		Override CPSR.A and enable signaling with VA
90 * IMO:		Override CPSR.I and enable signaling with VI
91 * FMO:		Override CPSR.F and enable signaling with VF
92 * SWIO:	Turn set/way invalidates into set/way clean+invalidate
93 * PTW:		Take a stage2 fault if a stage1 walk steps in device memory
94 * TID3:	Trap EL1 reads of group 3 ID registers
95 * TID2:	Trap CTR_EL0, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1
96 */
97#define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
98			 HCR_BSU_IS | HCR_FB | HCR_TACR | \
99			 HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
100			 HCR_FMO | HCR_IMO | HCR_PTW | HCR_TID3)
101#define HCR_HOST_NVHE_FLAGS (HCR_RW | HCR_API | HCR_APK | HCR_ATA)
102#define HCR_HOST_NVHE_PROTECTED_FLAGS (HCR_HOST_NVHE_FLAGS | HCR_TSC)
103#define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
104
105#define HCRX_GUEST_FLAGS (HCRX_EL2_SMPME | HCRX_EL2_TCR2En)
106#define HCRX_HOST_FLAGS (HCRX_EL2_MSCEn | HCRX_EL2_TCR2En | HCRX_EL2_EnFPM)
107
108/* TCR_EL2 Registers bits */
109#define TCR_EL2_DS		(1UL << 32)
110#define TCR_EL2_RES1		((1U << 31) | (1 << 23))
111#define TCR_EL2_TBI		(1 << 20)
112#define TCR_EL2_PS_SHIFT	16
113#define TCR_EL2_PS_MASK		(7 << TCR_EL2_PS_SHIFT)
114#define TCR_EL2_PS_40B		(2 << TCR_EL2_PS_SHIFT)
115#define TCR_EL2_TG0_MASK	TCR_TG0_MASK
116#define TCR_EL2_SH0_MASK	TCR_SH0_MASK
117#define TCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
118#define TCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
119#define TCR_EL2_T0SZ_MASK	0x3f
120#define TCR_EL2_MASK	(TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
121			 TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
122
123/* VTCR_EL2 Registers bits */
124#define VTCR_EL2_DS		TCR_EL2_DS
125#define VTCR_EL2_RES1		(1U << 31)
126#define VTCR_EL2_HD		(1 << 22)
127#define VTCR_EL2_HA		(1 << 21)
128#define VTCR_EL2_PS_SHIFT	TCR_EL2_PS_SHIFT
129#define VTCR_EL2_PS_MASK	TCR_EL2_PS_MASK
130#define VTCR_EL2_TG0_MASK	TCR_TG0_MASK
131#define VTCR_EL2_TG0_4K		TCR_TG0_4K
132#define VTCR_EL2_TG0_16K	TCR_TG0_16K
133#define VTCR_EL2_TG0_64K	TCR_TG0_64K
134#define VTCR_EL2_SH0_MASK	TCR_SH0_MASK
135#define VTCR_EL2_SH0_INNER	TCR_SH0_INNER
136#define VTCR_EL2_ORGN0_MASK	TCR_ORGN0_MASK
137#define VTCR_EL2_ORGN0_WBWA	TCR_ORGN0_WBWA
138#define VTCR_EL2_IRGN0_MASK	TCR_IRGN0_MASK
139#define VTCR_EL2_IRGN0_WBWA	TCR_IRGN0_WBWA
140#define VTCR_EL2_SL0_SHIFT	6
141#define VTCR_EL2_SL0_MASK	(3 << VTCR_EL2_SL0_SHIFT)
142#define VTCR_EL2_T0SZ_MASK	0x3f
143#define VTCR_EL2_VS_SHIFT	19
144#define VTCR_EL2_VS_8BIT	(0 << VTCR_EL2_VS_SHIFT)
145#define VTCR_EL2_VS_16BIT	(1 << VTCR_EL2_VS_SHIFT)
146
147#define VTCR_EL2_T0SZ(x)	TCR_T0SZ(x)
148
149/*
150 * We configure the Stage-2 page tables to always restrict the IPA space to be
151 * 40 bits wide (T0SZ = 24).  Systems with a PARange smaller than 40 bits are
152 * not known to exist and will break with this configuration.
153 *
154 * The VTCR_EL2 is configured per VM and is initialised in kvm_init_stage2_mmu.
155 *
156 * Note that when using 4K pages, we concatenate two first level page tables
157 * together. With 16K pages, we concatenate 16 first level page tables.
158 *
159 */
160
161#define VTCR_EL2_COMMON_BITS	(VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
162				 VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
163
164/*
165 * VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
166 * Interestingly, it depends on the page size.
167 * See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
168 *
169 *	-----------------------------------------
170 *	| Entry level		|  4K  | 16K/64K |
171 *	------------------------------------------
172 *	| Level: 0		|  2   |   -     |
173 *	------------------------------------------
174 *	| Level: 1		|  1   |   2     |
175 *	------------------------------------------
176 *	| Level: 2		|  0   |   1     |
177 *	------------------------------------------
178 *	| Level: 3		|  -   |   0     |
179 *	------------------------------------------
180 *
181 * The table roughly translates to :
182 *
183 *	SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
184 *
185 * Where TGRAN_SL0_BASE is a magic number depending on the page size:
186 * 	TGRAN_SL0_BASE(4K) = 2
187 *	TGRAN_SL0_BASE(16K) = 3
188 *	TGRAN_SL0_BASE(64K) = 3
189 * provided we take care of ruling out the unsupported cases and
190 * Entry_Level = 4 - Number_of_levels.
191 *
192 */
193#ifdef CONFIG_ARM64_64K_PAGES
194
195#define VTCR_EL2_TGRAN			VTCR_EL2_TG0_64K
196#define VTCR_EL2_TGRAN_SL0_BASE		3UL
197
198#elif defined(CONFIG_ARM64_16K_PAGES)
199
200#define VTCR_EL2_TGRAN			VTCR_EL2_TG0_16K
201#define VTCR_EL2_TGRAN_SL0_BASE		3UL
202
203#else	/* 4K */
204
205#define VTCR_EL2_TGRAN			VTCR_EL2_TG0_4K
206#define VTCR_EL2_TGRAN_SL0_BASE		2UL
207
208#endif
209
210#define VTCR_EL2_LVLS_TO_SL0(levels)	\
211	((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
212#define VTCR_EL2_SL0_TO_LVLS(sl0)	\
213	((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
214#define VTCR_EL2_LVLS(vtcr)		\
215	VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
216
217#define VTCR_EL2_FLAGS			(VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
218#define VTCR_EL2_IPA(vtcr)		(64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
219
220/*
221 * ARM VMSAv8-64 defines an algorithm for finding the translation table
222 * descriptors in section D4.2.8 in ARM DDI 0487C.a.
223 *
224 * The algorithm defines the expectations on the translation table
225 * addresses for each level, based on PAGE_SIZE, entry level
226 * and the translation table size (T0SZ). The variable "x" in the
227 * algorithm determines the alignment of a table base address at a given
228 * level and thus determines the alignment of VTTBR:BADDR for stage2
229 * page table entry level.
230 * Since the number of bits resolved at the entry level could vary
231 * depending on the T0SZ, the value of "x" is defined based on a
232 * Magic constant for a given PAGE_SIZE and Entry Level. The
233 * intermediate levels must be always aligned to the PAGE_SIZE (i.e,
234 * x = PAGE_SHIFT).
235 *
236 * The value of "x" for entry level is calculated as :
237 *    x = Magic_N - T0SZ
238 *
239 * where Magic_N is an integer depending on the page size and the entry
240 * level of the page table as below:
241 *
242 *	--------------------------------------------
243 *	| Entry level		|  4K    16K   64K |
244 *	--------------------------------------------
245 *	| Level: 0 (4 levels)	| 28   |  -  |  -  |
246 *	--------------------------------------------
247 *	| Level: 1 (3 levels)	| 37   | 31  | 25  |
248 *	--------------------------------------------
249 *	| Level: 2 (2 levels)	| 46   | 42  | 38  |
250 *	--------------------------------------------
251 *	| Level: 3 (1 level)	| -    | 53  | 51  |
252 *	--------------------------------------------
253 *
254 * We have a magic formula for the Magic_N below:
255 *
256 *  Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
257 *
258 * where Number_of_levels = (4 - Level). We are only interested in the
259 * value for Entry_Level for the stage2 page table.
260 *
261 * So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
262 *
263 *	x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
264 *	  = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
265 *
266 * Here is one way to explain the Magic Formula:
267 *
268 *  x = log2(Size_of_Entry_Level_Table)
269 *
270 * Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
271 * PAGE_SHIFT bits in the PTE, we have :
272 *
273 *  Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
274 *		     = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
275 *  where n = number of levels, and since each pointer is 8bytes, we have:
276 *
277 *  x = Bits_Entry_Level + 3
278 *    = IPA_SHIFT - (PAGE_SHIFT - 3) * n
279 *
280 * The only constraint here is that, we have to find the number of page table
281 * levels for a given IPA size (which we do, see stage2_pt_levels())
282 */
283#define ARM64_VTTBR_X(ipa, levels)	((ipa) - ((levels) * (PAGE_SHIFT - 3)))
284
285#define VTTBR_CNP_BIT     (UL(1))
286#define VTTBR_VMID_SHIFT  (UL(48))
287#define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
288
289/* Hyp System Trap Register */
290#define HSTR_EL2_T(x)	(1 << x)
291
292/* Hyp Coprocessor Trap Register Shifts */
293#define CPTR_EL2_TFP_SHIFT 10
294
295/* Hyp Coprocessor Trap Register */
296#define CPTR_EL2_TCPAC	(1U << 31)
297#define CPTR_EL2_TAM	(1 << 30)
298#define CPTR_EL2_TTA	(1 << 20)
299#define CPTR_EL2_TSM	(1 << 12)
300#define CPTR_EL2_TFP	(1 << CPTR_EL2_TFP_SHIFT)
301#define CPTR_EL2_TZ	(1 << 8)
302#define CPTR_NVHE_EL2_RES1	0x000032ff /* known RES1 bits in CPTR_EL2 (nVHE) */
303#define CPTR_NVHE_EL2_RES0	(GENMASK(63, 32) |	\
304				 GENMASK(29, 21) |	\
305				 GENMASK(19, 14) |	\
306				 BIT(11))
307
308/* Hyp Debug Configuration Register bits */
309#define MDCR_EL2_E2TB_MASK	(UL(0x3))
310#define MDCR_EL2_E2TB_SHIFT	(UL(24))
311#define MDCR_EL2_HPMFZS		(UL(1) << 36)
312#define MDCR_EL2_HPMFZO		(UL(1) << 29)
313#define MDCR_EL2_MTPME		(UL(1) << 28)
314#define MDCR_EL2_TDCC		(UL(1) << 27)
315#define MDCR_EL2_HLP		(UL(1) << 26)
316#define MDCR_EL2_HCCD		(UL(1) << 23)
317#define MDCR_EL2_TTRF		(UL(1) << 19)
318#define MDCR_EL2_HPMD		(UL(1) << 17)
319#define MDCR_EL2_TPMS		(UL(1) << 14)
320#define MDCR_EL2_E2PB_MASK	(UL(0x3))
321#define MDCR_EL2_E2PB_SHIFT	(UL(12))
322#define MDCR_EL2_TDRA		(UL(1) << 11)
323#define MDCR_EL2_TDOSA		(UL(1) << 10)
324#define MDCR_EL2_TDA		(UL(1) << 9)
325#define MDCR_EL2_TDE		(UL(1) << 8)
326#define MDCR_EL2_HPME		(UL(1) << 7)
327#define MDCR_EL2_TPM		(UL(1) << 6)
328#define MDCR_EL2_TPMCR		(UL(1) << 5)
329#define MDCR_EL2_HPMN_MASK	(UL(0x1F))
330#define MDCR_EL2_RES0		(GENMASK(63, 37) |	\
331				 GENMASK(35, 30) |	\
332				 GENMASK(25, 24) |	\
333				 GENMASK(22, 20) |	\
334				 BIT(18) |		\
335				 GENMASK(16, 15))
336
337/*
338 * FGT register definitions
339 *
340 * RES0 and polarity masks as of DDI0487J.a, to be updated as needed.
341 * We're not using the generated masks as they are usually ahead of
342 * the published ARM ARM, which we use as a reference.
343 *
344 * Once we get to a point where the two describe the same thing, we'll
345 * merge the definitions. One day.
346 */
347#define __HFGRTR_EL2_RES0	HFGxTR_EL2_RES0
348#define __HFGRTR_EL2_MASK	GENMASK(49, 0)
349#define __HFGRTR_EL2_nMASK	~(__HFGRTR_EL2_RES0 | __HFGRTR_EL2_MASK)
350
351/*
352 * The HFGWTR bits are a subset of HFGRTR bits. To ensure we don't miss any
353 * future additions, define __HFGWTR* macros relative to __HFGRTR* ones.
354 */
355#define __HFGRTR_ONLY_MASK	(BIT(46) | BIT(42) | BIT(40) | BIT(28) | \
356				 GENMASK(26, 25) | BIT(21) | BIT(18) | \
357				 GENMASK(15, 14) | GENMASK(10, 9) | BIT(2))
358#define __HFGWTR_EL2_RES0	(__HFGRTR_EL2_RES0 | __HFGRTR_ONLY_MASK)
359#define __HFGWTR_EL2_MASK	(__HFGRTR_EL2_MASK & ~__HFGRTR_ONLY_MASK)
360#define __HFGWTR_EL2_nMASK	~(__HFGWTR_EL2_RES0 | __HFGWTR_EL2_MASK)
361
362#define __HFGITR_EL2_RES0	HFGITR_EL2_RES0
363#define __HFGITR_EL2_MASK	(BIT(62) | BIT(60) | GENMASK(54, 0))
364#define __HFGITR_EL2_nMASK	~(__HFGITR_EL2_RES0 | __HFGITR_EL2_MASK)
365
366#define __HDFGRTR_EL2_RES0	HDFGRTR_EL2_RES0
367#define __HDFGRTR_EL2_MASK	(BIT(63) | GENMASK(58, 50) | GENMASK(48, 43) | \
368				 GENMASK(41, 40) | GENMASK(37, 22) | \
369				 GENMASK(19, 9) | GENMASK(7, 0))
370#define __HDFGRTR_EL2_nMASK	~(__HDFGRTR_EL2_RES0 | __HDFGRTR_EL2_MASK)
371
372#define __HDFGWTR_EL2_RES0	HDFGWTR_EL2_RES0
373#define __HDFGWTR_EL2_MASK	(GENMASK(57, 52) | GENMASK(50, 48) | \
374				 GENMASK(46, 44) | GENMASK(42, 41) | \
375				 GENMASK(37, 35) | GENMASK(33, 31) | \
376				 GENMASK(29, 23) | GENMASK(21, 10) | \
377				 GENMASK(8, 7) | GENMASK(5, 0))
378#define __HDFGWTR_EL2_nMASK	~(__HDFGWTR_EL2_RES0 | __HDFGWTR_EL2_MASK)
379
380#define __HAFGRTR_EL2_RES0	HAFGRTR_EL2_RES0
381#define __HAFGRTR_EL2_MASK	(GENMASK(49, 17) | GENMASK(4, 0))
382#define __HAFGRTR_EL2_nMASK	~(__HAFGRTR_EL2_RES0 | __HAFGRTR_EL2_MASK)
383
384/* Similar definitions for HCRX_EL2 */
385#define __HCRX_EL2_RES0         HCRX_EL2_RES0
386#define __HCRX_EL2_MASK		(BIT(6))
387#define __HCRX_EL2_nMASK	~(__HCRX_EL2_RES0 | __HCRX_EL2_MASK)
388
389/* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
390#define HPFAR_MASK	(~UL(0xf))
391/*
392 * We have
393 *	PAR	[PA_Shift - 1	: 12] = PA	[PA_Shift - 1 : 12]
394 *	HPFAR	[PA_Shift - 9	: 4]  = FIPA	[PA_Shift - 1 : 12]
395 *
396 * Always assume 52 bit PA since at this point, we don't know how many PA bits
397 * the page table has been set up for. This should be safe since unused address
398 * bits in PAR are res0.
399 */
400#define PAR_TO_HPFAR(par)		\
401	(((par) & GENMASK_ULL(52 - 1, 12)) >> 8)
402
403#define ECN(x) { ESR_ELx_EC_##x, #x }
404
405#define kvm_arm_exception_class \
406	ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
407	ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(PAC), ECN(CP14_64), \
408	ECN(SVC64), ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(SVE), \
409	ECN(IMP_DEF), ECN(IABT_LOW), ECN(IABT_CUR), \
410	ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
411	ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
412	ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
413	ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
414	ECN(BKPT32), ECN(VECTOR32), ECN(BRK64), ECN(ERET)
415
416#define CPACR_EL1_TTA		(1 << 28)
417
418#define kvm_mode_names				\
419	{ PSR_MODE_EL0t,	"EL0t" },	\
420	{ PSR_MODE_EL1t,	"EL1t" },	\
421	{ PSR_MODE_EL1h,	"EL1h" },	\
422	{ PSR_MODE_EL2t,	"EL2t" },	\
423	{ PSR_MODE_EL2h,	"EL2h" },	\
424	{ PSR_MODE_EL3t,	"EL3t" },	\
425	{ PSR_MODE_EL3h,	"EL3h" },	\
426	{ PSR_AA32_MODE_USR,	"32-bit USR" },	\
427	{ PSR_AA32_MODE_FIQ,	"32-bit FIQ" },	\
428	{ PSR_AA32_MODE_IRQ,	"32-bit IRQ" },	\
429	{ PSR_AA32_MODE_SVC,	"32-bit SVC" },	\
430	{ PSR_AA32_MODE_ABT,	"32-bit ABT" },	\
431	{ PSR_AA32_MODE_HYP,	"32-bit HYP" },	\
432	{ PSR_AA32_MODE_UND,	"32-bit UND" },	\
433	{ PSR_AA32_MODE_SYS,	"32-bit SYS" }
434
435#endif /* __ARM64_KVM_ARM_H__ */
436