1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Accelerated GHASH implementation with ARMv8 PMULL instructions.
4 *
5 * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
6 */
7
8#include <asm/neon.h>
9#include <asm/simd.h>
10#include <asm/unaligned.h>
11#include <crypto/aes.h>
12#include <crypto/gcm.h>
13#include <crypto/algapi.h>
14#include <crypto/b128ops.h>
15#include <crypto/gf128mul.h>
16#include <crypto/internal/aead.h>
17#include <crypto/internal/hash.h>
18#include <crypto/internal/simd.h>
19#include <crypto/internal/skcipher.h>
20#include <crypto/scatterwalk.h>
21#include <linux/cpufeature.h>
22#include <linux/crypto.h>
23#include <linux/module.h>
24
25MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
26MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
27MODULE_LICENSE("GPL v2");
28MODULE_ALIAS_CRYPTO("ghash");
29
30#define GHASH_BLOCK_SIZE	16
31#define GHASH_DIGEST_SIZE	16
32
33#define RFC4106_NONCE_SIZE	4
34
35struct ghash_key {
36	be128			k;
37	u64			h[][2];
38};
39
40struct ghash_desc_ctx {
41	u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
42	u8 buf[GHASH_BLOCK_SIZE];
43	u32 count;
44};
45
46struct gcm_aes_ctx {
47	struct crypto_aes_ctx	aes_key;
48	u8			nonce[RFC4106_NONCE_SIZE];
49	struct ghash_key	ghash_key;
50};
51
52asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
53				       u64 const h[][2], const char *head);
54
55asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
56				      u64 const h[][2], const char *head);
57
58asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[],
59				  u64 const h[][2], u64 dg[], u8 ctr[],
60				  u32 const rk[], int rounds, u8 tag[]);
61asmlinkage int pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[],
62				 u64 const h[][2], u64 dg[], u8 ctr[],
63				 u32 const rk[], int rounds, const u8 l[],
64				 const u8 tag[], u64 authsize);
65
66static int ghash_init(struct shash_desc *desc)
67{
68	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
69
70	*ctx = (struct ghash_desc_ctx){};
71	return 0;
72}
73
74static void ghash_do_update(int blocks, u64 dg[], const char *src,
75			    struct ghash_key *key, const char *head)
76{
77	be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
78
79	do {
80		const u8 *in = src;
81
82		if (head) {
83			in = head;
84			blocks++;
85			head = NULL;
86		} else {
87			src += GHASH_BLOCK_SIZE;
88		}
89
90		crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
91		gf128mul_lle(&dst, &key->k);
92	} while (--blocks);
93
94	dg[0] = be64_to_cpu(dst.b);
95	dg[1] = be64_to_cpu(dst.a);
96}
97
98static __always_inline
99void ghash_do_simd_update(int blocks, u64 dg[], const char *src,
100			  struct ghash_key *key, const char *head,
101			  void (*simd_update)(int blocks, u64 dg[],
102					      const char *src,
103					      u64 const h[][2],
104					      const char *head))
105{
106	if (likely(crypto_simd_usable())) {
107		kernel_neon_begin();
108		simd_update(blocks, dg, src, key->h, head);
109		kernel_neon_end();
110	} else {
111		ghash_do_update(blocks, dg, src, key, head);
112	}
113}
114
115/* avoid hogging the CPU for too long */
116#define MAX_BLOCKS	(SZ_64K / GHASH_BLOCK_SIZE)
117
118static int ghash_update(struct shash_desc *desc, const u8 *src,
119			unsigned int len)
120{
121	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
122	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
123
124	ctx->count += len;
125
126	if ((partial + len) >= GHASH_BLOCK_SIZE) {
127		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
128		int blocks;
129
130		if (partial) {
131			int p = GHASH_BLOCK_SIZE - partial;
132
133			memcpy(ctx->buf + partial, src, p);
134			src += p;
135			len -= p;
136		}
137
138		blocks = len / GHASH_BLOCK_SIZE;
139		len %= GHASH_BLOCK_SIZE;
140
141		do {
142			int chunk = min(blocks, MAX_BLOCKS);
143
144			ghash_do_simd_update(chunk, ctx->digest, src, key,
145					     partial ? ctx->buf : NULL,
146					     pmull_ghash_update_p8);
147
148			blocks -= chunk;
149			src += chunk * GHASH_BLOCK_SIZE;
150			partial = 0;
151		} while (unlikely(blocks > 0));
152	}
153	if (len)
154		memcpy(ctx->buf + partial, src, len);
155	return 0;
156}
157
158static int ghash_final(struct shash_desc *desc, u8 *dst)
159{
160	struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
161	unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
162
163	if (partial) {
164		struct ghash_key *key = crypto_shash_ctx(desc->tfm);
165
166		memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
167
168		ghash_do_simd_update(1, ctx->digest, ctx->buf, key, NULL,
169				     pmull_ghash_update_p8);
170	}
171	put_unaligned_be64(ctx->digest[1], dst);
172	put_unaligned_be64(ctx->digest[0], dst + 8);
173
174	memzero_explicit(ctx, sizeof(*ctx));
175	return 0;
176}
177
178static void ghash_reflect(u64 h[], const be128 *k)
179{
180	u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
181
182	h[0] = (be64_to_cpu(k->b) << 1) | carry;
183	h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
184
185	if (carry)
186		h[1] ^= 0xc200000000000000UL;
187}
188
189static int ghash_setkey(struct crypto_shash *tfm,
190			const u8 *inkey, unsigned int keylen)
191{
192	struct ghash_key *key = crypto_shash_ctx(tfm);
193
194	if (keylen != GHASH_BLOCK_SIZE)
195		return -EINVAL;
196
197	/* needed for the fallback */
198	memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
199
200	ghash_reflect(key->h[0], &key->k);
201	return 0;
202}
203
204static struct shash_alg ghash_alg = {
205	.base.cra_name		= "ghash",
206	.base.cra_driver_name	= "ghash-neon",
207	.base.cra_priority	= 150,
208	.base.cra_blocksize	= GHASH_BLOCK_SIZE,
209	.base.cra_ctxsize	= sizeof(struct ghash_key) + sizeof(u64[2]),
210	.base.cra_module	= THIS_MODULE,
211
212	.digestsize		= GHASH_DIGEST_SIZE,
213	.init			= ghash_init,
214	.update			= ghash_update,
215	.final			= ghash_final,
216	.setkey			= ghash_setkey,
217	.descsize		= sizeof(struct ghash_desc_ctx),
218};
219
220static int num_rounds(struct crypto_aes_ctx *ctx)
221{
222	/*
223	 * # of rounds specified by AES:
224	 * 128 bit key		10 rounds
225	 * 192 bit key		12 rounds
226	 * 256 bit key		14 rounds
227	 * => n byte key	=> 6 + (n/4) rounds
228	 */
229	return 6 + ctx->key_length / 4;
230}
231
232static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
233			  unsigned int keylen)
234{
235	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
236	u8 key[GHASH_BLOCK_SIZE];
237	be128 h;
238	int ret;
239
240	ret = aes_expandkey(&ctx->aes_key, inkey, keylen);
241	if (ret)
242		return -EINVAL;
243
244	aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
245
246	/* needed for the fallback */
247	memcpy(&ctx->ghash_key.k, key, GHASH_BLOCK_SIZE);
248
249	ghash_reflect(ctx->ghash_key.h[0], &ctx->ghash_key.k);
250
251	h = ctx->ghash_key.k;
252	gf128mul_lle(&h, &ctx->ghash_key.k);
253	ghash_reflect(ctx->ghash_key.h[1], &h);
254
255	gf128mul_lle(&h, &ctx->ghash_key.k);
256	ghash_reflect(ctx->ghash_key.h[2], &h);
257
258	gf128mul_lle(&h, &ctx->ghash_key.k);
259	ghash_reflect(ctx->ghash_key.h[3], &h);
260
261	return 0;
262}
263
264static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
265{
266	return crypto_gcm_check_authsize(authsize);
267}
268
269static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
270			   int *buf_count, struct gcm_aes_ctx *ctx)
271{
272	if (*buf_count > 0) {
273		int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
274
275		memcpy(&buf[*buf_count], src, buf_added);
276
277		*buf_count += buf_added;
278		src += buf_added;
279		count -= buf_added;
280	}
281
282	if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
283		int blocks = count / GHASH_BLOCK_SIZE;
284
285		ghash_do_simd_update(blocks, dg, src, &ctx->ghash_key,
286				     *buf_count ? buf : NULL,
287				     pmull_ghash_update_p64);
288
289		src += blocks * GHASH_BLOCK_SIZE;
290		count %= GHASH_BLOCK_SIZE;
291		*buf_count = 0;
292	}
293
294	if (count > 0) {
295		memcpy(buf, src, count);
296		*buf_count = count;
297	}
298}
299
300static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
301{
302	struct crypto_aead *aead = crypto_aead_reqtfm(req);
303	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
304	u8 buf[GHASH_BLOCK_SIZE];
305	struct scatter_walk walk;
306	int buf_count = 0;
307
308	scatterwalk_start(&walk, req->src);
309
310	do {
311		u32 n = scatterwalk_clamp(&walk, len);
312		u8 *p;
313
314		if (!n) {
315			scatterwalk_start(&walk, sg_next(walk.sg));
316			n = scatterwalk_clamp(&walk, len);
317		}
318		p = scatterwalk_map(&walk);
319
320		gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
321		len -= n;
322
323		scatterwalk_unmap(p);
324		scatterwalk_advance(&walk, n);
325		scatterwalk_done(&walk, 0, len);
326	} while (len);
327
328	if (buf_count) {
329		memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
330		ghash_do_simd_update(1, dg, buf, &ctx->ghash_key, NULL,
331				     pmull_ghash_update_p64);
332	}
333}
334
335static int gcm_encrypt(struct aead_request *req, char *iv, int assoclen)
336{
337	struct crypto_aead *aead = crypto_aead_reqtfm(req);
338	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
339	int nrounds = num_rounds(&ctx->aes_key);
340	struct skcipher_walk walk;
341	u8 buf[AES_BLOCK_SIZE];
342	u64 dg[2] = {};
343	be128 lengths;
344	u8 *tag;
345	int err;
346
347	lengths.a = cpu_to_be64(assoclen * 8);
348	lengths.b = cpu_to_be64(req->cryptlen * 8);
349
350	if (assoclen)
351		gcm_calculate_auth_mac(req, dg, assoclen);
352
353	put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
354
355	err = skcipher_walk_aead_encrypt(&walk, req, false);
356
357	do {
358		const u8 *src = walk.src.virt.addr;
359		u8 *dst = walk.dst.virt.addr;
360		int nbytes = walk.nbytes;
361
362		tag = (u8 *)&lengths;
363
364		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
365			src = dst = memcpy(buf + sizeof(buf) - nbytes,
366					   src, nbytes);
367		} else if (nbytes < walk.total) {
368			nbytes &= ~(AES_BLOCK_SIZE - 1);
369			tag = NULL;
370		}
371
372		kernel_neon_begin();
373		pmull_gcm_encrypt(nbytes, dst, src, ctx->ghash_key.h,
374				  dg, iv, ctx->aes_key.key_enc, nrounds,
375				  tag);
376		kernel_neon_end();
377
378		if (unlikely(!nbytes))
379			break;
380
381		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
382			memcpy(walk.dst.virt.addr,
383			       buf + sizeof(buf) - nbytes, nbytes);
384
385		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
386	} while (walk.nbytes);
387
388	if (err)
389		return err;
390
391	/* copy authtag to end of dst */
392	scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
393				 crypto_aead_authsize(aead), 1);
394
395	return 0;
396}
397
398static int gcm_decrypt(struct aead_request *req, char *iv, int assoclen)
399{
400	struct crypto_aead *aead = crypto_aead_reqtfm(req);
401	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
402	unsigned int authsize = crypto_aead_authsize(aead);
403	int nrounds = num_rounds(&ctx->aes_key);
404	struct skcipher_walk walk;
405	u8 otag[AES_BLOCK_SIZE];
406	u8 buf[AES_BLOCK_SIZE];
407	u64 dg[2] = {};
408	be128 lengths;
409	u8 *tag;
410	int ret;
411	int err;
412
413	lengths.a = cpu_to_be64(assoclen * 8);
414	lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
415
416	if (assoclen)
417		gcm_calculate_auth_mac(req, dg, assoclen);
418
419	put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
420
421	scatterwalk_map_and_copy(otag, req->src,
422				 req->assoclen + req->cryptlen - authsize,
423				 authsize, 0);
424
425	err = skcipher_walk_aead_decrypt(&walk, req, false);
426
427	do {
428		const u8 *src = walk.src.virt.addr;
429		u8 *dst = walk.dst.virt.addr;
430		int nbytes = walk.nbytes;
431
432		tag = (u8 *)&lengths;
433
434		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
435			src = dst = memcpy(buf + sizeof(buf) - nbytes,
436					   src, nbytes);
437		} else if (nbytes < walk.total) {
438			nbytes &= ~(AES_BLOCK_SIZE - 1);
439			tag = NULL;
440		}
441
442		kernel_neon_begin();
443		ret = pmull_gcm_decrypt(nbytes, dst, src, ctx->ghash_key.h,
444					dg, iv, ctx->aes_key.key_enc,
445					nrounds, tag, otag, authsize);
446		kernel_neon_end();
447
448		if (unlikely(!nbytes))
449			break;
450
451		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
452			memcpy(walk.dst.virt.addr,
453			       buf + sizeof(buf) - nbytes, nbytes);
454
455		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
456	} while (walk.nbytes);
457
458	if (err)
459		return err;
460
461	return ret ? -EBADMSG : 0;
462}
463
464static int gcm_aes_encrypt(struct aead_request *req)
465{
466	u8 iv[AES_BLOCK_SIZE];
467
468	memcpy(iv, req->iv, GCM_AES_IV_SIZE);
469	return gcm_encrypt(req, iv, req->assoclen);
470}
471
472static int gcm_aes_decrypt(struct aead_request *req)
473{
474	u8 iv[AES_BLOCK_SIZE];
475
476	memcpy(iv, req->iv, GCM_AES_IV_SIZE);
477	return gcm_decrypt(req, iv, req->assoclen);
478}
479
480static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
481			  unsigned int keylen)
482{
483	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
484	int err;
485
486	keylen -= RFC4106_NONCE_SIZE;
487	err = gcm_aes_setkey(tfm, inkey, keylen);
488	if (err)
489		return err;
490
491	memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
492	return 0;
493}
494
495static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
496{
497	return crypto_rfc4106_check_authsize(authsize);
498}
499
500static int rfc4106_encrypt(struct aead_request *req)
501{
502	struct crypto_aead *aead = crypto_aead_reqtfm(req);
503	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
504	u8 iv[AES_BLOCK_SIZE];
505
506	memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
507	memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
508
509	return crypto_ipsec_check_assoclen(req->assoclen) ?:
510	       gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
511}
512
513static int rfc4106_decrypt(struct aead_request *req)
514{
515	struct crypto_aead *aead = crypto_aead_reqtfm(req);
516	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
517	u8 iv[AES_BLOCK_SIZE];
518
519	memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
520	memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
521
522	return crypto_ipsec_check_assoclen(req->assoclen) ?:
523	       gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
524}
525
526static struct aead_alg gcm_aes_algs[] = {{
527	.ivsize			= GCM_AES_IV_SIZE,
528	.chunksize		= AES_BLOCK_SIZE,
529	.maxauthsize		= AES_BLOCK_SIZE,
530	.setkey			= gcm_aes_setkey,
531	.setauthsize		= gcm_aes_setauthsize,
532	.encrypt		= gcm_aes_encrypt,
533	.decrypt		= gcm_aes_decrypt,
534
535	.base.cra_name		= "gcm(aes)",
536	.base.cra_driver_name	= "gcm-aes-ce",
537	.base.cra_priority	= 300,
538	.base.cra_blocksize	= 1,
539	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx) +
540				  4 * sizeof(u64[2]),
541	.base.cra_module	= THIS_MODULE,
542}, {
543	.ivsize			= GCM_RFC4106_IV_SIZE,
544	.chunksize		= AES_BLOCK_SIZE,
545	.maxauthsize		= AES_BLOCK_SIZE,
546	.setkey			= rfc4106_setkey,
547	.setauthsize		= rfc4106_setauthsize,
548	.encrypt		= rfc4106_encrypt,
549	.decrypt		= rfc4106_decrypt,
550
551	.base.cra_name		= "rfc4106(gcm(aes))",
552	.base.cra_driver_name	= "rfc4106-gcm-aes-ce",
553	.base.cra_priority	= 300,
554	.base.cra_blocksize	= 1,
555	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx) +
556				  4 * sizeof(u64[2]),
557	.base.cra_module	= THIS_MODULE,
558}};
559
560static int __init ghash_ce_mod_init(void)
561{
562	if (!cpu_have_named_feature(ASIMD))
563		return -ENODEV;
564
565	if (cpu_have_named_feature(PMULL))
566		return crypto_register_aeads(gcm_aes_algs,
567					     ARRAY_SIZE(gcm_aes_algs));
568
569	return crypto_register_shash(&ghash_alg);
570}
571
572static void __exit ghash_ce_mod_exit(void)
573{
574	if (cpu_have_named_feature(PMULL))
575		crypto_unregister_aeads(gcm_aes_algs, ARRAY_SIZE(gcm_aes_algs));
576	else
577		crypto_unregister_shash(&ghash_alg);
578}
579
580static const struct cpu_feature __maybe_unused ghash_cpu_feature[] = {
581	{ cpu_feature(PMULL) }, { }
582};
583MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
584
585module_init(ghash_ce_mod_init);
586module_exit(ghash_ce_mod_exit);
587