1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * arch/arm/kernel/kprobes-test.c
4 *
5 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
6 */
7
8/*
9 * This file contains test code for ARM kprobes.
10 *
11 * The top level function run_all_tests() executes tests for all of the
12 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
13 * fall into two categories; run_api_tests() checks basic functionality of the
14 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
15 * instruction decoding and simulation.
16 *
17 * run_test_cases() first checks the kprobes decoding table for self consistency
18 * (using table_test()) then executes a series of test cases for each of the CPU
19 * instruction forms. coverage_start() and coverage_end() are used to verify
20 * that these test cases cover all of the possible combinations of instructions
21 * described by the kprobes decoding tables.
22 *
23 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
24 * which use the macros defined in kprobes-test.h. The rest of this
25 * documentation will describe the operation of the framework used by these
26 * test cases.
27 */
28
29/*
30 * TESTING METHODOLOGY
31 * -------------------
32 *
33 * The methodology used to test an ARM instruction 'test_insn' is to use
34 * inline assembler like:
35 *
36 * test_before: nop
37 * test_case:	test_insn
38 * test_after:	nop
39 *
40 * When the test case is run a kprobe is placed of each nop. The
41 * post-handler of the test_before probe is used to modify the saved CPU
42 * register context to that which we require for the test case. The
43 * pre-handler of the of the test_after probe saves a copy of the CPU
44 * register context. In this way we can execute test_insn with a specific
45 * register context and see the results afterwards.
46 *
47 * To actually test the kprobes instruction emulation we perform the above
48 * step a second time but with an additional kprobe on the test_case
49 * instruction itself. If the emulation is accurate then the results seen
50 * by the test_after probe will be identical to the first run which didn't
51 * have a probe on test_case.
52 *
53 * Each test case is run several times with a variety of variations in the
54 * flags value of stored in CPSR, and for Thumb code, different ITState.
55 *
56 * For instructions which can modify PC, a second test_after probe is used
57 * like this:
58 *
59 * test_before: nop
60 * test_case:	test_insn
61 * test_after:	nop
62 *		b test_done
63 * test_after2: nop
64 * test_done:
65 *
66 * The test case is constructed such that test_insn branches to
67 * test_after2, or, if testing a conditional instruction, it may just
68 * continue to test_after. The probes inserted at both locations let us
69 * determine which happened. A similar approach is used for testing
70 * backwards branches...
71 *
72 *		b test_before
73 *		b test_done  @ helps to cope with off by 1 branches
74 * test_after2: nop
75 *		b test_done
76 * test_before: nop
77 * test_case:	test_insn
78 * test_after:	nop
79 * test_done:
80 *
81 * The macros used to generate the assembler instructions describe above
82 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
83 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
84 * 99 represent: test_before, test_case, test_after2 and test_done.
85 *
86 * FRAMEWORK
87 * ---------
88 *
89 * Each test case is wrapped between the pair of macros TESTCASE_START and
90 * TESTCASE_END. As well as performing the inline assembler boilerplate,
91 * these call out to the kprobes_test_case_start() and
92 * kprobes_test_case_end() functions which drive the execution of the test
93 * case. The specific arguments to use for each test case are stored as
94 * inline data constructed using the various TEST_ARG_* macros. Putting
95 * this all together, a simple test case may look like:
96 *
97 *	TESTCASE_START("Testing mov r0, r7")
98 *	TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
99 *	TEST_ARG_END("")
100 *	TEST_INSTRUCTION("mov r0, r7")
101 *	TESTCASE_END
102 *
103 * Note, in practice the single convenience macro TEST_R would be used for this
104 * instead.
105 *
106 * The above would expand to assembler looking something like:
107 *
108 *	@ TESTCASE_START
109 *	bl	__kprobes_test_case_start
110 *	.pushsection .rodata
111 *	"10:
112 *	.ascii "mov r0, r7"	@ text title for test case
113 *	.byte	0
114 *	.popsection
115 *	@ start of inline data...
116 *	.word	10b		@ pointer to title in .rodata section
117 *
118 *	@ TEST_ARG_REG
119 *	.byte	ARG_TYPE_REG
120 *	.byte	7
121 *	.short	0
122 *	.word	0x1234567
123 *
124 *	@ TEST_ARG_END
125 *	.byte	ARG_TYPE_END
126 *	.byte	TEST_ISA	@ flags, including ISA being tested
127 *	.short	50f-0f		@ offset of 'test_before'
128 *	.short	2f-0f		@ offset of 'test_after2' (if relevent)
129 *	.short	99f-0f		@ offset of 'test_done'
130 *	@ start of test case code...
131 *	0:
132 *	.code	TEST_ISA	@ switch to ISA being tested
133 *
134 *	@ TEST_INSTRUCTION
135 *	50:	nop		@ location for 'test_before' probe
136 *	1:	mov r0, r7	@ the test case instruction 'test_insn'
137 *		nop		@ location for 'test_after' probe
138 *
139 *	// TESTCASE_END
140 *	2:
141 *	99:	bl __kprobes_test_case_end_##TEST_ISA
142 *	.code	NONMAL_ISA
143 *
144 * When the above is execute the following happens...
145 *
146 * __kprobes_test_case_start() is an assembler wrapper which sets up space
147 * for a stack buffer and calls the C function kprobes_test_case_start().
148 * This C function will do some initial processing of the inline data and
149 * setup some global state. It then inserts the test_before and test_after
150 * kprobes and returns a value which causes the assembler wrapper to jump
151 * to the start of the test case code, (local label '0').
152 *
153 * When the test case code executes, the test_before probe will be hit and
154 * test_before_post_handler will call setup_test_context(). This fills the
155 * stack buffer and CPU registers with a test pattern and then processes
156 * the test case arguments. In our example there is one TEST_ARG_REG which
157 * indicates that R7 should be loaded with the value 0x12345678.
158 *
159 * When the test_before probe ends, the test case continues and executes
160 * the "mov r0, r7" instruction. It then hits the test_after probe and the
161 * pre-handler for this (test_after_pre_handler) will save a copy of the
162 * CPU register context. This should now have R0 holding the same value as
163 * R7.
164 *
165 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
166 * an assembler wrapper which switches back to the ISA used by the test
167 * code and calls the C function kprobes_test_case_end().
168 *
169 * For each run through the test case, test_case_run_count is incremented
170 * by one. For even runs, kprobes_test_case_end() saves a copy of the
171 * register and stack buffer contents from the test case just run. It then
172 * inserts a kprobe on the test case instruction 'test_insn' and returns a
173 * value to cause the test case code to be re-run.
174 *
175 * For odd numbered runs, kprobes_test_case_end() compares the register and
176 * stack buffer contents to those that were saved on the previous even
177 * numbered run (the one without the kprobe on test_insn). These should be
178 * the same if the kprobe instruction simulation routine is correct.
179 *
180 * The pair of test case runs is repeated with different combinations of
181 * flag values in CPSR and, for Thumb, different ITState. This is
182 * controlled by test_context_cpsr().
183 *
184 * BUILDING TEST CASES
185 * -------------------
186 *
187 *
188 * As an aid to building test cases, the stack buffer is initialised with
189 * some special values:
190 *
191 *   [SP+13*4]	Contains SP+120. This can be used to test instructions
192 *		which load a value into SP.
193 *
194 *   [SP+15*4]	When testing branching instructions using TEST_BRANCH_{F,B},
195 *		this holds the target address of the branch, 'test_after2'.
196 *		This can be used to test instructions which load a PC value
197 *		from memory.
198 */
199
200#include <linux/kernel.h>
201#include <linux/module.h>
202#include <linux/slab.h>
203#include <linux/sched/clock.h>
204#include <linux/kprobes.h>
205#include <linux/errno.h>
206#include <linux/stddef.h>
207#include <linux/bug.h>
208#include <asm/opcodes.h>
209
210#include "core.h"
211#include "test-core.h"
212#include "../decode-arm.h"
213#include "../decode-thumb.h"
214
215
216#define BENCHMARKING	1
217
218
219/*
220 * Test basic API
221 */
222
223static bool test_regs_ok;
224static int test_func_instance;
225static int pre_handler_called;
226static int post_handler_called;
227static int kretprobe_handler_called;
228static int tests_failed;
229
230#define FUNC_ARG1 0x12345678
231#define FUNC_ARG2 0xabcdef
232
233
234#ifndef CONFIG_THUMB2_KERNEL
235
236#define RET(reg)	"mov	pc, "#reg
237
238long arm_func(long r0, long r1);
239
240static void __used __naked __arm_kprobes_test_func(void)
241{
242	__asm__ __volatile__ (
243		".arm					\n\t"
244		".type arm_func, %%function		\n\t"
245		"arm_func:				\n\t"
246		"adds	r0, r0, r1			\n\t"
247		"mov	pc, lr				\n\t"
248		".code "NORMAL_ISA	 /* Back to Thumb if necessary */
249		: : : "r0", "r1", "cc"
250	);
251}
252
253#else /* CONFIG_THUMB2_KERNEL */
254
255#define RET(reg)	"bx	"#reg
256
257long thumb16_func(long r0, long r1);
258long thumb32even_func(long r0, long r1);
259long thumb32odd_func(long r0, long r1);
260
261static void __used __naked __thumb_kprobes_test_funcs(void)
262{
263	__asm__ __volatile__ (
264		".type thumb16_func, %%function		\n\t"
265		"thumb16_func:				\n\t"
266		"adds.n	r0, r0, r1			\n\t"
267		"bx	lr				\n\t"
268
269		".align					\n\t"
270		".type thumb32even_func, %%function	\n\t"
271		"thumb32even_func:			\n\t"
272		"adds.w	r0, r0, r1			\n\t"
273		"bx	lr				\n\t"
274
275		".align					\n\t"
276		"nop.n					\n\t"
277		".type thumb32odd_func, %%function	\n\t"
278		"thumb32odd_func:			\n\t"
279		"adds.w	r0, r0, r1			\n\t"
280		"bx	lr				\n\t"
281
282		: : : "r0", "r1", "cc"
283	);
284}
285
286#endif /* CONFIG_THUMB2_KERNEL */
287
288
289static int call_test_func(long (*func)(long, long), bool check_test_regs)
290{
291	long ret;
292
293	++test_func_instance;
294	test_regs_ok = false;
295
296	ret = (*func)(FUNC_ARG1, FUNC_ARG2);
297	if (ret != FUNC_ARG1 + FUNC_ARG2) {
298		pr_err("FAIL: call_test_func: func returned %lx\n", ret);
299		return false;
300	}
301
302	if (check_test_regs && !test_regs_ok) {
303		pr_err("FAIL: test regs not OK\n");
304		return false;
305	}
306
307	return true;
308}
309
310static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
311{
312	pre_handler_called = test_func_instance;
313	if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
314		test_regs_ok = true;
315	return 0;
316}
317
318static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
319				unsigned long flags)
320{
321	post_handler_called = test_func_instance;
322	if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
323		test_regs_ok = false;
324}
325
326static struct kprobe the_kprobe = {
327	.addr		= 0,
328	.pre_handler	= pre_handler,
329	.post_handler	= post_handler
330};
331
332static int test_kprobe(long (*func)(long, long))
333{
334	int ret;
335
336	the_kprobe.addr = (kprobe_opcode_t *)func;
337	ret = register_kprobe(&the_kprobe);
338	if (ret < 0) {
339		pr_err("FAIL: register_kprobe failed with %d\n", ret);
340		return ret;
341	}
342
343	ret = call_test_func(func, true);
344
345	unregister_kprobe(&the_kprobe);
346	the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
347
348	if (!ret)
349		return -EINVAL;
350	if (pre_handler_called != test_func_instance) {
351		pr_err("FAIL: kprobe pre_handler not called\n");
352		return -EINVAL;
353	}
354	if (post_handler_called != test_func_instance) {
355		pr_err("FAIL: kprobe post_handler not called\n");
356		return -EINVAL;
357	}
358	if (!call_test_func(func, false))
359		return -EINVAL;
360	if (pre_handler_called == test_func_instance ||
361				post_handler_called == test_func_instance) {
362		pr_err("FAIL: probe called after unregistering\n");
363		return -EINVAL;
364	}
365
366	return 0;
367}
368
369static int __kprobes
370kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
371{
372	kretprobe_handler_called = test_func_instance;
373	if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
374		test_regs_ok = true;
375	return 0;
376}
377
378static struct kretprobe the_kretprobe = {
379	.handler	= kretprobe_handler,
380};
381
382static int test_kretprobe(long (*func)(long, long))
383{
384	int ret;
385
386	the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
387	ret = register_kretprobe(&the_kretprobe);
388	if (ret < 0) {
389		pr_err("FAIL: register_kretprobe failed with %d\n", ret);
390		return ret;
391	}
392
393	ret = call_test_func(func, true);
394
395	unregister_kretprobe(&the_kretprobe);
396	the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
397
398	if (!ret)
399		return -EINVAL;
400	if (kretprobe_handler_called != test_func_instance) {
401		pr_err("FAIL: kretprobe handler not called\n");
402		return -EINVAL;
403	}
404	if (!call_test_func(func, false))
405		return -EINVAL;
406	if (kretprobe_handler_called == test_func_instance) {
407		pr_err("FAIL: kretprobe called after unregistering\n");
408		return -EINVAL;
409	}
410
411	return 0;
412}
413
414static int run_api_tests(long (*func)(long, long))
415{
416	int ret;
417
418	pr_info("    kprobe\n");
419	ret = test_kprobe(func);
420	if (ret < 0)
421		return ret;
422
423	pr_info("    kretprobe\n");
424	ret = test_kretprobe(func);
425	if (ret < 0)
426		return ret;
427
428	return 0;
429}
430
431
432/*
433 * Benchmarking
434 */
435
436#if BENCHMARKING
437
438static void __naked benchmark_nop(void)
439{
440	__asm__ __volatile__ (
441		"nop		\n\t"
442		RET(lr)"	\n\t"
443	);
444}
445
446#ifdef CONFIG_THUMB2_KERNEL
447#define wide ".w"
448#else
449#define wide
450#endif
451
452static void __naked benchmark_pushpop1(void)
453{
454	__asm__ __volatile__ (
455		"stmdb"wide"	sp!, {r3-r11,lr}  \n\t"
456		"ldmia"wide"	sp!, {r3-r11,pc}"
457	);
458}
459
460static void __naked benchmark_pushpop2(void)
461{
462	__asm__ __volatile__ (
463		"stmdb"wide"	sp!, {r0-r8,lr}  \n\t"
464		"ldmia"wide"	sp!, {r0-r8,pc}"
465	);
466}
467
468static void __naked benchmark_pushpop3(void)
469{
470	__asm__ __volatile__ (
471		"stmdb"wide"	sp!, {r4,lr}  \n\t"
472		"ldmia"wide"	sp!, {r4,pc}"
473	);
474}
475
476static void __naked benchmark_pushpop4(void)
477{
478	__asm__ __volatile__ (
479		"stmdb"wide"	sp!, {r0,lr}  \n\t"
480		"ldmia"wide"	sp!, {r0,pc}"
481	);
482}
483
484
485#ifdef CONFIG_THUMB2_KERNEL
486
487static void __naked benchmark_pushpop_thumb(void)
488{
489	__asm__ __volatile__ (
490		"push.n	{r0-r7,lr}  \n\t"
491		"pop.n	{r0-r7,pc}"
492	);
493}
494
495#endif
496
497static int __kprobes
498benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
499{
500	return 0;
501}
502
503static int benchmark(void(*fn)(void))
504{
505	unsigned n, i, t, t0;
506
507	for (n = 1000; ; n *= 2) {
508		t0 = sched_clock();
509		for (i = n; i > 0; --i)
510			fn();
511		t = sched_clock() - t0;
512		if (t >= 250000000)
513			break; /* Stop once we took more than 0.25 seconds */
514	}
515	return t / n; /* Time for one iteration in nanoseconds */
516};
517
518static int kprobe_benchmark(void(*fn)(void), unsigned offset)
519{
520	struct kprobe k = {
521		.addr		= (kprobe_opcode_t *)((uintptr_t)fn + offset),
522		.pre_handler	= benchmark_pre_handler,
523	};
524
525	int ret = register_kprobe(&k);
526	if (ret < 0) {
527		pr_err("FAIL: register_kprobe failed with %d\n", ret);
528		return ret;
529	}
530
531	ret = benchmark(fn);
532
533	unregister_kprobe(&k);
534	return ret;
535};
536
537struct benchmarks {
538	void		(*fn)(void);
539	unsigned	offset;
540	const char	*title;
541};
542
543static int run_benchmarks(void)
544{
545	int ret;
546	struct benchmarks list[] = {
547		{&benchmark_nop, 0, "nop"},
548		/*
549		 * benchmark_pushpop{1,3} will have the optimised
550		 * instruction emulation, whilst benchmark_pushpop{2,4} will
551		 * be the equivalent unoptimised instructions.
552		 */
553		{&benchmark_pushpop1, 0, "stmdb	sp!, {r3-r11,lr}"},
554		{&benchmark_pushpop1, 4, "ldmia	sp!, {r3-r11,pc}"},
555		{&benchmark_pushpop2, 0, "stmdb	sp!, {r0-r8,lr}"},
556		{&benchmark_pushpop2, 4, "ldmia	sp!, {r0-r8,pc}"},
557		{&benchmark_pushpop3, 0, "stmdb	sp!, {r4,lr}"},
558		{&benchmark_pushpop3, 4, "ldmia	sp!, {r4,pc}"},
559		{&benchmark_pushpop4, 0, "stmdb	sp!, {r0,lr}"},
560		{&benchmark_pushpop4, 4, "ldmia	sp!, {r0,pc}"},
561#ifdef CONFIG_THUMB2_KERNEL
562		{&benchmark_pushpop_thumb, 0, "push.n	{r0-r7,lr}"},
563		{&benchmark_pushpop_thumb, 2, "pop.n	{r0-r7,pc}"},
564#endif
565		{0}
566	};
567
568	struct benchmarks *b;
569	for (b = list; b->fn; ++b) {
570		ret = kprobe_benchmark(b->fn, b->offset);
571		if (ret < 0)
572			return ret;
573		pr_info("    %dns for kprobe %s\n", ret, b->title);
574	}
575
576	pr_info("\n");
577	return 0;
578}
579
580#endif /* BENCHMARKING */
581
582
583/*
584 * Decoding table self-consistency tests
585 */
586
587static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
588	[DECODE_TYPE_TABLE]	= sizeof(struct decode_table),
589	[DECODE_TYPE_CUSTOM]	= sizeof(struct decode_custom),
590	[DECODE_TYPE_SIMULATE]	= sizeof(struct decode_simulate),
591	[DECODE_TYPE_EMULATE]	= sizeof(struct decode_emulate),
592	[DECODE_TYPE_OR]	= sizeof(struct decode_or),
593	[DECODE_TYPE_REJECT]	= sizeof(struct decode_reject)
594};
595
596static int table_iter(const union decode_item *table,
597			int (*fn)(const struct decode_header *, void *),
598			void *args)
599{
600	const struct decode_header *h = (struct decode_header *)table;
601	int result;
602
603	for (;;) {
604		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
605
606		if (type == DECODE_TYPE_END)
607			return 0;
608
609		result = fn(h, args);
610		if (result)
611			return result;
612
613		h = (struct decode_header *)
614			((uintptr_t)h + decode_struct_sizes[type]);
615
616	}
617}
618
619static int table_test_fail(const struct decode_header *h, const char* message)
620{
621
622	pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
623					message, h->mask.bits, h->value.bits);
624	return -EINVAL;
625}
626
627struct table_test_args {
628	const union decode_item *root_table;
629	u32			parent_mask;
630	u32			parent_value;
631};
632
633static int table_test_fn(const struct decode_header *h, void *args)
634{
635	struct table_test_args *a = (struct table_test_args *)args;
636	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
637
638	if (h->value.bits & ~h->mask.bits)
639		return table_test_fail(h, "Match value has bits not in mask");
640
641	if ((h->mask.bits & a->parent_mask) != a->parent_mask)
642		return table_test_fail(h, "Mask has bits not in parent mask");
643
644	if ((h->value.bits ^ a->parent_value) & a->parent_mask)
645		return table_test_fail(h, "Value is inconsistent with parent");
646
647	if (type == DECODE_TYPE_TABLE) {
648		struct decode_table *d = (struct decode_table *)h;
649		struct table_test_args args2 = *a;
650		args2.parent_mask = h->mask.bits;
651		args2.parent_value = h->value.bits;
652		return table_iter(d->table.table, table_test_fn, &args2);
653	}
654
655	return 0;
656}
657
658static int table_test(const union decode_item *table)
659{
660	struct table_test_args args = {
661		.root_table	= table,
662		.parent_mask	= 0,
663		.parent_value	= 0
664	};
665	return table_iter(args.root_table, table_test_fn, &args);
666}
667
668
669/*
670 * Decoding table test coverage analysis
671 *
672 * coverage_start() builds a coverage_table which contains a list of
673 * coverage_entry's to match each entry in the specified kprobes instruction
674 * decoding table.
675 *
676 * When test cases are run, coverage_add() is called to process each case.
677 * This looks up the corresponding entry in the coverage_table and sets it as
678 * being matched, as well as clearing the regs flag appropriate for the test.
679 *
680 * After all test cases have been run, coverage_end() is called to check that
681 * all entries in coverage_table have been matched and that all regs flags are
682 * cleared. I.e. that all possible combinations of instructions described by
683 * the kprobes decoding tables have had a test case executed for them.
684 */
685
686bool coverage_fail;
687
688#define MAX_COVERAGE_ENTRIES 256
689
690struct coverage_entry {
691	const struct decode_header	*header;
692	unsigned			regs;
693	unsigned			nesting;
694	char				matched;
695};
696
697struct coverage_table {
698	struct coverage_entry	*base;
699	unsigned		num_entries;
700	unsigned		nesting;
701};
702
703struct coverage_table coverage;
704
705#define COVERAGE_ANY_REG	(1<<0)
706#define COVERAGE_SP		(1<<1)
707#define COVERAGE_PC		(1<<2)
708#define COVERAGE_PCWB		(1<<3)
709
710static const char coverage_register_lookup[16] = {
711	[REG_TYPE_ANY]		= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
712	[REG_TYPE_SAMEAS16]	= COVERAGE_ANY_REG,
713	[REG_TYPE_SP]		= COVERAGE_SP,
714	[REG_TYPE_PC]		= COVERAGE_PC,
715	[REG_TYPE_NOSP]		= COVERAGE_ANY_REG | COVERAGE_SP,
716	[REG_TYPE_NOSPPC]	= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
717	[REG_TYPE_NOPC]		= COVERAGE_ANY_REG | COVERAGE_PC,
718	[REG_TYPE_NOPCWB]	= COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
719	[REG_TYPE_NOPCX]	= COVERAGE_ANY_REG,
720	[REG_TYPE_NOSPPCX]	= COVERAGE_ANY_REG | COVERAGE_SP,
721};
722
723static unsigned coverage_start_registers(const struct decode_header *h)
724{
725	unsigned regs = 0;
726	int i;
727	for (i = 0; i < 20; i += 4) {
728		int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
729		regs |= coverage_register_lookup[r] << i;
730	}
731	return regs;
732}
733
734static int coverage_start_fn(const struct decode_header *h, void *args)
735{
736	struct coverage_table *coverage = (struct coverage_table *)args;
737	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
738	struct coverage_entry *entry = coverage->base + coverage->num_entries;
739
740	if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
741		pr_err("FAIL: Out of space for test coverage data");
742		return -ENOMEM;
743	}
744
745	++coverage->num_entries;
746
747	entry->header = h;
748	entry->regs = coverage_start_registers(h);
749	entry->nesting = coverage->nesting;
750	entry->matched = false;
751
752	if (type == DECODE_TYPE_TABLE) {
753		struct decode_table *d = (struct decode_table *)h;
754		int ret;
755		++coverage->nesting;
756		ret = table_iter(d->table.table, coverage_start_fn, coverage);
757		--coverage->nesting;
758		return ret;
759	}
760
761	return 0;
762}
763
764static int coverage_start(const union decode_item *table)
765{
766	coverage.base = kmalloc_array(MAX_COVERAGE_ENTRIES,
767				      sizeof(struct coverage_entry),
768				      GFP_KERNEL);
769	coverage.num_entries = 0;
770	coverage.nesting = 0;
771	return table_iter(table, coverage_start_fn, &coverage);
772}
773
774static void
775coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
776{
777	int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
778	int i;
779	for (i = 0; i < 20; i += 4) {
780		enum decode_reg_type reg_type = (regs >> i) & 0xf;
781		int reg = (insn >> i) & 0xf;
782		int flag;
783
784		if (!reg_type)
785			continue;
786
787		if (reg == 13)
788			flag = COVERAGE_SP;
789		else if (reg == 15)
790			flag = COVERAGE_PC;
791		else
792			flag = COVERAGE_ANY_REG;
793		entry->regs &= ~(flag << i);
794
795		switch (reg_type) {
796
797		case REG_TYPE_NONE:
798		case REG_TYPE_ANY:
799		case REG_TYPE_SAMEAS16:
800			break;
801
802		case REG_TYPE_SP:
803			if (reg != 13)
804				return;
805			break;
806
807		case REG_TYPE_PC:
808			if (reg != 15)
809				return;
810			break;
811
812		case REG_TYPE_NOSP:
813			if (reg == 13)
814				return;
815			break;
816
817		case REG_TYPE_NOSPPC:
818		case REG_TYPE_NOSPPCX:
819			if (reg == 13 || reg == 15)
820				return;
821			break;
822
823		case REG_TYPE_NOPCWB:
824			if (!is_writeback(insn))
825				break;
826			if (reg == 15) {
827				entry->regs &= ~(COVERAGE_PCWB << i);
828				return;
829			}
830			break;
831
832		case REG_TYPE_NOPC:
833		case REG_TYPE_NOPCX:
834			if (reg == 15)
835				return;
836			break;
837		}
838
839	}
840}
841
842static void coverage_add(kprobe_opcode_t insn)
843{
844	struct coverage_entry *entry = coverage.base;
845	struct coverage_entry *end = coverage.base + coverage.num_entries;
846	bool matched = false;
847	unsigned nesting = 0;
848
849	for (; entry < end; ++entry) {
850		const struct decode_header *h = entry->header;
851		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
852
853		if (entry->nesting > nesting)
854			continue; /* Skip sub-table we didn't match */
855
856		if (entry->nesting < nesting)
857			break; /* End of sub-table we were scanning */
858
859		if (!matched) {
860			if ((insn & h->mask.bits) != h->value.bits)
861				continue;
862			entry->matched = true;
863		}
864
865		switch (type) {
866
867		case DECODE_TYPE_TABLE:
868			++nesting;
869			break;
870
871		case DECODE_TYPE_CUSTOM:
872		case DECODE_TYPE_SIMULATE:
873		case DECODE_TYPE_EMULATE:
874			coverage_add_registers(entry, insn);
875			return;
876
877		case DECODE_TYPE_OR:
878			matched = true;
879			break;
880
881		case DECODE_TYPE_REJECT:
882		default:
883			return;
884		}
885
886	}
887}
888
889static void coverage_end(void)
890{
891	struct coverage_entry *entry = coverage.base;
892	struct coverage_entry *end = coverage.base + coverage.num_entries;
893
894	for (; entry < end; ++entry) {
895		u32 mask = entry->header->mask.bits;
896		u32 value = entry->header->value.bits;
897
898		if (entry->regs) {
899			pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
900				mask, value, entry->regs);
901			coverage_fail = true;
902		}
903		if (!entry->matched) {
904			pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
905				mask, value);
906			coverage_fail = true;
907		}
908	}
909
910	kfree(coverage.base);
911}
912
913
914/*
915 * Framework for instruction set test cases
916 */
917
918void __naked __kprobes_test_case_start(void)
919{
920	__asm__ __volatile__ (
921		"mov	r2, sp					\n\t"
922		"bic	r3, r2, #7				\n\t"
923		"mov	sp, r3					\n\t"
924		"stmdb	sp!, {r2-r11}				\n\t"
925		"sub	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
926		"bic	r0, lr, #1  @ r0 = inline data		\n\t"
927		"mov	r1, sp					\n\t"
928		"bl	kprobes_test_case_start			\n\t"
929		RET(r0)"					\n\t"
930	);
931}
932
933#ifndef CONFIG_THUMB2_KERNEL
934
935void __naked __kprobes_test_case_end_32(void)
936{
937	__asm__ __volatile__ (
938		"mov	r4, lr					\n\t"
939		"bl	kprobes_test_case_end			\n\t"
940		"cmp	r0, #0					\n\t"
941		"movne	pc, r0					\n\t"
942		"mov	r0, r4					\n\t"
943		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
944		"ldmia	sp!, {r2-r11}				\n\t"
945		"mov	sp, r2					\n\t"
946		"mov	pc, r0					\n\t"
947	);
948}
949
950#else /* CONFIG_THUMB2_KERNEL */
951
952void __naked __kprobes_test_case_end_16(void)
953{
954	__asm__ __volatile__ (
955		"mov	r4, lr					\n\t"
956		"bl	kprobes_test_case_end			\n\t"
957		"cmp	r0, #0					\n\t"
958		"bxne	r0					\n\t"
959		"mov	r0, r4					\n\t"
960		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
961		"ldmia	sp!, {r2-r11}				\n\t"
962		"mov	sp, r2					\n\t"
963		"bx	r0					\n\t"
964	);
965}
966
967void __naked __kprobes_test_case_end_32(void)
968{
969	__asm__ __volatile__ (
970		".arm						\n\t"
971		"orr	lr, lr, #1  @ will return to Thumb code	\n\t"
972		"ldr	pc, 1f					\n\t"
973		"1:						\n\t"
974		".word	__kprobes_test_case_end_16		\n\t"
975	);
976}
977
978#endif
979
980
981int kprobe_test_flags;
982int kprobe_test_cc_position;
983
984static int test_try_count;
985static int test_pass_count;
986static int test_fail_count;
987
988static struct pt_regs initial_regs;
989static struct pt_regs expected_regs;
990static struct pt_regs result_regs;
991
992static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
993
994static const char *current_title;
995static struct test_arg *current_args;
996static u32 *current_stack;
997static uintptr_t current_branch_target;
998
999static uintptr_t current_code_start;
1000static kprobe_opcode_t current_instruction;
1001
1002
1003#define TEST_CASE_PASSED -1
1004#define TEST_CASE_FAILED -2
1005
1006static int test_case_run_count;
1007static bool test_case_is_thumb;
1008static int test_instance;
1009
1010static unsigned long test_check_cc(int cc, unsigned long cpsr)
1011{
1012	int ret = arm_check_condition(cc << 28, cpsr);
1013
1014	return (ret != ARM_OPCODE_CONDTEST_FAIL);
1015}
1016
1017static int is_last_scenario;
1018static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1019static int memory_needs_checking;
1020
1021static unsigned long test_context_cpsr(int scenario)
1022{
1023	unsigned long cpsr;
1024
1025	probe_should_run = 1;
1026
1027	/* Default case is that we cycle through 16 combinations of flags */
1028	cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1029	cpsr |= (scenario & 0xf) << 16; /* GE flags */
1030	cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1031
1032	if (!test_case_is_thumb) {
1033		/* Testing ARM code */
1034		int cc = current_instruction >> 28;
1035
1036		probe_should_run = test_check_cc(cc, cpsr) != 0;
1037		if (scenario == 15)
1038			is_last_scenario = true;
1039
1040	} else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1041		/* Testing Thumb code without setting ITSTATE */
1042		if (kprobe_test_cc_position) {
1043			int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1044			probe_should_run = test_check_cc(cc, cpsr) != 0;
1045		}
1046
1047		if (scenario == 15)
1048			is_last_scenario = true;
1049
1050	} else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1051		/* Testing Thumb code with all combinations of ITSTATE */
1052		unsigned x = (scenario >> 4);
1053		unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1054		unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1055
1056		if (mask > 0x1f) {
1057			/* Finish by testing state from instruction 'itt al' */
1058			cond_base = 7;
1059			mask = 0x4;
1060			if ((scenario & 0xf) == 0xf)
1061				is_last_scenario = true;
1062		}
1063
1064		cpsr |= cond_base << 13;	/* ITSTATE<7:5> */
1065		cpsr |= (mask & 0x1) << 12;	/* ITSTATE<4> */
1066		cpsr |= (mask & 0x2) << 10;	/* ITSTATE<3> */
1067		cpsr |= (mask & 0x4) << 8;	/* ITSTATE<2> */
1068		cpsr |= (mask & 0x8) << 23;	/* ITSTATE<1> */
1069		cpsr |= (mask & 0x10) << 21;	/* ITSTATE<0> */
1070
1071		probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1072
1073	} else {
1074		/* Testing Thumb code with several combinations of ITSTATE */
1075		switch (scenario) {
1076		case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1077			cpsr = 0x00000800;
1078			probe_should_run = 0;
1079			break;
1080		case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1081			cpsr = 0xf0007800;
1082			probe_should_run = 0;
1083			break;
1084		case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1085			cpsr = 0x00009800;
1086			break;
1087		case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1088			cpsr = 0xf0002800;
1089			is_last_scenario = true;
1090			break;
1091		}
1092	}
1093
1094	return cpsr;
1095}
1096
1097static void setup_test_context(struct pt_regs *regs)
1098{
1099	int scenario = test_case_run_count>>1;
1100	unsigned long val;
1101	struct test_arg *args;
1102	int i;
1103
1104	is_last_scenario = false;
1105	memory_needs_checking = false;
1106
1107	/* Initialise test memory on stack */
1108	val = (scenario & 1) ? VALM : ~VALM;
1109	for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1110		current_stack[i] = val + (i << 8);
1111	/* Put target of branch on stack for tests which load PC from memory */
1112	if (current_branch_target)
1113		current_stack[15] = current_branch_target;
1114	/* Put a value for SP on stack for tests which load SP from memory */
1115	current_stack[13] = (u32)current_stack + 120;
1116
1117	/* Initialise register values to their default state */
1118	val = (scenario & 2) ? VALR : ~VALR;
1119	for (i = 0; i < 13; ++i)
1120		regs->uregs[i] = val ^ (i << 8);
1121	regs->ARM_lr = val ^ (14 << 8);
1122	regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1123	regs->ARM_cpsr |= test_context_cpsr(scenario);
1124
1125	/* Perform testcase specific register setup  */
1126	args = current_args;
1127	for (; args[0].type != ARG_TYPE_END; ++args)
1128		switch (args[0].type) {
1129		case ARG_TYPE_REG: {
1130			struct test_arg_regptr *arg =
1131				(struct test_arg_regptr *)args;
1132			regs->uregs[arg->reg] = arg->val;
1133			break;
1134		}
1135		case ARG_TYPE_PTR: {
1136			struct test_arg_regptr *arg =
1137				(struct test_arg_regptr *)args;
1138			regs->uregs[arg->reg] =
1139				(unsigned long)current_stack + arg->val;
1140			memory_needs_checking = true;
1141			/*
1142			 * Test memory at an address below SP is in danger of
1143			 * being altered by an interrupt occurring and pushing
1144			 * data onto the stack. Disable interrupts to stop this.
1145			 */
1146			if (arg->reg == 13)
1147				regs->ARM_cpsr |= PSR_I_BIT;
1148			break;
1149		}
1150		case ARG_TYPE_MEM: {
1151			struct test_arg_mem *arg = (struct test_arg_mem *)args;
1152			current_stack[arg->index] = arg->val;
1153			break;
1154		}
1155		default:
1156			break;
1157		}
1158}
1159
1160struct test_probe {
1161	struct kprobe	kprobe;
1162	bool		registered;
1163	int		hit;
1164};
1165
1166static void unregister_test_probe(struct test_probe *probe)
1167{
1168	if (probe->registered) {
1169		unregister_kprobe(&probe->kprobe);
1170		probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1171	}
1172	probe->registered = false;
1173}
1174
1175static int register_test_probe(struct test_probe *probe)
1176{
1177	int ret;
1178
1179	if (probe->registered)
1180		BUG();
1181
1182	ret = register_kprobe(&probe->kprobe);
1183	if (ret >= 0) {
1184		probe->registered = true;
1185		probe->hit = -1;
1186	}
1187	return ret;
1188}
1189
1190static int __kprobes
1191test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1192{
1193	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1194	return 0;
1195}
1196
1197static void __kprobes
1198test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1199							unsigned long flags)
1200{
1201	setup_test_context(regs);
1202	initial_regs = *regs;
1203	initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1204}
1205
1206static int __kprobes
1207test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1208{
1209	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1210	return 0;
1211}
1212
1213static int __kprobes
1214test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1215{
1216	struct test_arg *args;
1217
1218	if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1219		return 0; /* Already run for this test instance */
1220
1221	result_regs = *regs;
1222
1223	/* Mask out results which are indeterminate */
1224	result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1225	for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
1226		if (args[0].type == ARG_TYPE_REG_MASKED) {
1227			struct test_arg_regptr *arg =
1228				(struct test_arg_regptr *)args;
1229			result_regs.uregs[arg->reg] &= arg->val;
1230		}
1231
1232	/* Undo any changes done to SP by the test case */
1233	regs->ARM_sp = (unsigned long)current_stack;
1234	/* Enable interrupts in case setup_test_context disabled them */
1235	regs->ARM_cpsr &= ~PSR_I_BIT;
1236
1237	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1238	return 0;
1239}
1240
1241static struct test_probe test_before_probe = {
1242	.kprobe.pre_handler	= test_before_pre_handler,
1243	.kprobe.post_handler	= test_before_post_handler,
1244};
1245
1246static struct test_probe test_case_probe = {
1247	.kprobe.pre_handler	= test_case_pre_handler,
1248};
1249
1250static struct test_probe test_after_probe = {
1251	.kprobe.pre_handler	= test_after_pre_handler,
1252};
1253
1254static struct test_probe test_after2_probe = {
1255	.kprobe.pre_handler	= test_after_pre_handler,
1256};
1257
1258static void test_case_cleanup(void)
1259{
1260	unregister_test_probe(&test_before_probe);
1261	unregister_test_probe(&test_case_probe);
1262	unregister_test_probe(&test_after_probe);
1263	unregister_test_probe(&test_after2_probe);
1264}
1265
1266static void print_registers(struct pt_regs *regs)
1267{
1268	pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1269		regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1270	pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1271		regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1272	pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1273		regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1274	pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1275		regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1276	pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1277}
1278
1279static void print_memory(u32 *mem, size_t size)
1280{
1281	int i;
1282	for (i = 0; i < size / sizeof(u32); i += 4)
1283		pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1284						mem[i+2], mem[i+3]);
1285}
1286
1287static size_t expected_memory_size(u32 *sp)
1288{
1289	size_t size = sizeof(expected_memory);
1290	int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1291	if (offset > 0)
1292		size -= offset;
1293	return size;
1294}
1295
1296static void test_case_failed(const char *message)
1297{
1298	test_case_cleanup();
1299
1300	pr_err("FAIL: %s\n", message);
1301	pr_err("FAIL: Test %s\n", current_title);
1302	pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1303}
1304
1305static unsigned long next_instruction(unsigned long pc)
1306{
1307#ifdef CONFIG_THUMB2_KERNEL
1308	if ((pc & 1) &&
1309	    !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
1310		return pc + 2;
1311	else
1312#endif
1313	return pc + 4;
1314}
1315
1316static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
1317{
1318	struct test_arg *args;
1319	struct test_arg_end *end_arg;
1320	unsigned long test_code;
1321
1322	current_title = *title++;
1323	args = (struct test_arg *)title;
1324	current_args = args;
1325	current_stack = stack;
1326
1327	++test_try_count;
1328
1329	while (args->type != ARG_TYPE_END)
1330		++args;
1331	end_arg = (struct test_arg_end *)args;
1332
1333	test_code = (unsigned long)(args + 1); /* Code starts after args */
1334
1335	test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1336	if (test_case_is_thumb)
1337		test_code |= 1;
1338
1339	current_code_start = test_code;
1340
1341	current_branch_target = 0;
1342	if (end_arg->branch_offset != end_arg->end_offset)
1343		current_branch_target = test_code + end_arg->branch_offset;
1344
1345	test_code += end_arg->code_offset;
1346	test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1347
1348	test_code = next_instruction(test_code);
1349	test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1350
1351	if (test_case_is_thumb) {
1352		u16 *p = (u16 *)(test_code & ~1);
1353		current_instruction = __mem_to_opcode_thumb16(p[0]);
1354		if (is_wide_instruction(current_instruction)) {
1355			u16 instr2 = __mem_to_opcode_thumb16(p[1]);
1356			current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
1357		}
1358	} else {
1359		current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
1360	}
1361
1362	if (current_title[0] == '.')
1363		verbose("%s\n", current_title);
1364	else
1365		verbose("%s\t@ %0*x\n", current_title,
1366					test_case_is_thumb ? 4 : 8,
1367					current_instruction);
1368
1369	test_code = next_instruction(test_code);
1370	test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1371
1372	if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1373		if (!test_case_is_thumb ||
1374			is_wide_instruction(current_instruction)) {
1375				test_case_failed("expected 16-bit instruction");
1376				goto fail;
1377		}
1378	} else {
1379		if (test_case_is_thumb &&
1380			!is_wide_instruction(current_instruction)) {
1381				test_case_failed("expected 32-bit instruction");
1382				goto fail;
1383		}
1384	}
1385
1386	coverage_add(current_instruction);
1387
1388	if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1389		if (register_test_probe(&test_case_probe) < 0)
1390			goto pass;
1391		test_case_failed("registered probe for unsupported instruction");
1392		goto fail;
1393	}
1394
1395	if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1396		if (register_test_probe(&test_case_probe) >= 0)
1397			goto pass;
1398		test_case_failed("couldn't register probe for supported instruction");
1399		goto fail;
1400	}
1401
1402	if (register_test_probe(&test_before_probe) < 0) {
1403		test_case_failed("register test_before_probe failed");
1404		goto fail;
1405	}
1406	if (register_test_probe(&test_after_probe) < 0) {
1407		test_case_failed("register test_after_probe failed");
1408		goto fail;
1409	}
1410	if (current_branch_target) {
1411		test_after2_probe.kprobe.addr =
1412				(kprobe_opcode_t *)current_branch_target;
1413		if (register_test_probe(&test_after2_probe) < 0) {
1414			test_case_failed("register test_after2_probe failed");
1415			goto fail;
1416		}
1417	}
1418
1419	/* Start first run of test case */
1420	test_case_run_count = 0;
1421	++test_instance;
1422	return current_code_start;
1423pass:
1424	test_case_run_count = TEST_CASE_PASSED;
1425	return (uintptr_t)test_after_probe.kprobe.addr;
1426fail:
1427	test_case_run_count = TEST_CASE_FAILED;
1428	return (uintptr_t)test_after_probe.kprobe.addr;
1429}
1430
1431static bool check_test_results(void)
1432{
1433	size_t mem_size = 0;
1434	u32 *mem = 0;
1435
1436	if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1437		test_case_failed("registers differ");
1438		goto fail;
1439	}
1440
1441	if (memory_needs_checking) {
1442		mem = (u32 *)result_regs.ARM_sp;
1443		mem_size = expected_memory_size(mem);
1444		if (memcmp(expected_memory, mem, mem_size)) {
1445			test_case_failed("test memory differs");
1446			goto fail;
1447		}
1448	}
1449
1450	return true;
1451
1452fail:
1453	pr_err("initial_regs:\n");
1454	print_registers(&initial_regs);
1455	pr_err("expected_regs:\n");
1456	print_registers(&expected_regs);
1457	pr_err("result_regs:\n");
1458	print_registers(&result_regs);
1459
1460	if (mem) {
1461		pr_err("expected_memory:\n");
1462		print_memory(expected_memory, mem_size);
1463		pr_err("result_memory:\n");
1464		print_memory(mem, mem_size);
1465	}
1466
1467	return false;
1468}
1469
1470static uintptr_t __used kprobes_test_case_end(void)
1471{
1472	if (test_case_run_count < 0) {
1473		if (test_case_run_count == TEST_CASE_PASSED)
1474			/* kprobes_test_case_start did all the needed testing */
1475			goto pass;
1476		else
1477			/* kprobes_test_case_start failed */
1478			goto fail;
1479	}
1480
1481	if (test_before_probe.hit != test_instance) {
1482		test_case_failed("test_before_handler not run");
1483		goto fail;
1484	}
1485
1486	if (test_after_probe.hit != test_instance &&
1487				test_after2_probe.hit != test_instance) {
1488		test_case_failed("test_after_handler not run");
1489		goto fail;
1490	}
1491
1492	/*
1493	 * Even numbered test runs ran without a probe on the test case so
1494	 * we can gather reference results. The subsequent odd numbered run
1495	 * will have the probe inserted.
1496	*/
1497	if ((test_case_run_count & 1) == 0) {
1498		/* Save results from run without probe */
1499		u32 *mem = (u32 *)result_regs.ARM_sp;
1500		expected_regs = result_regs;
1501		memcpy(expected_memory, mem, expected_memory_size(mem));
1502
1503		/* Insert probe onto test case instruction */
1504		if (register_test_probe(&test_case_probe) < 0) {
1505			test_case_failed("register test_case_probe failed");
1506			goto fail;
1507		}
1508	} else {
1509		/* Check probe ran as expected */
1510		if (probe_should_run == 1) {
1511			if (test_case_probe.hit != test_instance) {
1512				test_case_failed("test_case_handler not run");
1513				goto fail;
1514			}
1515		} else if (probe_should_run == 0) {
1516			if (test_case_probe.hit == test_instance) {
1517				test_case_failed("test_case_handler ran");
1518				goto fail;
1519			}
1520		}
1521
1522		/* Remove probe for any subsequent reference run */
1523		unregister_test_probe(&test_case_probe);
1524
1525		if (!check_test_results())
1526			goto fail;
1527
1528		if (is_last_scenario)
1529			goto pass;
1530	}
1531
1532	/* Do next test run */
1533	++test_case_run_count;
1534	++test_instance;
1535	return current_code_start;
1536fail:
1537	++test_fail_count;
1538	goto end;
1539pass:
1540	++test_pass_count;
1541end:
1542	test_case_cleanup();
1543	return 0;
1544}
1545
1546
1547/*
1548 * Top level test functions
1549 */
1550
1551static int run_test_cases(void (*tests)(void), const union decode_item *table)
1552{
1553	int ret;
1554
1555	pr_info("    Check decoding tables\n");
1556	ret = table_test(table);
1557	if (ret)
1558		return ret;
1559
1560	pr_info("    Run test cases\n");
1561	ret = coverage_start(table);
1562	if (ret)
1563		return ret;
1564
1565	tests();
1566
1567	coverage_end();
1568	return 0;
1569}
1570
1571
1572static int __init run_all_tests(void)
1573{
1574	int ret = 0;
1575
1576	pr_info("Beginning kprobe tests...\n");
1577
1578#ifndef CONFIG_THUMB2_KERNEL
1579
1580	pr_info("Probe ARM code\n");
1581	ret = run_api_tests(arm_func);
1582	if (ret)
1583		goto out;
1584
1585	pr_info("ARM instruction simulation\n");
1586	ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
1587	if (ret)
1588		goto out;
1589
1590#else /* CONFIG_THUMB2_KERNEL */
1591
1592	pr_info("Probe 16-bit Thumb code\n");
1593	ret = run_api_tests(thumb16_func);
1594	if (ret)
1595		goto out;
1596
1597	pr_info("Probe 32-bit Thumb code, even halfword\n");
1598	ret = run_api_tests(thumb32even_func);
1599	if (ret)
1600		goto out;
1601
1602	pr_info("Probe 32-bit Thumb code, odd halfword\n");
1603	ret = run_api_tests(thumb32odd_func);
1604	if (ret)
1605		goto out;
1606
1607	pr_info("16-bit Thumb instruction simulation\n");
1608	ret = run_test_cases(kprobe_thumb16_test_cases,
1609				probes_decode_thumb16_table);
1610	if (ret)
1611		goto out;
1612
1613	pr_info("32-bit Thumb instruction simulation\n");
1614	ret = run_test_cases(kprobe_thumb32_test_cases,
1615				probes_decode_thumb32_table);
1616	if (ret)
1617		goto out;
1618#endif
1619
1620	pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1621		test_try_count, test_pass_count, test_fail_count);
1622	if (test_fail_count) {
1623		ret = -EINVAL;
1624		goto out;
1625	}
1626
1627#if BENCHMARKING
1628	pr_info("Benchmarks\n");
1629	ret = run_benchmarks();
1630	if (ret)
1631		goto out;
1632#endif
1633
1634#if __LINUX_ARM_ARCH__ >= 7
1635	/* We are able to run all test cases so coverage should be complete */
1636	if (coverage_fail) {
1637		pr_err("FAIL: Test coverage checks failed\n");
1638		ret = -EINVAL;
1639		goto out;
1640	}
1641#endif
1642
1643out:
1644	if (ret == 0)
1645		ret = tests_failed;
1646	if (ret == 0)
1647		pr_info("Finished kprobe tests OK\n");
1648	else
1649		pr_err("kprobe tests failed\n");
1650
1651	return ret;
1652}
1653
1654
1655/*
1656 * Module setup
1657 */
1658
1659#ifdef MODULE
1660
1661static void __exit kprobe_test_exit(void)
1662{
1663}
1664
1665module_init(run_all_tests)
1666module_exit(kprobe_test_exit)
1667MODULE_LICENSE("GPL");
1668
1669#else /* !MODULE */
1670
1671late_initcall(run_all_tests);
1672
1673#endif
1674