1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Just-In-Time compiler for eBPF filters on 32bit ARM
4 *
5 * Copyright (c) 2023 Puranjay Mohan <puranjay12@gmail.com>
6 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
7 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
8 */
9
10#include <linux/bpf.h>
11#include <linux/bitops.h>
12#include <linux/compiler.h>
13#include <linux/errno.h>
14#include <linux/filter.h>
15#include <linux/netdevice.h>
16#include <linux/string.h>
17#include <linux/slab.h>
18#include <linux/if_vlan.h>
19#include <linux/math64.h>
20
21#include <asm/cacheflush.h>
22#include <asm/hwcap.h>
23#include <asm/opcodes.h>
24#include <asm/system_info.h>
25
26#include "bpf_jit_32.h"
27
28/*
29 * eBPF prog stack layout:
30 *
31 *                         high
32 * original ARM_SP =>     +-----+
33 *                        |     | callee saved registers
34 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
35 *                        | ... | eBPF JIT scratch space
36 * eBPF fp register =>    +-----+
37 *   (BPF_FP)             | ... | eBPF prog stack
38 *                        +-----+
39 *                        |RSVD | JIT scratchpad
40 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
41 *                        | ... | caller-saved registers
42 *                        +-----+
43 *                        | ... | arguments passed on stack
44 * ARM_SP during call =>  +-----|
45 *                        |     |
46 *                        | ... | Function call stack
47 *                        |     |
48 *                        +-----+
49 *                          low
50 *
51 * The callee saved registers depends on whether frame pointers are enabled.
52 * With frame pointers (to be compliant with the ABI):
53 *
54 *                              high
55 * original ARM_SP =>     +--------------+ \
56 *                        |      pc      | |
57 * current ARM_FP =>      +--------------+ } callee saved registers
58 *                        |r4-r9,fp,ip,lr| |
59 *                        +--------------+ /
60 *                              low
61 *
62 * Without frame pointers:
63 *
64 *                              high
65 * original ARM_SP =>     +--------------+
66 *                        |  r4-r9,fp,lr | callee saved registers
67 * current ARM_FP =>      +--------------+
68 *                              low
69 *
70 * When popping registers off the stack at the end of a BPF function, we
71 * reference them via the current ARM_FP register.
72 *
73 * Some eBPF operations are implemented via a call to a helper function.
74 * Such calls are "invisible" in the eBPF code, so it is up to the calling
75 * program to preserve any caller-saved ARM registers during the call. The
76 * JIT emits code to push and pop those registers onto the stack, immediately
77 * above the callee stack frame.
78 */
79#define CALLEE_MASK	(1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
80			 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
81			 1 << ARM_FP)
82#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
83#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
84
85#define CALLER_MASK	(1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
86
87enum {
88	/* Stack layout - these are offsets from (top of stack - 4) */
89	BPF_R2_HI,
90	BPF_R2_LO,
91	BPF_R3_HI,
92	BPF_R3_LO,
93	BPF_R4_HI,
94	BPF_R4_LO,
95	BPF_R5_HI,
96	BPF_R5_LO,
97	BPF_R7_HI,
98	BPF_R7_LO,
99	BPF_R8_HI,
100	BPF_R8_LO,
101	BPF_R9_HI,
102	BPF_R9_LO,
103	BPF_FP_HI,
104	BPF_FP_LO,
105	BPF_TC_HI,
106	BPF_TC_LO,
107	BPF_AX_HI,
108	BPF_AX_LO,
109	/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
110	 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
111	 * BPF_REG_FP and Tail call counts.
112	 */
113	BPF_JIT_SCRATCH_REGS,
114};
115
116/*
117 * Negative "register" values indicate the register is stored on the stack
118 * and are the offset from the top of the eBPF JIT scratch space.
119 */
120#define STACK_OFFSET(k)	(-4 - (k) * 4)
121#define SCRATCH_SIZE	(BPF_JIT_SCRATCH_REGS * 4)
122
123#ifdef CONFIG_FRAME_POINTER
124#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
125#else
126#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
127#endif
128
129#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)	/* TEMP Register 1 */
130#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)	/* TEMP Register 2 */
131#define TCALL_CNT	(MAX_BPF_JIT_REG + 2)	/* Tail Call Count */
132
133#define FLAG_IMM_OVERFLOW	(1 << 0)
134
135/*
136 * Map eBPF registers to ARM 32bit registers or stack scratch space.
137 *
138 * 1. First argument is passed using the arm 32bit registers and rest of the
139 * arguments are passed on stack scratch space.
140 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
141 * arguments are mapped to scratch space on stack.
142 * 3. We need two 64 bit temp registers to do complex operations on eBPF
143 * registers.
144 *
145 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
146 * registers, we have to map each eBPF registers with two arm 32 bit regs or
147 * scratch memory space and we have to build eBPF 64 bit register from those.
148 *
149 */
150static const s8 bpf2a32[][2] = {
151	/* return value from in-kernel function, and exit value from eBPF */
152	[BPF_REG_0] = {ARM_R1, ARM_R0},
153	/* arguments from eBPF program to in-kernel function */
154	[BPF_REG_1] = {ARM_R3, ARM_R2},
155	/* Stored on stack scratch space */
156	[BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
157	[BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
158	[BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
159	[BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
160	/* callee saved registers that in-kernel function will preserve */
161	[BPF_REG_6] = {ARM_R5, ARM_R4},
162	/* Stored on stack scratch space */
163	[BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
164	[BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
165	[BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
166	/* Read only Frame Pointer to access Stack */
167	[BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
168	/* Temporary Register for BPF JIT, can be used
169	 * for constant blindings and others.
170	 */
171	[TMP_REG_1] = {ARM_R7, ARM_R6},
172	[TMP_REG_2] = {ARM_R9, ARM_R8},
173	/* Tail call count. Stored on stack scratch space. */
174	[TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
175	/* temporary register for blinding constants.
176	 * Stored on stack scratch space.
177	 */
178	[BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
179};
180
181#define	dst_lo	dst[1]
182#define dst_hi	dst[0]
183#define src_lo	src[1]
184#define src_hi	src[0]
185
186/*
187 * JIT Context:
188 *
189 * prog			:	bpf_prog
190 * idx			:	index of current last JITed instruction.
191 * prologue_bytes	:	bytes used in prologue.
192 * epilogue_offset	:	offset of epilogue starting.
193 * offsets		:	array of eBPF instruction offsets in
194 *				JITed code.
195 * target		:	final JITed code.
196 * epilogue_bytes	:	no of bytes used in epilogue.
197 * imm_count		:	no of immediate counts used for global
198 *				variables.
199 * imms			:	array of global variable addresses.
200 */
201
202struct jit_ctx {
203	const struct bpf_prog *prog;
204	unsigned int idx;
205	unsigned int prologue_bytes;
206	unsigned int epilogue_offset;
207	unsigned int cpu_architecture;
208	u32 flags;
209	u32 *offsets;
210	u32 *target;
211	u32 stack_size;
212#if __LINUX_ARM_ARCH__ < 7
213	u16 epilogue_bytes;
214	u16 imm_count;
215	u32 *imms;
216#endif
217};
218
219/*
220 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
221 * (where the assembly routines like __aeabi_uidiv could cause problems).
222 */
223static u32 jit_udiv32(u32 dividend, u32 divisor)
224{
225	return dividend / divisor;
226}
227
228static u32 jit_mod32(u32 dividend, u32 divisor)
229{
230	return dividend % divisor;
231}
232
233static s32 jit_sdiv32(s32 dividend, s32 divisor)
234{
235	return dividend / divisor;
236}
237
238static s32 jit_smod32(s32 dividend, s32 divisor)
239{
240	return dividend % divisor;
241}
242
243/* Wrappers for 64-bit div/mod */
244static u64 jit_udiv64(u64 dividend, u64 divisor)
245{
246	return div64_u64(dividend, divisor);
247}
248
249static u64 jit_mod64(u64 dividend, u64 divisor)
250{
251	u64 rem;
252
253	div64_u64_rem(dividend, divisor, &rem);
254	return rem;
255}
256
257static s64 jit_sdiv64(s64 dividend, s64 divisor)
258{
259	return div64_s64(dividend, divisor);
260}
261
262static s64 jit_smod64(s64 dividend, s64 divisor)
263{
264	u64 q;
265
266	q = div64_s64(dividend, divisor);
267
268	return dividend - q * divisor;
269}
270
271static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
272{
273	inst |= (cond << 28);
274	inst = __opcode_to_mem_arm(inst);
275
276	if (ctx->target != NULL)
277		ctx->target[ctx->idx] = inst;
278
279	ctx->idx++;
280}
281
282/*
283 * Emit an instruction that will be executed unconditionally.
284 */
285static inline void emit(u32 inst, struct jit_ctx *ctx)
286{
287	_emit(ARM_COND_AL, inst, ctx);
288}
289
290/*
291 * This is rather horrid, but necessary to convert an integer constant
292 * to an immediate operand for the opcodes, and be able to detect at
293 * build time whether the constant can't be converted (iow, usable in
294 * BUILD_BUG_ON()).
295 */
296#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
297#define const_imm8m(x)					\
298	({ int r;					\
299	   u32 v = (x);					\
300	   if (!(v & ~0x000000ff))			\
301		r = imm12val(v, 0);			\
302	   else if (!(v & ~0xc000003f))			\
303		r = imm12val(v, 2);			\
304	   else if (!(v & ~0xf000000f))			\
305		r = imm12val(v, 4);			\
306	   else if (!(v & ~0xfc000003))			\
307		r = imm12val(v, 6);			\
308	   else if (!(v & ~0xff000000))			\
309		r = imm12val(v, 8);			\
310	   else if (!(v & ~0x3fc00000))			\
311		r = imm12val(v, 10);			\
312	   else if (!(v & ~0x0ff00000))			\
313		r = imm12val(v, 12);			\
314	   else if (!(v & ~0x03fc0000))			\
315		r = imm12val(v, 14);			\
316	   else if (!(v & ~0x00ff0000))			\
317		r = imm12val(v, 16);			\
318	   else if (!(v & ~0x003fc000))			\
319		r = imm12val(v, 18);			\
320	   else if (!(v & ~0x000ff000))			\
321		r = imm12val(v, 20);			\
322	   else if (!(v & ~0x0003fc00))			\
323		r = imm12val(v, 22);			\
324	   else if (!(v & ~0x0000ff00))			\
325		r = imm12val(v, 24);			\
326	   else if (!(v & ~0x00003fc0))			\
327		r = imm12val(v, 26);			\
328	   else if (!(v & ~0x00000ff0))			\
329		r = imm12val(v, 28);			\
330	   else if (!(v & ~0x000003fc))			\
331		r = imm12val(v, 30);			\
332	   else						\
333		r = -1;					\
334	   r; })
335
336/*
337 * Checks if immediate value can be converted to imm12(12 bits) value.
338 */
339static int imm8m(u32 x)
340{
341	u32 rot;
342
343	for (rot = 0; rot < 16; rot++)
344		if ((x & ~ror32(0xff, 2 * rot)) == 0)
345			return rol32(x, 2 * rot) | (rot << 8);
346	return -1;
347}
348
349#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
350
351static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
352{
353	op |= rt << 12 | rn << 16;
354	if (imm12 >= 0)
355		op |= ARM_INST_LDST__U;
356	else
357		imm12 = -imm12;
358	return op | (imm12 & ARM_INST_LDST__IMM12);
359}
360
361static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
362{
363	op |= rt << 12 | rn << 16;
364	if (imm8 >= 0)
365		op |= ARM_INST_LDST__U;
366	else
367		imm8 = -imm8;
368	return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
369}
370
371#define ARM_LDR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
372#define ARM_LDRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
373#define ARM_LDRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
374#define ARM_LDRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
375
376#define ARM_LDRSH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSH_I, rt, rn, off)
377#define ARM_LDRSB_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSB_I, rt, rn, off)
378
379#define ARM_STR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
380#define ARM_STRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
381#define ARM_STRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
382#define ARM_STRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
383
384/*
385 * Initializes the JIT space with undefined instructions.
386 */
387static void jit_fill_hole(void *area, unsigned int size)
388{
389	u32 *ptr;
390	/* We are guaranteed to have aligned memory. */
391	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
392		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
393}
394
395#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
396/* EABI requires the stack to be aligned to 64-bit boundaries */
397#define STACK_ALIGNMENT	8
398#else
399/* Stack must be aligned to 32-bit boundaries */
400#define STACK_ALIGNMENT	4
401#endif
402
403/* total stack size used in JITed code */
404#define _STACK_SIZE	(ctx->prog->aux->stack_depth + SCRATCH_SIZE)
405#define STACK_SIZE	ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
406
407#if __LINUX_ARM_ARCH__ < 7
408
409static u16 imm_offset(u32 k, struct jit_ctx *ctx)
410{
411	unsigned int i = 0, offset;
412	u16 imm;
413
414	/* on the "fake" run we just count them (duplicates included) */
415	if (ctx->target == NULL) {
416		ctx->imm_count++;
417		return 0;
418	}
419
420	while ((i < ctx->imm_count) && ctx->imms[i]) {
421		if (ctx->imms[i] == k)
422			break;
423		i++;
424	}
425
426	if (ctx->imms[i] == 0)
427		ctx->imms[i] = k;
428
429	/* constants go just after the epilogue */
430	offset =  ctx->offsets[ctx->prog->len - 1] * 4;
431	offset += ctx->prologue_bytes;
432	offset += ctx->epilogue_bytes;
433	offset += i * 4;
434
435	ctx->target[offset / 4] = k;
436
437	/* PC in ARM mode == address of the instruction + 8 */
438	imm = offset - (8 + ctx->idx * 4);
439
440	if (imm & ~0xfff) {
441		/*
442		 * literal pool is too far, signal it into flags. we
443		 * can only detect it on the second pass unfortunately.
444		 */
445		ctx->flags |= FLAG_IMM_OVERFLOW;
446		return 0;
447	}
448
449	return imm;
450}
451
452#endif /* __LINUX_ARM_ARCH__ */
453
454static inline int bpf2a32_offset(int bpf_to, int bpf_from,
455				 const struct jit_ctx *ctx) {
456	int to, from;
457
458	if (ctx->target == NULL)
459		return 0;
460	to = ctx->offsets[bpf_to];
461	from = ctx->offsets[bpf_from];
462
463	return to - from - 1;
464}
465
466/*
467 * Move an immediate that's not an imm8m to a core register.
468 */
469static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
470{
471#if __LINUX_ARM_ARCH__ < 7
472	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
473#else
474	emit(ARM_MOVW(rd, val & 0xffff), ctx);
475	if (val > 0xffff)
476		emit(ARM_MOVT(rd, val >> 16), ctx);
477#endif
478}
479
480static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
481{
482	int imm12 = imm8m(val);
483
484	if (imm12 >= 0)
485		emit(ARM_MOV_I(rd, imm12), ctx);
486	else
487		emit_mov_i_no8m(rd, val, ctx);
488}
489
490static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
491{
492	if (elf_hwcap & HWCAP_THUMB)
493		emit(ARM_BX(tgt_reg), ctx);
494	else
495		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
496}
497
498static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
499{
500#if __LINUX_ARM_ARCH__ < 5
501	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
502	emit_bx_r(tgt_reg, ctx);
503#else
504	emit(ARM_BLX_R(tgt_reg), ctx);
505#endif
506}
507
508static inline int epilogue_offset(const struct jit_ctx *ctx)
509{
510	int to, from;
511	/* No need for 1st dummy run */
512	if (ctx->target == NULL)
513		return 0;
514	to = ctx->epilogue_offset;
515	from = ctx->idx;
516
517	return to - from - 2;
518}
519
520static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op, u8 sign)
521{
522	const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
523	const s8 *tmp = bpf2a32[TMP_REG_1];
524	u32 dst;
525
526#if __LINUX_ARM_ARCH__ == 7
527	if (elf_hwcap & HWCAP_IDIVA) {
528		if (op == BPF_DIV) {
529			emit(sign ? ARM_SDIV(rd, rm, rn) : ARM_UDIV(rd, rm, rn), ctx);
530		} else {
531			emit(sign ? ARM_SDIV(ARM_IP, rm, rn) : ARM_UDIV(ARM_IP, rm, rn), ctx);
532			emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
533		}
534		return;
535	}
536#endif
537
538	/*
539	 * For BPF_ALU | BPF_DIV | BPF_K instructions
540	 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
541	 * function, we need to save it on caller side to save
542	 * it from getting destroyed within callee.
543	 * After the return from the callee, we restore ARM_R0
544	 * ARM_R1.
545	 */
546	if (rn != ARM_R1) {
547		emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
548		emit(ARM_MOV_R(ARM_R1, rn), ctx);
549	}
550	if (rm != ARM_R0) {
551		emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
552		emit(ARM_MOV_R(ARM_R0, rm), ctx);
553	}
554
555	/* Push caller-saved registers on stack */
556	emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
557
558	/* Call appropriate function */
559	if (sign) {
560		if (op == BPF_DIV)
561			dst = (u32)jit_sdiv32;
562		else
563			dst = (u32)jit_smod32;
564	} else {
565		if (op == BPF_DIV)
566			dst = (u32)jit_udiv32;
567		else
568			dst = (u32)jit_mod32;
569	}
570
571	emit_mov_i(ARM_IP, dst, ctx);
572	emit_blx_r(ARM_IP, ctx);
573
574	/* Restore caller-saved registers from stack */
575	emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
576
577	/* Save return value */
578	if (rd != ARM_R0)
579		emit(ARM_MOV_R(rd, ARM_R0), ctx);
580
581	/* Restore ARM_R0 and ARM_R1 */
582	if (rn != ARM_R1)
583		emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
584	if (rm != ARM_R0)
585		emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
586}
587
588static inline void emit_udivmod64(const s8 *rd, const s8 *rm, const s8 *rn, struct jit_ctx *ctx,
589				  u8 op, u8 sign)
590{
591	u32 dst;
592
593	/* Push caller-saved registers on stack */
594	emit(ARM_PUSH(CALLER_MASK), ctx);
595
596	/*
597	 * As we are implementing 64-bit div/mod as function calls, We need to put the dividend in
598	 * R0-R1 and the divisor in R2-R3. As we have already pushed these registers on the stack,
599	 * we can recover them later after returning from the function call.
600	 */
601	if (rm[1] != ARM_R0 || rn[1] != ARM_R2) {
602		/*
603		 * Move Rm to {R1, R0} if it is not already there.
604		 */
605		if (rm[1] != ARM_R0) {
606			if (rn[1] == ARM_R0)
607				emit(ARM_PUSH(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
608			emit(ARM_MOV_R(ARM_R1, rm[0]), ctx);
609			emit(ARM_MOV_R(ARM_R0, rm[1]), ctx);
610			if (rn[1] == ARM_R0) {
611				emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
612				goto cont;
613			}
614		}
615		/*
616		 * Move Rn to {R3, R2} if it is not already there.
617		 */
618		if (rn[1] != ARM_R2) {
619			emit(ARM_MOV_R(ARM_R3, rn[0]), ctx);
620			emit(ARM_MOV_R(ARM_R2, rn[1]), ctx);
621		}
622	}
623
624cont:
625
626	/* Call appropriate function */
627	if (sign) {
628		if (op == BPF_DIV)
629			dst = (u32)jit_sdiv64;
630		else
631			dst = (u32)jit_smod64;
632	} else {
633		if (op == BPF_DIV)
634			dst = (u32)jit_udiv64;
635		else
636			dst = (u32)jit_mod64;
637	}
638
639	emit_mov_i(ARM_IP, dst, ctx);
640	emit_blx_r(ARM_IP, ctx);
641
642	/* Save return value */
643	if (rd[1] != ARM_R0) {
644		emit(ARM_MOV_R(rd[0], ARM_R1), ctx);
645		emit(ARM_MOV_R(rd[1], ARM_R0), ctx);
646	}
647
648	/* Recover {R3, R2} and {R1, R0} from stack if they are not Rd */
649	if (rd[1] != ARM_R0 && rd[1] != ARM_R2) {
650		emit(ARM_POP(CALLER_MASK), ctx);
651	} else if (rd[1] != ARM_R0) {
652		emit(ARM_POP(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
653		emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
654	} else {
655		emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
656		emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
657	}
658}
659
660/* Is the translated BPF register on stack? */
661static bool is_stacked(s8 reg)
662{
663	return reg < 0;
664}
665
666/* If a BPF register is on the stack (stk is true), load it to the
667 * supplied temporary register and return the temporary register
668 * for subsequent operations, otherwise just use the CPU register.
669 */
670static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
671{
672	if (is_stacked(reg)) {
673		emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
674		reg = tmp;
675	}
676	return reg;
677}
678
679static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
680				   struct jit_ctx *ctx)
681{
682	if (is_stacked(reg[1])) {
683		if (__LINUX_ARM_ARCH__ >= 6 ||
684		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
685			emit(ARM_LDRD_I(tmp[1], ARM_FP,
686					EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
687		} else {
688			emit(ARM_LDR_I(tmp[1], ARM_FP,
689				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
690			emit(ARM_LDR_I(tmp[0], ARM_FP,
691				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
692		}
693		reg = tmp;
694	}
695	return reg;
696}
697
698/* If a BPF register is on the stack (stk is true), save the register
699 * back to the stack.  If the source register is not the same, then
700 * move it into the correct register.
701 */
702static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
703{
704	if (is_stacked(reg))
705		emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
706	else if (reg != src)
707		emit(ARM_MOV_R(reg, src), ctx);
708}
709
710static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
711			      struct jit_ctx *ctx)
712{
713	if (is_stacked(reg[1])) {
714		if (__LINUX_ARM_ARCH__ >= 6 ||
715		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
716			emit(ARM_STRD_I(src[1], ARM_FP,
717				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
718		} else {
719			emit(ARM_STR_I(src[1], ARM_FP,
720				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
721			emit(ARM_STR_I(src[0], ARM_FP,
722				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
723		}
724	} else {
725		if (reg[1] != src[1])
726			emit(ARM_MOV_R(reg[1], src[1]), ctx);
727		if (reg[0] != src[0])
728			emit(ARM_MOV_R(reg[0], src[0]), ctx);
729	}
730}
731
732static inline void emit_a32_mov_i(const s8 dst, const u32 val,
733				  struct jit_ctx *ctx)
734{
735	const s8 *tmp = bpf2a32[TMP_REG_1];
736
737	if (is_stacked(dst)) {
738		emit_mov_i(tmp[1], val, ctx);
739		arm_bpf_put_reg32(dst, tmp[1], ctx);
740	} else {
741		emit_mov_i(dst, val, ctx);
742	}
743}
744
745static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
746{
747	const s8 *tmp = bpf2a32[TMP_REG_1];
748	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
749
750	emit_mov_i(rd[1], (u32)val, ctx);
751	emit_mov_i(rd[0], val >> 32, ctx);
752
753	arm_bpf_put_reg64(dst, rd, ctx);
754}
755
756/* Sign extended move */
757static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
758				       const u32 val, struct jit_ctx *ctx) {
759	u64 val64 = val;
760
761	if (is64 && (val & (1<<31)))
762		val64 |= 0xffffffff00000000ULL;
763	emit_a32_mov_i64(dst, val64, ctx);
764}
765
766static inline void emit_a32_add_r(const u8 dst, const u8 src,
767			      const bool is64, const bool hi,
768			      struct jit_ctx *ctx) {
769	/* 64 bit :
770	 *	adds dst_lo, dst_lo, src_lo
771	 *	adc dst_hi, dst_hi, src_hi
772	 * 32 bit :
773	 *	add dst_lo, dst_lo, src_lo
774	 */
775	if (!hi && is64)
776		emit(ARM_ADDS_R(dst, dst, src), ctx);
777	else if (hi && is64)
778		emit(ARM_ADC_R(dst, dst, src), ctx);
779	else
780		emit(ARM_ADD_R(dst, dst, src), ctx);
781}
782
783static inline void emit_a32_sub_r(const u8 dst, const u8 src,
784				  const bool is64, const bool hi,
785				  struct jit_ctx *ctx) {
786	/* 64 bit :
787	 *	subs dst_lo, dst_lo, src_lo
788	 *	sbc dst_hi, dst_hi, src_hi
789	 * 32 bit :
790	 *	sub dst_lo, dst_lo, src_lo
791	 */
792	if (!hi && is64)
793		emit(ARM_SUBS_R(dst, dst, src), ctx);
794	else if (hi && is64)
795		emit(ARM_SBC_R(dst, dst, src), ctx);
796	else
797		emit(ARM_SUB_R(dst, dst, src), ctx);
798}
799
800static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
801			      const bool hi, const u8 op, struct jit_ctx *ctx){
802	switch (BPF_OP(op)) {
803	/* dst = dst + src */
804	case BPF_ADD:
805		emit_a32_add_r(dst, src, is64, hi, ctx);
806		break;
807	/* dst = dst - src */
808	case BPF_SUB:
809		emit_a32_sub_r(dst, src, is64, hi, ctx);
810		break;
811	/* dst = dst | src */
812	case BPF_OR:
813		emit(ARM_ORR_R(dst, dst, src), ctx);
814		break;
815	/* dst = dst & src */
816	case BPF_AND:
817		emit(ARM_AND_R(dst, dst, src), ctx);
818		break;
819	/* dst = dst ^ src */
820	case BPF_XOR:
821		emit(ARM_EOR_R(dst, dst, src), ctx);
822		break;
823	/* dst = dst * src */
824	case BPF_MUL:
825		emit(ARM_MUL(dst, dst, src), ctx);
826		break;
827	/* dst = dst << src */
828	case BPF_LSH:
829		emit(ARM_LSL_R(dst, dst, src), ctx);
830		break;
831	/* dst = dst >> src */
832	case BPF_RSH:
833		emit(ARM_LSR_R(dst, dst, src), ctx);
834		break;
835	/* dst = dst >> src (signed)*/
836	case BPF_ARSH:
837		emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
838		break;
839	}
840}
841
842/* ALU operation (64 bit) */
843static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
844				  const s8 src[], struct jit_ctx *ctx,
845				  const u8 op) {
846	const s8 *tmp = bpf2a32[TMP_REG_1];
847	const s8 *tmp2 = bpf2a32[TMP_REG_2];
848	const s8 *rd;
849
850	rd = arm_bpf_get_reg64(dst, tmp, ctx);
851	if (is64) {
852		const s8 *rs;
853
854		rs = arm_bpf_get_reg64(src, tmp2, ctx);
855
856		/* ALU operation */
857		emit_alu_r(rd[1], rs[1], true, false, op, ctx);
858		emit_alu_r(rd[0], rs[0], true, true, op, ctx);
859	} else {
860		s8 rs;
861
862		rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
863
864		/* ALU operation */
865		emit_alu_r(rd[1], rs, true, false, op, ctx);
866		if (!ctx->prog->aux->verifier_zext)
867			emit_a32_mov_i(rd[0], 0, ctx);
868	}
869
870	arm_bpf_put_reg64(dst, rd, ctx);
871}
872
873/* dst = src (4 bytes)*/
874static inline void emit_a32_mov_r(const s8 dst, const s8 src, const u8 off,
875				  struct jit_ctx *ctx) {
876	const s8 *tmp = bpf2a32[TMP_REG_1];
877	s8 rt;
878
879	rt = arm_bpf_get_reg32(src, tmp[0], ctx);
880	if (off && off != 32) {
881		emit(ARM_LSL_I(rt, rt, 32 - off), ctx);
882		emit(ARM_ASR_I(rt, rt, 32 - off), ctx);
883	}
884	arm_bpf_put_reg32(dst, rt, ctx);
885}
886
887/* dst = src */
888static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
889				  const s8 src[],
890				  struct jit_ctx *ctx) {
891	if (!is64) {
892		emit_a32_mov_r(dst_lo, src_lo, 0, ctx);
893		if (!ctx->prog->aux->verifier_zext)
894			/* Zero out high 4 bytes */
895			emit_a32_mov_i(dst_hi, 0, ctx);
896	} else if (__LINUX_ARM_ARCH__ < 6 &&
897		   ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
898		/* complete 8 byte move */
899		emit_a32_mov_r(dst_lo, src_lo, 0, ctx);
900		emit_a32_mov_r(dst_hi, src_hi, 0, ctx);
901	} else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
902		const u8 *tmp = bpf2a32[TMP_REG_1];
903
904		emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
905		emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
906	} else if (is_stacked(src_lo)) {
907		emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
908	} else if (is_stacked(dst_lo)) {
909		emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
910	} else {
911		emit(ARM_MOV_R(dst[0], src[0]), ctx);
912		emit(ARM_MOV_R(dst[1], src[1]), ctx);
913	}
914}
915
916/* dst = (signed)src */
917static inline void emit_a32_movsx_r64(const bool is64, const u8 off, const s8 dst[], const s8 src[],
918				      struct jit_ctx *ctx) {
919	const s8 *tmp = bpf2a32[TMP_REG_1];
920	const s8 *rt;
921
922	rt = arm_bpf_get_reg64(dst, tmp, ctx);
923
924	emit_a32_mov_r(dst_lo, src_lo, off, ctx);
925	if (!is64) {
926		if (!ctx->prog->aux->verifier_zext)
927			/* Zero out high 4 bytes */
928			emit_a32_mov_i(dst_hi, 0, ctx);
929	} else {
930		emit(ARM_ASR_I(rt[0], rt[1], 31), ctx);
931	}
932}
933
934/* Shift operations */
935static inline void emit_a32_alu_i(const s8 dst, const u32 val,
936				struct jit_ctx *ctx, const u8 op) {
937	const s8 *tmp = bpf2a32[TMP_REG_1];
938	s8 rd;
939
940	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
941
942	/* Do shift operation */
943	switch (op) {
944	case BPF_LSH:
945		emit(ARM_LSL_I(rd, rd, val), ctx);
946		break;
947	case BPF_RSH:
948		emit(ARM_LSR_I(rd, rd, val), ctx);
949		break;
950	case BPF_ARSH:
951		emit(ARM_ASR_I(rd, rd, val), ctx);
952		break;
953	case BPF_NEG:
954		emit(ARM_RSB_I(rd, rd, val), ctx);
955		break;
956	}
957
958	arm_bpf_put_reg32(dst, rd, ctx);
959}
960
961/* dst = ~dst (64 bit) */
962static inline void emit_a32_neg64(const s8 dst[],
963				struct jit_ctx *ctx){
964	const s8 *tmp = bpf2a32[TMP_REG_1];
965	const s8 *rd;
966
967	/* Setup Operand */
968	rd = arm_bpf_get_reg64(dst, tmp, ctx);
969
970	/* Do Negate Operation */
971	emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
972	emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
973
974	arm_bpf_put_reg64(dst, rd, ctx);
975}
976
977/* dst = dst << src */
978static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
979				    struct jit_ctx *ctx) {
980	const s8 *tmp = bpf2a32[TMP_REG_1];
981	const s8 *tmp2 = bpf2a32[TMP_REG_2];
982	const s8 *rd;
983	s8 rt;
984
985	/* Setup Operands */
986	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
987	rd = arm_bpf_get_reg64(dst, tmp, ctx);
988
989	/* Do LSH operation */
990	emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
991	emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
992	emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
993	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
994	emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
995	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
996
997	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
998	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
999}
1000
1001/* dst = dst >> src (signed)*/
1002static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
1003				     struct jit_ctx *ctx) {
1004	const s8 *tmp = bpf2a32[TMP_REG_1];
1005	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1006	const s8 *rd;
1007	s8 rt;
1008
1009	/* Setup Operands */
1010	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1011	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1012
1013	/* Do the ARSH operation */
1014	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
1015	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
1016	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
1017	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
1018	_emit(ARM_COND_PL,
1019	      ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
1020	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
1021
1022	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1023	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1024}
1025
1026/* dst = dst >> src */
1027static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
1028				    struct jit_ctx *ctx) {
1029	const s8 *tmp = bpf2a32[TMP_REG_1];
1030	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1031	const s8 *rd;
1032	s8 rt;
1033
1034	/* Setup Operands */
1035	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1036	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1037
1038	/* Do RSH operation */
1039	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
1040	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
1041	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
1042	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
1043	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
1044	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
1045
1046	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1047	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1048}
1049
1050/* dst = dst << val */
1051static inline void emit_a32_lsh_i64(const s8 dst[],
1052				    const u32 val, struct jit_ctx *ctx){
1053	const s8 *tmp = bpf2a32[TMP_REG_1];
1054	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1055	const s8 *rd;
1056
1057	/* Setup operands */
1058	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1059
1060	/* Do LSH operation */
1061	if (val < 32) {
1062		emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
1063		emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
1064		emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
1065	} else {
1066		if (val == 32)
1067			emit(ARM_MOV_R(rd[0], rd[1]), ctx);
1068		else
1069			emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
1070		emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
1071	}
1072
1073	arm_bpf_put_reg64(dst, rd, ctx);
1074}
1075
1076/* dst = dst >> val */
1077static inline void emit_a32_rsh_i64(const s8 dst[],
1078				    const u32 val, struct jit_ctx *ctx) {
1079	const s8 *tmp = bpf2a32[TMP_REG_1];
1080	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1081	const s8 *rd;
1082
1083	/* Setup operands */
1084	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1085
1086	/* Do LSR operation */
1087	if (val == 0) {
1088		/* An immediate value of 0 encodes a shift amount of 32
1089		 * for LSR. To shift by 0, don't do anything.
1090		 */
1091	} else if (val < 32) {
1092		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
1093		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
1094		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
1095	} else if (val == 32) {
1096		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
1097		emit(ARM_MOV_I(rd[0], 0), ctx);
1098	} else {
1099		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
1100		emit(ARM_MOV_I(rd[0], 0), ctx);
1101	}
1102
1103	arm_bpf_put_reg64(dst, rd, ctx);
1104}
1105
1106/* dst = dst >> val (signed) */
1107static inline void emit_a32_arsh_i64(const s8 dst[],
1108				     const u32 val, struct jit_ctx *ctx){
1109	const s8 *tmp = bpf2a32[TMP_REG_1];
1110	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1111	const s8 *rd;
1112
1113	/* Setup operands */
1114	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1115
1116	/* Do ARSH operation */
1117	if (val == 0) {
1118		/* An immediate value of 0 encodes a shift amount of 32
1119		 * for ASR. To shift by 0, don't do anything.
1120		 */
1121	} else if (val < 32) {
1122		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
1123		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
1124		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
1125	} else if (val == 32) {
1126		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
1127		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
1128	} else {
1129		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
1130		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
1131	}
1132
1133	arm_bpf_put_reg64(dst, rd, ctx);
1134}
1135
1136static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
1137				    struct jit_ctx *ctx) {
1138	const s8 *tmp = bpf2a32[TMP_REG_1];
1139	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1140	const s8 *rd, *rt;
1141
1142	/* Setup operands for multiplication */
1143	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1144	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1145
1146	/* Do Multiplication */
1147	emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
1148	emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1149	emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1150
1151	emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1152	emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1153
1154	arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1155	arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1156}
1157
1158static bool is_ldst_imm(s16 off, const u8 size)
1159{
1160	s16 off_max = 0;
1161
1162	switch (size) {
1163	case BPF_B:
1164	case BPF_W:
1165		off_max = 0xfff;
1166		break;
1167	case BPF_H:
1168		off_max = 0xff;
1169		break;
1170	case BPF_DW:
1171		/* Need to make sure off+4 does not overflow. */
1172		off_max = 0xfff - 4;
1173		break;
1174	}
1175	return -off_max <= off && off <= off_max;
1176}
1177
1178static bool is_ldst_imm8(s16 off, const u8 size)
1179{
1180	s16 off_max = 0;
1181
1182	switch (size) {
1183	case BPF_B:
1184		off_max = 0xff;
1185		break;
1186	case BPF_W:
1187		off_max = 0xfff;
1188		break;
1189	case BPF_H:
1190		off_max = 0xff;
1191		break;
1192	}
1193	return -off_max <= off && off <= off_max;
1194}
1195
1196/* *(size *)(dst + off) = src */
1197static inline void emit_str_r(const s8 dst, const s8 src[],
1198			      s16 off, struct jit_ctx *ctx, const u8 sz){
1199	const s8 *tmp = bpf2a32[TMP_REG_1];
1200	s8 rd;
1201
1202	rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1203
1204	if (!is_ldst_imm(off, sz)) {
1205		emit_a32_mov_i(tmp[0], off, ctx);
1206		emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1207		rd = tmp[0];
1208		off = 0;
1209	}
1210	switch (sz) {
1211	case BPF_B:
1212		/* Store a Byte */
1213		emit(ARM_STRB_I(src_lo, rd, off), ctx);
1214		break;
1215	case BPF_H:
1216		/* Store a HalfWord */
1217		emit(ARM_STRH_I(src_lo, rd, off), ctx);
1218		break;
1219	case BPF_W:
1220		/* Store a Word */
1221		emit(ARM_STR_I(src_lo, rd, off), ctx);
1222		break;
1223	case BPF_DW:
1224		/* Store a Double Word */
1225		emit(ARM_STR_I(src_lo, rd, off), ctx);
1226		emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1227		break;
1228	}
1229}
1230
1231/* dst = *(size*)(src + off) */
1232static inline void emit_ldx_r(const s8 dst[], const s8 src,
1233			      s16 off, struct jit_ctx *ctx, const u8 sz){
1234	const s8 *tmp = bpf2a32[TMP_REG_1];
1235	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1236	s8 rm = src;
1237
1238	if (!is_ldst_imm(off, sz)) {
1239		emit_a32_mov_i(tmp[0], off, ctx);
1240		emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1241		rm = tmp[0];
1242		off = 0;
1243	} else if (rd[1] == rm) {
1244		emit(ARM_MOV_R(tmp[0], rm), ctx);
1245		rm = tmp[0];
1246	}
1247	switch (sz) {
1248	case BPF_B:
1249		/* Load a Byte */
1250		emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1251		if (!ctx->prog->aux->verifier_zext)
1252			emit_a32_mov_i(rd[0], 0, ctx);
1253		break;
1254	case BPF_H:
1255		/* Load a HalfWord */
1256		emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1257		if (!ctx->prog->aux->verifier_zext)
1258			emit_a32_mov_i(rd[0], 0, ctx);
1259		break;
1260	case BPF_W:
1261		/* Load a Word */
1262		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1263		if (!ctx->prog->aux->verifier_zext)
1264			emit_a32_mov_i(rd[0], 0, ctx);
1265		break;
1266	case BPF_DW:
1267		/* Load a Double Word */
1268		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1269		emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1270		break;
1271	}
1272	arm_bpf_put_reg64(dst, rd, ctx);
1273}
1274
1275/* dst = *(signed size*)(src + off) */
1276static inline void emit_ldsx_r(const s8 dst[], const s8 src,
1277			       s16 off, struct jit_ctx *ctx, const u8 sz){
1278	const s8 *tmp = bpf2a32[TMP_REG_1];
1279	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1280	s8 rm = src;
1281	int add_off;
1282
1283	if (!is_ldst_imm8(off, sz)) {
1284		/*
1285		 * offset does not fit in the load/store immediate,
1286		 * construct an ADD instruction to apply the offset.
1287		 */
1288		add_off = imm8m(off);
1289		if (add_off > 0) {
1290			emit(ARM_ADD_I(tmp[0], src, add_off), ctx);
1291			rm = tmp[0];
1292		} else {
1293			emit_a32_mov_i(tmp[0], off, ctx);
1294			emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1295			rm = tmp[0];
1296		}
1297		off = 0;
1298	}
1299
1300	switch (sz) {
1301	case BPF_B:
1302		/* Load a Byte with sign extension*/
1303		emit(ARM_LDRSB_I(rd[1], rm, off), ctx);
1304		break;
1305	case BPF_H:
1306		/* Load a HalfWord with sign extension*/
1307		emit(ARM_LDRSH_I(rd[1], rm, off), ctx);
1308		break;
1309	case BPF_W:
1310		/* Load a Word*/
1311		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1312		break;
1313	}
1314	/* Carry the sign extension to upper 32 bits */
1315	emit(ARM_ASR_I(rd[0], rd[1], 31), ctx);
1316	arm_bpf_put_reg64(dst, rd, ctx);
1317}
1318
1319/* Arithmatic Operation */
1320static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1321			     const u8 rn, struct jit_ctx *ctx, u8 op,
1322			     bool is_jmp64) {
1323	switch (op) {
1324	case BPF_JSET:
1325		if (is_jmp64) {
1326			emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1327			emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1328			emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1329		} else {
1330			emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1331		}
1332		break;
1333	case BPF_JEQ:
1334	case BPF_JNE:
1335	case BPF_JGT:
1336	case BPF_JGE:
1337	case BPF_JLE:
1338	case BPF_JLT:
1339		if (is_jmp64) {
1340			emit(ARM_CMP_R(rd, rm), ctx);
1341			/* Only compare low halve if high halve are equal. */
1342			_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1343		} else {
1344			emit(ARM_CMP_R(rt, rn), ctx);
1345		}
1346		break;
1347	case BPF_JSLE:
1348	case BPF_JSGT:
1349		emit(ARM_CMP_R(rn, rt), ctx);
1350		if (is_jmp64)
1351			emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1352		break;
1353	case BPF_JSLT:
1354	case BPF_JSGE:
1355		emit(ARM_CMP_R(rt, rn), ctx);
1356		if (is_jmp64)
1357			emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1358		break;
1359	}
1360}
1361
1362static int out_offset = -1; /* initialized on the first pass of build_body() */
1363static int emit_bpf_tail_call(struct jit_ctx *ctx)
1364{
1365
1366	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1367	const s8 *r2 = bpf2a32[BPF_REG_2];
1368	const s8 *r3 = bpf2a32[BPF_REG_3];
1369	const s8 *tmp = bpf2a32[TMP_REG_1];
1370	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1371	const s8 *tcc = bpf2a32[TCALL_CNT];
1372	const s8 *tc;
1373	const int idx0 = ctx->idx;
1374#define cur_offset (ctx->idx - idx0)
1375#define jmp_offset (out_offset - (cur_offset) - 2)
1376	u32 lo, hi;
1377	s8 r_array, r_index;
1378	int off;
1379
1380	/* if (index >= array->map.max_entries)
1381	 *	goto out;
1382	 */
1383	BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1384		     ARM_INST_LDST__IMM12);
1385	off = offsetof(struct bpf_array, map.max_entries);
1386	r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1387	/* index is 32-bit for arrays */
1388	r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1389	/* array->map.max_entries */
1390	emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1391	/* index >= array->map.max_entries */
1392	emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1393	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1394
1395	/* tmp2[0] = array, tmp2[1] = index */
1396
1397	/*
1398	 * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
1399	 *	goto out;
1400	 * tail_call_cnt++;
1401	 */
1402	lo = (u32)MAX_TAIL_CALL_CNT;
1403	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1404	tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1405	emit(ARM_CMP_I(tc[0], hi), ctx);
1406	_emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1407	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1408	emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1409	emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1410	arm_bpf_put_reg64(tcc, tmp, ctx);
1411
1412	/* prog = array->ptrs[index]
1413	 * if (prog == NULL)
1414	 *	goto out;
1415	 */
1416	BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1417	off = imm8m(offsetof(struct bpf_array, ptrs));
1418	emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1419	emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1420	emit(ARM_CMP_I(tmp[1], 0), ctx);
1421	_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1422
1423	/* goto *(prog->bpf_func + prologue_size); */
1424	BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1425		     ARM_INST_LDST__IMM12);
1426	off = offsetof(struct bpf_prog, bpf_func);
1427	emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1428	emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1429	emit_bx_r(tmp[1], ctx);
1430
1431	/* out: */
1432	if (out_offset == -1)
1433		out_offset = cur_offset;
1434	if (cur_offset != out_offset) {
1435		pr_err_once("tail_call out_offset = %d, expected %d!\n",
1436			    cur_offset, out_offset);
1437		return -1;
1438	}
1439	return 0;
1440#undef cur_offset
1441#undef jmp_offset
1442}
1443
1444/* 0xabcd => 0xcdab */
1445static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1446{
1447#if __LINUX_ARM_ARCH__ < 6
1448	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1449
1450	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1451	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1452	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1453	emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1454#else /* ARMv6+ */
1455	emit(ARM_REV16(rd, rn), ctx);
1456#endif
1457}
1458
1459/* 0xabcdefgh => 0xghefcdab */
1460static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1461{
1462#if __LINUX_ARM_ARCH__ < 6
1463	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1464
1465	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1466	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1467	emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1468
1469	emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1470	emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1471	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1472	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1473	emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1474	emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1475	emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1476
1477#else /* ARMv6+ */
1478	emit(ARM_REV(rd, rn), ctx);
1479#endif
1480}
1481
1482// push the scratch stack register on top of the stack
1483static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1484{
1485	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1486	const s8 *rt;
1487	u16 reg_set = 0;
1488
1489	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1490
1491	reg_set = (1 << rt[1]) | (1 << rt[0]);
1492	emit(ARM_PUSH(reg_set), ctx);
1493}
1494
1495static void build_prologue(struct jit_ctx *ctx)
1496{
1497	const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1498	const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1499	const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1500	const s8 *tcc = bpf2a32[TCALL_CNT];
1501
1502	/* Save callee saved registers. */
1503#ifdef CONFIG_FRAME_POINTER
1504	u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1505	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1506	emit(ARM_PUSH(reg_set), ctx);
1507	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1508#else
1509	emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1510	emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1511#endif
1512	/* mov r3, #0 */
1513	/* sub r2, sp, #SCRATCH_SIZE */
1514	emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1515	emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1516
1517	ctx->stack_size = imm8m(STACK_SIZE);
1518
1519	/* Set up function call stack */
1520	emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1521
1522	/* Set up BPF prog stack base register */
1523	emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
1524
1525	/* Initialize Tail Count */
1526	emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1527	emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1528
1529	/* Move BPF_CTX to BPF_R1 */
1530	emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1531
1532	/* end of prologue */
1533}
1534
1535/* restore callee saved registers. */
1536static void build_epilogue(struct jit_ctx *ctx)
1537{
1538#ifdef CONFIG_FRAME_POINTER
1539	/* When using frame pointers, some additional registers need to
1540	 * be loaded. */
1541	u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1542	emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1543	emit(ARM_LDM(ARM_SP, reg_set), ctx);
1544#else
1545	/* Restore callee saved registers. */
1546	emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1547	emit(ARM_POP(CALLEE_POP_MASK), ctx);
1548#endif
1549}
1550
1551/*
1552 * Convert an eBPF instruction to native instruction, i.e
1553 * JITs an eBPF instruction.
1554 * Returns :
1555 *	0  - Successfully JITed an 8-byte eBPF instruction
1556 *	>0 - Successfully JITed a 16-byte eBPF instruction
1557 *	<0 - Failed to JIT.
1558 */
1559static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1560{
1561	const u8 code = insn->code;
1562	const s8 *dst = bpf2a32[insn->dst_reg];
1563	const s8 *src = bpf2a32[insn->src_reg];
1564	const s8 *tmp = bpf2a32[TMP_REG_1];
1565	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1566	const s16 off = insn->off;
1567	const s32 imm = insn->imm;
1568	const int i = insn - ctx->prog->insnsi;
1569	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1570	const s8 *rd, *rs;
1571	s8 rd_lo, rt, rm, rn;
1572	s32 jmp_offset;
1573
1574#define check_imm(bits, imm) do {				\
1575	if ((imm) >= (1 << ((bits) - 1)) ||			\
1576	    (imm) < -(1 << ((bits) - 1))) {			\
1577		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
1578			i, imm, imm);				\
1579		return -EINVAL;					\
1580	}							\
1581} while (0)
1582#define check_imm24(imm) check_imm(24, imm)
1583
1584	switch (code) {
1585	/* ALU operations */
1586
1587	/* dst = src */
1588	case BPF_ALU | BPF_MOV | BPF_K:
1589	case BPF_ALU | BPF_MOV | BPF_X:
1590	case BPF_ALU64 | BPF_MOV | BPF_K:
1591	case BPF_ALU64 | BPF_MOV | BPF_X:
1592		switch (BPF_SRC(code)) {
1593		case BPF_X:
1594			if (imm == 1) {
1595				/* Special mov32 for zext */
1596				emit_a32_mov_i(dst_hi, 0, ctx);
1597				break;
1598			}
1599			if (insn->off)
1600				emit_a32_movsx_r64(is64, insn->off, dst, src, ctx);
1601			else
1602				emit_a32_mov_r64(is64, dst, src, ctx);
1603			break;
1604		case BPF_K:
1605			/* Sign-extend immediate value to destination reg */
1606			emit_a32_mov_se_i64(is64, dst, imm, ctx);
1607			break;
1608		}
1609		break;
1610	/* dst = dst + src/imm */
1611	/* dst = dst - src/imm */
1612	/* dst = dst | src/imm */
1613	/* dst = dst & src/imm */
1614	/* dst = dst ^ src/imm */
1615	/* dst = dst * src/imm */
1616	/* dst = dst << src */
1617	/* dst = dst >> src */
1618	case BPF_ALU | BPF_ADD | BPF_K:
1619	case BPF_ALU | BPF_ADD | BPF_X:
1620	case BPF_ALU | BPF_SUB | BPF_K:
1621	case BPF_ALU | BPF_SUB | BPF_X:
1622	case BPF_ALU | BPF_OR | BPF_K:
1623	case BPF_ALU | BPF_OR | BPF_X:
1624	case BPF_ALU | BPF_AND | BPF_K:
1625	case BPF_ALU | BPF_AND | BPF_X:
1626	case BPF_ALU | BPF_XOR | BPF_K:
1627	case BPF_ALU | BPF_XOR | BPF_X:
1628	case BPF_ALU | BPF_MUL | BPF_K:
1629	case BPF_ALU | BPF_MUL | BPF_X:
1630	case BPF_ALU | BPF_LSH | BPF_X:
1631	case BPF_ALU | BPF_RSH | BPF_X:
1632	case BPF_ALU | BPF_ARSH | BPF_X:
1633	case BPF_ALU64 | BPF_ADD | BPF_K:
1634	case BPF_ALU64 | BPF_ADD | BPF_X:
1635	case BPF_ALU64 | BPF_SUB | BPF_K:
1636	case BPF_ALU64 | BPF_SUB | BPF_X:
1637	case BPF_ALU64 | BPF_OR | BPF_K:
1638	case BPF_ALU64 | BPF_OR | BPF_X:
1639	case BPF_ALU64 | BPF_AND | BPF_K:
1640	case BPF_ALU64 | BPF_AND | BPF_X:
1641	case BPF_ALU64 | BPF_XOR | BPF_K:
1642	case BPF_ALU64 | BPF_XOR | BPF_X:
1643		switch (BPF_SRC(code)) {
1644		case BPF_X:
1645			emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1646			break;
1647		case BPF_K:
1648			/* Move immediate value to the temporary register
1649			 * and then do the ALU operation on the temporary
1650			 * register as this will sign-extend the immediate
1651			 * value into temporary reg and then it would be
1652			 * safe to do the operation on it.
1653			 */
1654			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1655			emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1656			break;
1657		}
1658		break;
1659	/* dst = dst / src(imm) */
1660	/* dst = dst % src(imm) */
1661	case BPF_ALU | BPF_DIV | BPF_K:
1662	case BPF_ALU | BPF_DIV | BPF_X:
1663	case BPF_ALU | BPF_MOD | BPF_K:
1664	case BPF_ALU | BPF_MOD | BPF_X:
1665		rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1666		switch (BPF_SRC(code)) {
1667		case BPF_X:
1668			rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1669			break;
1670		case BPF_K:
1671			rt = tmp2[0];
1672			emit_a32_mov_i(rt, imm, ctx);
1673			break;
1674		default:
1675			rt = src_lo;
1676			break;
1677		}
1678		emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code), off);
1679		arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1680		if (!ctx->prog->aux->verifier_zext)
1681			emit_a32_mov_i(dst_hi, 0, ctx);
1682		break;
1683	case BPF_ALU64 | BPF_DIV | BPF_K:
1684	case BPF_ALU64 | BPF_DIV | BPF_X:
1685	case BPF_ALU64 | BPF_MOD | BPF_K:
1686	case BPF_ALU64 | BPF_MOD | BPF_X:
1687		rd = arm_bpf_get_reg64(dst, tmp2, ctx);
1688		switch (BPF_SRC(code)) {
1689		case BPF_X:
1690			rs = arm_bpf_get_reg64(src, tmp, ctx);
1691			break;
1692		case BPF_K:
1693			rs = tmp;
1694			emit_a32_mov_se_i64(is64, rs, imm, ctx);
1695			break;
1696		}
1697		emit_udivmod64(rd, rd, rs, ctx, BPF_OP(code), off);
1698		arm_bpf_put_reg64(dst, rd, ctx);
1699		break;
1700	/* dst = dst << imm */
1701	/* dst = dst >> imm */
1702	/* dst = dst >> imm (signed) */
1703	case BPF_ALU | BPF_LSH | BPF_K:
1704	case BPF_ALU | BPF_RSH | BPF_K:
1705	case BPF_ALU | BPF_ARSH | BPF_K:
1706		if (unlikely(imm > 31))
1707			return -EINVAL;
1708		if (imm)
1709			emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1710		if (!ctx->prog->aux->verifier_zext)
1711			emit_a32_mov_i(dst_hi, 0, ctx);
1712		break;
1713	/* dst = dst << imm */
1714	case BPF_ALU64 | BPF_LSH | BPF_K:
1715		if (unlikely(imm > 63))
1716			return -EINVAL;
1717		emit_a32_lsh_i64(dst, imm, ctx);
1718		break;
1719	/* dst = dst >> imm */
1720	case BPF_ALU64 | BPF_RSH | BPF_K:
1721		if (unlikely(imm > 63))
1722			return -EINVAL;
1723		emit_a32_rsh_i64(dst, imm, ctx);
1724		break;
1725	/* dst = dst << src */
1726	case BPF_ALU64 | BPF_LSH | BPF_X:
1727		emit_a32_lsh_r64(dst, src, ctx);
1728		break;
1729	/* dst = dst >> src */
1730	case BPF_ALU64 | BPF_RSH | BPF_X:
1731		emit_a32_rsh_r64(dst, src, ctx);
1732		break;
1733	/* dst = dst >> src (signed) */
1734	case BPF_ALU64 | BPF_ARSH | BPF_X:
1735		emit_a32_arsh_r64(dst, src, ctx);
1736		break;
1737	/* dst = dst >> imm (signed) */
1738	case BPF_ALU64 | BPF_ARSH | BPF_K:
1739		if (unlikely(imm > 63))
1740			return -EINVAL;
1741		emit_a32_arsh_i64(dst, imm, ctx);
1742		break;
1743	/* dst = ~dst */
1744	case BPF_ALU | BPF_NEG:
1745		emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1746		if (!ctx->prog->aux->verifier_zext)
1747			emit_a32_mov_i(dst_hi, 0, ctx);
1748		break;
1749	/* dst = ~dst (64 bit) */
1750	case BPF_ALU64 | BPF_NEG:
1751		emit_a32_neg64(dst, ctx);
1752		break;
1753	/* dst = dst * src/imm */
1754	case BPF_ALU64 | BPF_MUL | BPF_X:
1755	case BPF_ALU64 | BPF_MUL | BPF_K:
1756		switch (BPF_SRC(code)) {
1757		case BPF_X:
1758			emit_a32_mul_r64(dst, src, ctx);
1759			break;
1760		case BPF_K:
1761			/* Move immediate value to the temporary register
1762			 * and then do the multiplication on it as this
1763			 * will sign-extend the immediate value into temp
1764			 * reg then it would be safe to do the operation
1765			 * on it.
1766			 */
1767			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1768			emit_a32_mul_r64(dst, tmp2, ctx);
1769			break;
1770		}
1771		break;
1772	/* dst = htole(dst) */
1773	/* dst = htobe(dst) */
1774	case BPF_ALU | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */
1775	case BPF_ALU | BPF_END | BPF_FROM_BE: /* also BPF_TO_BE */
1776	/* dst = bswap(dst) */
1777	case BPF_ALU64 | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */
1778		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1779		if (BPF_SRC(code) == BPF_FROM_LE && BPF_CLASS(code) != BPF_ALU64)
1780			goto emit_bswap_uxt;
1781		switch (imm) {
1782		case 16:
1783			emit_rev16(rd[1], rd[1], ctx);
1784			goto emit_bswap_uxt;
1785		case 32:
1786			emit_rev32(rd[1], rd[1], ctx);
1787			goto emit_bswap_uxt;
1788		case 64:
1789			emit_rev32(ARM_LR, rd[1], ctx);
1790			emit_rev32(rd[1], rd[0], ctx);
1791			emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1792			break;
1793		}
1794		goto exit;
1795emit_bswap_uxt:
1796		switch (imm) {
1797		case 16:
1798			/* zero-extend 16 bits into 64 bits */
1799#if __LINUX_ARM_ARCH__ < 6
1800			emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1801			emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1802#else /* ARMv6+ */
1803			emit(ARM_UXTH(rd[1], rd[1]), ctx);
1804#endif
1805			if (!ctx->prog->aux->verifier_zext)
1806				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1807			break;
1808		case 32:
1809			/* zero-extend 32 bits into 64 bits */
1810			if (!ctx->prog->aux->verifier_zext)
1811				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1812			break;
1813		case 64:
1814			/* nop */
1815			break;
1816		}
1817exit:
1818		arm_bpf_put_reg64(dst, rd, ctx);
1819		break;
1820	/* dst = imm64 */
1821	case BPF_LD | BPF_IMM | BPF_DW:
1822	{
1823		u64 val = (u32)imm | (u64)insn[1].imm << 32;
1824
1825		emit_a32_mov_i64(dst, val, ctx);
1826
1827		return 1;
1828	}
1829	/* LDX: dst = *(size *)(src + off) */
1830	case BPF_LDX | BPF_MEM | BPF_W:
1831	case BPF_LDX | BPF_MEM | BPF_H:
1832	case BPF_LDX | BPF_MEM | BPF_B:
1833	case BPF_LDX | BPF_MEM | BPF_DW:
1834	/* LDSX: dst = *(signed size *)(src + off) */
1835	case BPF_LDX | BPF_MEMSX | BPF_B:
1836	case BPF_LDX | BPF_MEMSX | BPF_H:
1837	case BPF_LDX | BPF_MEMSX | BPF_W:
1838		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1839		if (BPF_MODE(insn->code) == BPF_MEMSX)
1840			emit_ldsx_r(dst, rn, off, ctx, BPF_SIZE(code));
1841		else
1842			emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1843		break;
1844	/* speculation barrier */
1845	case BPF_ST | BPF_NOSPEC:
1846		break;
1847	/* ST: *(size *)(dst + off) = imm */
1848	case BPF_ST | BPF_MEM | BPF_W:
1849	case BPF_ST | BPF_MEM | BPF_H:
1850	case BPF_ST | BPF_MEM | BPF_B:
1851	case BPF_ST | BPF_MEM | BPF_DW:
1852		switch (BPF_SIZE(code)) {
1853		case BPF_DW:
1854			/* Sign-extend immediate value into temp reg */
1855			emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1856			break;
1857		case BPF_W:
1858		case BPF_H:
1859		case BPF_B:
1860			emit_a32_mov_i(tmp2[1], imm, ctx);
1861			break;
1862		}
1863		emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1864		break;
1865	/* Atomic ops */
1866	case BPF_STX | BPF_ATOMIC | BPF_W:
1867	case BPF_STX | BPF_ATOMIC | BPF_DW:
1868		goto notyet;
1869	/* STX: *(size *)(dst + off) = src */
1870	case BPF_STX | BPF_MEM | BPF_W:
1871	case BPF_STX | BPF_MEM | BPF_H:
1872	case BPF_STX | BPF_MEM | BPF_B:
1873	case BPF_STX | BPF_MEM | BPF_DW:
1874		rs = arm_bpf_get_reg64(src, tmp2, ctx);
1875		emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1876		break;
1877	/* PC += off if dst == src */
1878	/* PC += off if dst > src */
1879	/* PC += off if dst >= src */
1880	/* PC += off if dst < src */
1881	/* PC += off if dst <= src */
1882	/* PC += off if dst != src */
1883	/* PC += off if dst > src (signed) */
1884	/* PC += off if dst >= src (signed) */
1885	/* PC += off if dst < src (signed) */
1886	/* PC += off if dst <= src (signed) */
1887	/* PC += off if dst & src */
1888	case BPF_JMP | BPF_JEQ | BPF_X:
1889	case BPF_JMP | BPF_JGT | BPF_X:
1890	case BPF_JMP | BPF_JGE | BPF_X:
1891	case BPF_JMP | BPF_JNE | BPF_X:
1892	case BPF_JMP | BPF_JSGT | BPF_X:
1893	case BPF_JMP | BPF_JSGE | BPF_X:
1894	case BPF_JMP | BPF_JSET | BPF_X:
1895	case BPF_JMP | BPF_JLE | BPF_X:
1896	case BPF_JMP | BPF_JLT | BPF_X:
1897	case BPF_JMP | BPF_JSLT | BPF_X:
1898	case BPF_JMP | BPF_JSLE | BPF_X:
1899	case BPF_JMP32 | BPF_JEQ | BPF_X:
1900	case BPF_JMP32 | BPF_JGT | BPF_X:
1901	case BPF_JMP32 | BPF_JGE | BPF_X:
1902	case BPF_JMP32 | BPF_JNE | BPF_X:
1903	case BPF_JMP32 | BPF_JSGT | BPF_X:
1904	case BPF_JMP32 | BPF_JSGE | BPF_X:
1905	case BPF_JMP32 | BPF_JSET | BPF_X:
1906	case BPF_JMP32 | BPF_JLE | BPF_X:
1907	case BPF_JMP32 | BPF_JLT | BPF_X:
1908	case BPF_JMP32 | BPF_JSLT | BPF_X:
1909	case BPF_JMP32 | BPF_JSLE | BPF_X:
1910		/* Setup source registers */
1911		rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1912		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1913		goto go_jmp;
1914	/* PC += off if dst == imm */
1915	/* PC += off if dst > imm */
1916	/* PC += off if dst >= imm */
1917	/* PC += off if dst < imm */
1918	/* PC += off if dst <= imm */
1919	/* PC += off if dst != imm */
1920	/* PC += off if dst > imm (signed) */
1921	/* PC += off if dst >= imm (signed) */
1922	/* PC += off if dst < imm (signed) */
1923	/* PC += off if dst <= imm (signed) */
1924	/* PC += off if dst & imm */
1925	case BPF_JMP | BPF_JEQ | BPF_K:
1926	case BPF_JMP | BPF_JGT | BPF_K:
1927	case BPF_JMP | BPF_JGE | BPF_K:
1928	case BPF_JMP | BPF_JNE | BPF_K:
1929	case BPF_JMP | BPF_JSGT | BPF_K:
1930	case BPF_JMP | BPF_JSGE | BPF_K:
1931	case BPF_JMP | BPF_JSET | BPF_K:
1932	case BPF_JMP | BPF_JLT | BPF_K:
1933	case BPF_JMP | BPF_JLE | BPF_K:
1934	case BPF_JMP | BPF_JSLT | BPF_K:
1935	case BPF_JMP | BPF_JSLE | BPF_K:
1936	case BPF_JMP32 | BPF_JEQ | BPF_K:
1937	case BPF_JMP32 | BPF_JGT | BPF_K:
1938	case BPF_JMP32 | BPF_JGE | BPF_K:
1939	case BPF_JMP32 | BPF_JNE | BPF_K:
1940	case BPF_JMP32 | BPF_JSGT | BPF_K:
1941	case BPF_JMP32 | BPF_JSGE | BPF_K:
1942	case BPF_JMP32 | BPF_JSET | BPF_K:
1943	case BPF_JMP32 | BPF_JLT | BPF_K:
1944	case BPF_JMP32 | BPF_JLE | BPF_K:
1945	case BPF_JMP32 | BPF_JSLT | BPF_K:
1946	case BPF_JMP32 | BPF_JSLE | BPF_K:
1947		if (off == 0)
1948			break;
1949		rm = tmp2[0];
1950		rn = tmp2[1];
1951		/* Sign-extend immediate value */
1952		emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1953go_jmp:
1954		/* Setup destination register */
1955		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1956
1957		/* Check for the condition */
1958		emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1959			  BPF_CLASS(code) == BPF_JMP);
1960
1961		/* Setup JUMP instruction */
1962		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1963		switch (BPF_OP(code)) {
1964		case BPF_JNE:
1965		case BPF_JSET:
1966			_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1967			break;
1968		case BPF_JEQ:
1969			_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1970			break;
1971		case BPF_JGT:
1972			_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1973			break;
1974		case BPF_JGE:
1975			_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1976			break;
1977		case BPF_JSGT:
1978			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1979			break;
1980		case BPF_JSGE:
1981			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1982			break;
1983		case BPF_JLE:
1984			_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1985			break;
1986		case BPF_JLT:
1987			_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1988			break;
1989		case BPF_JSLT:
1990			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1991			break;
1992		case BPF_JSLE:
1993			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1994			break;
1995		}
1996		break;
1997	/* JMP OFF */
1998	case BPF_JMP | BPF_JA:
1999	case BPF_JMP32 | BPF_JA:
2000	{
2001		if (BPF_CLASS(code) == BPF_JMP32 && imm != 0)
2002			jmp_offset = bpf2a32_offset(i + imm, i, ctx);
2003		else if (BPF_CLASS(code) == BPF_JMP && off != 0)
2004			jmp_offset = bpf2a32_offset(i + off, i, ctx);
2005		else
2006			break;
2007
2008		check_imm24(jmp_offset);
2009		emit(ARM_B(jmp_offset), ctx);
2010		break;
2011	}
2012	/* tail call */
2013	case BPF_JMP | BPF_TAIL_CALL:
2014		if (emit_bpf_tail_call(ctx))
2015			return -EFAULT;
2016		break;
2017	/* function call */
2018	case BPF_JMP | BPF_CALL:
2019	{
2020		const s8 *r0 = bpf2a32[BPF_REG_0];
2021		const s8 *r1 = bpf2a32[BPF_REG_1];
2022		const s8 *r2 = bpf2a32[BPF_REG_2];
2023		const s8 *r3 = bpf2a32[BPF_REG_3];
2024		const s8 *r4 = bpf2a32[BPF_REG_4];
2025		const s8 *r5 = bpf2a32[BPF_REG_5];
2026		const u32 func = (u32)__bpf_call_base + (u32)imm;
2027
2028		emit_a32_mov_r64(true, r0, r1, ctx);
2029		emit_a32_mov_r64(true, r1, r2, ctx);
2030		emit_push_r64(r5, ctx);
2031		emit_push_r64(r4, ctx);
2032		emit_push_r64(r3, ctx);
2033
2034		emit_a32_mov_i(tmp[1], func, ctx);
2035		emit_blx_r(tmp[1], ctx);
2036
2037		emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
2038		break;
2039	}
2040	/* function return */
2041	case BPF_JMP | BPF_EXIT:
2042		/* Optimization: when last instruction is EXIT
2043		 * simply fallthrough to epilogue.
2044		 */
2045		if (i == ctx->prog->len - 1)
2046			break;
2047		jmp_offset = epilogue_offset(ctx);
2048		check_imm24(jmp_offset);
2049		emit(ARM_B(jmp_offset), ctx);
2050		break;
2051notyet:
2052		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
2053		return -EFAULT;
2054	default:
2055		pr_err_once("unknown opcode %02x\n", code);
2056		return -EINVAL;
2057	}
2058
2059	if (ctx->flags & FLAG_IMM_OVERFLOW)
2060		/*
2061		 * this instruction generated an overflow when
2062		 * trying to access the literal pool, so
2063		 * delegate this filter to the kernel interpreter.
2064		 */
2065		return -1;
2066	return 0;
2067}
2068
2069static int build_body(struct jit_ctx *ctx)
2070{
2071	const struct bpf_prog *prog = ctx->prog;
2072	unsigned int i;
2073
2074	for (i = 0; i < prog->len; i++) {
2075		const struct bpf_insn *insn = &(prog->insnsi[i]);
2076		int ret;
2077
2078		ret = build_insn(insn, ctx);
2079
2080		/* It's used with loading the 64 bit immediate value. */
2081		if (ret > 0) {
2082			i++;
2083			if (ctx->target == NULL)
2084				ctx->offsets[i] = ctx->idx;
2085			continue;
2086		}
2087
2088		if (ctx->target == NULL)
2089			ctx->offsets[i] = ctx->idx;
2090
2091		/* If unsuccesful, return with error code */
2092		if (ret)
2093			return ret;
2094	}
2095	return 0;
2096}
2097
2098static int validate_code(struct jit_ctx *ctx)
2099{
2100	int i;
2101
2102	for (i = 0; i < ctx->idx; i++) {
2103		if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
2104			return -1;
2105	}
2106
2107	return 0;
2108}
2109
2110bool bpf_jit_needs_zext(void)
2111{
2112	return true;
2113}
2114
2115struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2116{
2117	struct bpf_prog *tmp, *orig_prog = prog;
2118	struct bpf_binary_header *header;
2119	bool tmp_blinded = false;
2120	struct jit_ctx ctx;
2121	unsigned int tmp_idx;
2122	unsigned int image_size;
2123	u8 *image_ptr;
2124
2125	/* If BPF JIT was not enabled then we must fall back to
2126	 * the interpreter.
2127	 */
2128	if (!prog->jit_requested)
2129		return orig_prog;
2130
2131	/* If constant blinding was enabled and we failed during blinding
2132	 * then we must fall back to the interpreter. Otherwise, we save
2133	 * the new JITed code.
2134	 */
2135	tmp = bpf_jit_blind_constants(prog);
2136
2137	if (IS_ERR(tmp))
2138		return orig_prog;
2139	if (tmp != prog) {
2140		tmp_blinded = true;
2141		prog = tmp;
2142	}
2143
2144	memset(&ctx, 0, sizeof(ctx));
2145	ctx.prog = prog;
2146	ctx.cpu_architecture = cpu_architecture();
2147
2148	/* Not able to allocate memory for offsets[] , then
2149	 * we must fall back to the interpreter
2150	 */
2151	ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
2152	if (ctx.offsets == NULL) {
2153		prog = orig_prog;
2154		goto out;
2155	}
2156
2157	/* 1) fake pass to find in the length of the JITed code,
2158	 * to compute ctx->offsets and other context variables
2159	 * needed to compute final JITed code.
2160	 * Also, calculate random starting pointer/start of JITed code
2161	 * which is prefixed by random number of fault instructions.
2162	 *
2163	 * If the first pass fails then there is no chance of it
2164	 * being successful in the second pass, so just fall back
2165	 * to the interpreter.
2166	 */
2167	if (build_body(&ctx)) {
2168		prog = orig_prog;
2169		goto out_off;
2170	}
2171
2172	tmp_idx = ctx.idx;
2173	build_prologue(&ctx);
2174	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
2175
2176	ctx.epilogue_offset = ctx.idx;
2177
2178#if __LINUX_ARM_ARCH__ < 7
2179	tmp_idx = ctx.idx;
2180	build_epilogue(&ctx);
2181	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
2182
2183	ctx.idx += ctx.imm_count;
2184	if (ctx.imm_count) {
2185		ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
2186		if (ctx.imms == NULL) {
2187			prog = orig_prog;
2188			goto out_off;
2189		}
2190	}
2191#else
2192	/* there's nothing about the epilogue on ARMv7 */
2193	build_epilogue(&ctx);
2194#endif
2195	/* Now we can get the actual image size of the JITed arm code.
2196	 * Currently, we are not considering the THUMB-2 instructions
2197	 * for jit, although it can decrease the size of the image.
2198	 *
2199	 * As each arm instruction is of length 32bit, we are translating
2200	 * number of JITed instructions into the size required to store these
2201	 * JITed code.
2202	 */
2203	image_size = sizeof(u32) * ctx.idx;
2204
2205	/* Now we know the size of the structure to make */
2206	header = bpf_jit_binary_alloc(image_size, &image_ptr,
2207				      sizeof(u32), jit_fill_hole);
2208	/* Not able to allocate memory for the structure then
2209	 * we must fall back to the interpretation
2210	 */
2211	if (header == NULL) {
2212		prog = orig_prog;
2213		goto out_imms;
2214	}
2215
2216	/* 2.) Actual pass to generate final JIT code */
2217	ctx.target = (u32 *) image_ptr;
2218	ctx.idx = 0;
2219
2220	build_prologue(&ctx);
2221
2222	/* If building the body of the JITed code fails somehow,
2223	 * we fall back to the interpretation.
2224	 */
2225	if (build_body(&ctx) < 0) {
2226		image_ptr = NULL;
2227		bpf_jit_binary_free(header);
2228		prog = orig_prog;
2229		goto out_imms;
2230	}
2231	build_epilogue(&ctx);
2232
2233	/* 3.) Extra pass to validate JITed Code */
2234	if (validate_code(&ctx)) {
2235		image_ptr = NULL;
2236		bpf_jit_binary_free(header);
2237		prog = orig_prog;
2238		goto out_imms;
2239	}
2240	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2241
2242	if (bpf_jit_enable > 1)
2243		/* there are 2 passes here */
2244		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2245
2246	bpf_jit_binary_lock_ro(header);
2247	prog->bpf_func = (void *)ctx.target;
2248	prog->jited = 1;
2249	prog->jited_len = image_size;
2250
2251out_imms:
2252#if __LINUX_ARM_ARCH__ < 7
2253	if (ctx.imm_count)
2254		kfree(ctx.imms);
2255#endif
2256out_off:
2257	kfree(ctx.offsets);
2258out:
2259	if (tmp_blinded)
2260		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2261					   tmp : orig_prog);
2262	return prog;
2263}
2264
2265