1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/arch/arm/mm/mmu.c
4 *
5 *  Copyright (C) 1995-2005 Russell King
6 */
7#include <linux/module.h>
8#include <linux/kernel.h>
9#include <linux/errno.h>
10#include <linux/init.h>
11#include <linux/mman.h>
12#include <linux/nodemask.h>
13#include <linux/memblock.h>
14#include <linux/fs.h>
15#include <linux/vmalloc.h>
16#include <linux/sizes.h>
17
18#include <asm/cp15.h>
19#include <asm/cputype.h>
20#include <asm/cachetype.h>
21#include <asm/sections.h>
22#include <asm/setup.h>
23#include <asm/smp_plat.h>
24#include <asm/tcm.h>
25#include <asm/tlb.h>
26#include <asm/highmem.h>
27#include <asm/system_info.h>
28#include <asm/traps.h>
29#include <asm/procinfo.h>
30#include <asm/page.h>
31#include <asm/pgalloc.h>
32#include <asm/kasan_def.h>
33
34#include <asm/mach/arch.h>
35#include <asm/mach/map.h>
36#include <asm/mach/pci.h>
37#include <asm/fixmap.h>
38
39#include "fault.h"
40#include "mm.h"
41
42extern unsigned long __atags_pointer;
43
44/*
45 * empty_zero_page is a special page that is used for
46 * zero-initialized data and COW.
47 */
48struct page *empty_zero_page;
49EXPORT_SYMBOL(empty_zero_page);
50
51/*
52 * The pmd table for the upper-most set of pages.
53 */
54pmd_t *top_pmd;
55
56pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57
58#define CPOLICY_UNCACHED	0
59#define CPOLICY_BUFFERED	1
60#define CPOLICY_WRITETHROUGH	2
61#define CPOLICY_WRITEBACK	3
62#define CPOLICY_WRITEALLOC	4
63
64static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65static unsigned int ecc_mask __initdata = 0;
66pgprot_t pgprot_user;
67pgprot_t pgprot_kernel;
68
69EXPORT_SYMBOL(pgprot_user);
70EXPORT_SYMBOL(pgprot_kernel);
71
72struct cachepolicy {
73	const char	policy[16];
74	unsigned int	cr_mask;
75	pmdval_t	pmd;
76	pteval_t	pte;
77};
78
79static struct cachepolicy cache_policies[] __initdata = {
80	{
81		.policy		= "uncached",
82		.cr_mask	= CR_W|CR_C,
83		.pmd		= PMD_SECT_UNCACHED,
84		.pte		= L_PTE_MT_UNCACHED,
85	}, {
86		.policy		= "buffered",
87		.cr_mask	= CR_C,
88		.pmd		= PMD_SECT_BUFFERED,
89		.pte		= L_PTE_MT_BUFFERABLE,
90	}, {
91		.policy		= "writethrough",
92		.cr_mask	= 0,
93		.pmd		= PMD_SECT_WT,
94		.pte		= L_PTE_MT_WRITETHROUGH,
95	}, {
96		.policy		= "writeback",
97		.cr_mask	= 0,
98		.pmd		= PMD_SECT_WB,
99		.pte		= L_PTE_MT_WRITEBACK,
100	}, {
101		.policy		= "writealloc",
102		.cr_mask	= 0,
103		.pmd		= PMD_SECT_WBWA,
104		.pte		= L_PTE_MT_WRITEALLOC,
105	}
106};
107
108#ifdef CONFIG_CPU_CP15
109static unsigned long initial_pmd_value __initdata = 0;
110
111/*
112 * Initialise the cache_policy variable with the initial state specified
113 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
114 * the C code sets the page tables up with the same policy as the head
115 * assembly code, which avoids an illegal state where the TLBs can get
116 * confused.  See comments in early_cachepolicy() for more information.
117 */
118void __init init_default_cache_policy(unsigned long pmd)
119{
120	int i;
121
122	initial_pmd_value = pmd;
123
124	pmd &= PMD_SECT_CACHE_MASK;
125
126	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127		if (cache_policies[i].pmd == pmd) {
128			cachepolicy = i;
129			break;
130		}
131
132	if (i == ARRAY_SIZE(cache_policies))
133		pr_err("ERROR: could not find cache policy\n");
134}
135
136/*
137 * These are useful for identifying cache coherency problems by allowing
138 * the cache or the cache and writebuffer to be turned off.  (Note: the
139 * write buffer should not be on and the cache off).
140 */
141static int __init early_cachepolicy(char *p)
142{
143	int i, selected = -1;
144
145	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146		int len = strlen(cache_policies[i].policy);
147
148		if (memcmp(p, cache_policies[i].policy, len) == 0) {
149			selected = i;
150			break;
151		}
152	}
153
154	if (selected == -1)
155		pr_err("ERROR: unknown or unsupported cache policy\n");
156
157	/*
158	 * This restriction is partly to do with the way we boot; it is
159	 * unpredictable to have memory mapped using two different sets of
160	 * memory attributes (shared, type, and cache attribs).  We can not
161	 * change these attributes once the initial assembly has setup the
162	 * page tables.
163	 */
164	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166			cache_policies[cachepolicy].policy);
167		return 0;
168	}
169
170	if (selected != cachepolicy) {
171		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172		cachepolicy = selected;
173		flush_cache_all();
174		set_cr(cr);
175	}
176	return 0;
177}
178early_param("cachepolicy", early_cachepolicy);
179
180static int __init early_nocache(char *__unused)
181{
182	char *p = "buffered";
183	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184	early_cachepolicy(p);
185	return 0;
186}
187early_param("nocache", early_nocache);
188
189static int __init early_nowrite(char *__unused)
190{
191	char *p = "uncached";
192	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193	early_cachepolicy(p);
194	return 0;
195}
196early_param("nowb", early_nowrite);
197
198#ifndef CONFIG_ARM_LPAE
199static int __init early_ecc(char *p)
200{
201	if (memcmp(p, "on", 2) == 0)
202		ecc_mask = PMD_PROTECTION;
203	else if (memcmp(p, "off", 3) == 0)
204		ecc_mask = 0;
205	return 0;
206}
207early_param("ecc", early_ecc);
208#endif
209
210#else /* ifdef CONFIG_CPU_CP15 */
211
212static int __init early_cachepolicy(char *p)
213{
214	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215	return 0;
216}
217early_param("cachepolicy", early_cachepolicy);
218
219static int __init noalign_setup(char *__unused)
220{
221	pr_warn("noalign kernel parameter not supported without cp15\n");
222	return 1;
223}
224__setup("noalign", noalign_setup);
225
226#endif /* ifdef CONFIG_CPU_CP15 / else */
227
228#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
229#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
230#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
231
232static struct mem_type mem_types[] __ro_after_init = {
233	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
234		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
235				  L_PTE_SHARED,
236		.prot_l1	= PMD_TYPE_TABLE,
237		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
238		.domain		= DOMAIN_IO,
239	},
240	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
241		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
242		.prot_l1	= PMD_TYPE_TABLE,
243		.prot_sect	= PROT_SECT_DEVICE,
244		.domain		= DOMAIN_IO,
245	},
246	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
247		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
248		.prot_l1	= PMD_TYPE_TABLE,
249		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
250		.domain		= DOMAIN_IO,
251	},
252	[MT_DEVICE_WC] = {	/* ioremap_wc */
253		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
254		.prot_l1	= PMD_TYPE_TABLE,
255		.prot_sect	= PROT_SECT_DEVICE,
256		.domain		= DOMAIN_IO,
257	},
258	[MT_UNCACHED] = {
259		.prot_pte	= PROT_PTE_DEVICE,
260		.prot_l1	= PMD_TYPE_TABLE,
261		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
262		.domain		= DOMAIN_IO,
263	},
264	[MT_CACHECLEAN] = {
265		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266		.domain    = DOMAIN_KERNEL,
267	},
268#ifndef CONFIG_ARM_LPAE
269	[MT_MINICLEAN] = {
270		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
271		.domain    = DOMAIN_KERNEL,
272	},
273#endif
274	[MT_LOW_VECTORS] = {
275		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276				L_PTE_RDONLY,
277		.prot_l1   = PMD_TYPE_TABLE,
278		.domain    = DOMAIN_VECTORS,
279	},
280	[MT_HIGH_VECTORS] = {
281		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282				L_PTE_USER | L_PTE_RDONLY,
283		.prot_l1   = PMD_TYPE_TABLE,
284		.domain    = DOMAIN_VECTORS,
285	},
286	[MT_MEMORY_RWX] = {
287		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
288		.prot_l1   = PMD_TYPE_TABLE,
289		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
290		.domain    = DOMAIN_KERNEL,
291	},
292	[MT_MEMORY_RW] = {
293		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
294			     L_PTE_XN,
295		.prot_l1   = PMD_TYPE_TABLE,
296		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
297		.domain    = DOMAIN_KERNEL,
298	},
299	[MT_MEMORY_RO] = {
300		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301			     L_PTE_XN | L_PTE_RDONLY,
302		.prot_l1   = PMD_TYPE_TABLE,
303#ifdef CONFIG_ARM_LPAE
304		.prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2,
305#else
306		.prot_sect = PMD_TYPE_SECT,
307#endif
308		.domain    = DOMAIN_KERNEL,
309	},
310	[MT_ROM] = {
311		.prot_sect = PMD_TYPE_SECT,
312		.domain    = DOMAIN_KERNEL,
313	},
314	[MT_MEMORY_RWX_NONCACHED] = {
315		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
316				L_PTE_MT_BUFFERABLE,
317		.prot_l1   = PMD_TYPE_TABLE,
318		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
319		.domain    = DOMAIN_KERNEL,
320	},
321	[MT_MEMORY_RW_DTCM] = {
322		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
323				L_PTE_XN,
324		.prot_l1   = PMD_TYPE_TABLE,
325		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
326		.domain    = DOMAIN_KERNEL,
327	},
328	[MT_MEMORY_RWX_ITCM] = {
329		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
330		.prot_l1   = PMD_TYPE_TABLE,
331		.domain    = DOMAIN_KERNEL,
332	},
333	[MT_MEMORY_RW_SO] = {
334		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
335				L_PTE_MT_UNCACHED | L_PTE_XN,
336		.prot_l1   = PMD_TYPE_TABLE,
337		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
338				PMD_SECT_UNCACHED | PMD_SECT_XN,
339		.domain    = DOMAIN_KERNEL,
340	},
341	[MT_MEMORY_DMA_READY] = {
342		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
343				L_PTE_XN,
344		.prot_l1   = PMD_TYPE_TABLE,
345		.domain    = DOMAIN_KERNEL,
346	},
347};
348
349const struct mem_type *get_mem_type(unsigned int type)
350{
351	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
352}
353EXPORT_SYMBOL(get_mem_type);
354
355static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
356
357static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
358	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
359
360static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
361{
362	return &bm_pte[pte_index(addr)];
363}
364
365static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
366{
367	return pte_offset_kernel(dir, addr);
368}
369
370static inline pmd_t * __init fixmap_pmd(unsigned long addr)
371{
372	return pmd_off_k(addr);
373}
374
375void __init early_fixmap_init(void)
376{
377	pmd_t *pmd;
378
379	/*
380	 * The early fixmap range spans multiple pmds, for which
381	 * we are not prepared:
382	 */
383	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
384		     != FIXADDR_TOP >> PMD_SHIFT);
385
386	pmd = fixmap_pmd(FIXADDR_TOP);
387	pmd_populate_kernel(&init_mm, pmd, bm_pte);
388
389	pte_offset_fixmap = pte_offset_early_fixmap;
390}
391
392/*
393 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
394 * As a result, this can only be called with preemption disabled, as under
395 * stop_machine().
396 */
397void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
398{
399	unsigned long vaddr = __fix_to_virt(idx);
400	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
401
402	/* Make sure fixmap region does not exceed available allocation. */
403	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
404	BUG_ON(idx >= __end_of_fixed_addresses);
405
406	/* We support only device mappings before pgprot_kernel is set. */
407	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
408		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
409		return;
410
411	if (pgprot_val(prot))
412		set_pte_at(NULL, vaddr, pte,
413			pfn_pte(phys >> PAGE_SHIFT, prot));
414	else
415		pte_clear(NULL, vaddr, pte);
416	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
417}
418
419static pgprot_t protection_map[16] __ro_after_init = {
420	[VM_NONE]					= __PAGE_NONE,
421	[VM_READ]					= __PAGE_READONLY,
422	[VM_WRITE]					= __PAGE_COPY,
423	[VM_WRITE | VM_READ]				= __PAGE_COPY,
424	[VM_EXEC]					= __PAGE_READONLY_EXEC,
425	[VM_EXEC | VM_READ]				= __PAGE_READONLY_EXEC,
426	[VM_EXEC | VM_WRITE]				= __PAGE_COPY_EXEC,
427	[VM_EXEC | VM_WRITE | VM_READ]			= __PAGE_COPY_EXEC,
428	[VM_SHARED]					= __PAGE_NONE,
429	[VM_SHARED | VM_READ]				= __PAGE_READONLY,
430	[VM_SHARED | VM_WRITE]				= __PAGE_SHARED,
431	[VM_SHARED | VM_WRITE | VM_READ]		= __PAGE_SHARED,
432	[VM_SHARED | VM_EXEC]				= __PAGE_READONLY_EXEC,
433	[VM_SHARED | VM_EXEC | VM_READ]			= __PAGE_READONLY_EXEC,
434	[VM_SHARED | VM_EXEC | VM_WRITE]		= __PAGE_SHARED_EXEC,
435	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __PAGE_SHARED_EXEC
436};
437DECLARE_VM_GET_PAGE_PROT
438
439/*
440 * Adjust the PMD section entries according to the CPU in use.
441 */
442static void __init build_mem_type_table(void)
443{
444	struct cachepolicy *cp;
445	unsigned int cr = get_cr();
446	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
447	int cpu_arch = cpu_architecture();
448	int i;
449
450	if (cpu_arch < CPU_ARCH_ARMv6) {
451#if defined(CONFIG_CPU_DCACHE_DISABLE)
452		if (cachepolicy > CPOLICY_BUFFERED)
453			cachepolicy = CPOLICY_BUFFERED;
454#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
455		if (cachepolicy > CPOLICY_WRITETHROUGH)
456			cachepolicy = CPOLICY_WRITETHROUGH;
457#endif
458	}
459	if (cpu_arch < CPU_ARCH_ARMv5) {
460		if (cachepolicy >= CPOLICY_WRITEALLOC)
461			cachepolicy = CPOLICY_WRITEBACK;
462		ecc_mask = 0;
463	}
464
465	if (is_smp()) {
466		if (cachepolicy != CPOLICY_WRITEALLOC) {
467			pr_warn("Forcing write-allocate cache policy for SMP\n");
468			cachepolicy = CPOLICY_WRITEALLOC;
469		}
470		if (!(initial_pmd_value & PMD_SECT_S)) {
471			pr_warn("Forcing shared mappings for SMP\n");
472			initial_pmd_value |= PMD_SECT_S;
473		}
474	}
475
476	/*
477	 * Strip out features not present on earlier architectures.
478	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
479	 * without extended page tables don't have the 'Shared' bit.
480	 */
481	if (cpu_arch < CPU_ARCH_ARMv5)
482		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
483			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
484	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
485		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
486			mem_types[i].prot_sect &= ~PMD_SECT_S;
487
488	/*
489	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
490	 * "update-able on write" bit on ARM610).  However, Xscale and
491	 * Xscale3 require this bit to be cleared.
492	 */
493	if (cpu_is_xscale_family()) {
494		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
495			mem_types[i].prot_sect &= ~PMD_BIT4;
496			mem_types[i].prot_l1 &= ~PMD_BIT4;
497		}
498	} else if (cpu_arch < CPU_ARCH_ARMv6) {
499		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
500			if (mem_types[i].prot_l1)
501				mem_types[i].prot_l1 |= PMD_BIT4;
502			if (mem_types[i].prot_sect)
503				mem_types[i].prot_sect |= PMD_BIT4;
504		}
505	}
506
507	/*
508	 * Mark the device areas according to the CPU/architecture.
509	 */
510	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
511		if (!cpu_is_xsc3()) {
512			/*
513			 * Mark device regions on ARMv6+ as execute-never
514			 * to prevent speculative instruction fetches.
515			 */
516			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
517			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
518			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
519			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
520
521			/* Also setup NX memory mapping */
522			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
523			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
524		}
525		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
526			/*
527			 * For ARMv7 with TEX remapping,
528			 * - shared device is SXCB=1100
529			 * - nonshared device is SXCB=0100
530			 * - write combine device mem is SXCB=0001
531			 * (Uncached Normal memory)
532			 */
533			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
534			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
535			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
536		} else if (cpu_is_xsc3()) {
537			/*
538			 * For Xscale3,
539			 * - shared device is TEXCB=00101
540			 * - nonshared device is TEXCB=01000
541			 * - write combine device mem is TEXCB=00100
542			 * (Inner/Outer Uncacheable in xsc3 parlance)
543			 */
544			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
545			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
546			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
547		} else {
548			/*
549			 * For ARMv6 and ARMv7 without TEX remapping,
550			 * - shared device is TEXCB=00001
551			 * - nonshared device is TEXCB=01000
552			 * - write combine device mem is TEXCB=00100
553			 * (Uncached Normal in ARMv6 parlance).
554			 */
555			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
556			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
557			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
558		}
559	} else {
560		/*
561		 * On others, write combining is "Uncached/Buffered"
562		 */
563		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
564	}
565
566	/*
567	 * Now deal with the memory-type mappings
568	 */
569	cp = &cache_policies[cachepolicy];
570	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
571
572#ifndef CONFIG_ARM_LPAE
573	/*
574	 * We don't use domains on ARMv6 (since this causes problems with
575	 * v6/v7 kernels), so we must use a separate memory type for user
576	 * r/o, kernel r/w to map the vectors page.
577	 */
578	if (cpu_arch == CPU_ARCH_ARMv6)
579		vecs_pgprot |= L_PTE_MT_VECTORS;
580
581	/*
582	 * Check is it with support for the PXN bit
583	 * in the Short-descriptor translation table format descriptors.
584	 */
585	if (cpu_arch == CPU_ARCH_ARMv7 &&
586		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
587		user_pmd_table |= PMD_PXNTABLE;
588	}
589#endif
590
591	/*
592	 * ARMv6 and above have extended page tables.
593	 */
594	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
595#ifndef CONFIG_ARM_LPAE
596		/*
597		 * Mark cache clean areas and XIP ROM read only
598		 * from SVC mode and no access from userspace.
599		 */
600		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
601		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
602		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
603		mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
604#endif
605
606		/*
607		 * If the initial page tables were created with the S bit
608		 * set, then we need to do the same here for the same
609		 * reasons given in early_cachepolicy().
610		 */
611		if (initial_pmd_value & PMD_SECT_S) {
612			user_pgprot |= L_PTE_SHARED;
613			kern_pgprot |= L_PTE_SHARED;
614			vecs_pgprot |= L_PTE_SHARED;
615			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
616			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
617			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
618			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
619			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
620			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
621			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
622			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
623			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
624			mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
625			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
626			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
627			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
628		}
629	}
630
631	/*
632	 * Non-cacheable Normal - intended for memory areas that must
633	 * not cause dirty cache line writebacks when used
634	 */
635	if (cpu_arch >= CPU_ARCH_ARMv6) {
636		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
637			/* Non-cacheable Normal is XCB = 001 */
638			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
639				PMD_SECT_BUFFERED;
640		} else {
641			/* For both ARMv6 and non-TEX-remapping ARMv7 */
642			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
643				PMD_SECT_TEX(1);
644		}
645	} else {
646		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
647	}
648
649#ifdef CONFIG_ARM_LPAE
650	/*
651	 * Do not generate access flag faults for the kernel mappings.
652	 */
653	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
654		mem_types[i].prot_pte |= PTE_EXT_AF;
655		if (mem_types[i].prot_sect)
656			mem_types[i].prot_sect |= PMD_SECT_AF;
657	}
658	kern_pgprot |= PTE_EXT_AF;
659	vecs_pgprot |= PTE_EXT_AF;
660
661	/*
662	 * Set PXN for user mappings
663	 */
664	user_pgprot |= PTE_EXT_PXN;
665#endif
666
667	for (i = 0; i < 16; i++) {
668		pteval_t v = pgprot_val(protection_map[i]);
669		protection_map[i] = __pgprot(v | user_pgprot);
670	}
671
672	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
673	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
674
675	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
676	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
677				 L_PTE_DIRTY | kern_pgprot);
678
679	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
680	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
681	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
682	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
683	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
684	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
685	mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
686	mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
687	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
688	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
689	mem_types[MT_ROM].prot_sect |= cp->pmd;
690
691	switch (cp->pmd) {
692	case PMD_SECT_WT:
693		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
694		break;
695	case PMD_SECT_WB:
696	case PMD_SECT_WBWA:
697		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
698		break;
699	}
700	pr_info("Memory policy: %sData cache %s\n",
701		ecc_mask ? "ECC enabled, " : "", cp->policy);
702
703	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
704		struct mem_type *t = &mem_types[i];
705		if (t->prot_l1)
706			t->prot_l1 |= PMD_DOMAIN(t->domain);
707		if (t->prot_sect)
708			t->prot_sect |= PMD_DOMAIN(t->domain);
709	}
710}
711
712#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
713pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
714			      unsigned long size, pgprot_t vma_prot)
715{
716	if (!pfn_valid(pfn))
717		return pgprot_noncached(vma_prot);
718	else if (file->f_flags & O_SYNC)
719		return pgprot_writecombine(vma_prot);
720	return vma_prot;
721}
722EXPORT_SYMBOL(phys_mem_access_prot);
723#endif
724
725#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
726
727static void __init *early_alloc(unsigned long sz)
728{
729	void *ptr = memblock_alloc(sz, sz);
730
731	if (!ptr)
732		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
733		      __func__, sz, sz);
734
735	return ptr;
736}
737
738static void *__init late_alloc(unsigned long sz)
739{
740	void *ptdesc = pagetable_alloc(GFP_PGTABLE_KERNEL & ~__GFP_HIGHMEM,
741			get_order(sz));
742
743	if (!ptdesc || !pagetable_pte_ctor(ptdesc))
744		BUG();
745	return ptdesc_to_virt(ptdesc);
746}
747
748static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
749				unsigned long prot,
750				void *(*alloc)(unsigned long sz))
751{
752	if (pmd_none(*pmd)) {
753		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
754		__pmd_populate(pmd, __pa(pte), prot);
755	}
756	BUG_ON(pmd_bad(*pmd));
757	return pte_offset_kernel(pmd, addr);
758}
759
760static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
761				      unsigned long prot)
762{
763	return arm_pte_alloc(pmd, addr, prot, early_alloc);
764}
765
766static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
767				  unsigned long end, unsigned long pfn,
768				  const struct mem_type *type,
769				  void *(*alloc)(unsigned long sz),
770				  bool ng)
771{
772	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
773	do {
774		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
775			    ng ? PTE_EXT_NG : 0);
776		pfn++;
777	} while (pte++, addr += PAGE_SIZE, addr != end);
778}
779
780static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
781			unsigned long end, phys_addr_t phys,
782			const struct mem_type *type, bool ng)
783{
784	pmd_t *p = pmd;
785
786#ifndef CONFIG_ARM_LPAE
787	/*
788	 * In classic MMU format, puds and pmds are folded in to
789	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
790	 * group of L1 entries making up one logical pointer to
791	 * an L2 table (2MB), where as PMDs refer to the individual
792	 * L1 entries (1MB). Hence increment to get the correct
793	 * offset for odd 1MB sections.
794	 * (See arch/arm/include/asm/pgtable-2level.h)
795	 */
796	if (addr & SECTION_SIZE)
797		pmd++;
798#endif
799	do {
800		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
801		phys += SECTION_SIZE;
802	} while (pmd++, addr += SECTION_SIZE, addr != end);
803
804	flush_pmd_entry(p);
805}
806
807static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
808				      unsigned long end, phys_addr_t phys,
809				      const struct mem_type *type,
810				      void *(*alloc)(unsigned long sz), bool ng)
811{
812	pmd_t *pmd = pmd_offset(pud, addr);
813	unsigned long next;
814
815	do {
816		/*
817		 * With LPAE, we must loop over to map
818		 * all the pmds for the given range.
819		 */
820		next = pmd_addr_end(addr, end);
821
822		/*
823		 * Try a section mapping - addr, next and phys must all be
824		 * aligned to a section boundary.
825		 */
826		if (type->prot_sect &&
827				((addr | next | phys) & ~SECTION_MASK) == 0) {
828			__map_init_section(pmd, addr, next, phys, type, ng);
829		} else {
830			alloc_init_pte(pmd, addr, next,
831				       __phys_to_pfn(phys), type, alloc, ng);
832		}
833
834		phys += next - addr;
835
836	} while (pmd++, addr = next, addr != end);
837}
838
839static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
840				  unsigned long end, phys_addr_t phys,
841				  const struct mem_type *type,
842				  void *(*alloc)(unsigned long sz), bool ng)
843{
844	pud_t *pud = pud_offset(p4d, addr);
845	unsigned long next;
846
847	do {
848		next = pud_addr_end(addr, end);
849		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
850		phys += next - addr;
851	} while (pud++, addr = next, addr != end);
852}
853
854static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
855				  unsigned long end, phys_addr_t phys,
856				  const struct mem_type *type,
857				  void *(*alloc)(unsigned long sz), bool ng)
858{
859	p4d_t *p4d = p4d_offset(pgd, addr);
860	unsigned long next;
861
862	do {
863		next = p4d_addr_end(addr, end);
864		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
865		phys += next - addr;
866	} while (p4d++, addr = next, addr != end);
867}
868
869#ifndef CONFIG_ARM_LPAE
870static void __init create_36bit_mapping(struct mm_struct *mm,
871					struct map_desc *md,
872					const struct mem_type *type,
873					bool ng)
874{
875	unsigned long addr, length, end;
876	phys_addr_t phys;
877	pgd_t *pgd;
878
879	addr = md->virtual;
880	phys = __pfn_to_phys(md->pfn);
881	length = PAGE_ALIGN(md->length);
882
883	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
884		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
885		       (long long)__pfn_to_phys((u64)md->pfn), addr);
886		return;
887	}
888
889	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
890	 *	Since domain assignments can in fact be arbitrary, the
891	 *	'domain == 0' check below is required to insure that ARMv6
892	 *	supersections are only allocated for domain 0 regardless
893	 *	of the actual domain assignments in use.
894	 */
895	if (type->domain) {
896		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
897		       (long long)__pfn_to_phys((u64)md->pfn), addr);
898		return;
899	}
900
901	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
902		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
903		       (long long)__pfn_to_phys((u64)md->pfn), addr);
904		return;
905	}
906
907	/*
908	 * Shift bits [35:32] of address into bits [23:20] of PMD
909	 * (See ARMv6 spec).
910	 */
911	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
912
913	pgd = pgd_offset(mm, addr);
914	end = addr + length;
915	do {
916		p4d_t *p4d = p4d_offset(pgd, addr);
917		pud_t *pud = pud_offset(p4d, addr);
918		pmd_t *pmd = pmd_offset(pud, addr);
919		int i;
920
921		for (i = 0; i < 16; i++)
922			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
923				       (ng ? PMD_SECT_nG : 0));
924
925		addr += SUPERSECTION_SIZE;
926		phys += SUPERSECTION_SIZE;
927		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
928	} while (addr != end);
929}
930#endif	/* !CONFIG_ARM_LPAE */
931
932static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
933				    void *(*alloc)(unsigned long sz),
934				    bool ng)
935{
936	unsigned long addr, length, end;
937	phys_addr_t phys;
938	const struct mem_type *type;
939	pgd_t *pgd;
940
941	type = &mem_types[md->type];
942
943#ifndef CONFIG_ARM_LPAE
944	/*
945	 * Catch 36-bit addresses
946	 */
947	if (md->pfn >= 0x100000) {
948		create_36bit_mapping(mm, md, type, ng);
949		return;
950	}
951#endif
952
953	addr = md->virtual & PAGE_MASK;
954	phys = __pfn_to_phys(md->pfn);
955	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
956
957	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
958		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
959			(long long)__pfn_to_phys(md->pfn), addr);
960		return;
961	}
962
963	pgd = pgd_offset(mm, addr);
964	end = addr + length;
965	do {
966		unsigned long next = pgd_addr_end(addr, end);
967
968		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
969
970		phys += next - addr;
971		addr = next;
972	} while (pgd++, addr != end);
973}
974
975/*
976 * Create the page directory entries and any necessary
977 * page tables for the mapping specified by `md'.  We
978 * are able to cope here with varying sizes and address
979 * offsets, and we take full advantage of sections and
980 * supersections.
981 */
982static void __init create_mapping(struct map_desc *md)
983{
984	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
985		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
986			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
987		return;
988	}
989
990	if (md->type == MT_DEVICE &&
991	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
992	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
993		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
994			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
995	}
996
997	__create_mapping(&init_mm, md, early_alloc, false);
998}
999
1000void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
1001				bool ng)
1002{
1003#ifdef CONFIG_ARM_LPAE
1004	p4d_t *p4d;
1005	pud_t *pud;
1006
1007	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
1008	if (WARN_ON(!p4d))
1009		return;
1010	pud = pud_alloc(mm, p4d, md->virtual);
1011	if (WARN_ON(!pud))
1012		return;
1013	pmd_alloc(mm, pud, 0);
1014#endif
1015	__create_mapping(mm, md, late_alloc, ng);
1016}
1017
1018/*
1019 * Create the architecture specific mappings
1020 */
1021void __init iotable_init(struct map_desc *io_desc, int nr)
1022{
1023	struct map_desc *md;
1024	struct vm_struct *vm;
1025	struct static_vm *svm;
1026
1027	if (!nr)
1028		return;
1029
1030	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1031	if (!svm)
1032		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1033		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1034
1035	for (md = io_desc; nr; md++, nr--) {
1036		create_mapping(md);
1037
1038		vm = &svm->vm;
1039		vm->addr = (void *)(md->virtual & PAGE_MASK);
1040		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1041		vm->phys_addr = __pfn_to_phys(md->pfn);
1042		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1043		vm->flags |= VM_ARM_MTYPE(md->type);
1044		vm->caller = iotable_init;
1045		add_static_vm_early(svm++);
1046	}
1047}
1048
1049void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1050				  void *caller)
1051{
1052	struct vm_struct *vm;
1053	struct static_vm *svm;
1054
1055	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1056	if (!svm)
1057		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1058		      __func__, sizeof(*svm), __alignof__(*svm));
1059
1060	vm = &svm->vm;
1061	vm->addr = (void *)addr;
1062	vm->size = size;
1063	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1064	vm->caller = caller;
1065	add_static_vm_early(svm);
1066}
1067
1068#ifndef CONFIG_ARM_LPAE
1069
1070/*
1071 * The Linux PMD is made of two consecutive section entries covering 2MB
1072 * (see definition in include/asm/pgtable-2level.h).  However a call to
1073 * create_mapping() may optimize static mappings by using individual
1074 * 1MB section mappings.  This leaves the actual PMD potentially half
1075 * initialized if the top or bottom section entry isn't used, leaving it
1076 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1077 * the virtual space left free by that unused section entry.
1078 *
1079 * Let's avoid the issue by inserting dummy vm entries covering the unused
1080 * PMD halves once the static mappings are in place.
1081 */
1082
1083static void __init pmd_empty_section_gap(unsigned long addr)
1084{
1085	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1086}
1087
1088static void __init fill_pmd_gaps(void)
1089{
1090	struct static_vm *svm;
1091	struct vm_struct *vm;
1092	unsigned long addr, next = 0;
1093	pmd_t *pmd;
1094
1095	list_for_each_entry(svm, &static_vmlist, list) {
1096		vm = &svm->vm;
1097		addr = (unsigned long)vm->addr;
1098		if (addr < next)
1099			continue;
1100
1101		/*
1102		 * Check if this vm starts on an odd section boundary.
1103		 * If so and the first section entry for this PMD is free
1104		 * then we block the corresponding virtual address.
1105		 */
1106		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1107			pmd = pmd_off_k(addr);
1108			if (pmd_none(*pmd))
1109				pmd_empty_section_gap(addr & PMD_MASK);
1110		}
1111
1112		/*
1113		 * Then check if this vm ends on an odd section boundary.
1114		 * If so and the second section entry for this PMD is empty
1115		 * then we block the corresponding virtual address.
1116		 */
1117		addr += vm->size;
1118		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1119			pmd = pmd_off_k(addr) + 1;
1120			if (pmd_none(*pmd))
1121				pmd_empty_section_gap(addr);
1122		}
1123
1124		/* no need to look at any vm entry until we hit the next PMD */
1125		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1126	}
1127}
1128
1129#else
1130#define fill_pmd_gaps() do { } while (0)
1131#endif
1132
1133#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1134static void __init pci_reserve_io(void)
1135{
1136	struct static_vm *svm;
1137
1138	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1139	if (svm)
1140		return;
1141
1142	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1143}
1144#else
1145#define pci_reserve_io() do { } while (0)
1146#endif
1147
1148#ifdef CONFIG_DEBUG_LL
1149void __init debug_ll_io_init(void)
1150{
1151	struct map_desc map;
1152
1153	debug_ll_addr(&map.pfn, &map.virtual);
1154	if (!map.pfn || !map.virtual)
1155		return;
1156	map.pfn = __phys_to_pfn(map.pfn);
1157	map.virtual &= PAGE_MASK;
1158	map.length = PAGE_SIZE;
1159	map.type = MT_DEVICE;
1160	iotable_init(&map, 1);
1161}
1162#endif
1163
1164static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1165
1166/*
1167 * vmalloc=size forces the vmalloc area to be exactly 'size'
1168 * bytes. This can be used to increase (or decrease) the vmalloc
1169 * area - the default is 240MiB.
1170 */
1171static int __init early_vmalloc(char *arg)
1172{
1173	unsigned long vmalloc_reserve = memparse(arg, NULL);
1174	unsigned long vmalloc_max;
1175
1176	if (vmalloc_reserve < SZ_16M) {
1177		vmalloc_reserve = SZ_16M;
1178		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1179			vmalloc_reserve >> 20);
1180	}
1181
1182	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1183	if (vmalloc_reserve > vmalloc_max) {
1184		vmalloc_reserve = vmalloc_max;
1185		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1186			vmalloc_reserve >> 20);
1187	}
1188
1189	vmalloc_size = vmalloc_reserve;
1190	return 0;
1191}
1192early_param("vmalloc", early_vmalloc);
1193
1194phys_addr_t arm_lowmem_limit __initdata = 0;
1195
1196void __init adjust_lowmem_bounds(void)
1197{
1198	phys_addr_t block_start, block_end, memblock_limit = 0;
1199	u64 vmalloc_limit, i;
1200	phys_addr_t lowmem_limit = 0;
1201
1202	/*
1203	 * Let's use our own (unoptimized) equivalent of __pa() that is
1204	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1205	 * The result is used as the upper bound on physical memory address
1206	 * and may itself be outside the valid range for which phys_addr_t
1207	 * and therefore __pa() is defined.
1208	 */
1209	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1210			PAGE_OFFSET + PHYS_OFFSET;
1211
1212	/*
1213	 * The first usable region must be PMD aligned. Mark its start
1214	 * as MEMBLOCK_NOMAP if it isn't
1215	 */
1216	for_each_mem_range(i, &block_start, &block_end) {
1217		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1218			phys_addr_t len;
1219
1220			len = round_up(block_start, PMD_SIZE) - block_start;
1221			memblock_mark_nomap(block_start, len);
1222		}
1223		break;
1224	}
1225
1226	for_each_mem_range(i, &block_start, &block_end) {
1227		if (block_start < vmalloc_limit) {
1228			if (block_end > lowmem_limit)
1229				/*
1230				 * Compare as u64 to ensure vmalloc_limit does
1231				 * not get truncated. block_end should always
1232				 * fit in phys_addr_t so there should be no
1233				 * issue with assignment.
1234				 */
1235				lowmem_limit = min_t(u64,
1236							 vmalloc_limit,
1237							 block_end);
1238
1239			/*
1240			 * Find the first non-pmd-aligned page, and point
1241			 * memblock_limit at it. This relies on rounding the
1242			 * limit down to be pmd-aligned, which happens at the
1243			 * end of this function.
1244			 *
1245			 * With this algorithm, the start or end of almost any
1246			 * bank can be non-pmd-aligned. The only exception is
1247			 * that the start of the bank 0 must be section-
1248			 * aligned, since otherwise memory would need to be
1249			 * allocated when mapping the start of bank 0, which
1250			 * occurs before any free memory is mapped.
1251			 */
1252			if (!memblock_limit) {
1253				if (!IS_ALIGNED(block_start, PMD_SIZE))
1254					memblock_limit = block_start;
1255				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1256					memblock_limit = lowmem_limit;
1257			}
1258
1259		}
1260	}
1261
1262	arm_lowmem_limit = lowmem_limit;
1263
1264	high_memory = __va(arm_lowmem_limit - 1) + 1;
1265
1266	if (!memblock_limit)
1267		memblock_limit = arm_lowmem_limit;
1268
1269	/*
1270	 * Round the memblock limit down to a pmd size.  This
1271	 * helps to ensure that we will allocate memory from the
1272	 * last full pmd, which should be mapped.
1273	 */
1274	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1275
1276	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1277		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1278			phys_addr_t end = memblock_end_of_DRAM();
1279
1280			pr_notice("Ignoring RAM at %pa-%pa\n",
1281				  &memblock_limit, &end);
1282			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1283
1284			memblock_remove(memblock_limit, end - memblock_limit);
1285		}
1286	}
1287
1288	memblock_set_current_limit(memblock_limit);
1289}
1290
1291static __init void prepare_page_table(void)
1292{
1293	unsigned long addr;
1294	phys_addr_t end;
1295
1296	/*
1297	 * Clear out all the mappings below the kernel image.
1298	 */
1299#ifdef CONFIG_KASAN
1300	/*
1301	 * KASan's shadow memory inserts itself between the TASK_SIZE
1302	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1303	 */
1304	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1305		pmd_clear(pmd_off_k(addr));
1306	/*
1307	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1308	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1309	 * are using a thumb-compiled kernel, there there will be 8MB more
1310	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1311	 */
1312	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1313		pmd_clear(pmd_off_k(addr));
1314#else
1315	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1316		pmd_clear(pmd_off_k(addr));
1317#endif
1318
1319#ifdef CONFIG_XIP_KERNEL
1320	/* The XIP kernel is mapped in the module area -- skip over it */
1321	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1322#endif
1323	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1324		pmd_clear(pmd_off_k(addr));
1325
1326	/*
1327	 * Find the end of the first block of lowmem.
1328	 */
1329	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1330	if (end >= arm_lowmem_limit)
1331		end = arm_lowmem_limit;
1332
1333	/*
1334	 * Clear out all the kernel space mappings, except for the first
1335	 * memory bank, up to the vmalloc region.
1336	 */
1337	for (addr = __phys_to_virt(end);
1338	     addr < VMALLOC_START; addr += PMD_SIZE)
1339		pmd_clear(pmd_off_k(addr));
1340}
1341
1342#ifdef CONFIG_ARM_LPAE
1343/* the first page is reserved for pgd */
1344#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1345				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1346#else
1347#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1348#endif
1349
1350/*
1351 * Reserve the special regions of memory
1352 */
1353void __init arm_mm_memblock_reserve(void)
1354{
1355	/*
1356	 * Reserve the page tables.  These are already in use,
1357	 * and can only be in node 0.
1358	 */
1359	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1360
1361#ifdef CONFIG_SA1111
1362	/*
1363	 * Because of the SA1111 DMA bug, we want to preserve our
1364	 * precious DMA-able memory...
1365	 */
1366	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1367#endif
1368}
1369
1370/*
1371 * Set up the device mappings.  Since we clear out the page tables for all
1372 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1373 * device mappings.  This means earlycon can be used to debug this function
1374 * Any other function or debugging method which may touch any device _will_
1375 * crash the kernel.
1376 */
1377static void __init devicemaps_init(const struct machine_desc *mdesc)
1378{
1379	struct map_desc map;
1380	unsigned long addr;
1381	void *vectors;
1382
1383	/*
1384	 * Allocate the vector page early.
1385	 */
1386	vectors = early_alloc(PAGE_SIZE * 2);
1387
1388	early_trap_init(vectors);
1389
1390	/*
1391	 * Clear page table except top pmd used by early fixmaps
1392	 */
1393	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1394		pmd_clear(pmd_off_k(addr));
1395
1396	if (__atags_pointer) {
1397		/* create a read-only mapping of the device tree */
1398		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1399		map.virtual = FDT_FIXED_BASE;
1400		map.length = FDT_FIXED_SIZE;
1401		map.type = MT_MEMORY_RO;
1402		create_mapping(&map);
1403	}
1404
1405	/*
1406	 * Map the kernel if it is XIP.
1407	 * It is always first in the modulearea.
1408	 */
1409#ifdef CONFIG_XIP_KERNEL
1410	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1411	map.virtual = MODULES_VADDR;
1412	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1413	map.type = MT_ROM;
1414	create_mapping(&map);
1415#endif
1416
1417	/*
1418	 * Map the cache flushing regions.
1419	 */
1420#ifdef FLUSH_BASE
1421	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1422	map.virtual = FLUSH_BASE;
1423	map.length = SZ_1M;
1424	map.type = MT_CACHECLEAN;
1425	create_mapping(&map);
1426#endif
1427#ifdef FLUSH_BASE_MINICACHE
1428	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1429	map.virtual = FLUSH_BASE_MINICACHE;
1430	map.length = SZ_1M;
1431	map.type = MT_MINICLEAN;
1432	create_mapping(&map);
1433#endif
1434
1435	/*
1436	 * Create a mapping for the machine vectors at the high-vectors
1437	 * location (0xffff0000).  If we aren't using high-vectors, also
1438	 * create a mapping at the low-vectors virtual address.
1439	 */
1440	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1441	map.virtual = 0xffff0000;
1442	map.length = PAGE_SIZE;
1443#ifdef CONFIG_KUSER_HELPERS
1444	map.type = MT_HIGH_VECTORS;
1445#else
1446	map.type = MT_LOW_VECTORS;
1447#endif
1448	create_mapping(&map);
1449
1450	if (!vectors_high()) {
1451		map.virtual = 0;
1452		map.length = PAGE_SIZE * 2;
1453		map.type = MT_LOW_VECTORS;
1454		create_mapping(&map);
1455	}
1456
1457	/* Now create a kernel read-only mapping */
1458	map.pfn += 1;
1459	map.virtual = 0xffff0000 + PAGE_SIZE;
1460	map.length = PAGE_SIZE;
1461	map.type = MT_LOW_VECTORS;
1462	create_mapping(&map);
1463
1464	/*
1465	 * Ask the machine support to map in the statically mapped devices.
1466	 */
1467	if (mdesc->map_io)
1468		mdesc->map_io();
1469	else
1470		debug_ll_io_init();
1471	fill_pmd_gaps();
1472
1473	/* Reserve fixed i/o space in VMALLOC region */
1474	pci_reserve_io();
1475
1476	/*
1477	 * Finally flush the caches and tlb to ensure that we're in a
1478	 * consistent state wrt the writebuffer.  This also ensures that
1479	 * any write-allocated cache lines in the vector page are written
1480	 * back.  After this point, we can start to touch devices again.
1481	 */
1482	local_flush_tlb_all();
1483	flush_cache_all();
1484
1485	/* Enable asynchronous aborts */
1486	early_abt_enable();
1487}
1488
1489static void __init kmap_init(void)
1490{
1491#ifdef CONFIG_HIGHMEM
1492	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1493		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1494#endif
1495
1496	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1497			_PAGE_KERNEL_TABLE);
1498}
1499
1500static void __init map_lowmem(void)
1501{
1502	phys_addr_t start, end;
1503	u64 i;
1504
1505	/* Map all the lowmem memory banks. */
1506	for_each_mem_range(i, &start, &end) {
1507		struct map_desc map;
1508
1509		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1510			 (long long)start, (long long)end);
1511		if (end > arm_lowmem_limit)
1512			end = arm_lowmem_limit;
1513		if (start >= end)
1514			break;
1515
1516		/*
1517		 * If our kernel image is in the VMALLOC area we need to remove
1518		 * the kernel physical memory from lowmem since the kernel will
1519		 * be mapped separately.
1520		 *
1521		 * The kernel will typically be at the very start of lowmem,
1522		 * but any placement relative to memory ranges is possible.
1523		 *
1524		 * If the memblock contains the kernel, we have to chisel out
1525		 * the kernel memory from it and map each part separately. We
1526		 * get 6 different theoretical cases:
1527		 *
1528		 *                            +--------+ +--------+
1529		 *  +-- start --+  +--------+ | Kernel | | Kernel |
1530		 *  |           |  | Kernel | | case 2 | | case 5 |
1531		 *  |           |  | case 1 | +--------+ |        | +--------+
1532		 *  |  Memory   |  +--------+            |        | | Kernel |
1533		 *  |  range    |  +--------+            |        | | case 6 |
1534		 *  |           |  | Kernel | +--------+ |        | +--------+
1535		 *  |           |  | case 3 | | Kernel | |        |
1536		 *  +-- end ----+  +--------+ | case 4 | |        |
1537		 *                            +--------+ +--------+
1538		 */
1539
1540		/* Case 5: kernel covers range, don't map anything, should be rare */
1541		if ((start > kernel_sec_start) && (end < kernel_sec_end))
1542			break;
1543
1544		/* Cases where the kernel is starting inside the range */
1545		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1546			/* Case 6: kernel is embedded in the range, we need two mappings */
1547			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1548				/* Map memory below the kernel */
1549				map.pfn = __phys_to_pfn(start);
1550				map.virtual = __phys_to_virt(start);
1551				map.length = kernel_sec_start - start;
1552				map.type = MT_MEMORY_RW;
1553				create_mapping(&map);
1554				/* Map memory above the kernel */
1555				map.pfn = __phys_to_pfn(kernel_sec_end);
1556				map.virtual = __phys_to_virt(kernel_sec_end);
1557				map.length = end - kernel_sec_end;
1558				map.type = MT_MEMORY_RW;
1559				create_mapping(&map);
1560				break;
1561			}
1562			/* Case 1: kernel and range start at the same address, should be common */
1563			if (kernel_sec_start == start)
1564				start = kernel_sec_end;
1565			/* Case 3: kernel and range end at the same address, should be rare */
1566			if (kernel_sec_end == end)
1567				end = kernel_sec_start;
1568		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1569			/* Case 2: kernel ends inside range, starts below it */
1570			start = kernel_sec_end;
1571		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1572			/* Case 4: kernel starts inside range, ends above it */
1573			end = kernel_sec_start;
1574		}
1575		map.pfn = __phys_to_pfn(start);
1576		map.virtual = __phys_to_virt(start);
1577		map.length = end - start;
1578		map.type = MT_MEMORY_RW;
1579		create_mapping(&map);
1580	}
1581}
1582
1583static void __init map_kernel(void)
1584{
1585	/*
1586	 * We use the well known kernel section start and end and split the area in the
1587	 * middle like this:
1588	 *  .                .
1589	 *  | RW memory      |
1590	 *  +----------------+ kernel_x_start
1591	 *  | Executable     |
1592	 *  | kernel memory  |
1593	 *  +----------------+ kernel_x_end / kernel_nx_start
1594	 *  | Non-executable |
1595	 *  | kernel memory  |
1596	 *  +----------------+ kernel_nx_end
1597	 *  | RW memory      |
1598	 *  .                .
1599	 *
1600	 * Notice that we are dealing with section sized mappings here so all of this
1601	 * will be bumped to the closest section boundary. This means that some of the
1602	 * non-executable part of the kernel memory is actually mapped as executable.
1603	 * This will only persist until we turn on proper memory management later on
1604	 * and we remap the whole kernel with page granularity.
1605	 */
1606	phys_addr_t kernel_x_start = kernel_sec_start;
1607	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1608	phys_addr_t kernel_nx_start = kernel_x_end;
1609	phys_addr_t kernel_nx_end = kernel_sec_end;
1610	struct map_desc map;
1611
1612	map.pfn = __phys_to_pfn(kernel_x_start);
1613	map.virtual = __phys_to_virt(kernel_x_start);
1614	map.length = kernel_x_end - kernel_x_start;
1615	map.type = MT_MEMORY_RWX;
1616	create_mapping(&map);
1617
1618	/* If the nx part is small it may end up covered by the tail of the RWX section */
1619	if (kernel_x_end == kernel_nx_end)
1620		return;
1621
1622	map.pfn = __phys_to_pfn(kernel_nx_start);
1623	map.virtual = __phys_to_virt(kernel_nx_start);
1624	map.length = kernel_nx_end - kernel_nx_start;
1625	map.type = MT_MEMORY_RW;
1626	create_mapping(&map);
1627}
1628
1629#ifdef CONFIG_ARM_PV_FIXUP
1630typedef void pgtables_remap(long long offset, unsigned long pgd);
1631pgtables_remap lpae_pgtables_remap_asm;
1632
1633/*
1634 * early_paging_init() recreates boot time page table setup, allowing machines
1635 * to switch over to a high (>4G) address space on LPAE systems
1636 */
1637static void __init early_paging_init(const struct machine_desc *mdesc)
1638{
1639	pgtables_remap *lpae_pgtables_remap;
1640	unsigned long pa_pgd;
1641	unsigned int cr, ttbcr;
1642	long long offset;
1643
1644	if (!mdesc->pv_fixup)
1645		return;
1646
1647	offset = mdesc->pv_fixup();
1648	if (offset == 0)
1649		return;
1650
1651	/*
1652	 * Offset the kernel section physical offsets so that the kernel
1653	 * mapping will work out later on.
1654	 */
1655	kernel_sec_start += offset;
1656	kernel_sec_end += offset;
1657
1658	/*
1659	 * Get the address of the remap function in the 1:1 identity
1660	 * mapping setup by the early page table assembly code.  We
1661	 * must get this prior to the pv update.  The following barrier
1662	 * ensures that this is complete before we fixup any P:V offsets.
1663	 */
1664	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1665	pa_pgd = __pa(swapper_pg_dir);
1666	barrier();
1667
1668	pr_info("Switching physical address space to 0x%08llx\n",
1669		(u64)PHYS_OFFSET + offset);
1670
1671	/* Re-set the phys pfn offset, and the pv offset */
1672	__pv_offset += offset;
1673	__pv_phys_pfn_offset += PFN_DOWN(offset);
1674
1675	/* Run the patch stub to update the constants */
1676	fixup_pv_table(&__pv_table_begin,
1677		(&__pv_table_end - &__pv_table_begin) << 2);
1678
1679	/*
1680	 * We changing not only the virtual to physical mapping, but also
1681	 * the physical addresses used to access memory.  We need to flush
1682	 * all levels of cache in the system with caching disabled to
1683	 * ensure that all data is written back, and nothing is prefetched
1684	 * into the caches.  We also need to prevent the TLB walkers
1685	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1686	 * specific.
1687	 */
1688	cr = get_cr();
1689	set_cr(cr & ~(CR_I | CR_C));
1690	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1691	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1692		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1693	flush_cache_all();
1694
1695	/*
1696	 * Fixup the page tables - this must be in the idmap region as
1697	 * we need to disable the MMU to do this safely, and hence it
1698	 * needs to be assembly.  It's fairly simple, as we're using the
1699	 * temporary tables setup by the initial assembly code.
1700	 */
1701	lpae_pgtables_remap(offset, pa_pgd);
1702
1703	/* Re-enable the caches and cacheable TLB walks */
1704	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1705	set_cr(cr);
1706}
1707
1708#else
1709
1710static void __init early_paging_init(const struct machine_desc *mdesc)
1711{
1712	long long offset;
1713
1714	if (!mdesc->pv_fixup)
1715		return;
1716
1717	offset = mdesc->pv_fixup();
1718	if (offset == 0)
1719		return;
1720
1721	pr_crit("Physical address space modification is only to support Keystone2.\n");
1722	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1723	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1724	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1725}
1726
1727#endif
1728
1729static void __init early_fixmap_shutdown(void)
1730{
1731	int i;
1732	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1733
1734	pte_offset_fixmap = pte_offset_late_fixmap;
1735	pmd_clear(fixmap_pmd(va));
1736	local_flush_tlb_kernel_page(va);
1737
1738	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1739		pte_t *pte;
1740		struct map_desc map;
1741
1742		map.virtual = fix_to_virt(i);
1743		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1744
1745		/* Only i/o device mappings are supported ATM */
1746		if (pte_none(*pte) ||
1747		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1748			continue;
1749
1750		map.pfn = pte_pfn(*pte);
1751		map.type = MT_DEVICE;
1752		map.length = PAGE_SIZE;
1753
1754		create_mapping(&map);
1755	}
1756}
1757
1758/*
1759 * paging_init() sets up the page tables, initialises the zone memory
1760 * maps, and sets up the zero page, bad page and bad page tables.
1761 */
1762void __init paging_init(const struct machine_desc *mdesc)
1763{
1764	void *zero_page;
1765
1766	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1767		 kernel_sec_start, kernel_sec_end);
1768
1769	prepare_page_table();
1770	map_lowmem();
1771	memblock_set_current_limit(arm_lowmem_limit);
1772	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1773	/*
1774	 * After this point early_alloc(), i.e. the memblock allocator, can
1775	 * be used
1776	 */
1777	map_kernel();
1778	dma_contiguous_remap();
1779	early_fixmap_shutdown();
1780	devicemaps_init(mdesc);
1781	kmap_init();
1782	tcm_init();
1783
1784	top_pmd = pmd_off_k(0xffff0000);
1785
1786	/* allocate the zero page. */
1787	zero_page = early_alloc(PAGE_SIZE);
1788
1789	bootmem_init();
1790
1791	empty_zero_page = virt_to_page(zero_page);
1792	__flush_dcache_folio(NULL, page_folio(empty_zero_page));
1793}
1794
1795void __init early_mm_init(const struct machine_desc *mdesc)
1796{
1797	build_mem_type_table();
1798	early_paging_init(mdesc);
1799}
1800
1801void set_ptes(struct mm_struct *mm, unsigned long addr,
1802			      pte_t *ptep, pte_t pteval, unsigned int nr)
1803{
1804	unsigned long ext = 0;
1805
1806	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1807		if (!pte_special(pteval))
1808			__sync_icache_dcache(pteval);
1809		ext |= PTE_EXT_NG;
1810	}
1811
1812	for (;;) {
1813		set_pte_ext(ptep, pteval, ext);
1814		if (--nr == 0)
1815			break;
1816		ptep++;
1817		pteval = pte_next_pfn(pteval);
1818	}
1819}
1820