1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
4 *
5 * Created by:  Nicolas Pitre, March 2012
6 * Copyright:   (C) 2012-2013  Linaro Limited
7 */
8
9#include <linux/export.h>
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/irqflags.h>
13#include <linux/cpu_pm.h>
14
15#include <asm/mcpm.h>
16#include <asm/cacheflush.h>
17#include <asm/idmap.h>
18#include <asm/cputype.h>
19#include <asm/suspend.h>
20
21/*
22 * The public API for this code is documented in arch/arm/include/asm/mcpm.h.
23 * For a comprehensive description of the main algorithm used here, please
24 * see Documentation/arch/arm/cluster-pm-race-avoidance.rst.
25 */
26
27struct sync_struct mcpm_sync;
28
29/*
30 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
31 *    This must be called at the point of committing to teardown of a CPU.
32 *    The CPU cache (SCTRL.C bit) is expected to still be active.
33 */
34static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
35{
36	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
37	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
38}
39
40/*
41 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
42 *    cluster can be torn down without disrupting this CPU.
43 *    To avoid deadlocks, this must be called before a CPU is powered down.
44 *    The CPU cache (SCTRL.C bit) is expected to be off.
45 *    However L2 cache might or might not be active.
46 */
47static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
48{
49	dmb();
50	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
51	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
52	sev();
53}
54
55/*
56 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
57 * @state: the final state of the cluster:
58 *     CLUSTER_UP: no destructive teardown was done and the cluster has been
59 *         restored to the previous state (CPU cache still active); or
60 *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
61 *         (CPU cache disabled, L2 cache either enabled or disabled).
62 */
63static void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
64{
65	dmb();
66	mcpm_sync.clusters[cluster].cluster = state;
67	sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
68	sev();
69}
70
71/*
72 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
73 * This function should be called by the last man, after local CPU teardown
74 * is complete.  CPU cache expected to be active.
75 *
76 * Returns:
77 *     false: the critical section was not entered because an inbound CPU was
78 *         observed, or the cluster is already being set up;
79 *     true: the critical section was entered: it is now safe to tear down the
80 *         cluster.
81 */
82static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
83{
84	unsigned int i;
85	struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
86
87	/* Warn inbound CPUs that the cluster is being torn down: */
88	c->cluster = CLUSTER_GOING_DOWN;
89	sync_cache_w(&c->cluster);
90
91	/* Back out if the inbound cluster is already in the critical region: */
92	sync_cache_r(&c->inbound);
93	if (c->inbound == INBOUND_COMING_UP)
94		goto abort;
95
96	/*
97	 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
98	 * teardown is complete on each CPU before tearing down the cluster.
99	 *
100	 * If any CPU has been woken up again from the DOWN state, then we
101	 * shouldn't be taking the cluster down at all: abort in that case.
102	 */
103	sync_cache_r(&c->cpus);
104	for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
105		int cpustate;
106
107		if (i == cpu)
108			continue;
109
110		while (1) {
111			cpustate = c->cpus[i].cpu;
112			if (cpustate != CPU_GOING_DOWN)
113				break;
114
115			wfe();
116			sync_cache_r(&c->cpus[i].cpu);
117		}
118
119		switch (cpustate) {
120		case CPU_DOWN:
121			continue;
122
123		default:
124			goto abort;
125		}
126	}
127
128	return true;
129
130abort:
131	__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
132	return false;
133}
134
135static int __mcpm_cluster_state(unsigned int cluster)
136{
137	sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
138	return mcpm_sync.clusters[cluster].cluster;
139}
140
141extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
142
143void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
144{
145	unsigned long val = ptr ? __pa_symbol(ptr) : 0;
146	mcpm_entry_vectors[cluster][cpu] = val;
147	sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
148}
149
150extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
151
152void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
153			 unsigned long poke_phys_addr, unsigned long poke_val)
154{
155	unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
156	poke[0] = poke_phys_addr;
157	poke[1] = poke_val;
158	__sync_cache_range_w(poke, 2 * sizeof(*poke));
159}
160
161static const struct mcpm_platform_ops *platform_ops;
162
163int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
164{
165	if (platform_ops)
166		return -EBUSY;
167	platform_ops = ops;
168	return 0;
169}
170
171bool mcpm_is_available(void)
172{
173	return (platform_ops) ? true : false;
174}
175EXPORT_SYMBOL_GPL(mcpm_is_available);
176
177/*
178 * We can't use regular spinlocks. In the switcher case, it is possible
179 * for an outbound CPU to call power_down() after its inbound counterpart
180 * is already live using the same logical CPU number which trips lockdep
181 * debugging.
182 */
183static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
184
185static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
186
187static inline bool mcpm_cluster_unused(unsigned int cluster)
188{
189	int i, cnt;
190	for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
191		cnt |= mcpm_cpu_use_count[cluster][i];
192	return !cnt;
193}
194
195int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
196{
197	bool cpu_is_down, cluster_is_down;
198	int ret = 0;
199
200	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
201	if (!platform_ops)
202		return -EUNATCH; /* try not to shadow power_up errors */
203	might_sleep();
204
205	/*
206	 * Since this is called with IRQs enabled, and no arch_spin_lock_irq
207	 * variant exists, we need to disable IRQs manually here.
208	 */
209	local_irq_disable();
210	arch_spin_lock(&mcpm_lock);
211
212	cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
213	cluster_is_down = mcpm_cluster_unused(cluster);
214
215	mcpm_cpu_use_count[cluster][cpu]++;
216	/*
217	 * The only possible values are:
218	 * 0 = CPU down
219	 * 1 = CPU (still) up
220	 * 2 = CPU requested to be up before it had a chance
221	 *     to actually make itself down.
222	 * Any other value is a bug.
223	 */
224	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
225	       mcpm_cpu_use_count[cluster][cpu] != 2);
226
227	if (cluster_is_down)
228		ret = platform_ops->cluster_powerup(cluster);
229	if (cpu_is_down && !ret)
230		ret = platform_ops->cpu_powerup(cpu, cluster);
231
232	arch_spin_unlock(&mcpm_lock);
233	local_irq_enable();
234	return ret;
235}
236
237typedef typeof(cpu_reset) phys_reset_t;
238
239void mcpm_cpu_power_down(void)
240{
241	unsigned int mpidr, cpu, cluster;
242	bool cpu_going_down, last_man;
243	phys_reset_t phys_reset;
244
245	mpidr = read_cpuid_mpidr();
246	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
247	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
248	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
249	if (WARN_ON_ONCE(!platform_ops))
250	       return;
251	BUG_ON(!irqs_disabled());
252
253	setup_mm_for_reboot();
254
255	__mcpm_cpu_going_down(cpu, cluster);
256	arch_spin_lock(&mcpm_lock);
257	BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
258
259	mcpm_cpu_use_count[cluster][cpu]--;
260	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
261	       mcpm_cpu_use_count[cluster][cpu] != 1);
262	cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
263	last_man = mcpm_cluster_unused(cluster);
264
265	if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
266		platform_ops->cpu_powerdown_prepare(cpu, cluster);
267		platform_ops->cluster_powerdown_prepare(cluster);
268		arch_spin_unlock(&mcpm_lock);
269		platform_ops->cluster_cache_disable();
270		__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
271	} else {
272		if (cpu_going_down)
273			platform_ops->cpu_powerdown_prepare(cpu, cluster);
274		arch_spin_unlock(&mcpm_lock);
275		/*
276		 * If cpu_going_down is false here, that means a power_up
277		 * request raced ahead of us.  Even if we do not want to
278		 * shut this CPU down, the caller still expects execution
279		 * to return through the system resume entry path, like
280		 * when the WFI is aborted due to a new IRQ or the like..
281		 * So let's continue with cache cleaning in all cases.
282		 */
283		platform_ops->cpu_cache_disable();
284	}
285
286	__mcpm_cpu_down(cpu, cluster);
287
288	/* Now we are prepared for power-down, do it: */
289	if (cpu_going_down)
290		wfi();
291
292	/*
293	 * It is possible for a power_up request to happen concurrently
294	 * with a power_down request for the same CPU. In this case the
295	 * CPU might not be able to actually enter a powered down state
296	 * with the WFI instruction if the power_up request has removed
297	 * the required reset condition.  We must perform a re-entry in
298	 * the kernel as if the power_up method just had deasserted reset
299	 * on the CPU.
300	 */
301	phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
302	phys_reset(__pa_symbol(mcpm_entry_point), false);
303
304	/* should never get here */
305	BUG();
306}
307
308int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
309{
310	int ret;
311
312	if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
313		return -EUNATCH;
314
315	ret = platform_ops->wait_for_powerdown(cpu, cluster);
316	if (ret)
317		pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
318			__func__, cpu, cluster, ret);
319
320	return ret;
321}
322
323void mcpm_cpu_suspend(void)
324{
325	if (WARN_ON_ONCE(!platform_ops))
326		return;
327
328	/* Some platforms might have to enable special resume modes, etc. */
329	if (platform_ops->cpu_suspend_prepare) {
330		unsigned int mpidr = read_cpuid_mpidr();
331		unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
332		unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
333		arch_spin_lock(&mcpm_lock);
334		platform_ops->cpu_suspend_prepare(cpu, cluster);
335		arch_spin_unlock(&mcpm_lock);
336	}
337	mcpm_cpu_power_down();
338}
339
340int mcpm_cpu_powered_up(void)
341{
342	unsigned int mpidr, cpu, cluster;
343	bool cpu_was_down, first_man;
344	unsigned long flags;
345
346	if (!platform_ops)
347		return -EUNATCH;
348
349	mpidr = read_cpuid_mpidr();
350	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
351	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
352	local_irq_save(flags);
353	arch_spin_lock(&mcpm_lock);
354
355	cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
356	first_man = mcpm_cluster_unused(cluster);
357
358	if (first_man && platform_ops->cluster_is_up)
359		platform_ops->cluster_is_up(cluster);
360	if (cpu_was_down)
361		mcpm_cpu_use_count[cluster][cpu] = 1;
362	if (platform_ops->cpu_is_up)
363		platform_ops->cpu_is_up(cpu, cluster);
364
365	arch_spin_unlock(&mcpm_lock);
366	local_irq_restore(flags);
367
368	return 0;
369}
370
371#ifdef CONFIG_ARM_CPU_SUSPEND
372
373static int __init nocache_trampoline(unsigned long _arg)
374{
375	void (*cache_disable)(void) = (void *)_arg;
376	unsigned int mpidr = read_cpuid_mpidr();
377	unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
378	unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
379	phys_reset_t phys_reset;
380
381	mcpm_set_entry_vector(cpu, cluster, cpu_resume_no_hyp);
382	setup_mm_for_reboot();
383
384	__mcpm_cpu_going_down(cpu, cluster);
385	BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
386	cache_disable();
387	__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
388	__mcpm_cpu_down(cpu, cluster);
389
390	phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
391	phys_reset(__pa_symbol(mcpm_entry_point), false);
392	BUG();
393}
394
395int __init mcpm_loopback(void (*cache_disable)(void))
396{
397	int ret;
398
399	/*
400	 * We're going to soft-restart the current CPU through the
401	 * low-level MCPM code by leveraging the suspend/resume
402	 * infrastructure. Let's play it safe by using cpu_pm_enter()
403	 * in case the CPU init code path resets the VFP or similar.
404	 */
405	local_irq_disable();
406	local_fiq_disable();
407	ret = cpu_pm_enter();
408	if (!ret) {
409		ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
410		cpu_pm_exit();
411	}
412	local_fiq_enable();
413	local_irq_enable();
414	if (ret)
415		pr_err("%s returned %d\n", __func__, ret);
416	return ret;
417}
418
419#endif
420
421extern unsigned long mcpm_power_up_setup_phys;
422
423int __init mcpm_sync_init(
424	void (*power_up_setup)(unsigned int affinity_level))
425{
426	unsigned int i, j, mpidr, this_cluster;
427
428	BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
429	BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
430
431	/*
432	 * Set initial CPU and cluster states.
433	 * Only one cluster is assumed to be active at this point.
434	 */
435	for (i = 0; i < MAX_NR_CLUSTERS; i++) {
436		mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
437		mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
438		for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
439			mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
440	}
441	mpidr = read_cpuid_mpidr();
442	this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
443	for_each_online_cpu(i) {
444		mcpm_cpu_use_count[this_cluster][i] = 1;
445		mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
446	}
447	mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
448	sync_cache_w(&mcpm_sync);
449
450	if (power_up_setup) {
451		mcpm_power_up_setup_phys = __pa_symbol(power_up_setup);
452		sync_cache_w(&mcpm_power_up_setup_phys);
453	}
454
455	return 0;
456}
457