1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
4 *
5 * Created by:	Nicolas Pitre, March 2012
6 * Copyright:	(C) 2012-2013  Linaro Limited
7 */
8
9#include <linux/atomic.h>
10#include <linux/init.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/sched/signal.h>
14#include <uapi/linux/sched/types.h>
15#include <linux/interrupt.h>
16#include <linux/cpu_pm.h>
17#include <linux/cpu.h>
18#include <linux/cpumask.h>
19#include <linux/kthread.h>
20#include <linux/wait.h>
21#include <linux/time.h>
22#include <linux/clockchips.h>
23#include <linux/hrtimer.h>
24#include <linux/tick.h>
25#include <linux/notifier.h>
26#include <linux/mm.h>
27#include <linux/mutex.h>
28#include <linux/smp.h>
29#include <linux/spinlock.h>
30#include <linux/string.h>
31#include <linux/sysfs.h>
32#include <linux/irqchip/arm-gic.h>
33#include <linux/moduleparam.h>
34
35#include <asm/smp_plat.h>
36#include <asm/cputype.h>
37#include <asm/suspend.h>
38#include <asm/mcpm.h>
39#include <asm/bL_switcher.h>
40
41#define CREATE_TRACE_POINTS
42#include <trace/events/power_cpu_migrate.h>
43
44
45/*
46 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
47 * __attribute_const__ and we don't want the compiler to assume any
48 * constness here as the value _does_ change along some code paths.
49 */
50
51static int read_mpidr(void)
52{
53	unsigned int id;
54	asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
55	return id & MPIDR_HWID_BITMASK;
56}
57
58/*
59 * bL switcher core code.
60 */
61
62static void bL_do_switch(void *_arg)
63{
64	unsigned ib_mpidr, ib_cpu, ib_cluster;
65	long volatile handshake, **handshake_ptr = _arg;
66
67	pr_debug("%s\n", __func__);
68
69	ib_mpidr = cpu_logical_map(smp_processor_id());
70	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
71	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
72
73	/* Advertise our handshake location */
74	if (handshake_ptr) {
75		handshake = 0;
76		*handshake_ptr = &handshake;
77	} else
78		handshake = -1;
79
80	/*
81	 * Our state has been saved at this point.  Let's release our
82	 * inbound CPU.
83	 */
84	mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
85	sev();
86
87	/*
88	 * From this point, we must assume that our counterpart CPU might
89	 * have taken over in its parallel world already, as if execution
90	 * just returned from cpu_suspend().  It is therefore important to
91	 * be very careful not to make any change the other guy is not
92	 * expecting.  This is why we need stack isolation.
93	 *
94	 * Fancy under cover tasks could be performed here.  For now
95	 * we have none.
96	 */
97
98	/*
99	 * Let's wait until our inbound is alive.
100	 */
101	while (!handshake) {
102		wfe();
103		smp_mb();
104	}
105
106	/* Let's put ourself down. */
107	mcpm_cpu_power_down();
108
109	/* should never get here */
110	BUG();
111}
112
113/*
114 * Stack isolation.  To ensure 'current' remains valid, we just use another
115 * piece of our thread's stack space which should be fairly lightly used.
116 * The selected area starts just above the thread_info structure located
117 * at the very bottom of the stack, aligned to a cache line, and indexed
118 * with the cluster number.
119 */
120#define STACK_SIZE 512
121extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
122static int bL_switchpoint(unsigned long _arg)
123{
124	unsigned int mpidr = read_mpidr();
125	unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
126	void *stack = current_thread_info() + 1;
127	stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
128	stack += clusterid * STACK_SIZE + STACK_SIZE;
129	call_with_stack(bL_do_switch, (void *)_arg, stack);
130	BUG();
131}
132
133/*
134 * Generic switcher interface
135 */
136
137static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
138static int bL_switcher_cpu_pairing[NR_CPUS];
139
140/*
141 * bL_switch_to - Switch to a specific cluster for the current CPU
142 * @new_cluster_id: the ID of the cluster to switch to.
143 *
144 * This function must be called on the CPU to be switched.
145 * Returns 0 on success, else a negative status code.
146 */
147static int bL_switch_to(unsigned int new_cluster_id)
148{
149	unsigned int mpidr, this_cpu, that_cpu;
150	unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
151	struct completion inbound_alive;
152	long volatile *handshake_ptr;
153	int ipi_nr, ret;
154
155	this_cpu = smp_processor_id();
156	ob_mpidr = read_mpidr();
157	ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
158	ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
159	BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
160
161	if (new_cluster_id == ob_cluster)
162		return 0;
163
164	that_cpu = bL_switcher_cpu_pairing[this_cpu];
165	ib_mpidr = cpu_logical_map(that_cpu);
166	ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
167	ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
168
169	pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
170		 this_cpu, ob_mpidr, ib_mpidr);
171
172	this_cpu = smp_processor_id();
173
174	/* Close the gate for our entry vectors */
175	mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
176	mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
177
178	/* Install our "inbound alive" notifier. */
179	init_completion(&inbound_alive);
180	ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
181	ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
182	mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
183
184	/*
185	 * Let's wake up the inbound CPU now in case it requires some delay
186	 * to come online, but leave it gated in our entry vector code.
187	 */
188	ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
189	if (ret) {
190		pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
191		return ret;
192	}
193
194	/*
195	 * Raise a SGI on the inbound CPU to make sure it doesn't stall
196	 * in a possible WFI, such as in bL_power_down().
197	 */
198	gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
199
200	/*
201	 * Wait for the inbound to come up.  This allows for other
202	 * tasks to be scheduled in the mean time.
203	 */
204	wait_for_completion(&inbound_alive);
205	mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
206
207	/*
208	 * From this point we are entering the switch critical zone
209	 * and can't take any interrupts anymore.
210	 */
211	local_irq_disable();
212	local_fiq_disable();
213	trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
214
215	/* redirect GIC's SGIs to our counterpart */
216	gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
217
218	tick_suspend_local();
219
220	ret = cpu_pm_enter();
221
222	/* we can not tolerate errors at this point */
223	if (ret)
224		panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
225
226	/* Swap the physical CPUs in the logical map for this logical CPU. */
227	cpu_logical_map(this_cpu) = ib_mpidr;
228	cpu_logical_map(that_cpu) = ob_mpidr;
229
230	/* Let's do the actual CPU switch. */
231	ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
232	if (ret > 0)
233		panic("%s: cpu_suspend() returned %d\n", __func__, ret);
234
235	/* We are executing on the inbound CPU at this point */
236	mpidr = read_mpidr();
237	pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
238	BUG_ON(mpidr != ib_mpidr);
239
240	mcpm_cpu_powered_up();
241
242	ret = cpu_pm_exit();
243
244	tick_resume_local();
245
246	trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
247	local_fiq_enable();
248	local_irq_enable();
249
250	*handshake_ptr = 1;
251	dsb_sev();
252
253	if (ret)
254		pr_err("%s exiting with error %d\n", __func__, ret);
255	return ret;
256}
257
258struct bL_thread {
259	spinlock_t lock;
260	struct task_struct *task;
261	wait_queue_head_t wq;
262	int wanted_cluster;
263	struct completion started;
264	bL_switch_completion_handler completer;
265	void *completer_cookie;
266};
267
268static struct bL_thread bL_threads[NR_CPUS];
269
270static int bL_switcher_thread(void *arg)
271{
272	struct bL_thread *t = arg;
273	int cluster;
274	bL_switch_completion_handler completer;
275	void *completer_cookie;
276
277	sched_set_fifo_low(current);
278	complete(&t->started);
279
280	do {
281		if (signal_pending(current))
282			flush_signals(current);
283		wait_event_interruptible(t->wq,
284				t->wanted_cluster != -1 ||
285				kthread_should_stop());
286
287		spin_lock(&t->lock);
288		cluster = t->wanted_cluster;
289		completer = t->completer;
290		completer_cookie = t->completer_cookie;
291		t->wanted_cluster = -1;
292		t->completer = NULL;
293		spin_unlock(&t->lock);
294
295		if (cluster != -1) {
296			bL_switch_to(cluster);
297
298			if (completer)
299				completer(completer_cookie);
300		}
301	} while (!kthread_should_stop());
302
303	return 0;
304}
305
306static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
307{
308	struct task_struct *task;
309
310	task = kthread_create_on_node(bL_switcher_thread, arg,
311				      cpu_to_node(cpu), "kswitcher_%d", cpu);
312	if (!IS_ERR(task)) {
313		kthread_bind(task, cpu);
314		wake_up_process(task);
315	} else
316		pr_err("%s failed for CPU %d\n", __func__, cpu);
317	return task;
318}
319
320/*
321 * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
322 *      with completion notification via a callback
323 *
324 * @cpu: the CPU to switch
325 * @new_cluster_id: the ID of the cluster to switch to.
326 * @completer: switch completion callback.  if non-NULL,
327 *	@completer(@completer_cookie) will be called on completion of
328 *	the switch, in non-atomic context.
329 * @completer_cookie: opaque context argument for @completer.
330 *
331 * This function causes a cluster switch on the given CPU by waking up
332 * the appropriate switcher thread.  This function may or may not return
333 * before the switch has occurred.
334 *
335 * If a @completer callback function is supplied, it will be called when
336 * the switch is complete.  This can be used to determine asynchronously
337 * when the switch is complete, regardless of when bL_switch_request()
338 * returns.  When @completer is supplied, no new switch request is permitted
339 * for the affected CPU until after the switch is complete, and @completer
340 * has returned.
341 */
342int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
343			 bL_switch_completion_handler completer,
344			 void *completer_cookie)
345{
346	struct bL_thread *t;
347
348	if (cpu >= ARRAY_SIZE(bL_threads)) {
349		pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
350		return -EINVAL;
351	}
352
353	t = &bL_threads[cpu];
354
355	if (IS_ERR(t->task))
356		return PTR_ERR(t->task);
357	if (!t->task)
358		return -ESRCH;
359
360	spin_lock(&t->lock);
361	if (t->completer) {
362		spin_unlock(&t->lock);
363		return -EBUSY;
364	}
365	t->completer = completer;
366	t->completer_cookie = completer_cookie;
367	t->wanted_cluster = new_cluster_id;
368	spin_unlock(&t->lock);
369	wake_up(&t->wq);
370	return 0;
371}
372EXPORT_SYMBOL_GPL(bL_switch_request_cb);
373
374/*
375 * Activation and configuration code.
376 */
377
378static DEFINE_MUTEX(bL_switcher_activation_lock);
379static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
380static unsigned int bL_switcher_active;
381static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
382static cpumask_t bL_switcher_removed_logical_cpus;
383
384int bL_switcher_register_notifier(struct notifier_block *nb)
385{
386	return blocking_notifier_chain_register(&bL_activation_notifier, nb);
387}
388EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
389
390int bL_switcher_unregister_notifier(struct notifier_block *nb)
391{
392	return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
393}
394EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
395
396static int bL_activation_notify(unsigned long val)
397{
398	int ret;
399
400	ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
401	if (ret & NOTIFY_STOP_MASK)
402		pr_err("%s: notifier chain failed with status 0x%x\n",
403			__func__, ret);
404	return notifier_to_errno(ret);
405}
406
407static void bL_switcher_restore_cpus(void)
408{
409	int i;
410
411	for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
412		struct device *cpu_dev = get_cpu_device(i);
413		int ret = device_online(cpu_dev);
414		if (ret)
415			dev_err(cpu_dev, "switcher: unable to restore CPU\n");
416	}
417}
418
419static int bL_switcher_halve_cpus(void)
420{
421	int i, j, cluster_0, gic_id, ret;
422	unsigned int cpu, cluster, mask;
423	cpumask_t available_cpus;
424
425	/* First pass to validate what we have */
426	mask = 0;
427	for_each_online_cpu(i) {
428		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
429		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
430		if (cluster >= 2) {
431			pr_err("%s: only dual cluster systems are supported\n", __func__);
432			return -EINVAL;
433		}
434		if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
435			return -EINVAL;
436		mask |= (1 << cluster);
437	}
438	if (mask != 3) {
439		pr_err("%s: no CPU pairing possible\n", __func__);
440		return -EINVAL;
441	}
442
443	/*
444	 * Now let's do the pairing.  We match each CPU with another CPU
445	 * from a different cluster.  To get a uniform scheduling behavior
446	 * without fiddling with CPU topology and compute capacity data,
447	 * we'll use logical CPUs initially belonging to the same cluster.
448	 */
449	memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
450	cpumask_copy(&available_cpus, cpu_online_mask);
451	cluster_0 = -1;
452	for_each_cpu(i, &available_cpus) {
453		int match = -1;
454		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
455		if (cluster_0 == -1)
456			cluster_0 = cluster;
457		if (cluster != cluster_0)
458			continue;
459		cpumask_clear_cpu(i, &available_cpus);
460		for_each_cpu(j, &available_cpus) {
461			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
462			/*
463			 * Let's remember the last match to create "odd"
464			 * pairings on purpose in order for other code not
465			 * to assume any relation between physical and
466			 * logical CPU numbers.
467			 */
468			if (cluster != cluster_0)
469				match = j;
470		}
471		if (match != -1) {
472			bL_switcher_cpu_pairing[i] = match;
473			cpumask_clear_cpu(match, &available_cpus);
474			pr_info("CPU%d paired with CPU%d\n", i, match);
475		}
476	}
477
478	/*
479	 * Now we disable the unwanted CPUs i.e. everything that has no
480	 * pairing information (that includes the pairing counterparts).
481	 */
482	cpumask_clear(&bL_switcher_removed_logical_cpus);
483	for_each_online_cpu(i) {
484		cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
485		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
486
487		/* Let's take note of the GIC ID for this CPU */
488		gic_id = gic_get_cpu_id(i);
489		if (gic_id < 0) {
490			pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
491			bL_switcher_restore_cpus();
492			return -EINVAL;
493		}
494		bL_gic_id[cpu][cluster] = gic_id;
495		pr_info("GIC ID for CPU %u cluster %u is %u\n",
496			cpu, cluster, gic_id);
497
498		if (bL_switcher_cpu_pairing[i] != -1) {
499			bL_switcher_cpu_original_cluster[i] = cluster;
500			continue;
501		}
502
503		ret = device_offline(get_cpu_device(i));
504		if (ret) {
505			bL_switcher_restore_cpus();
506			return ret;
507		}
508		cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
509	}
510
511	return 0;
512}
513
514/* Determine the logical CPU a given physical CPU is grouped on. */
515int bL_switcher_get_logical_index(u32 mpidr)
516{
517	int cpu;
518
519	if (!bL_switcher_active)
520		return -EUNATCH;
521
522	mpidr &= MPIDR_HWID_BITMASK;
523	for_each_online_cpu(cpu) {
524		int pairing = bL_switcher_cpu_pairing[cpu];
525		if (pairing == -1)
526			continue;
527		if ((mpidr == cpu_logical_map(cpu)) ||
528		    (mpidr == cpu_logical_map(pairing)))
529			return cpu;
530	}
531	return -EINVAL;
532}
533
534static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
535{
536	trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
537}
538
539int bL_switcher_trace_trigger(void)
540{
541	preempt_disable();
542
543	bL_switcher_trace_trigger_cpu(NULL);
544	smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
545
546	preempt_enable();
547
548	return 0;
549}
550EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
551
552static int bL_switcher_enable(void)
553{
554	int cpu, ret;
555
556	mutex_lock(&bL_switcher_activation_lock);
557	lock_device_hotplug();
558	if (bL_switcher_active) {
559		unlock_device_hotplug();
560		mutex_unlock(&bL_switcher_activation_lock);
561		return 0;
562	}
563
564	pr_info("big.LITTLE switcher initializing\n");
565
566	ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
567	if (ret)
568		goto error;
569
570	ret = bL_switcher_halve_cpus();
571	if (ret)
572		goto error;
573
574	bL_switcher_trace_trigger();
575
576	for_each_online_cpu(cpu) {
577		struct bL_thread *t = &bL_threads[cpu];
578		spin_lock_init(&t->lock);
579		init_waitqueue_head(&t->wq);
580		init_completion(&t->started);
581		t->wanted_cluster = -1;
582		t->task = bL_switcher_thread_create(cpu, t);
583	}
584
585	bL_switcher_active = 1;
586	bL_activation_notify(BL_NOTIFY_POST_ENABLE);
587	pr_info("big.LITTLE switcher initialized\n");
588	goto out;
589
590error:
591	pr_warn("big.LITTLE switcher initialization failed\n");
592	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
593
594out:
595	unlock_device_hotplug();
596	mutex_unlock(&bL_switcher_activation_lock);
597	return ret;
598}
599
600#ifdef CONFIG_SYSFS
601
602static void bL_switcher_disable(void)
603{
604	unsigned int cpu, cluster;
605	struct bL_thread *t;
606	struct task_struct *task;
607
608	mutex_lock(&bL_switcher_activation_lock);
609	lock_device_hotplug();
610
611	if (!bL_switcher_active)
612		goto out;
613
614	if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
615		bL_activation_notify(BL_NOTIFY_POST_ENABLE);
616		goto out;
617	}
618
619	bL_switcher_active = 0;
620
621	/*
622	 * To deactivate the switcher, we must shut down the switcher
623	 * threads to prevent any other requests from being accepted.
624	 * Then, if the final cluster for given logical CPU is not the
625	 * same as the original one, we'll recreate a switcher thread
626	 * just for the purpose of switching the CPU back without any
627	 * possibility for interference from external requests.
628	 */
629	for_each_online_cpu(cpu) {
630		t = &bL_threads[cpu];
631		task = t->task;
632		t->task = NULL;
633		if (!task || IS_ERR(task))
634			continue;
635		kthread_stop(task);
636		/* no more switch may happen on this CPU at this point */
637		cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
638		if (cluster == bL_switcher_cpu_original_cluster[cpu])
639			continue;
640		init_completion(&t->started);
641		t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
642		task = bL_switcher_thread_create(cpu, t);
643		if (!IS_ERR(task)) {
644			wait_for_completion(&t->started);
645			kthread_stop(task);
646			cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
647			if (cluster == bL_switcher_cpu_original_cluster[cpu])
648				continue;
649		}
650		/* If execution gets here, we're in trouble. */
651		pr_crit("%s: unable to restore original cluster for CPU %d\n",
652			__func__, cpu);
653		pr_crit("%s: CPU %d can't be restored\n",
654			__func__, bL_switcher_cpu_pairing[cpu]);
655		cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
656				  &bL_switcher_removed_logical_cpus);
657	}
658
659	bL_switcher_restore_cpus();
660	bL_switcher_trace_trigger();
661
662	bL_activation_notify(BL_NOTIFY_POST_DISABLE);
663
664out:
665	unlock_device_hotplug();
666	mutex_unlock(&bL_switcher_activation_lock);
667}
668
669static ssize_t bL_switcher_active_show(struct kobject *kobj,
670		struct kobj_attribute *attr, char *buf)
671{
672	return sprintf(buf, "%u\n", bL_switcher_active);
673}
674
675static ssize_t bL_switcher_active_store(struct kobject *kobj,
676		struct kobj_attribute *attr, const char *buf, size_t count)
677{
678	int ret;
679
680	switch (buf[0]) {
681	case '0':
682		bL_switcher_disable();
683		ret = 0;
684		break;
685	case '1':
686		ret = bL_switcher_enable();
687		break;
688	default:
689		ret = -EINVAL;
690	}
691
692	return (ret >= 0) ? count : ret;
693}
694
695static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
696		struct kobj_attribute *attr, const char *buf, size_t count)
697{
698	int ret = bL_switcher_trace_trigger();
699
700	return ret ? ret : count;
701}
702
703static struct kobj_attribute bL_switcher_active_attr =
704	__ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
705
706static struct kobj_attribute bL_switcher_trace_trigger_attr =
707	__ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
708
709static struct attribute *bL_switcher_attrs[] = {
710	&bL_switcher_active_attr.attr,
711	&bL_switcher_trace_trigger_attr.attr,
712	NULL,
713};
714
715static struct attribute_group bL_switcher_attr_group = {
716	.attrs = bL_switcher_attrs,
717};
718
719static struct kobject *bL_switcher_kobj;
720
721static int __init bL_switcher_sysfs_init(void)
722{
723	int ret;
724
725	bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
726	if (!bL_switcher_kobj)
727		return -ENOMEM;
728	ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
729	if (ret)
730		kobject_put(bL_switcher_kobj);
731	return ret;
732}
733
734#endif  /* CONFIG_SYSFS */
735
736bool bL_switcher_get_enabled(void)
737{
738	mutex_lock(&bL_switcher_activation_lock);
739
740	return bL_switcher_active;
741}
742EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
743
744void bL_switcher_put_enabled(void)
745{
746	mutex_unlock(&bL_switcher_activation_lock);
747}
748EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
749
750/*
751 * Veto any CPU hotplug operation on those CPUs we've removed
752 * while the switcher is active.
753 * We're just not ready to deal with that given the trickery involved.
754 */
755static int bL_switcher_cpu_pre(unsigned int cpu)
756{
757	int pairing;
758
759	if (!bL_switcher_active)
760		return 0;
761
762	pairing = bL_switcher_cpu_pairing[cpu];
763
764	if (pairing == -1)
765		return -EINVAL;
766	return 0;
767}
768
769static bool no_bL_switcher;
770core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
771
772static int __init bL_switcher_init(void)
773{
774	int ret;
775
776	if (!mcpm_is_available())
777		return -ENODEV;
778
779	cpuhp_setup_state_nocalls(CPUHP_ARM_BL_PREPARE, "arm/bl:prepare",
780				  bL_switcher_cpu_pre, NULL);
781	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "arm/bl:predown",
782					NULL, bL_switcher_cpu_pre);
783	if (ret < 0) {
784		cpuhp_remove_state_nocalls(CPUHP_ARM_BL_PREPARE);
785		pr_err("bL_switcher: Failed to allocate a hotplug state\n");
786		return ret;
787	}
788	if (!no_bL_switcher) {
789		ret = bL_switcher_enable();
790		if (ret)
791			return ret;
792	}
793
794#ifdef CONFIG_SYSFS
795	ret = bL_switcher_sysfs_init();
796	if (ret)
797		pr_err("%s: unable to create sysfs entry\n", __func__);
798#endif
799
800	return 0;
801}
802
803late_initcall(bL_switcher_init);
804