1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TLB Management (flush/create/diagnostics) for MMUv3 and MMUv4
4 *
5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
6 *
7 */
8
9#include <linux/module.h>
10#include <linux/bug.h>
11#include <linux/mm_types.h>
12
13#include <asm/arcregs.h>
14#include <asm/setup.h>
15#include <asm/mmu_context.h>
16#include <asm/mmu.h>
17
18/* A copy of the ASID from the PID reg is kept in asid_cache */
19DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
20
21static struct cpuinfo_arc_mmu {
22	unsigned int ver, pg_sz_k, s_pg_sz_m, pae, sets, ways;
23} mmuinfo;
24
25/*
26 * Utility Routine to erase a J-TLB entry
27 * Caller needs to setup Index Reg (manually or via getIndex)
28 */
29static inline void __tlb_entry_erase(void)
30{
31	write_aux_reg(ARC_REG_TLBPD1, 0);
32
33	if (is_pae40_enabled())
34		write_aux_reg(ARC_REG_TLBPD1HI, 0);
35
36	write_aux_reg(ARC_REG_TLBPD0, 0);
37	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
38}
39
40static void utlb_invalidate(void)
41{
42	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
43}
44
45#ifdef CONFIG_ARC_MMU_V3
46
47static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
48{
49	unsigned int idx;
50
51	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
52
53	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
54	idx = read_aux_reg(ARC_REG_TLBINDEX);
55
56	return idx;
57}
58
59static void tlb_entry_erase(unsigned int vaddr_n_asid)
60{
61	unsigned int idx;
62
63	/* Locate the TLB entry for this vaddr + ASID */
64	idx = tlb_entry_lkup(vaddr_n_asid);
65
66	/* No error means entry found, zero it out */
67	if (likely(!(idx & TLB_LKUP_ERR))) {
68		__tlb_entry_erase();
69	} else {
70		/* Duplicate entry error */
71		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
72					   vaddr_n_asid);
73	}
74}
75
76static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1)
77{
78	unsigned int idx;
79
80	/*
81	 * First verify if entry for this vaddr+ASID already exists
82	 * This also sets up PD0 (vaddr, ASID..) for final commit
83	 */
84	idx = tlb_entry_lkup(pd0);
85
86	/*
87	 * If Not already present get a free slot from MMU.
88	 * Otherwise, Probe would have located the entry and set INDEX Reg
89	 * with existing location. This will cause Write CMD to over-write
90	 * existing entry with new PD0 and PD1
91	 */
92	if (likely(idx & TLB_LKUP_ERR))
93		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
94
95	/* setup the other half of TLB entry (pfn, rwx..) */
96	write_aux_reg(ARC_REG_TLBPD1, pd1);
97
98	/*
99	 * Commit the Entry to MMU
100	 * It doesn't sound safe to use the TLBWriteNI cmd here
101	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
102	 */
103	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
104}
105
106#else	/* MMUv4 */
107
108static void tlb_entry_erase(unsigned int vaddr_n_asid)
109{
110	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
111	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
112}
113
114static void tlb_entry_insert(unsigned int pd0, phys_addr_t pd1)
115{
116	write_aux_reg(ARC_REG_TLBPD0, pd0);
117
118	if (!is_pae40_enabled()) {
119		write_aux_reg(ARC_REG_TLBPD1, pd1);
120	} else {
121		write_aux_reg(ARC_REG_TLBPD1, pd1 & 0xFFFFFFFF);
122		write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
123	}
124
125	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
126}
127
128#endif
129
130/*
131 * Un-conditionally (without lookup) erase the entire MMU contents
132 */
133
134noinline void local_flush_tlb_all(void)
135{
136	struct cpuinfo_arc_mmu *mmu = &mmuinfo;
137	unsigned long flags;
138	unsigned int entry;
139	int num_tlb = mmu->sets * mmu->ways;
140
141	local_irq_save(flags);
142
143	/* Load PD0 and PD1 with template for a Blank Entry */
144	write_aux_reg(ARC_REG_TLBPD1, 0);
145
146	if (is_pae40_enabled())
147		write_aux_reg(ARC_REG_TLBPD1HI, 0);
148
149	write_aux_reg(ARC_REG_TLBPD0, 0);
150
151	for (entry = 0; entry < num_tlb; entry++) {
152		/* write this entry to the TLB */
153		write_aux_reg(ARC_REG_TLBINDEX, entry);
154		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
155	}
156
157	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
158		const int stlb_idx = 0x800;
159
160		/* Blank sTLB entry */
161		write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
162
163		for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
164			write_aux_reg(ARC_REG_TLBINDEX, entry);
165			write_aux_reg(ARC_REG_TLBCOMMAND, TLBWriteNI);
166		}
167	}
168
169	utlb_invalidate();
170
171	local_irq_restore(flags);
172}
173
174/*
175 * Flush the entire MM for userland. The fastest way is to move to Next ASID
176 */
177noinline void local_flush_tlb_mm(struct mm_struct *mm)
178{
179	/*
180	 * Small optimisation courtesy IA64
181	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
182	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
183	 * all other cases are NOPs, hence this check.
184	 */
185	if (atomic_read(&mm->mm_users) == 0)
186		return;
187
188	/*
189	 * - Move to a new ASID, but only if the mm is still wired in
190	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
191	 *    causing h/w - s/w ASID to get out of sync)
192	 * - Also get_new_mmu_context() new implementation allocates a new
193	 *   ASID only if it is not allocated already - so unallocate first
194	 */
195	destroy_context(mm);
196	if (current->mm == mm)
197		get_new_mmu_context(mm);
198}
199
200/*
201 * Flush a Range of TLB entries for userland.
202 * @start is inclusive, while @end is exclusive
203 * Difference between this and Kernel Range Flush is
204 *  -Here the fastest way (if range is too large) is to move to next ASID
205 *      without doing any explicit Shootdown
206 *  -In case of kernel Flush, entry has to be shot down explicitly
207 */
208void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
209			   unsigned long end)
210{
211	const unsigned int cpu = smp_processor_id();
212	unsigned long flags;
213
214	/* If range @start to @end is more than 32 TLB entries deep,
215	 * it's better to move to a new ASID rather than searching for
216	 * individual entries and then shooting them down
217	 *
218	 * The calc above is rough, doesn't account for unaligned parts,
219	 * since this is heuristics based anyways
220	 */
221	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
222		local_flush_tlb_mm(vma->vm_mm);
223		return;
224	}
225
226	/*
227	 * @start moved to page start: this alone suffices for checking
228	 * loop end condition below, w/o need for aligning @end to end
229	 * e.g. 2000 to 4001 will anyhow loop twice
230	 */
231	start &= PAGE_MASK;
232
233	local_irq_save(flags);
234
235	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
236		while (start < end) {
237			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
238			start += PAGE_SIZE;
239		}
240	}
241
242	local_irq_restore(flags);
243}
244
245/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
246 *  @start, @end interpreted as kvaddr
247 * Interestingly, shared TLB entries can also be flushed using just
248 * @start,@end alone (interpreted as user vaddr), although technically SASID
249 * is also needed. However our smart TLbProbe lookup takes care of that.
250 */
251void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
252{
253	unsigned long flags;
254
255	/* exactly same as above, except for TLB entry not taking ASID */
256
257	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
258		local_flush_tlb_all();
259		return;
260	}
261
262	start &= PAGE_MASK;
263
264	local_irq_save(flags);
265	while (start < end) {
266		tlb_entry_erase(start);
267		start += PAGE_SIZE;
268	}
269
270	local_irq_restore(flags);
271}
272
273/*
274 * Delete TLB entry in MMU for a given page (??? address)
275 * NOTE One TLB entry contains translation for single PAGE
276 */
277
278void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
279{
280	const unsigned int cpu = smp_processor_id();
281	unsigned long flags;
282
283	/* Note that it is critical that interrupts are DISABLED between
284	 * checking the ASID and using it flush the TLB entry
285	 */
286	local_irq_save(flags);
287
288	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
289		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
290	}
291
292	local_irq_restore(flags);
293}
294
295#ifdef CONFIG_SMP
296
297struct tlb_args {
298	struct vm_area_struct *ta_vma;
299	unsigned long ta_start;
300	unsigned long ta_end;
301};
302
303static inline void ipi_flush_tlb_page(void *arg)
304{
305	struct tlb_args *ta = arg;
306
307	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
308}
309
310static inline void ipi_flush_tlb_range(void *arg)
311{
312	struct tlb_args *ta = arg;
313
314	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
315}
316
317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
318static inline void ipi_flush_pmd_tlb_range(void *arg)
319{
320	struct tlb_args *ta = arg;
321
322	local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
323}
324#endif
325
326static inline void ipi_flush_tlb_kernel_range(void *arg)
327{
328	struct tlb_args *ta = (struct tlb_args *)arg;
329
330	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
331}
332
333void flush_tlb_all(void)
334{
335	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
336}
337
338void flush_tlb_mm(struct mm_struct *mm)
339{
340	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
341			 mm, 1);
342}
343
344void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
345{
346	struct tlb_args ta = {
347		.ta_vma = vma,
348		.ta_start = uaddr
349	};
350
351	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
352}
353
354void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
355		     unsigned long end)
356{
357	struct tlb_args ta = {
358		.ta_vma = vma,
359		.ta_start = start,
360		.ta_end = end
361	};
362
363	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
364}
365
366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
367void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
368			 unsigned long end)
369{
370	struct tlb_args ta = {
371		.ta_vma = vma,
372		.ta_start = start,
373		.ta_end = end
374	};
375
376	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
377}
378#endif
379
380void flush_tlb_kernel_range(unsigned long start, unsigned long end)
381{
382	struct tlb_args ta = {
383		.ta_start = start,
384		.ta_end = end
385	};
386
387	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
388}
389#endif
390
391/*
392 * Routine to create a TLB entry
393 */
394static void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
395{
396	unsigned long flags;
397	unsigned int asid_or_sasid, rwx;
398	unsigned long pd0;
399	phys_addr_t pd1;
400
401	/*
402	 * create_tlb() assumes that current->mm == vma->mm, since
403	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
404	 * -completes the lazy write to SASID reg (again valid for curr tsk)
405	 *
406	 * Removing the assumption involves
407	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
408	 * -More importantly it makes this handler inconsistent with fast-path
409	 *  TLB Refill handler which always deals with "current"
410	 *
411	 * Let's see the use cases when current->mm != vma->mm and we land here
412	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
413	 *     Here VM wants to pre-install a TLB entry for user stack while
414	 *     current->mm still points to pre-execve mm (hence the condition).
415	 *     However the stack vaddr is soon relocated (randomization) and
416	 *     move_page_tables() tries to undo that TLB entry.
417	 *     Thus not creating TLB entry is not any worse.
418	 *
419	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
420	 *     breakpoint in debugged task. Not creating a TLB now is not
421	 *     performance critical.
422	 *
423	 * Both the cases above are not good enough for code churn.
424	 */
425	if (current->active_mm != vma->vm_mm)
426		return;
427
428	local_irq_save(flags);
429
430	vaddr &= PAGE_MASK;
431
432	/* update this PTE credentials */
433	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
434
435	/* Create HW TLB(PD0,PD1) from PTE  */
436
437	/* ASID for this task */
438	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
439
440	pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
441
442	/*
443	 * ARC MMU provides fully orthogonal access bits for K/U mode,
444	 * however Linux only saves 1 set to save PTE real-estate
445	 * Here we convert 3 PTE bits into 6 MMU bits:
446	 * -Kernel only entries have Kr Kw Kx 0 0 0
447	 * -User entries have mirrored K and U bits
448	 */
449	rwx = pte_val(*ptep) & PTE_BITS_RWX;
450
451	if (pte_val(*ptep) & _PAGE_GLOBAL)
452		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
453	else
454		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
455
456	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
457
458	tlb_entry_insert(pd0, pd1);
459
460	local_irq_restore(flags);
461}
462
463/*
464 * Called at the end of pagefault, for a userspace mapped page
465 *  -pre-install the corresponding TLB entry into MMU
466 *  -Finalize the delayed D-cache flush of kernel mapping of page due to
467 *  	flush_dcache_page(), copy_user_page()
468 *
469 * Note that flush (when done) involves both WBACK - so physical page is
470 * in sync as well as INV - so any non-congruent aliases don't remain
471 */
472void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma,
473		unsigned long vaddr_unaligned, pte_t *ptep, unsigned int nr)
474{
475	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
476	phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK_PHYS;
477	struct page *page = pfn_to_page(pte_pfn(*ptep));
478
479	create_tlb(vma, vaddr, ptep);
480
481	if (page == ZERO_PAGE(0))
482		return;
483
484	/*
485	 * For executable pages, since icache doesn't snoop dcache, any
486	 * dirty K-mapping of a code page needs to be wback+inv so that
487	 * icache fetch by userspace sees code correctly.
488	 */
489	if (vma->vm_flags & VM_EXEC) {
490		struct folio *folio = page_folio(page);
491		int dirty = !test_and_set_bit(PG_dc_clean, &folio->flags);
492		if (dirty) {
493			unsigned long offset = offset_in_folio(folio, paddr);
494			nr = folio_nr_pages(folio);
495			paddr -= offset;
496			vaddr -= offset;
497			/* wback + inv dcache lines (K-mapping) */
498			__flush_dcache_pages(paddr, paddr, nr);
499
500			/* invalidate any existing icache lines (U-mapping) */
501			if (vma->vm_flags & VM_EXEC)
502				__inv_icache_pages(paddr, vaddr, nr);
503		}
504	}
505}
506
507#ifdef CONFIG_TRANSPARENT_HUGEPAGE
508
509/*
510 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
511 * support.
512 *
513 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
514 * new bit "SZ" in TLB page descriptor to distinguish between them.
515 * Super Page size is configurable in hardware (4K to 16M), but fixed once
516 * RTL builds.
517 *
518 * The exact THP size a Linux configuration will support is a function of:
519 *  - MMU page size (typical 8K, RTL fixed)
520 *  - software page walker address split between PGD:PTE:PFN (typical
521 *    11:8:13, but can be changed with 1 line)
522 * So for above default, THP size supported is 8K * (2^8) = 2M
523 *
524 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
525 * reduces to 1 level (as PTE is folded into PGD and canonically referred
526 * to as PMD).
527 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
528 */
529
530void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
531				 pmd_t *pmd)
532{
533	pte_t pte = __pte(pmd_val(*pmd));
534	update_mmu_cache_range(NULL, vma, addr, &pte, HPAGE_PMD_NR);
535}
536
537void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
538			       unsigned long end)
539{
540	unsigned int cpu;
541	unsigned long flags;
542
543	local_irq_save(flags);
544
545	cpu = smp_processor_id();
546
547	if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
548		unsigned int asid = hw_pid(vma->vm_mm, cpu);
549
550		/* No need to loop here: this will always be for 1 Huge Page */
551		tlb_entry_erase(start | _PAGE_HW_SZ | asid);
552	}
553
554	local_irq_restore(flags);
555}
556
557#endif
558
559/* Read the Cache Build Configuration Registers, Decode them and save into
560 * the cpuinfo structure for later use.
561 * No Validation is done here, simply read/convert the BCRs
562 */
563int arc_mmu_mumbojumbo(int c, char *buf, int len)
564{
565	struct cpuinfo_arc_mmu *mmu = &mmuinfo;
566	unsigned int bcr, u_dtlb, u_itlb, sasid;
567	struct bcr_mmu_3 *mmu3;
568	struct bcr_mmu_4 *mmu4;
569	char super_pg[64] = "";
570	int n = 0;
571
572	bcr = read_aux_reg(ARC_REG_MMU_BCR);
573	mmu->ver = (bcr >> 24);
574
575	if (is_isa_arcompact() && mmu->ver == 3) {
576		mmu3 = (struct bcr_mmu_3 *)&bcr;
577		mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
578		mmu->sets = 1 << mmu3->sets;
579		mmu->ways = 1 << mmu3->ways;
580		u_dtlb = mmu3->u_dtlb;
581		u_itlb = mmu3->u_itlb;
582		sasid = mmu3->sasid;
583	} else {
584		mmu4 = (struct bcr_mmu_4 *)&bcr;
585		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
586		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
587		mmu->sets = 64 << mmu4->n_entry;
588		mmu->ways = mmu4->n_ways * 2;
589		u_dtlb = mmu4->u_dtlb * 4;
590		u_itlb = mmu4->u_itlb * 4;
591		sasid = mmu4->sasid;
592		mmu->pae = mmu4->pae;
593	}
594
595	if (mmu->s_pg_sz_m)
596		scnprintf(super_pg, 64, "/%dM%s",
597			  mmu->s_pg_sz_m,
598			  IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) ? " (THP enabled)":"");
599
600	n += scnprintf(buf + n, len - n,
601		      "MMU [v%x]\t: %dk%s, swalk %d lvl, JTLB %dx%d, uDTLB %d, uITLB %d%s%s%s\n",
602		       mmu->ver, mmu->pg_sz_k, super_pg, CONFIG_PGTABLE_LEVELS,
603		       mmu->sets, mmu->ways,
604		       u_dtlb, u_itlb,
605		       IS_AVAIL1(sasid, ", SASID"),
606		       IS_AVAIL2(mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
607
608	return n;
609}
610
611int pae40_exist_but_not_enab(void)
612{
613	return mmuinfo.pae && !is_pae40_enabled();
614}
615
616void arc_mmu_init(void)
617{
618	struct cpuinfo_arc_mmu *mmu = &mmuinfo;
619	int compat = 0;
620
621	/*
622	 * Can't be done in processor.h due to header include dependencies
623	 */
624	BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
625
626	/*
627	 * stack top size sanity check,
628	 * Can't be done in processor.h due to header include dependencies
629	 */
630	BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
631
632	/*
633	 * Ensure that MMU features assumed by kernel exist in hardware.
634	 *  - For older ARC700 cpus, only v3 supported
635	 *  - For HS cpus, v4 was baseline and v5 is backwards compatible
636	 *    (will run older software).
637	 */
638	if (is_isa_arcompact() && mmu->ver == 3)
639		compat = 1;
640	else if (is_isa_arcv2() && mmu->ver >= 4)
641		compat = 1;
642
643	if (!compat)
644		panic("MMU ver %d doesn't match kernel built for\n", mmu->ver);
645
646	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
647		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
648
649	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
650	    mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
651		panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
652		      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
653
654	if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
655		panic("Hardware doesn't support PAE40\n");
656
657	/* Enable the MMU with ASID 0 */
658	mmu_setup_asid(NULL, 0);
659
660	/* cache the pgd pointer in MMU SCRATCH reg (ARCv2 only) */
661	mmu_setup_pgd(NULL, swapper_pg_dir);
662
663	if (pae40_exist_but_not_enab())
664		write_aux_reg(ARC_REG_TLBPD1HI, 0);
665}
666
667/*
668 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
669 * The mapping is Column-first.
670 *		---------------------	-----------
671 *		|way0|way1|way2|way3|	|way0|way1|
672 *		---------------------	-----------
673 * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
674 * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
675 *		~		    ~	~	  ~
676 * [set127]	| 508| 509| 510| 511|	| 254| 255|
677 *		---------------------	-----------
678 * For normal operations we don't(must not) care how above works since
679 * MMU cmd getIndex(vaddr) abstracts that out.
680 * However for walking WAYS of a SET, we need to know this
681 */
682#define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
683
684/* Handling of Duplicate PD (TLB entry) in MMU.
685 * -Could be due to buggy customer tapeouts or obscure kernel bugs
686 * -MMU complaints not at the time of duplicate PD installation, but at the
687 *      time of lookup matching multiple ways.
688 * -Ideally these should never happen - but if they do - workaround by deleting
689 *      the duplicate one.
690 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
691 */
692volatile int dup_pd_silent; /* Be silent abt it or complain (default) */
693
694void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
695			  struct pt_regs *regs)
696{
697	struct cpuinfo_arc_mmu *mmu = &mmuinfo;
698	unsigned long flags;
699	int set, n_ways = mmu->ways;
700
701	n_ways = min(n_ways, 4);
702	BUG_ON(mmu->ways > 4);
703
704	local_irq_save(flags);
705
706	/* loop thru all sets of TLB */
707	for (set = 0; set < mmu->sets; set++) {
708
709		int is_valid, way;
710		unsigned int pd0[4];
711
712		/* read out all the ways of current set */
713		for (way = 0, is_valid = 0; way < n_ways; way++) {
714			write_aux_reg(ARC_REG_TLBINDEX,
715					  SET_WAY_TO_IDX(mmu, set, way));
716			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
717			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
718			is_valid |= pd0[way] & _PAGE_PRESENT;
719			pd0[way] &= PAGE_MASK;
720		}
721
722		/* If all the WAYS in SET are empty, skip to next SET */
723		if (!is_valid)
724			continue;
725
726		/* Scan the set for duplicate ways: needs a nested loop */
727		for (way = 0; way < n_ways - 1; way++) {
728
729			int n;
730
731			if (!pd0[way])
732				continue;
733
734			for (n = way + 1; n < n_ways; n++) {
735				if (pd0[way] != pd0[n])
736					continue;
737
738				if (!dup_pd_silent)
739					pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
740						pd0[way], set, way, n);
741
742				/*
743				 * clear entry @way and not @n.
744				 * This is critical to our optimised loop
745				 */
746				pd0[way] = 0;
747				write_aux_reg(ARC_REG_TLBINDEX,
748						SET_WAY_TO_IDX(mmu, set, way));
749				__tlb_entry_erase();
750			}
751		}
752	}
753
754	local_irq_restore(flags);
755}
756