1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * include/asm-alpha/dma.h
4 *
5 * This is essentially the same as the i386 DMA stuff, as the AlphaPCs
6 * use ISA-compatible dma.  The only extension is support for high-page
7 * registers that allow to set the top 8 bits of a 32-bit DMA address.
8 * This register should be written last when setting up a DMA address
9 * as this will also enable DMA across 64 KB boundaries.
10 */
11
12/* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
13 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
14 * Written by Hennus Bergman, 1992.
15 * High DMA channel support & info by Hannu Savolainen
16 * and John Boyd, Nov. 1992.
17 */
18
19#ifndef _ASM_DMA_H
20#define _ASM_DMA_H
21
22#include <linux/spinlock.h>
23#include <asm/io.h>
24
25#define dma_outb	outb
26#define dma_inb		inb
27
28/*
29 * NOTES about DMA transfers:
30 *
31 *  controller 1: channels 0-3, byte operations, ports 00-1F
32 *  controller 2: channels 4-7, word operations, ports C0-DF
33 *
34 *  - ALL registers are 8 bits only, regardless of transfer size
35 *  - channel 4 is not used - cascades 1 into 2.
36 *  - channels 0-3 are byte - addresses/counts are for physical bytes
37 *  - channels 5-7 are word - addresses/counts are for physical words
38 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
39 *  - transfer count loaded to registers is 1 less than actual count
40 *  - controller 2 offsets are all even (2x offsets for controller 1)
41 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
42 *  - page registers for 0-3 use bit 0, represent 64K pages
43 *
44 * DMA transfers are limited to the lower 16MB of _physical_ memory.
45 * Note that addresses loaded into registers must be _physical_ addresses,
46 * not logical addresses (which may differ if paging is active).
47 *
48 *  Address mapping for channels 0-3:
49 *
50 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
51 *    |  ...  |   |  ... |   |  ... |
52 *    |  ...  |   |  ... |   |  ... |
53 *    |  ...  |   |  ... |   |  ... |
54 *   P7  ...  P0  A7 ... A0  A7 ... A0
55 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
56 *
57 *  Address mapping for channels 5-7:
58 *
59 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
60 *    |  ...  |   \   \   ... \  \  \  ... \  \
61 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
62 *    |  ...  |     \   \   ... \  \  \  ... \
63 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
64 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
65 *
66 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
67 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
68 * the hardware level, so odd-byte transfers aren't possible).
69 *
70 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
71 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
72 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
73 *
74 */
75
76#define MAX_DMA_CHANNELS	8
77
78/*
79  ISA DMA limitations on Alpha platforms,
80
81  These may be due to SIO (PCI<->ISA bridge) chipset limitation, or
82  just a wiring limit.
83*/
84
85/* The maximum address for ISA DMA transfer on Alpha XL, due to an
86   hardware SIO limitation, is 64MB.
87*/
88#define ALPHA_XL_MAX_ISA_DMA_ADDRESS		0x04000000UL
89
90/* The maximum address for ISA DMA transfer on RUFFIAN,
91   due to an hardware SIO limitation, is 16MB.
92*/
93#define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS	0x01000000UL
94
95/* The maximum address for ISA DMA transfer on SABLE, and some ALCORs,
96   due to an hardware SIO chip limitation, is 2GB.
97*/
98#define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS		0x80000000UL
99#define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS		0x80000000UL
100
101/*
102  Maximum address for all the others is the complete 32-bit bus
103  address space.
104*/
105#define ALPHA_MAX_ISA_DMA_ADDRESS		0x100000000UL
106
107#ifdef CONFIG_ALPHA_GENERIC
108# define MAX_ISA_DMA_ADDRESS		(alpha_mv.max_isa_dma_address)
109#else
110# if defined(CONFIG_ALPHA_XL)
111#  define MAX_ISA_DMA_ADDRESS		ALPHA_XL_MAX_ISA_DMA_ADDRESS
112# elif defined(CONFIG_ALPHA_RUFFIAN)
113#  define MAX_ISA_DMA_ADDRESS		ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS
114# elif defined(CONFIG_ALPHA_SABLE)
115#  define MAX_ISA_DMA_ADDRESS		ALPHA_SABLE_MAX_ISA_DMA_ADDRESS
116# elif defined(CONFIG_ALPHA_ALCOR)
117#  define MAX_ISA_DMA_ADDRESS		ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS
118# else
119#  define MAX_ISA_DMA_ADDRESS		ALPHA_MAX_ISA_DMA_ADDRESS
120# endif
121#endif
122
123/* If we have the iommu, we don't have any address limitations on DMA.
124   Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone
125   like i386. */
126#define MAX_DMA_ADDRESS		(alpha_mv.mv_pci_tbi ?	\
127				 ~0UL : IDENT_ADDR + 0x01000000)
128
129/* 8237 DMA controllers */
130#define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
131#define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
132
133/* DMA controller registers */
134#define DMA1_CMD_REG		0x08	/* command register (w) */
135#define DMA1_STAT_REG		0x08	/* status register (r) */
136#define DMA1_REQ_REG            0x09    /* request register (w) */
137#define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
138#define DMA1_MODE_REG		0x0B	/* mode register (w) */
139#define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
140#define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
141#define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
142#define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
143#define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
144#define DMA1_EXT_MODE_REG	(0x400 | DMA1_MODE_REG)
145
146#define DMA2_CMD_REG		0xD0	/* command register (w) */
147#define DMA2_STAT_REG		0xD0	/* status register (r) */
148#define DMA2_REQ_REG            0xD2    /* request register (w) */
149#define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
150#define DMA2_MODE_REG		0xD6	/* mode register (w) */
151#define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
152#define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
153#define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
154#define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
155#define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
156#define DMA2_EXT_MODE_REG	(0x400 | DMA2_MODE_REG)
157
158#define DMA_ADDR_0              0x00    /* DMA address registers */
159#define DMA_ADDR_1              0x02
160#define DMA_ADDR_2              0x04
161#define DMA_ADDR_3              0x06
162#define DMA_ADDR_4              0xC0
163#define DMA_ADDR_5              0xC4
164#define DMA_ADDR_6              0xC8
165#define DMA_ADDR_7              0xCC
166
167#define DMA_CNT_0               0x01    /* DMA count registers */
168#define DMA_CNT_1               0x03
169#define DMA_CNT_2               0x05
170#define DMA_CNT_3               0x07
171#define DMA_CNT_4               0xC2
172#define DMA_CNT_5               0xC6
173#define DMA_CNT_6               0xCA
174#define DMA_CNT_7               0xCE
175
176#define DMA_PAGE_0              0x87    /* DMA page registers */
177#define DMA_PAGE_1              0x83
178#define DMA_PAGE_2              0x81
179#define DMA_PAGE_3              0x82
180#define DMA_PAGE_5              0x8B
181#define DMA_PAGE_6              0x89
182#define DMA_PAGE_7              0x8A
183
184#define DMA_HIPAGE_0		(0x400 | DMA_PAGE_0)
185#define DMA_HIPAGE_1		(0x400 | DMA_PAGE_1)
186#define DMA_HIPAGE_2		(0x400 | DMA_PAGE_2)
187#define DMA_HIPAGE_3		(0x400 | DMA_PAGE_3)
188#define DMA_HIPAGE_4		(0x400 | DMA_PAGE_4)
189#define DMA_HIPAGE_5		(0x400 | DMA_PAGE_5)
190#define DMA_HIPAGE_6		(0x400 | DMA_PAGE_6)
191#define DMA_HIPAGE_7		(0x400 | DMA_PAGE_7)
192
193#define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
194#define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
195#define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
196
197#define DMA_AUTOINIT	0x10
198
199extern spinlock_t  dma_spin_lock;
200
201static __inline__ unsigned long claim_dma_lock(void)
202{
203	unsigned long flags;
204	spin_lock_irqsave(&dma_spin_lock, flags);
205	return flags;
206}
207
208static __inline__ void release_dma_lock(unsigned long flags)
209{
210	spin_unlock_irqrestore(&dma_spin_lock, flags);
211}
212
213/* enable/disable a specific DMA channel */
214static __inline__ void enable_dma(unsigned int dmanr)
215{
216	if (dmanr<=3)
217		dma_outb(dmanr,  DMA1_MASK_REG);
218	else
219		dma_outb(dmanr & 3,  DMA2_MASK_REG);
220}
221
222static __inline__ void disable_dma(unsigned int dmanr)
223{
224	if (dmanr<=3)
225		dma_outb(dmanr | 4,  DMA1_MASK_REG);
226	else
227		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
228}
229
230/* Clear the 'DMA Pointer Flip Flop'.
231 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
232 * Use this once to initialize the FF to a known state.
233 * After that, keep track of it. :-)
234 * --- In order to do that, the DMA routines below should ---
235 * --- only be used while interrupts are disabled! ---
236 */
237static __inline__ void clear_dma_ff(unsigned int dmanr)
238{
239	if (dmanr<=3)
240		dma_outb(0,  DMA1_CLEAR_FF_REG);
241	else
242		dma_outb(0,  DMA2_CLEAR_FF_REG);
243}
244
245/* set mode (above) for a specific DMA channel */
246static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
247{
248	if (dmanr<=3)
249		dma_outb(mode | dmanr,  DMA1_MODE_REG);
250	else
251		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
252}
253
254/* set extended mode for a specific DMA channel */
255static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode)
256{
257	if (dmanr<=3)
258		dma_outb(ext_mode | dmanr,  DMA1_EXT_MODE_REG);
259	else
260		dma_outb(ext_mode | (dmanr&3),  DMA2_EXT_MODE_REG);
261}
262
263/* Set only the page register bits of the transfer address.
264 * This is used for successive transfers when we know the contents of
265 * the lower 16 bits of the DMA current address register.
266 */
267static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr)
268{
269	switch(dmanr) {
270		case 0:
271			dma_outb(pagenr, DMA_PAGE_0);
272			dma_outb((pagenr >> 8), DMA_HIPAGE_0);
273			break;
274		case 1:
275			dma_outb(pagenr, DMA_PAGE_1);
276			dma_outb((pagenr >> 8), DMA_HIPAGE_1);
277			break;
278		case 2:
279			dma_outb(pagenr, DMA_PAGE_2);
280			dma_outb((pagenr >> 8), DMA_HIPAGE_2);
281			break;
282		case 3:
283			dma_outb(pagenr, DMA_PAGE_3);
284			dma_outb((pagenr >> 8), DMA_HIPAGE_3);
285			break;
286		case 5:
287			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
288			dma_outb((pagenr >> 8), DMA_HIPAGE_5);
289			break;
290		case 6:
291			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
292			dma_outb((pagenr >> 8), DMA_HIPAGE_6);
293			break;
294		case 7:
295			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
296			dma_outb((pagenr >> 8), DMA_HIPAGE_7);
297			break;
298	}
299}
300
301
302/* Set transfer address & page bits for specific DMA channel.
303 * Assumes dma flipflop is clear.
304 */
305static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
306{
307	if (dmanr <= 3)  {
308	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
309            dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
310	}  else  {
311	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
312	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
313	}
314	set_dma_page(dmanr, a>>16);	/* set hipage last to enable 32-bit mode */
315}
316
317
318/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
319 * a specific DMA channel.
320 * You must ensure the parameters are valid.
321 * NOTE: from a manual: "the number of transfers is one more
322 * than the initial word count"! This is taken into account.
323 * Assumes dma flip-flop is clear.
324 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
325 */
326static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
327{
328        count--;
329	if (dmanr <= 3)  {
330	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
331	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
332        } else {
333	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
334	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
335        }
336}
337
338
339/* Get DMA residue count. After a DMA transfer, this
340 * should return zero. Reading this while a DMA transfer is
341 * still in progress will return unpredictable results.
342 * If called before the channel has been used, it may return 1.
343 * Otherwise, it returns the number of _bytes_ left to transfer.
344 *
345 * Assumes DMA flip-flop is clear.
346 */
347static __inline__ int get_dma_residue(unsigned int dmanr)
348{
349	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
350					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
351
352	/* using short to get 16-bit wrap around */
353	unsigned short count;
354
355	count = 1 + dma_inb(io_port);
356	count += dma_inb(io_port) << 8;
357
358	return (dmanr<=3)? count : (count<<1);
359}
360
361
362/* These are in kernel/dma.c: */
363extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
364extern void free_dma(unsigned int dmanr);	/* release it again */
365#define KERNEL_HAVE_CHECK_DMA
366extern int check_dma(unsigned int dmanr);
367
368#endif /* _ASM_DMA_H */
369