1/* Return arc hyperbole sine for double value, with the imaginary part
2   of the result possibly adjusted for use in computing other
3   functions.
4   Copyright (C) 1997-2015 Free Software Foundation, Inc.
5   This file is part of the GNU C Library.
6
7   The GNU C Library is free software; you can redistribute it and/or
8   modify it under the terms of the GNU Lesser General Public
9   License as published by the Free Software Foundation; either
10   version 2.1 of the License, or (at your option) any later version.
11
12   The GNU C Library is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15   Lesser General Public License for more details.
16
17   You should have received a copy of the GNU Lesser General Public
18   License along with the GNU C Library; if not, see
19   <http://www.gnu.org/licenses/>.  */
20
21#include <complex.h>
22#include <math.h>
23#include <math_private.h>
24#include <float.h>
25
26/* Return the complex inverse hyperbolic sine of finite nonzero Z,
27   with the imaginary part of the result subtracted from pi/2 if ADJ
28   is nonzero.  */
29
30__complex__ double
31__kernel_casinh (__complex__ double x, int adj)
32{
33  __complex__ double res;
34  double rx, ix;
35  __complex__ double y;
36
37  /* Avoid cancellation by reducing to the first quadrant.  */
38  rx = fabs (__real__ x);
39  ix = fabs (__imag__ x);
40
41  if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON)
42    {
43      /* For large x in the first quadrant, x + csqrt (1 + x * x)
44	 is sufficiently close to 2 * x to make no significant
45	 difference to the result; avoid possible overflow from
46	 the squaring and addition.  */
47      __real__ y = rx;
48      __imag__ y = ix;
49
50      if (adj)
51	{
52	  double t = __real__ y;
53	  __real__ y = copysign (__imag__ y, __imag__ x);
54	  __imag__ y = t;
55	}
56
57      res = clog (y);
58      __real__ res += M_LN2;
59    }
60  else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0)
61    {
62      double s = hypot (1.0, rx);
63
64      __real__ res = log (rx + s);
65      if (adj)
66	__imag__ res = atan2 (s, __imag__ x);
67      else
68	__imag__ res = atan2 (ix, s);
69    }
70  else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5)
71    {
72      double s = sqrt ((ix + 1.0) * (ix - 1.0));
73
74      __real__ res = log (ix + s);
75      if (adj)
76	__imag__ res = atan2 (rx, copysign (s, __imag__ x));
77      else
78	__imag__ res = atan2 (s, rx);
79    }
80  else if (ix > 1.0 && ix < 1.5 && rx < 0.5)
81    {
82      if (rx < DBL_EPSILON * DBL_EPSILON)
83	{
84	  double ix2m1 = (ix + 1.0) * (ix - 1.0);
85	  double s = sqrt (ix2m1);
86
87	  __real__ res = log1p (2.0 * (ix2m1 + ix * s)) / 2.0;
88	  if (adj)
89	    __imag__ res = atan2 (rx, copysign (s, __imag__ x));
90	  else
91	    __imag__ res = atan2 (s, rx);
92	}
93      else
94	{
95	  double ix2m1 = (ix + 1.0) * (ix - 1.0);
96	  double rx2 = rx * rx;
97	  double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix);
98	  double d = sqrt (ix2m1 * ix2m1 + f);
99	  double dp = d + ix2m1;
100	  double dm = f / dp;
101	  double r1 = sqrt ((dm + rx2) / 2.0);
102	  double r2 = rx * ix / r1;
103
104	  __real__ res = log1p (rx2 + dp + 2.0 * (rx * r1 + ix * r2)) / 2.0;
105	  if (adj)
106	    __imag__ res = atan2 (rx + r1, copysign (ix + r2,
107								 __imag__ x));
108	  else
109	    __imag__ res = atan2 (ix + r2, rx + r1);
110	}
111    }
112  else if (ix == 1.0 && rx < 0.5)
113    {
114      if (rx < DBL_EPSILON / 8.0)
115	{
116	  __real__ res = log1p (2.0 * (rx + sqrt (rx))) / 2.0;
117	  if (adj)
118	    __imag__ res = atan2 (sqrt (rx),
119					    copysign (1.0, __imag__ x));
120	  else
121	    __imag__ res = atan2 (1.0, sqrt (rx));
122	}
123      else
124	{
125	  double d = rx * sqrt (4.0 + rx * rx);
126	  double s1 = sqrt ((d + rx * rx) / 2.0);
127	  double s2 = sqrt ((d - rx * rx) / 2.0);
128
129	  __real__ res = log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0;
130	  if (adj)
131	    __imag__ res = atan2 (rx + s1, copysign (1.0 + s2,
132								 __imag__ x));
133	  else
134	    __imag__ res = atan2 (1.0 + s2, rx + s1);
135	}
136    }
137  else if (ix < 1.0 && rx < 0.5)
138    {
139      if (ix >= DBL_EPSILON)
140	{
141	  if (rx < DBL_EPSILON * DBL_EPSILON)
142	    {
143	      double onemix2 = (1.0 + ix) * (1.0 - ix);
144	      double s = sqrt (onemix2);
145
146	      __real__ res = log1p (2.0 * rx / s) / 2.0;
147	      if (adj)
148		__imag__ res = atan2 (s, __imag__ x);
149	      else
150		__imag__ res = atan2 (ix, s);
151	    }
152	  else
153	    {
154	      double onemix2 = (1.0 + ix) * (1.0 - ix);
155	      double rx2 = rx * rx;
156	      double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix);
157	      double d = sqrt (onemix2 * onemix2 + f);
158	      double dp = d + onemix2;
159	      double dm = f / dp;
160	      double r1 = sqrt ((dp + rx2) / 2.0);
161	      double r2 = rx * ix / r1;
162
163	      __real__ res
164		= log1p (rx2 + dm + 2.0 * (rx * r1 + ix * r2)) / 2.0;
165	      if (adj)
166		__imag__ res = atan2 (rx + r1,
167						copysign (ix + r2,
168							    __imag__ x));
169	      else
170		__imag__ res = atan2 (ix + r2, rx + r1);
171	    }
172	}
173      else
174	{
175	  double s = hypot (1.0, rx);
176
177	  __real__ res = log1p (2.0 * rx * (rx + s)) / 2.0;
178	  if (adj)
179	    __imag__ res = atan2 (s, __imag__ x);
180	  else
181	    __imag__ res = atan2 (ix, s);
182	}
183      if (__real__ res < DBL_MIN)
184	{
185	  volatile double force_underflow = __real__ res * __real__ res;
186	  (void) force_underflow;
187	}
188    }
189  else
190    {
191      __real__ y = (rx - ix) * (rx + ix) + 1.0;
192      __imag__ y = 2.0 * rx * ix;
193
194      y = csqrt (y);
195
196      __real__ y += rx;
197      __imag__ y += ix;
198
199      if (adj)
200	{
201	  double t = __real__ y;
202	  __real__ y = copysign (__imag__ y, __imag__ x);
203	  __imag__ y = t;
204	}
205
206      res = clog (y);
207    }
208
209  /* Give results the correct sign for the original argument.  */
210  __real__ res = copysign (__real__ res, __real__ x);
211  __imag__ res = copysign (__imag__ res, (adj ? 1.0 : __imag__ x));
212
213  return res;
214}
215