1/*	$OpenBSD: sha2.c,v 1.19 2021/03/12 10:22:46 jsg Exp $	*/
2
3/*
4 * FILE:	sha2.c
5 * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
6 *
7 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 */
36
37#include <sys/time.h>
38#include <sys/systm.h>
39#include <crypto/sha2.h>
40
41/*
42 * UNROLLED TRANSFORM LOOP NOTE:
43 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
44 * loop version for the hash transform rounds (defined using macros
45 * later in this file).  Either define on the command line, for example:
46 *
47 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
48 *
49 * or define below:
50 *
51 *   #define SHA2_UNROLL_TRANSFORM
52 *
53 */
54#ifndef SMALL_KERNEL
55#if defined(__amd64__) || defined(__i386__)
56#define SHA2_UNROLL_TRANSFORM
57#endif
58#endif
59
60/*** SHA-256/384/512 Machine Architecture Definitions *****************/
61/*
62 * BYTE_ORDER NOTE:
63 *
64 * Please make sure that your system defines BYTE_ORDER.  If your
65 * architecture is little-endian, make sure it also defines
66 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
67 * equivalent.
68 *
69 * If your system does not define the above, then you can do so by
70 * hand like this:
71 *
72 *   #define LITTLE_ENDIAN 1234
73 *   #define BIG_ENDIAN    4321
74 *
75 * And for little-endian machines, add:
76 *
77 *   #define BYTE_ORDER LITTLE_ENDIAN
78 *
79 * Or for big-endian machines:
80 *
81 *   #define BYTE_ORDER BIG_ENDIAN
82 *
83 * The FreeBSD machine this was written on defines BYTE_ORDER
84 * appropriately by including <sys/types.h> (which in turn includes
85 * <machine/endian.h> where the appropriate definitions are actually
86 * made).
87 */
88#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
89#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
90#endif
91
92
93/*** SHA-256/384/512 Various Length Definitions ***********************/
94/* NOTE: Most of these are in sha2.h */
95#define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
96#define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
97#define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
98
99/*
100 * Macro for incrementally adding the unsigned 64-bit integer n to the
101 * unsigned 128-bit integer (represented using a two-element array of
102 * 64-bit words):
103 */
104#define ADDINC128(w,n)	{ \
105	(w)[0] += (u_int64_t)(n); \
106	if ((w)[0] < (n)) { \
107		(w)[1]++; \
108	} \
109}
110
111/*** THE SIX LOGICAL FUNCTIONS ****************************************/
112/*
113 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
114 *
115 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
116 *   S is a ROTATION) because the SHA-256/384/512 description document
117 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
118 *   same "backwards" definition.
119 */
120/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
121#define R(b,x) 		((x) >> (b))
122/* 32-bit Rotate-right (used in SHA-256): */
123#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
124/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
125#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
126
127/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
128#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
129#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
130
131/* Four of six logical functions used in SHA-256: */
132#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
133#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
134#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
135#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
136
137/* Four of six logical functions used in SHA-384 and SHA-512: */
138#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
139#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
140#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
141#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
142
143/*** INTERNAL FUNCTION PROTOTYPES *************************************/
144/* NOTE: These should not be accessed directly from outside this
145 * library -- they are intended for private internal visibility/use
146 * only.
147 */
148void SHA512Last(SHA2_CTX *);
149void SHA256Transform(u_int32_t *, const u_int8_t *);
150void SHA512Transform(u_int64_t *, const u_int8_t *);
151
152
153/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
154/* Hash constant words K for SHA-256: */
155const static u_int32_t K256[64] = {
156	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
157	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
158	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
159	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
160	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
161	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
162	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
163	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
164	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
165	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
166	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
167	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
168	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
169	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
170	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
171	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
172};
173
174/* Initial hash value H for SHA-256: */
175const static u_int32_t sha256_initial_hash_value[8] = {
176	0x6a09e667UL,
177	0xbb67ae85UL,
178	0x3c6ef372UL,
179	0xa54ff53aUL,
180	0x510e527fUL,
181	0x9b05688cUL,
182	0x1f83d9abUL,
183	0x5be0cd19UL
184};
185
186/* Hash constant words K for SHA-384 and SHA-512: */
187const static u_int64_t K512[80] = {
188	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
189	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
190	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
191	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
192	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
193	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
194	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
195	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
196	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
197	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
198	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
199	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
200	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
201	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
202	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
203	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
204	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
205	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
206	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
207	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
208	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
209	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
210	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
211	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
212	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
213	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
214	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
215	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
216	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
217	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
218	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
219	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
220	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
221	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
222	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
223	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
224	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
225	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
226	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
227	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
228};
229
230/* Initial hash value H for SHA-384 */
231const static u_int64_t sha384_initial_hash_value[8] = {
232	0xcbbb9d5dc1059ed8ULL,
233	0x629a292a367cd507ULL,
234	0x9159015a3070dd17ULL,
235	0x152fecd8f70e5939ULL,
236	0x67332667ffc00b31ULL,
237	0x8eb44a8768581511ULL,
238	0xdb0c2e0d64f98fa7ULL,
239	0x47b5481dbefa4fa4ULL
240};
241
242/* Initial hash value H for SHA-512 */
243const static u_int64_t sha512_initial_hash_value[8] = {
244	0x6a09e667f3bcc908ULL,
245	0xbb67ae8584caa73bULL,
246	0x3c6ef372fe94f82bULL,
247	0xa54ff53a5f1d36f1ULL,
248	0x510e527fade682d1ULL,
249	0x9b05688c2b3e6c1fULL,
250	0x1f83d9abfb41bd6bULL,
251	0x5be0cd19137e2179ULL
252};
253
254
255/*** SHA-256: *********************************************************/
256void
257SHA256Init(SHA2_CTX *context)
258{
259	memcpy(context->state.st32, sha256_initial_hash_value,
260	    SHA256_DIGEST_LENGTH);
261	memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
262	context->bitcount[0] = 0;
263}
264
265#ifdef SHA2_UNROLL_TRANSFORM
266
267/* Unrolled SHA-256 round macros: */
268
269#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
270	W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) |	    \
271	    ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24);	    \
272	data += 4;							    \
273	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
274	(d) += T1;							    \
275	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
276	j++;								    \
277} while(0)
278
279#define ROUND256(a,b,c,d,e,f,g,h) do {					    \
280	s0 = W256[(j+1)&0x0f];						    \
281	s0 = sigma0_256(s0);						    \
282	s1 = W256[(j+14)&0x0f];						    \
283	s1 = sigma1_256(s1);						    \
284	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
285	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
286	(d) += T1;							    \
287	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
288	j++;								    \
289} while(0)
290
291void
292SHA256Transform(u_int32_t *state, const u_int8_t *data)
293{
294	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
295	u_int32_t	T1, W256[16];
296	int		j;
297
298	/* Initialize registers with the prev. intermediate value */
299	a = state[0];
300	b = state[1];
301	c = state[2];
302	d = state[3];
303	e = state[4];
304	f = state[5];
305	g = state[6];
306	h = state[7];
307
308	j = 0;
309	do {
310		/* Rounds 0 to 15 (unrolled): */
311		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
312		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
313		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
314		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
315		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
316		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
317		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
318		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
319	} while (j < 16);
320
321	/* Now for the remaining rounds to 64: */
322	do {
323		ROUND256(a,b,c,d,e,f,g,h);
324		ROUND256(h,a,b,c,d,e,f,g);
325		ROUND256(g,h,a,b,c,d,e,f);
326		ROUND256(f,g,h,a,b,c,d,e);
327		ROUND256(e,f,g,h,a,b,c,d);
328		ROUND256(d,e,f,g,h,a,b,c);
329		ROUND256(c,d,e,f,g,h,a,b);
330		ROUND256(b,c,d,e,f,g,h,a);
331	} while (j < 64);
332
333	/* Compute the current intermediate hash value */
334	state[0] += a;
335	state[1] += b;
336	state[2] += c;
337	state[3] += d;
338	state[4] += e;
339	state[5] += f;
340	state[6] += g;
341	state[7] += h;
342
343	/* Clean up */
344	a = b = c = d = e = f = g = h = T1 = 0;
345}
346
347#else /* SHA2_UNROLL_TRANSFORM */
348
349void
350SHA256Transform(u_int32_t *state, const u_int8_t *data)
351{
352	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
353	u_int32_t	T1, T2, W256[16];
354	int		j;
355
356	/* Initialize registers with the prev. intermediate value */
357	a = state[0];
358	b = state[1];
359	c = state[2];
360	d = state[3];
361	e = state[4];
362	f = state[5];
363	g = state[6];
364	h = state[7];
365
366	j = 0;
367	do {
368		W256[j] = (u_int32_t)data[3] | ((u_int32_t)data[2] << 8) |
369		    ((u_int32_t)data[1] << 16) | ((u_int32_t)data[0] << 24);
370		data += 4;
371		/* Apply the SHA-256 compression function to update a..h */
372		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
373		T2 = Sigma0_256(a) + Maj(a, b, c);
374		h = g;
375		g = f;
376		f = e;
377		e = d + T1;
378		d = c;
379		c = b;
380		b = a;
381		a = T1 + T2;
382
383		j++;
384	} while (j < 16);
385
386	do {
387		/* Part of the message block expansion: */
388		s0 = W256[(j+1)&0x0f];
389		s0 = sigma0_256(s0);
390		s1 = W256[(j+14)&0x0f];
391		s1 = sigma1_256(s1);
392
393		/* Apply the SHA-256 compression function to update a..h */
394		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
395		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
396		T2 = Sigma0_256(a) + Maj(a, b, c);
397		h = g;
398		g = f;
399		f = e;
400		e = d + T1;
401		d = c;
402		c = b;
403		b = a;
404		a = T1 + T2;
405
406		j++;
407	} while (j < 64);
408
409	/* Compute the current intermediate hash value */
410	state[0] += a;
411	state[1] += b;
412	state[2] += c;
413	state[3] += d;
414	state[4] += e;
415	state[5] += f;
416	state[6] += g;
417	state[7] += h;
418
419	/* Clean up */
420	a = b = c = d = e = f = g = h = T1 = T2 = 0;
421}
422
423#endif /* SHA2_UNROLL_TRANSFORM */
424
425void
426SHA256Update(SHA2_CTX *context, const void *dataptr, size_t len)
427{
428	const uint8_t *data = dataptr;
429	size_t	freespace, usedspace;
430
431	/* Calling with no data is valid (we do nothing) */
432	if (len == 0)
433		return;
434
435	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
436	if (usedspace > 0) {
437		/* Calculate how much free space is available in the buffer */
438		freespace = SHA256_BLOCK_LENGTH - usedspace;
439
440		if (len >= freespace) {
441			/* Fill the buffer completely and process it */
442			memcpy(&context->buffer[usedspace], data, freespace);
443			context->bitcount[0] += freespace << 3;
444			len -= freespace;
445			data += freespace;
446			SHA256Transform(context->state.st32, context->buffer);
447		} else {
448			/* The buffer is not yet full */
449			memcpy(&context->buffer[usedspace], data, len);
450			context->bitcount[0] += len << 3;
451			/* Clean up: */
452			usedspace = freespace = 0;
453			return;
454		}
455	}
456	while (len >= SHA256_BLOCK_LENGTH) {
457		/* Process as many complete blocks as we can */
458		SHA256Transform(context->state.st32, data);
459		context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
460		len -= SHA256_BLOCK_LENGTH;
461		data += SHA256_BLOCK_LENGTH;
462	}
463	if (len > 0) {
464		/* There's left-overs, so save 'em */
465		memcpy(context->buffer, data, len);
466		context->bitcount[0] += len << 3;
467	}
468	/* Clean up: */
469	usedspace = freespace = 0;
470}
471
472void
473SHA256Final(u_int8_t digest[], SHA2_CTX *context)
474{
475	unsigned int	usedspace;
476
477	usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
478#if BYTE_ORDER == LITTLE_ENDIAN
479	/* Convert FROM host byte order */
480	context->bitcount[0] = swap64(context->bitcount[0]);
481#endif
482	if (usedspace > 0) {
483		/* Begin padding with a 1 bit: */
484		context->buffer[usedspace++] = 0x80;
485
486		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
487			/* Set-up for the last transform: */
488			memset(&context->buffer[usedspace], 0,
489			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
490		} else {
491			if (usedspace < SHA256_BLOCK_LENGTH) {
492				memset(&context->buffer[usedspace], 0,
493				    SHA256_BLOCK_LENGTH - usedspace);
494			}
495			/* Do second-to-last transform: */
496			SHA256Transform(context->state.st32, context->buffer);
497
498			/* And set-up for the last transform: */
499			memset(context->buffer, 0,
500			    SHA256_SHORT_BLOCK_LENGTH);
501		}
502	} else {
503		/* Set-up for the last transform: */
504		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
505
506		/* Begin padding with a 1 bit: */
507		*context->buffer = 0x80;
508	}
509	/* Set the bit count: */
510	*(u_int64_t *)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount[0];
511
512	/* Final transform: */
513	SHA256Transform(context->state.st32, context->buffer);
514
515#if BYTE_ORDER == LITTLE_ENDIAN
516	{
517		/* Convert TO host byte order */
518		int	j;
519		for (j = 0; j < 8; j++) {
520			context->state.st32[j] = swap32(context->state.st32[j]);
521		}
522	}
523#endif
524	memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
525	/* Clean up state data: */
526	explicit_bzero(context, sizeof(*context));
527	usedspace = 0;
528}
529
530
531/*** SHA-512: *********************************************************/
532void
533SHA512Init(SHA2_CTX *context)
534{
535	memcpy(context->state.st64, sha512_initial_hash_value,
536	    SHA512_DIGEST_LENGTH);
537	memset(context->buffer, 0, SHA512_BLOCK_LENGTH);
538	context->bitcount[0] = context->bitcount[1] =  0;
539}
540
541#ifdef SHA2_UNROLL_TRANSFORM
542
543/* Unrolled SHA-512 round macros: */
544
545#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
546	W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) |	    \
547	    ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) |	    \
548	    ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) |	    \
549	    ((u_int64_t)data[1] << 48) | ((u_int64_t)data[0] << 56);	    \
550	data += 8;							    \
551	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
552	(d) += T1;							    \
553	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
554	j++;								    \
555} while(0)
556
557
558#define ROUND512(a,b,c,d,e,f,g,h) do {					    \
559	s0 = W512[(j+1)&0x0f];						    \
560	s0 = sigma0_512(s0);						    \
561	s1 = W512[(j+14)&0x0f];						    \
562	s1 = sigma1_512(s1);						    \
563	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
564             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
565	(d) += T1;							    \
566	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
567	j++;								    \
568} while(0)
569
570void
571SHA512Transform(u_int64_t *state, const u_int8_t *data)
572{
573	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
574	u_int64_t	T1, W512[16];
575	int		j;
576
577	/* Initialize registers with the prev. intermediate value */
578	a = state[0];
579	b = state[1];
580	c = state[2];
581	d = state[3];
582	e = state[4];
583	f = state[5];
584	g = state[6];
585	h = state[7];
586
587	j = 0;
588	do {
589		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
590		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
591		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
592		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
593		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
594		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
595		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
596		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
597	} while (j < 16);
598
599	/* Now for the remaining rounds up to 79: */
600	do {
601		ROUND512(a,b,c,d,e,f,g,h);
602		ROUND512(h,a,b,c,d,e,f,g);
603		ROUND512(g,h,a,b,c,d,e,f);
604		ROUND512(f,g,h,a,b,c,d,e);
605		ROUND512(e,f,g,h,a,b,c,d);
606		ROUND512(d,e,f,g,h,a,b,c);
607		ROUND512(c,d,e,f,g,h,a,b);
608		ROUND512(b,c,d,e,f,g,h,a);
609	} while (j < 80);
610
611	/* Compute the current intermediate hash value */
612	state[0] += a;
613	state[1] += b;
614	state[2] += c;
615	state[3] += d;
616	state[4] += e;
617	state[5] += f;
618	state[6] += g;
619	state[7] += h;
620
621	/* Clean up */
622	a = b = c = d = e = f = g = h = T1 = 0;
623}
624
625#else /* SHA2_UNROLL_TRANSFORM */
626
627void
628SHA512Transform(u_int64_t *state, const u_int8_t *data)
629{
630	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
631	u_int64_t	T1, T2, W512[16];
632	int		j;
633
634	/* Initialize registers with the prev. intermediate value */
635	a = state[0];
636	b = state[1];
637	c = state[2];
638	d = state[3];
639	e = state[4];
640	f = state[5];
641	g = state[6];
642	h = state[7];
643
644	j = 0;
645	do {
646		W512[j] = (u_int64_t)data[7] | ((u_int64_t)data[6] << 8) |
647		    ((u_int64_t)data[5] << 16) | ((u_int64_t)data[4] << 24) |
648		    ((u_int64_t)data[3] << 32) | ((u_int64_t)data[2] << 40) |
649		    ((u_int64_t)data[1] << 48) | ((u_int64_t)data[0] << 56);
650		data += 8;
651		/* Apply the SHA-512 compression function to update a..h */
652		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
653		T2 = Sigma0_512(a) + Maj(a, b, c);
654		h = g;
655		g = f;
656		f = e;
657		e = d + T1;
658		d = c;
659		c = b;
660		b = a;
661		a = T1 + T2;
662
663		j++;
664	} while (j < 16);
665
666	do {
667		/* Part of the message block expansion: */
668		s0 = W512[(j+1)&0x0f];
669		s0 = sigma0_512(s0);
670		s1 = W512[(j+14)&0x0f];
671		s1 =  sigma1_512(s1);
672
673		/* Apply the SHA-512 compression function to update a..h */
674		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
675		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
676		T2 = Sigma0_512(a) + Maj(a, b, c);
677		h = g;
678		g = f;
679		f = e;
680		e = d + T1;
681		d = c;
682		c = b;
683		b = a;
684		a = T1 + T2;
685
686		j++;
687	} while (j < 80);
688
689	/* Compute the current intermediate hash value */
690	state[0] += a;
691	state[1] += b;
692	state[2] += c;
693	state[3] += d;
694	state[4] += e;
695	state[5] += f;
696	state[6] += g;
697	state[7] += h;
698
699	/* Clean up */
700	a = b = c = d = e = f = g = h = T1 = T2 = 0;
701}
702
703#endif /* SHA2_UNROLL_TRANSFORM */
704
705void
706SHA512Update(SHA2_CTX *context, const void *dataptr, size_t len)
707{
708	const uint8_t *data = dataptr;
709	size_t	freespace, usedspace;
710
711	/* Calling with no data is valid (we do nothing) */
712	if (len == 0)
713		return;
714
715	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
716	if (usedspace > 0) {
717		/* Calculate how much free space is available in the buffer */
718		freespace = SHA512_BLOCK_LENGTH - usedspace;
719
720		if (len >= freespace) {
721			/* Fill the buffer completely and process it */
722			memcpy(&context->buffer[usedspace], data, freespace);
723			ADDINC128(context->bitcount, freespace << 3);
724			len -= freespace;
725			data += freespace;
726			SHA512Transform(context->state.st64, context->buffer);
727		} else {
728			/* The buffer is not yet full */
729			memcpy(&context->buffer[usedspace], data, len);
730			ADDINC128(context->bitcount, len << 3);
731			/* Clean up: */
732			usedspace = freespace = 0;
733			return;
734		}
735	}
736	while (len >= SHA512_BLOCK_LENGTH) {
737		/* Process as many complete blocks as we can */
738		SHA512Transform(context->state.st64, data);
739		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
740		len -= SHA512_BLOCK_LENGTH;
741		data += SHA512_BLOCK_LENGTH;
742	}
743	if (len > 0) {
744		/* There's left-overs, so save 'em */
745		memcpy(context->buffer, data, len);
746		ADDINC128(context->bitcount, len << 3);
747	}
748	/* Clean up: */
749	usedspace = freespace = 0;
750}
751
752void
753SHA512Last(SHA2_CTX *context)
754{
755	unsigned int	usedspace;
756
757	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
758#if BYTE_ORDER == LITTLE_ENDIAN
759	/* Convert FROM host byte order */
760	context->bitcount[0] = swap64(context->bitcount[0]);
761	context->bitcount[1] = swap64(context->bitcount[1]);
762#endif
763	if (usedspace > 0) {
764		/* Begin padding with a 1 bit: */
765		context->buffer[usedspace++] = 0x80;
766
767		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
768			/* Set-up for the last transform: */
769			memset(&context->buffer[usedspace], 0,
770			    SHA512_SHORT_BLOCK_LENGTH - usedspace);
771		} else {
772			if (usedspace < SHA512_BLOCK_LENGTH) {
773				memset(&context->buffer[usedspace], 0,
774				    SHA512_BLOCK_LENGTH - usedspace);
775			}
776			/* Do second-to-last transform: */
777			SHA512Transform(context->state.st64, context->buffer);
778
779			/* And set-up for the last transform: */
780			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
781		}
782	} else {
783		/* Prepare for final transform: */
784		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
785
786		/* Begin padding with a 1 bit: */
787		*context->buffer = 0x80;
788	}
789	/* Store the length of input data (in bits): */
790	*(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
791	*(u_int64_t *)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
792
793	/* Final transform: */
794	SHA512Transform(context->state.st64, context->buffer);
795}
796
797void
798SHA512Final(u_int8_t digest[], SHA2_CTX *context)
799{
800
801	SHA512Last(context);
802
803	/* Save the hash data for output: */
804#if BYTE_ORDER == LITTLE_ENDIAN
805	{
806		/* Convert TO host byte order */
807		int	j;
808		for (j = 0; j < 8; j++) {
809			context->state.st64[j] = swap64(context->state.st64[j]);
810		}
811	}
812#endif
813	memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
814
815	/* Zero out state data */
816	explicit_bzero(context, sizeof(*context));
817}
818
819
820/*** SHA-384: *********************************************************/
821void
822SHA384Init(SHA2_CTX *context)
823{
824	memcpy(context->state.st64, sha384_initial_hash_value,
825	    SHA512_DIGEST_LENGTH);
826	memset(context->buffer, 0, SHA384_BLOCK_LENGTH);
827	context->bitcount[0] = context->bitcount[1] = 0;
828}
829
830void
831SHA384Update(SHA2_CTX *context, const void *data, size_t len)
832{
833	SHA512Update(context, data, len);
834}
835
836void
837SHA384Final(u_int8_t digest[], SHA2_CTX *context)
838{
839
840	SHA512Last(context);
841
842	/* Save the hash data for output: */
843#if BYTE_ORDER == LITTLE_ENDIAN
844	{
845		/* Convert TO host byte order */
846		int	j;
847		for (j = 0; j < 6; j++) {
848			context->state.st64[j] = swap64(context->state.st64[j]);
849		}
850	}
851#endif
852	memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
853	/* Zero out state data */
854	explicit_bzero(context, sizeof(*context));
855}
856