1/*	$OpenBSD: aes.c,v 1.2 2020/07/22 13:54:30 tobhe Exp $	*/
2/*
3 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
4 *
5 * Modified for OpenBSD by Thomas Pornin and Mike Belopuhov.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining
8 * a copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sublicense, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be
16 * included in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
21 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
22 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
23 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25 * SOFTWARE.
26 */
27
28#include <sys/types.h>
29#include <sys/systm.h>
30#include <sys/stdint.h>
31
32#include "aes.h"
33
34static inline void
35enc32le(void *dst, uint32_t x)
36{
37	unsigned char *buf = dst;
38
39	buf[0] = (unsigned char)x;
40	buf[1] = (unsigned char)(x >> 8);
41	buf[2] = (unsigned char)(x >> 16);
42	buf[3] = (unsigned char)(x >> 24);
43}
44
45static inline uint32_t
46dec32le(const void *src)
47{
48	const unsigned char *buf = src;
49
50	return (uint32_t)buf[0]
51		| ((uint32_t)buf[1] << 8)
52		| ((uint32_t)buf[2] << 16)
53		| ((uint32_t)buf[3] << 24);
54}
55
56/*
57 * This constant-time implementation is "bitsliced": the 128-bit state is
58 * split over eight 32-bit words q* in the following way:
59 *
60 * -- Input block consists in 16 bytes:
61 *    a00 a10 a20 a30 a01 a11 a21 a31 a02 a12 a22 a32 a03 a13 a23 a33
62 * In the terminology of FIPS 197, this is a 4x4 matrix which is read
63 * column by column.
64 *
65 * -- Each byte is split into eight bits which are distributed over the
66 * eight words, at the same rank. Thus, for a byte x at rank k, bit 0
67 * (least significant) of x will be at rank k in q0 (if that bit is b,
68 * then it contributes "b << k" to the value of q0), bit 1 of x will be
69 * at rank k in q1, and so on.
70 *
71 * -- Ranks given to bits are in "row order" and are either all even, or
72 * all odd. Two independent AES states are thus interleaved, one using
73 * the even ranks, the other the odd ranks. Row order means:
74 *    a00 a01 a02 a03 a10 a11 a12 a13 a20 a21 a22 a23 a30 a31 a32 a33
75 *
76 * Converting input bytes from two AES blocks to bitslice representation
77 * is done in the following way:
78 * -- Decode first block into the four words q0 q2 q4 q6, in that order,
79 * using little-endian convention.
80 * -- Decode second block into the four words q1 q3 q5 q7, in that order,
81 * using little-endian convention.
82 * -- Call aes_ct_ortho().
83 *
84 * Converting back to bytes is done by using the reverse operations. Note
85 * that aes_ct_ortho() is its own inverse.
86 */
87
88/*
89 * The AES S-box, as a bitsliced constant-time version. The input array
90 * consists in eight 32-bit words; 32 S-box instances are computed in
91 * parallel. Bits 0 to 7 of each S-box input (bit 0 is least significant)
92 * are spread over the words 0 to 7, at the same rank.
93 */
94static void
95aes_ct_bitslice_Sbox(uint32_t *q)
96{
97	/*
98	 * This S-box implementation is a straightforward translation of
99	 * the circuit described by Boyar and Peralta in "A new
100	 * combinational logic minimization technique with applications
101	 * to cryptology" (https://eprint.iacr.org/2009/191.pdf).
102	 *
103	 * Note that variables x* (input) and s* (output) are numbered
104	 * in "reverse" order (x0 is the high bit, x7 is the low bit).
105	 */
106
107	uint32_t x0, x1, x2, x3, x4, x5, x6, x7;
108	uint32_t y1, y2, y3, y4, y5, y6, y7, y8, y9;
109	uint32_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
110	uint32_t y20, y21;
111	uint32_t z0, z1, z2, z3, z4, z5, z6, z7, z8, z9;
112	uint32_t z10, z11, z12, z13, z14, z15, z16, z17;
113	uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
114	uint32_t t10, t11, t12, t13, t14, t15, t16, t17, t18, t19;
115	uint32_t t20, t21, t22, t23, t24, t25, t26, t27, t28, t29;
116	uint32_t t30, t31, t32, t33, t34, t35, t36, t37, t38, t39;
117	uint32_t t40, t41, t42, t43, t44, t45, t46, t47, t48, t49;
118	uint32_t t50, t51, t52, t53, t54, t55, t56, t57, t58, t59;
119	uint32_t t60, t61, t62, t63, t64, t65, t66, t67;
120	uint32_t s0, s1, s2, s3, s4, s5, s6, s7;
121
122	x0 = q[7];
123	x1 = q[6];
124	x2 = q[5];
125	x3 = q[4];
126	x4 = q[3];
127	x5 = q[2];
128	x6 = q[1];
129	x7 = q[0];
130
131	/*
132	 * Top linear transformation.
133	 */
134	y14 = x3 ^ x5;
135	y13 = x0 ^ x6;
136	y9 = x0 ^ x3;
137	y8 = x0 ^ x5;
138	t0 = x1 ^ x2;
139	y1 = t0 ^ x7;
140	y4 = y1 ^ x3;
141	y12 = y13 ^ y14;
142	y2 = y1 ^ x0;
143	y5 = y1 ^ x6;
144	y3 = y5 ^ y8;
145	t1 = x4 ^ y12;
146	y15 = t1 ^ x5;
147	y20 = t1 ^ x1;
148	y6 = y15 ^ x7;
149	y10 = y15 ^ t0;
150	y11 = y20 ^ y9;
151	y7 = x7 ^ y11;
152	y17 = y10 ^ y11;
153	y19 = y10 ^ y8;
154	y16 = t0 ^ y11;
155	y21 = y13 ^ y16;
156	y18 = x0 ^ y16;
157
158	/*
159	 * Non-linear section.
160	 */
161	t2 = y12 & y15;
162	t3 = y3 & y6;
163	t4 = t3 ^ t2;
164	t5 = y4 & x7;
165	t6 = t5 ^ t2;
166	t7 = y13 & y16;
167	t8 = y5 & y1;
168	t9 = t8 ^ t7;
169	t10 = y2 & y7;
170	t11 = t10 ^ t7;
171	t12 = y9 & y11;
172	t13 = y14 & y17;
173	t14 = t13 ^ t12;
174	t15 = y8 & y10;
175	t16 = t15 ^ t12;
176	t17 = t4 ^ t14;
177	t18 = t6 ^ t16;
178	t19 = t9 ^ t14;
179	t20 = t11 ^ t16;
180	t21 = t17 ^ y20;
181	t22 = t18 ^ y19;
182	t23 = t19 ^ y21;
183	t24 = t20 ^ y18;
184
185	t25 = t21 ^ t22;
186	t26 = t21 & t23;
187	t27 = t24 ^ t26;
188	t28 = t25 & t27;
189	t29 = t28 ^ t22;
190	t30 = t23 ^ t24;
191	t31 = t22 ^ t26;
192	t32 = t31 & t30;
193	t33 = t32 ^ t24;
194	t34 = t23 ^ t33;
195	t35 = t27 ^ t33;
196	t36 = t24 & t35;
197	t37 = t36 ^ t34;
198	t38 = t27 ^ t36;
199	t39 = t29 & t38;
200	t40 = t25 ^ t39;
201
202	t41 = t40 ^ t37;
203	t42 = t29 ^ t33;
204	t43 = t29 ^ t40;
205	t44 = t33 ^ t37;
206	t45 = t42 ^ t41;
207	z0 = t44 & y15;
208	z1 = t37 & y6;
209	z2 = t33 & x7;
210	z3 = t43 & y16;
211	z4 = t40 & y1;
212	z5 = t29 & y7;
213	z6 = t42 & y11;
214	z7 = t45 & y17;
215	z8 = t41 & y10;
216	z9 = t44 & y12;
217	z10 = t37 & y3;
218	z11 = t33 & y4;
219	z12 = t43 & y13;
220	z13 = t40 & y5;
221	z14 = t29 & y2;
222	z15 = t42 & y9;
223	z16 = t45 & y14;
224	z17 = t41 & y8;
225
226	/*
227	 * Bottom linear transformation.
228	 */
229	t46 = z15 ^ z16;
230	t47 = z10 ^ z11;
231	t48 = z5 ^ z13;
232	t49 = z9 ^ z10;
233	t50 = z2 ^ z12;
234	t51 = z2 ^ z5;
235	t52 = z7 ^ z8;
236	t53 = z0 ^ z3;
237	t54 = z6 ^ z7;
238	t55 = z16 ^ z17;
239	t56 = z12 ^ t48;
240	t57 = t50 ^ t53;
241	t58 = z4 ^ t46;
242	t59 = z3 ^ t54;
243	t60 = t46 ^ t57;
244	t61 = z14 ^ t57;
245	t62 = t52 ^ t58;
246	t63 = t49 ^ t58;
247	t64 = z4 ^ t59;
248	t65 = t61 ^ t62;
249	t66 = z1 ^ t63;
250	s0 = t59 ^ t63;
251	s6 = t56 ^ ~t62;
252	s7 = t48 ^ ~t60;
253	t67 = t64 ^ t65;
254	s3 = t53 ^ t66;
255	s4 = t51 ^ t66;
256	s5 = t47 ^ t65;
257	s1 = t64 ^ ~s3;
258	s2 = t55 ^ ~t67;
259
260	q[7] = s0;
261	q[6] = s1;
262	q[5] = s2;
263	q[4] = s3;
264	q[3] = s4;
265	q[2] = s5;
266	q[1] = s6;
267	q[0] = s7;
268}
269
270/*
271 * Perform bytewise orthogonalization of eight 32-bit words. Bytes
272 * of q0..q7 are spread over all words: for a byte x that occurs
273 * at rank i in q[j] (byte x uses bits 8*i to 8*i+7 in q[j]), the bit
274 * of rank k in x (0 <= k <= 7) goes to q[k] at rank 8*i+j.
275 *
276 * This operation is an involution.
277 */
278static void
279aes_ct_ortho(uint32_t *q)
280{
281#define SWAPN(cl, ch, s, x, y)   do { \
282		uint32_t a, b; \
283		a = (x); \
284		b = (y); \
285		(x) = (a & (uint32_t)cl) | ((b & (uint32_t)cl) << (s)); \
286		(y) = ((a & (uint32_t)ch) >> (s)) | (b & (uint32_t)ch); \
287	} while (0)
288
289#define SWAP2(x, y)   SWAPN(0x55555555, 0xAAAAAAAA, 1, x, y)
290#define SWAP4(x, y)   SWAPN(0x33333333, 0xCCCCCCCC, 2, x, y)
291#define SWAP8(x, y)   SWAPN(0x0F0F0F0F, 0xF0F0F0F0, 4, x, y)
292
293	SWAP2(q[0], q[1]);
294	SWAP2(q[2], q[3]);
295	SWAP2(q[4], q[5]);
296	SWAP2(q[6], q[7]);
297
298	SWAP4(q[0], q[2]);
299	SWAP4(q[1], q[3]);
300	SWAP4(q[4], q[6]);
301	SWAP4(q[5], q[7]);
302
303	SWAP8(q[0], q[4]);
304	SWAP8(q[1], q[5]);
305	SWAP8(q[2], q[6]);
306	SWAP8(q[3], q[7]);
307}
308
309static inline uint32_t
310sub_word(uint32_t x)
311{
312	uint32_t q[8];
313	int i;
314
315	for (i = 0; i < 8; i ++) {
316		q[i] = x;
317	}
318	aes_ct_ortho(q);
319	aes_ct_bitslice_Sbox(q);
320	aes_ct_ortho(q);
321	return q[0];
322}
323
324static const unsigned char Rcon[] = {
325	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36
326};
327
328/*
329 * Base key schedule code. The function sub_word() must be defined
330 * below. Subkeys are produced in little-endian convention (but not
331 * bitsliced). Key length is expressed in bytes.
332 */
333static unsigned
334aes_keysched_base(uint32_t *skey, const void *key, size_t key_len)
335{
336	unsigned num_rounds;
337	int i, j, k, nk, nkf;
338	uint32_t tmp;
339
340	switch (key_len) {
341	case 16:
342		num_rounds = 10;
343		break;
344	case 24:
345		num_rounds = 12;
346		break;
347	case 32:
348		num_rounds = 14;
349		break;
350	default:
351		return 0;
352	}
353	nk = (int)(key_len >> 2);
354	nkf = (int)((num_rounds + 1) << 2);
355	for (i = 0; i < nk; i ++) {
356		tmp = dec32le((const unsigned char *)key + (i << 2));
357		skey[i] = tmp;
358	}
359	tmp = skey[(key_len >> 2) - 1];
360	for (i = nk, j = 0, k = 0; i < nkf; i ++) {
361		if (j == 0) {
362			tmp = (tmp << 24) | (tmp >> 8);
363			tmp = sub_word(tmp) ^ Rcon[k];
364		} else if (nk > 6 && j == 4) {
365			tmp = sub_word(tmp);
366		}
367		tmp ^= skey[i - nk];
368		skey[i] = tmp;
369		if (++ j == nk) {
370			j = 0;
371			k ++;
372		}
373	}
374	return num_rounds;
375}
376
377/*
378 * AES key schedule, constant-time version. skey[] is filled with n+1
379 * 128-bit subkeys, where n is the number of rounds (10 to 14, depending
380 * on key size). The number of rounds is returned. If the key size is
381 * invalid (not 16, 24 or 32), then 0 is returned.
382 */
383unsigned
384aes_ct_keysched(uint32_t *comp_skey, const void *key, size_t key_len)
385{
386	uint32_t skey[60];
387	unsigned u, num_rounds;
388
389	num_rounds = aes_keysched_base(skey, key, key_len);
390	for (u = 0; u <= num_rounds; u ++) {
391		uint32_t q[8];
392
393		q[0] = q[1] = skey[(u << 2) + 0];
394		q[2] = q[3] = skey[(u << 2) + 1];
395		q[4] = q[5] = skey[(u << 2) + 2];
396		q[6] = q[7] = skey[(u << 2) + 3];
397		aes_ct_ortho(q);
398		comp_skey[(u << 2) + 0] =
399			(q[0] & 0x55555555) | (q[1] & 0xAAAAAAAA);
400		comp_skey[(u << 2) + 1] =
401			(q[2] & 0x55555555) | (q[3] & 0xAAAAAAAA);
402		comp_skey[(u << 2) + 2] =
403			(q[4] & 0x55555555) | (q[5] & 0xAAAAAAAA);
404		comp_skey[(u << 2) + 3] =
405			(q[6] & 0x55555555) | (q[7] & 0xAAAAAAAA);
406	}
407	return num_rounds;
408}
409
410/*
411 * Expand AES subkeys as produced by aes_ct_keysched(), into
412 * a larger array suitable for aes_ct_bitslice_encrypt() and
413 * aes_ct_bitslice_decrypt().
414 */
415void
416aes_ct_skey_expand(uint32_t *skey,
417	unsigned num_rounds, const uint32_t *comp_skey)
418{
419	unsigned u, v, n;
420
421	n = (num_rounds + 1) << 2;
422	for (u = 0, v = 0; u < n; u ++, v += 2) {
423		uint32_t x, y;
424
425		x = y = comp_skey[u];
426		x &= 0x55555555;
427		skey[v + 0] = x | (x << 1);
428		y &= 0xAAAAAAAA;
429		skey[v + 1] = y | (y >> 1);
430	}
431}
432
433static inline void
434add_round_key(uint32_t *q, const uint32_t *sk)
435{
436	q[0] ^= sk[0];
437	q[1] ^= sk[1];
438	q[2] ^= sk[2];
439	q[3] ^= sk[3];
440	q[4] ^= sk[4];
441	q[5] ^= sk[5];
442	q[6] ^= sk[6];
443	q[7] ^= sk[7];
444}
445
446static inline void
447shift_rows(uint32_t *q)
448{
449	int i;
450
451	for (i = 0; i < 8; i ++) {
452		uint32_t x;
453
454		x = q[i];
455		q[i] = (x & 0x000000FF)
456			| ((x & 0x0000FC00) >> 2) | ((x & 0x00000300) << 6)
457			| ((x & 0x00F00000) >> 4) | ((x & 0x000F0000) << 4)
458			| ((x & 0xC0000000) >> 6) | ((x & 0x3F000000) << 2);
459	}
460}
461
462static inline uint32_t
463rotr16(uint32_t x)
464{
465	return (x << 16) | (x >> 16);
466}
467
468static inline void
469mix_columns(uint32_t *q)
470{
471	uint32_t q0, q1, q2, q3, q4, q5, q6, q7;
472	uint32_t r0, r1, r2, r3, r4, r5, r6, r7;
473
474	q0 = q[0];
475	q1 = q[1];
476	q2 = q[2];
477	q3 = q[3];
478	q4 = q[4];
479	q5 = q[5];
480	q6 = q[6];
481	q7 = q[7];
482	r0 = (q0 >> 8) | (q0 << 24);
483	r1 = (q1 >> 8) | (q1 << 24);
484	r2 = (q2 >> 8) | (q2 << 24);
485	r3 = (q3 >> 8) | (q3 << 24);
486	r4 = (q4 >> 8) | (q4 << 24);
487	r5 = (q5 >> 8) | (q5 << 24);
488	r6 = (q6 >> 8) | (q6 << 24);
489	r7 = (q7 >> 8) | (q7 << 24);
490
491	q[0] = q7 ^ r7 ^ r0 ^ rotr16(q0 ^ r0);
492	q[1] = q0 ^ r0 ^ q7 ^ r7 ^ r1 ^ rotr16(q1 ^ r1);
493	q[2] = q1 ^ r1 ^ r2 ^ rotr16(q2 ^ r2);
494	q[3] = q2 ^ r2 ^ q7 ^ r7 ^ r3 ^ rotr16(q3 ^ r3);
495	q[4] = q3 ^ r3 ^ q7 ^ r7 ^ r4 ^ rotr16(q4 ^ r4);
496	q[5] = q4 ^ r4 ^ r5 ^ rotr16(q5 ^ r5);
497	q[6] = q5 ^ r5 ^ r6 ^ rotr16(q6 ^ r6);
498	q[7] = q6 ^ r6 ^ r7 ^ rotr16(q7 ^ r7);
499}
500
501/*
502 * Compute AES encryption on bitsliced data. Since input is stored on
503 * eight 32-bit words, two block encryptions are actually performed
504 * in parallel.
505 */
506void
507aes_ct_bitslice_encrypt(unsigned num_rounds,
508	const uint32_t *skey, uint32_t *q)
509{
510	unsigned u;
511
512	add_round_key(q, skey);
513	for (u = 1; u < num_rounds; u ++) {
514		aes_ct_bitslice_Sbox(q);
515		shift_rows(q);
516		mix_columns(q);
517		add_round_key(q, skey + (u << 3));
518	}
519	aes_ct_bitslice_Sbox(q);
520	shift_rows(q);
521	add_round_key(q, skey + (num_rounds << 3));
522}
523
524/*
525 * Like aes_ct_bitslice_Sbox(), but for the inverse S-box.
526 */
527void
528aes_ct_bitslice_invSbox(uint32_t *q)
529{
530	/*
531	 * AES S-box is:
532	 *   S(x) = A(I(x)) ^ 0x63
533	 * where I() is inversion in GF(256), and A() is a linear
534	 * transform (0 is formally defined to be its own inverse).
535	 * Since inversion is an involution, the inverse S-box can be
536	 * computed from the S-box as:
537	 *   iS(x) = B(S(B(x ^ 0x63)) ^ 0x63)
538	 * where B() is the inverse of A(). Indeed, for any y in GF(256):
539	 *   iS(S(y)) = B(A(I(B(A(I(y)) ^ 0x63 ^ 0x63))) ^ 0x63 ^ 0x63) = y
540	 *
541	 * Note: we reuse the implementation of the forward S-box,
542	 * instead of duplicating it here, so that total code size is
543	 * lower. By merging the B() transforms into the S-box circuit
544	 * we could make faster CBC decryption, but CBC decryption is
545	 * already quite faster than CBC encryption because we can
546	 * process two blocks in parallel.
547	 */
548	uint32_t q0, q1, q2, q3, q4, q5, q6, q7;
549
550	q0 = ~q[0];
551	q1 = ~q[1];
552	q2 = q[2];
553	q3 = q[3];
554	q4 = q[4];
555	q5 = ~q[5];
556	q6 = ~q[6];
557	q7 = q[7];
558	q[7] = q1 ^ q4 ^ q6;
559	q[6] = q0 ^ q3 ^ q5;
560	q[5] = q7 ^ q2 ^ q4;
561	q[4] = q6 ^ q1 ^ q3;
562	q[3] = q5 ^ q0 ^ q2;
563	q[2] = q4 ^ q7 ^ q1;
564	q[1] = q3 ^ q6 ^ q0;
565	q[0] = q2 ^ q5 ^ q7;
566
567	aes_ct_bitslice_Sbox(q);
568
569	q0 = ~q[0];
570	q1 = ~q[1];
571	q2 = q[2];
572	q3 = q[3];
573	q4 = q[4];
574	q5 = ~q[5];
575	q6 = ~q[6];
576	q7 = q[7];
577	q[7] = q1 ^ q4 ^ q6;
578	q[6] = q0 ^ q3 ^ q5;
579	q[5] = q7 ^ q2 ^ q4;
580	q[4] = q6 ^ q1 ^ q3;
581	q[3] = q5 ^ q0 ^ q2;
582	q[2] = q4 ^ q7 ^ q1;
583	q[1] = q3 ^ q6 ^ q0;
584	q[0] = q2 ^ q5 ^ q7;
585}
586
587static inline void
588inv_shift_rows(uint32_t *q)
589{
590	int i;
591
592	for (i = 0; i < 8; i ++) {
593		uint32_t x;
594
595		x = q[i];
596		q[i] = (x & 0x000000FF)
597			| ((x & 0x00003F00) << 2) | ((x & 0x0000C000) >> 6)
598			| ((x & 0x000F0000) << 4) | ((x & 0x00F00000) >> 4)
599			| ((x & 0x03000000) << 6) | ((x & 0xFC000000) >> 2);
600	}
601}
602
603static void
604inv_mix_columns(uint32_t *q)
605{
606	uint32_t q0, q1, q2, q3, q4, q5, q6, q7;
607	uint32_t r0, r1, r2, r3, r4, r5, r6, r7;
608
609	q0 = q[0];
610	q1 = q[1];
611	q2 = q[2];
612	q3 = q[3];
613	q4 = q[4];
614	q5 = q[5];
615	q6 = q[6];
616	q7 = q[7];
617	r0 = (q0 >> 8) | (q0 << 24);
618	r1 = (q1 >> 8) | (q1 << 24);
619	r2 = (q2 >> 8) | (q2 << 24);
620	r3 = (q3 >> 8) | (q3 << 24);
621	r4 = (q4 >> 8) | (q4 << 24);
622	r5 = (q5 >> 8) | (q5 << 24);
623	r6 = (q6 >> 8) | (q6 << 24);
624	r7 = (q7 >> 8) | (q7 << 24);
625
626	q[0] = q5 ^ q6 ^ q7 ^ r0 ^ r5 ^ r7 ^ rotr16(q0 ^ q5 ^ q6 ^ r0 ^ r5);
627	q[1] = q0 ^ q5 ^ r0 ^ r1 ^ r5 ^ r6 ^ r7 ^ rotr16(q1 ^ q5 ^ q7 ^ r1 ^ r5 ^ r6);
628	q[2] = q0 ^ q1 ^ q6 ^ r1 ^ r2 ^ r6 ^ r7 ^ rotr16(q0 ^ q2 ^ q6 ^ r2 ^ r6 ^ r7);
629	q[3] = q0 ^ q1 ^ q2 ^ q5 ^ q6 ^ r0 ^ r2 ^ r3 ^ r5 ^ rotr16(q0 ^ q1 ^ q3 ^ q5 ^ q6 ^ q7 ^ r0 ^ r3 ^ r5 ^ r7);
630	q[4] = q1 ^ q2 ^ q3 ^ q5 ^ r1 ^ r3 ^ r4 ^ r5 ^ r6 ^ r7 ^ rotr16(q1 ^ q2 ^ q4 ^ q5 ^ q7 ^ r1 ^ r4 ^ r5 ^ r6);
631	q[5] = q2 ^ q3 ^ q4 ^ q6 ^ r2 ^ r4 ^ r5 ^ r6 ^ r7 ^ rotr16(q2 ^ q3 ^ q5 ^ q6 ^ r2 ^ r5 ^ r6 ^ r7);
632	q[6] = q3 ^ q4 ^ q5 ^ q7 ^ r3 ^ r5 ^ r6 ^ r7 ^ rotr16(q3 ^ q4 ^ q6 ^ q7 ^ r3 ^ r6 ^ r7);
633	q[7] = q4 ^ q5 ^ q6 ^ r4 ^ r6 ^ r7 ^ rotr16(q4 ^ q5 ^ q7 ^ r4 ^ r7);
634}
635
636/*
637 * Compute AES decryption on bitsliced data. Since input is stored on
638 * eight 32-bit words, two block decryptions are actually performed
639 * in parallel.
640 */
641void
642aes_ct_bitslice_decrypt(unsigned num_rounds,
643	const uint32_t *skey, uint32_t *q)
644{
645	unsigned u;
646
647	add_round_key(q, skey + (num_rounds << 3));
648	for (u = num_rounds - 1; u > 0; u --) {
649		inv_shift_rows(q);
650		aes_ct_bitslice_invSbox(q);
651		add_round_key(q, skey + (u << 3));
652		inv_mix_columns(q);
653	}
654	inv_shift_rows(q);
655	aes_ct_bitslice_invSbox(q);
656	add_round_key(q, skey);
657}
658
659
660int
661AES_Setkey(AES_CTX *ctx, const uint8_t *key, int len)
662{
663	ctx->num_rounds = aes_ct_keysched(ctx->sk, key, len);
664	if (ctx->num_rounds == 0)
665		return -1;
666	aes_ct_skey_expand(ctx->sk_exp, ctx->num_rounds, ctx->sk);
667	return 0;
668}
669
670void
671AES_Encrypt_ECB(AES_CTX *ctx, const uint8_t *src,
672	uint8_t *dst, size_t num_blocks)
673{
674	while (num_blocks > 0) {
675		uint32_t q[8];
676
677		q[0] = dec32le(src);
678		q[2] = dec32le(src + 4);
679		q[4] = dec32le(src + 8);
680		q[6] = dec32le(src + 12);
681		if (num_blocks > 1) {
682			q[1] = dec32le(src + 16);
683			q[3] = dec32le(src + 20);
684			q[5] = dec32le(src + 24);
685			q[7] = dec32le(src + 28);
686		} else {
687			q[1] = 0;
688			q[3] = 0;
689			q[5] = 0;
690			q[7] = 0;
691		}
692		aes_ct_ortho(q);
693		aes_ct_bitslice_encrypt(ctx->num_rounds, ctx->sk_exp, q);
694		aes_ct_ortho(q);
695		enc32le(dst, q[0]);
696		enc32le(dst + 4, q[2]);
697		enc32le(dst + 8, q[4]);
698		enc32le(dst + 12, q[6]);
699		if (num_blocks > 1) {
700			enc32le(dst + 16, q[1]);
701			enc32le(dst + 20, q[3]);
702			enc32le(dst + 24, q[5]);
703			enc32le(dst + 28, q[7]);
704			src += 32;
705			dst += 32;
706			num_blocks -= 2;
707		} else {
708			break;
709		}
710	}
711}
712
713void
714AES_Decrypt_ECB(AES_CTX *ctx, const uint8_t *src,
715	uint8_t *dst, size_t num_blocks)
716{
717	while (num_blocks > 0) {
718		uint32_t q[8];
719
720		q[0] = dec32le(src);
721		q[2] = dec32le(src + 4);
722		q[4] = dec32le(src + 8);
723		q[6] = dec32le(src + 12);
724		if (num_blocks > 1) {
725			q[1] = dec32le(src + 16);
726			q[3] = dec32le(src + 20);
727			q[5] = dec32le(src + 24);
728			q[7] = dec32le(src + 28);
729		} else {
730			q[1] = 0;
731			q[3] = 0;
732			q[5] = 0;
733			q[7] = 0;
734		}
735		aes_ct_ortho(q);
736		aes_ct_bitslice_decrypt(ctx->num_rounds, ctx->sk_exp, q);
737		aes_ct_ortho(q);
738		enc32le(dst, q[0]);
739		enc32le(dst + 4, q[2]);
740		enc32le(dst + 8, q[4]);
741		enc32le(dst + 12, q[6]);
742		if (num_blocks > 1) {
743			enc32le(dst + 16, q[1]);
744			enc32le(dst + 20, q[3]);
745			enc32le(dst + 24, q[5]);
746			enc32le(dst + 28, q[7]);
747			src += 32;
748			dst += 32;
749			num_blocks -= 2;
750		} else {
751			break;
752		}
753	}
754}
755
756void
757AES_Encrypt(AES_CTX *ctx, const uint8_t *src, uint8_t *dst)
758{
759	AES_Encrypt_ECB(ctx, src, dst, 1);
760}
761
762void
763AES_Decrypt(AES_CTX *ctx, const uint8_t *src, uint8_t *dst)
764{
765	AES_Decrypt_ECB(ctx, src, dst, 1);
766}
767
768int
769AES_KeySetup_Encrypt(uint32_t *skey, const uint8_t *key, int len)
770{
771	unsigned r, u;
772	uint32_t tkey[60];
773
774	r = aes_keysched_base(tkey, key, len);
775	if (r == 0) {
776		return 0;
777	}
778	for (u = 0; u < ((r + 1) << 2); u ++) {
779		uint32_t w;
780
781		w = tkey[u];
782		skey[u] = (w << 24)
783			| ((w & 0x0000FF00) << 8)
784			| ((w & 0x00FF0000) >> 8)
785			| (w >> 24);
786	}
787	return r;
788}
789
790/*
791 * Reduce value x modulo polynomial x^8+x^4+x^3+x+1. This works as
792 * long as x fits on 12 bits at most.
793 */
794static inline uint32_t
795redgf256(uint32_t x)
796{
797	uint32_t h;
798
799	h = x >> 8;
800	return (x ^ h ^ (h << 1) ^ (h << 3) ^ (h << 4)) & 0xFF;
801}
802
803/*
804 * Multiplication by 0x09 in GF(256).
805 */
806static inline uint32_t
807mul9(uint32_t x)
808{
809	return redgf256(x ^ (x << 3));
810}
811
812/*
813 * Multiplication by 0x0B in GF(256).
814 */
815static inline uint32_t
816mulb(uint32_t x)
817{
818	return redgf256(x ^ (x << 1) ^ (x << 3));
819}
820
821/*
822 * Multiplication by 0x0D in GF(256).
823 */
824static inline uint32_t
825muld(uint32_t x)
826{
827	return redgf256(x ^ (x << 2) ^ (x << 3));
828}
829
830/*
831 * Multiplication by 0x0E in GF(256).
832 */
833static inline uint32_t
834mule(uint32_t x)
835{
836	return redgf256((x << 1) ^ (x << 2) ^ (x << 3));
837}
838
839int
840AES_KeySetup_Decrypt(uint32_t *skey, const uint8_t *key, int len)
841{
842	unsigned r, u;
843	uint32_t tkey[60];
844
845	/*
846	 * Compute encryption subkeys. We get them in big-endian
847	 * notation.
848	 */
849	r = AES_KeySetup_Encrypt(tkey, key, len);
850	if (r == 0) {
851		return 0;
852	}
853
854	/*
855	 * Copy the subkeys in reverse order. Also, apply InvMixColumns()
856	 * on the subkeys (except first and last).
857	 */
858	memcpy(skey + (r << 2), tkey, 4 * sizeof(uint32_t));
859	memcpy(skey, tkey + (r << 2), 4 * sizeof(uint32_t));
860	for (u = 4; u < (r << 2); u ++) {
861		uint32_t sk, sk0, sk1, sk2, sk3;
862		uint32_t tk, tk0, tk1, tk2, tk3;
863
864		sk = tkey[u];
865		sk0 = sk >> 24;
866		sk1 = (sk >> 16) & 0xFF;
867		sk2 = (sk >> 8) & 0xFF;
868		sk3 = sk & 0xFF;
869		tk0 = mule(sk0) ^ mulb(sk1) ^ muld(sk2) ^ mul9(sk3);
870		tk1 = mul9(sk0) ^ mule(sk1) ^ mulb(sk2) ^ muld(sk3);
871		tk2 = muld(sk0) ^ mul9(sk1) ^ mule(sk2) ^ mulb(sk3);
872		tk3 = mulb(sk0) ^ muld(sk1) ^ mul9(sk2) ^ mule(sk3);
873		tk = (tk0 << 24) ^ (tk1 << 16) ^ (tk2 << 8) ^ tk3;
874		skey[((r - (u >> 2)) << 2) + (u & 3)] = tk;
875	}
876
877	return r;
878}
879