1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: releng/12.0/sys/net80211/ieee80211_phy.c 326272 2017-11-27 15:23:17Z pfg $");
30
31/*
32 * IEEE 802.11 PHY-related support.
33 */
34
35#include "opt_inet.h"
36
37#include <sys/param.h>
38#include <sys/kernel.h>
39#include <sys/systm.h>
40#include <sys/malloc.h>
41
42#include <sys/socket.h>
43
44#include <net/if.h>
45#include <net/if_media.h>
46
47#include <net/ethernet.h>
48#include <net/route.h>
49
50#include <net80211/ieee80211_var.h>
51#include <net80211/ieee80211_phy.h>
52
53#ifdef notyet
54struct ieee80211_ds_plcp_hdr {
55	uint8_t		i_signal;
56	uint8_t		i_service;
57	uint16_t	i_length;
58	uint16_t	i_crc;
59} __packed;
60
61#endif	/* notyet */
62
63/* shorthands to compact tables for readability */
64#define	OFDM	IEEE80211_T_OFDM
65#define	CCK	IEEE80211_T_CCK
66#define	TURBO	IEEE80211_T_TURBO
67#define	HALF	IEEE80211_T_OFDM_HALF
68#define	QUART	IEEE80211_T_OFDM_QUARTER
69#define	HT	IEEE80211_T_HT
70/* XXX the 11n and the basic rate flag are unfortunately overlapping. Grr. */
71#define	N(r)	(IEEE80211_RATE_MCS | r)
72#define	PBCC	(IEEE80211_T_OFDM_QUARTER+1)		/* XXX */
73#define	B(r)	(IEEE80211_RATE_BASIC | r)
74#define	Mb(x)	(x*1000)
75
76static struct ieee80211_rate_table ieee80211_11b_table = {
77    .rateCount = 4,		/* XXX no PBCC */
78    .info = {
79/*                                   short            ctrl  */
80/*                                Preamble  dot11Rate Rate */
81     [0] = { .phy = CCK,     1000,    0x00,      B(2),   0 },/*   1 Mb */
82     [1] = { .phy = CCK,     2000,    0x04,      B(4),   1 },/*   2 Mb */
83     [2] = { .phy = CCK,     5500,    0x04,     B(11),   1 },/* 5.5 Mb */
84     [3] = { .phy = CCK,    11000,    0x04,     B(22),   1 },/*  11 Mb */
85     [4] = { .phy = PBCC,   22000,    0x04,        44,   3 } /*  22 Mb */
86    },
87};
88
89static struct ieee80211_rate_table ieee80211_11g_table = {
90    .rateCount = 12,
91    .info = {
92/*                                   short            ctrl  */
93/*                                Preamble  dot11Rate Rate */
94     [0] = { .phy = CCK,     1000,    0x00,      B(2),   0 },
95     [1] = { .phy = CCK,     2000,    0x04,      B(4),   1 },
96     [2] = { .phy = CCK,     5500,    0x04,     B(11),   2 },
97     [3] = { .phy = CCK,    11000,    0x04,     B(22),   3 },
98     [4] = { .phy = OFDM,    6000,    0x00,        12,   4 },
99     [5] = { .phy = OFDM,    9000,    0x00,        18,   4 },
100     [6] = { .phy = OFDM,   12000,    0x00,        24,   6 },
101     [7] = { .phy = OFDM,   18000,    0x00,        36,   6 },
102     [8] = { .phy = OFDM,   24000,    0x00,        48,   8 },
103     [9] = { .phy = OFDM,   36000,    0x00,        72,   8 },
104    [10] = { .phy = OFDM,   48000,    0x00,        96,   8 },
105    [11] = { .phy = OFDM,   54000,    0x00,       108,   8 }
106    },
107};
108
109static struct ieee80211_rate_table ieee80211_11a_table = {
110    .rateCount = 8,
111    .info = {
112/*                                   short            ctrl  */
113/*                                Preamble  dot11Rate Rate */
114     [0] = { .phy = OFDM,    6000,    0x00,     B(12),   0 },
115     [1] = { .phy = OFDM,    9000,    0x00,        18,   0 },
116     [2] = { .phy = OFDM,   12000,    0x00,     B(24),   2 },
117     [3] = { .phy = OFDM,   18000,    0x00,        36,   2 },
118     [4] = { .phy = OFDM,   24000,    0x00,     B(48),   4 },
119     [5] = { .phy = OFDM,   36000,    0x00,        72,   4 },
120     [6] = { .phy = OFDM,   48000,    0x00,        96,   4 },
121     [7] = { .phy = OFDM,   54000,    0x00,       108,   4 }
122    },
123};
124
125static struct ieee80211_rate_table ieee80211_half_table = {
126    .rateCount = 8,
127    .info = {
128/*                                   short            ctrl  */
129/*                                Preamble  dot11Rate Rate */
130     [0] = { .phy = HALF,    3000,    0x00,      B(6),   0 },
131     [1] = { .phy = HALF,    4500,    0x00,         9,   0 },
132     [2] = { .phy = HALF,    6000,    0x00,     B(12),   2 },
133     [3] = { .phy = HALF,    9000,    0x00,        18,   2 },
134     [4] = { .phy = HALF,   12000,    0x00,     B(24),   4 },
135     [5] = { .phy = HALF,   18000,    0x00,        36,   4 },
136     [6] = { .phy = HALF,   24000,    0x00,        48,   4 },
137     [7] = { .phy = HALF,   27000,    0x00,        54,   4 }
138    },
139};
140
141static struct ieee80211_rate_table ieee80211_quarter_table = {
142    .rateCount = 8,
143    .info = {
144/*                                   short            ctrl  */
145/*                                Preamble  dot11Rate Rate */
146     [0] = { .phy = QUART,   1500,    0x00,      B(3),   0 },
147     [1] = { .phy = QUART,   2250,    0x00,         4,   0 },
148     [2] = { .phy = QUART,   3000,    0x00,      B(9),   2 },
149     [3] = { .phy = QUART,   4500,    0x00,         9,   2 },
150     [4] = { .phy = QUART,   6000,    0x00,     B(12),   4 },
151     [5] = { .phy = QUART,   9000,    0x00,        18,   4 },
152     [6] = { .phy = QUART,  12000,    0x00,        24,   4 },
153     [7] = { .phy = QUART,  13500,    0x00,        27,   4 }
154    },
155};
156
157static struct ieee80211_rate_table ieee80211_turbog_table = {
158    .rateCount = 7,
159    .info = {
160/*                                   short            ctrl  */
161/*                                Preamble  dot11Rate Rate */
162     [0] = { .phy = TURBO,   12000,   0x00,     B(12),   0 },
163     [1] = { .phy = TURBO,   24000,   0x00,     B(24),   1 },
164     [2] = { .phy = TURBO,   36000,   0x00,        36,   1 },
165     [3] = { .phy = TURBO,   48000,   0x00,     B(48),   3 },
166     [4] = { .phy = TURBO,   72000,   0x00,        72,   3 },
167     [5] = { .phy = TURBO,   96000,   0x00,        96,   3 },
168     [6] = { .phy = TURBO,  108000,   0x00,       108,   3 }
169    },
170};
171
172static struct ieee80211_rate_table ieee80211_turboa_table = {
173    .rateCount = 8,
174    .info = {
175/*                                   short            ctrl  */
176/*                                Preamble  dot11Rate Rate */
177     [0] = { .phy = TURBO,   12000,   0x00,     B(12),   0 },
178     [1] = { .phy = TURBO,   18000,   0x00,        18,   0 },
179     [2] = { .phy = TURBO,   24000,   0x00,     B(24),   2 },
180     [3] = { .phy = TURBO,   36000,   0x00,        36,   2 },
181     [4] = { .phy = TURBO,   48000,   0x00,     B(48),   4 },
182     [5] = { .phy = TURBO,   72000,   0x00,        72,   4 },
183     [6] = { .phy = TURBO,   96000,   0x00,        96,   4 },
184     [7] = { .phy = TURBO,  108000,   0x00,       108,   4 }
185    },
186};
187
188static struct ieee80211_rate_table ieee80211_11ng_table = {
189    .rateCount = 36,
190    .info = {
191/*                                   short            ctrl  */
192/*                                Preamble  dot11Rate Rate */
193     [0] = { .phy = CCK,     1000,    0x00,      B(2),   0 },
194     [1] = { .phy = CCK,     2000,    0x04,      B(4),   1 },
195     [2] = { .phy = CCK,     5500,    0x04,     B(11),   2 },
196     [3] = { .phy = CCK,    11000,    0x04,     B(22),   3 },
197     [4] = { .phy = OFDM,    6000,    0x00,        12,   4 },
198     [5] = { .phy = OFDM,    9000,    0x00,        18,   4 },
199     [6] = { .phy = OFDM,   12000,    0x00,        24,   6 },
200     [7] = { .phy = OFDM,   18000,    0x00,        36,   6 },
201     [8] = { .phy = OFDM,   24000,    0x00,        48,   8 },
202     [9] = { .phy = OFDM,   36000,    0x00,        72,   8 },
203    [10] = { .phy = OFDM,   48000,    0x00,        96,   8 },
204    [11] = { .phy = OFDM,   54000,    0x00,       108,   8 },
205
206    [12] = { .phy = HT,      6500,    0x00,      N(0),   4 },
207    [13] = { .phy = HT,     13000,    0x00,      N(1),   6 },
208    [14] = { .phy = HT,     19500,    0x00,      N(2),   6 },
209    [15] = { .phy = HT,     26000,    0x00,      N(3),   8 },
210    [16] = { .phy = HT,     39000,    0x00,      N(4),   8 },
211    [17] = { .phy = HT,     52000,    0x00,      N(5),   8 },
212    [18] = { .phy = HT,     58500,    0x00,      N(6),   8 },
213    [19] = { .phy = HT,     65000,    0x00,      N(7),   8 },
214
215    [20] = { .phy = HT,     13000,    0x00,      N(8),   4 },
216    [21] = { .phy = HT,     26000,    0x00,      N(9),   6 },
217    [22] = { .phy = HT,     39000,    0x00,     N(10),   6 },
218    [23] = { .phy = HT,     52000,    0x00,     N(11),   8 },
219    [24] = { .phy = HT,     78000,    0x00,     N(12),   8 },
220    [25] = { .phy = HT,    104000,    0x00,     N(13),   8 },
221    [26] = { .phy = HT,    117000,    0x00,     N(14),   8 },
222    [27] = { .phy = HT,    130000,    0x00,     N(15),   8 },
223
224    [28] = { .phy = HT,     19500,    0x00,     N(16),   4 },
225    [29] = { .phy = HT,     39000,    0x00,     N(17),   6 },
226    [30] = { .phy = HT,     58500,    0x00,     N(18),   6 },
227    [31] = { .phy = HT,     78000,    0x00,     N(19),   8 },
228    [32] = { .phy = HT,    117000,    0x00,     N(20),   8 },
229    [33] = { .phy = HT,    156000,    0x00,     N(21),   8 },
230    [34] = { .phy = HT,    175500,    0x00,     N(22),   8 },
231    [35] = { .phy = HT,    195000,    0x00,     N(23),   8 },
232
233    },
234};
235
236static struct ieee80211_rate_table ieee80211_11na_table = {
237    .rateCount = 32,
238    .info = {
239/*                                   short            ctrl  */
240/*                                Preamble  dot11Rate Rate */
241     [0] = { .phy = OFDM,    6000,    0x00,     B(12),   0 },
242     [1] = { .phy = OFDM,    9000,    0x00,        18,   0 },
243     [2] = { .phy = OFDM,   12000,    0x00,     B(24),   2 },
244     [3] = { .phy = OFDM,   18000,    0x00,        36,   2 },
245     [4] = { .phy = OFDM,   24000,    0x00,     B(48),   4 },
246     [5] = { .phy = OFDM,   36000,    0x00,        72,   4 },
247     [6] = { .phy = OFDM,   48000,    0x00,        96,   4 },
248     [7] = { .phy = OFDM,   54000,    0x00,       108,   4 },
249
250     [8] = { .phy = HT,      6500,    0x00,      N(0),   0 },
251     [9] = { .phy = HT,     13000,    0x00,      N(1),   2 },
252    [10] = { .phy = HT,     19500,    0x00,      N(2),   2 },
253    [11] = { .phy = HT,     26000,    0x00,      N(3),   4 },
254    [12] = { .phy = HT,     39000,    0x00,      N(4),   4 },
255    [13] = { .phy = HT,     52000,    0x00,      N(5),   4 },
256    [14] = { .phy = HT,     58500,    0x00,      N(6),   4 },
257    [15] = { .phy = HT,     65000,    0x00,      N(7),   4 },
258
259    [16] = { .phy = HT,     13000,    0x00,      N(8),   0 },
260    [17] = { .phy = HT,     26000,    0x00,      N(9),   2 },
261    [18] = { .phy = HT,     39000,    0x00,     N(10),   2 },
262    [19] = { .phy = HT,     52000,    0x00,     N(11),   4 },
263    [20] = { .phy = HT,     78000,    0x00,     N(12),   4 },
264    [21] = { .phy = HT,    104000,    0x00,     N(13),   4 },
265    [22] = { .phy = HT,    117000,    0x00,     N(14),   4 },
266    [23] = { .phy = HT,    130000,    0x00,     N(15),   4 },
267
268    [24] = { .phy = HT,     19500,    0x00,     N(16),   0 },
269    [25] = { .phy = HT,     39000,    0x00,     N(17),   2 },
270    [26] = { .phy = HT,     58500,    0x00,     N(18),   2 },
271    [27] = { .phy = HT,     78000,    0x00,     N(19),   4 },
272    [28] = { .phy = HT,    117000,    0x00,     N(20),   4 },
273    [29] = { .phy = HT,    156000,    0x00,     N(21),   4 },
274    [30] = { .phy = HT,    175500,    0x00,     N(22),   4 },
275    [31] = { .phy = HT,    195000,    0x00,     N(23),   4 },
276
277    },
278};
279
280#undef	Mb
281#undef	B
282#undef	OFDM
283#undef	HALF
284#undef	QUART
285#undef	CCK
286#undef	TURBO
287#undef	XR
288#undef	HT
289#undef	N
290
291/*
292 * Setup a rate table's reverse lookup table and fill in
293 * ack durations.  The reverse lookup tables are assumed
294 * to be initialized to zero (or at least the first entry).
295 * We use this as a key that indicates whether or not
296 * we've previously setup the reverse lookup table.
297 *
298 * XXX not reentrant, but shouldn't matter
299 */
300static void
301ieee80211_setup_ratetable(struct ieee80211_rate_table *rt)
302{
303#define	WLAN_CTRL_FRAME_SIZE \
304	(sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN)
305
306	int i;
307
308	for (i = 0; i < nitems(rt->rateCodeToIndex); i++)
309		rt->rateCodeToIndex[i] = (uint8_t) -1;
310	for (i = 0; i < rt->rateCount; i++) {
311		uint8_t code = rt->info[i].dot11Rate;
312		uint8_t cix = rt->info[i].ctlRateIndex;
313		uint8_t ctl_rate = rt->info[cix].dot11Rate;
314
315		/*
316		 * Map without the basic rate bit.
317		 *
318		 * It's up to the caller to ensure that the basic
319		 * rate bit is stripped here.
320		 *
321		 * For HT, use the MCS rate bit.
322		 */
323		code &= IEEE80211_RATE_VAL;
324		if (rt->info[i].phy == IEEE80211_T_HT) {
325			code |= IEEE80211_RATE_MCS;
326		}
327
328		/* XXX assume the control rate is non-MCS? */
329		ctl_rate &= IEEE80211_RATE_VAL;
330		rt->rateCodeToIndex[code] = i;
331
332		/*
333		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
334		 *     depends on whether they are marked as basic rates;
335		 *     the static tables are setup with an 11b-compatible
336		 *     2Mb/s rate which will work but is suboptimal
337		 *
338		 * NB: Control rate is always less than or equal to the
339		 *     current rate, so control rate's reverse lookup entry
340		 *     has been installed and following call is safe.
341		 */
342		rt->info[i].lpAckDuration = ieee80211_compute_duration(rt,
343			WLAN_CTRL_FRAME_SIZE, ctl_rate, 0);
344		rt->info[i].spAckDuration = ieee80211_compute_duration(rt,
345			WLAN_CTRL_FRAME_SIZE, ctl_rate, IEEE80211_F_SHPREAMBLE);
346	}
347
348#undef WLAN_CTRL_FRAME_SIZE
349}
350
351/* Setup all rate tables */
352static void
353ieee80211_phy_init(void)
354{
355	static struct ieee80211_rate_table * const ratetables[] = {
356		&ieee80211_half_table,
357		&ieee80211_quarter_table,
358		&ieee80211_11na_table,
359		&ieee80211_11ng_table,
360		&ieee80211_turbog_table,
361		&ieee80211_turboa_table,
362		&ieee80211_11a_table,
363		&ieee80211_11g_table,
364		&ieee80211_11b_table
365	};
366	int i;
367
368	for (i = 0; i < nitems(ratetables); ++i)
369		ieee80211_setup_ratetable(ratetables[i]);
370
371}
372SYSINIT(wlan_phy, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_phy_init, NULL);
373
374const struct ieee80211_rate_table *
375ieee80211_get_ratetable(struct ieee80211_channel *c)
376{
377	const struct ieee80211_rate_table *rt;
378
379	/* XXX HT */
380	if (IEEE80211_IS_CHAN_HALF(c))
381		rt = &ieee80211_half_table;
382	else if (IEEE80211_IS_CHAN_QUARTER(c))
383		rt = &ieee80211_quarter_table;
384	else if (IEEE80211_IS_CHAN_HTA(c))
385		rt = &ieee80211_11na_table;
386	else if (IEEE80211_IS_CHAN_HTG(c))
387		rt = &ieee80211_11ng_table;
388	else if (IEEE80211_IS_CHAN_108G(c))
389		rt = &ieee80211_turbog_table;
390	else if (IEEE80211_IS_CHAN_ST(c))
391		rt = &ieee80211_turboa_table;
392	else if (IEEE80211_IS_CHAN_TURBO(c))
393		rt = &ieee80211_turboa_table;
394	else if (IEEE80211_IS_CHAN_A(c))
395		rt = &ieee80211_11a_table;
396	else if (IEEE80211_IS_CHAN_ANYG(c))
397		rt = &ieee80211_11g_table;
398	else if (IEEE80211_IS_CHAN_B(c))
399		rt = &ieee80211_11b_table;
400	else {
401		/* NB: should not get here */
402		panic("%s: no rate table for channel; freq %u flags 0x%x\n",
403		      __func__, c->ic_freq, c->ic_flags);
404	}
405	return rt;
406}
407
408/*
409 * Convert PLCP signal/rate field to 802.11 rate (.5Mbits/s)
410 *
411 * Note we do no parameter checking; this routine is mainly
412 * used to derive an 802.11 rate for constructing radiotap
413 * header data for rx frames.
414 *
415 * XXX might be a candidate for inline
416 */
417uint8_t
418ieee80211_plcp2rate(uint8_t plcp, enum ieee80211_phytype type)
419{
420	if (type == IEEE80211_T_OFDM) {
421		static const uint8_t ofdm_plcp2rate[16] = {
422			[0xb]	= 12,
423			[0xf]	= 18,
424			[0xa]	= 24,
425			[0xe]	= 36,
426			[0x9]	= 48,
427			[0xd]	= 72,
428			[0x8]	= 96,
429			[0xc]	= 108
430		};
431		return ofdm_plcp2rate[plcp & 0xf];
432	}
433	if (type == IEEE80211_T_CCK) {
434		static const uint8_t cck_plcp2rate[16] = {
435			[0xa]	= 2,	/* 0x0a */
436			[0x4]	= 4,	/* 0x14 */
437			[0x7]	= 11,	/* 0x37 */
438			[0xe]	= 22,	/* 0x6e */
439			[0xc]	= 44,	/* 0xdc , actually PBCC */
440		};
441		return cck_plcp2rate[plcp & 0xf];
442	}
443	return 0;
444}
445
446/*
447 * Covert 802.11 rate to PLCP signal.
448 */
449uint8_t
450ieee80211_rate2plcp(int rate, enum ieee80211_phytype type)
451{
452	/* XXX ignore type for now since rates are unique */
453	switch (rate) {
454	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
455	case 12:	return 0xb;
456	case 18:	return 0xf;
457	case 24:	return 0xa;
458	case 36:	return 0xe;
459	case 48:	return 0x9;
460	case 72:	return 0xd;
461	case 96:	return 0x8;
462	case 108:	return 0xc;
463	/* CCK rates (IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3) */
464	case 2:		return 10;
465	case 4:		return 20;
466	case 11:	return 55;
467	case 22:	return 110;
468	/* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */
469	case 44:	return 220;
470	}
471	return 0;		/* XXX unsupported/unknown rate */
472}
473
474#define CCK_SIFS_TIME		10
475#define CCK_PREAMBLE_BITS	144
476#define CCK_PLCP_BITS		48
477
478#define OFDM_SIFS_TIME		16
479#define OFDM_PREAMBLE_TIME	20
480#define OFDM_PLCP_BITS		22
481#define OFDM_SYMBOL_TIME	4
482
483#define OFDM_HALF_SIFS_TIME	32
484#define OFDM_HALF_PREAMBLE_TIME	40
485#define OFDM_HALF_PLCP_BITS	22
486#define OFDM_HALF_SYMBOL_TIME	8
487
488#define OFDM_QUARTER_SIFS_TIME 		64
489#define OFDM_QUARTER_PREAMBLE_TIME	80
490#define OFDM_QUARTER_PLCP_BITS		22
491#define OFDM_QUARTER_SYMBOL_TIME	16
492
493#define TURBO_SIFS_TIME		8
494#define TURBO_PREAMBLE_TIME	14
495#define TURBO_PLCP_BITS		22
496#define TURBO_SYMBOL_TIME	4
497
498/*
499 * Compute the time to transmit a frame of length frameLen bytes
500 * using the specified rate, phy, and short preamble setting.
501 * SIFS is included.
502 */
503uint16_t
504ieee80211_compute_duration(const struct ieee80211_rate_table *rt,
505	uint32_t frameLen, uint16_t rate, int isShortPreamble)
506{
507	uint8_t rix = rt->rateCodeToIndex[rate];
508	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
509	uint32_t kbps;
510
511	KASSERT(rix != (uint8_t)-1, ("rate %d has no info", rate));
512	kbps = rt->info[rix].rateKbps;
513	if (kbps == 0)			/* XXX bandaid for channel changes */
514		return 0;
515
516	switch (rt->info[rix].phy) {
517	case IEEE80211_T_CCK:
518		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
519		if (isShortPreamble && rt->info[rix].shortPreamble)
520			phyTime >>= 1;
521		numBits		= frameLen << 3;
522		txTime		= CCK_SIFS_TIME + phyTime
523				+ ((numBits * 1000)/kbps);
524		break;
525	case IEEE80211_T_OFDM:
526		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
527		KASSERT(bitsPerSymbol != 0, ("full rate bps"));
528
529		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
530		numSymbols	= howmany(numBits, bitsPerSymbol);
531		txTime		= OFDM_SIFS_TIME
532				+ OFDM_PREAMBLE_TIME
533				+ (numSymbols * OFDM_SYMBOL_TIME);
534		break;
535	case IEEE80211_T_OFDM_HALF:
536		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
537		KASSERT(bitsPerSymbol != 0, ("1/4 rate bps"));
538
539		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
540		numSymbols	= howmany(numBits, bitsPerSymbol);
541		txTime		= OFDM_HALF_SIFS_TIME
542				+ OFDM_HALF_PREAMBLE_TIME
543				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
544		break;
545	case IEEE80211_T_OFDM_QUARTER:
546		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
547		KASSERT(bitsPerSymbol != 0, ("1/2 rate bps"));
548
549		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
550		numSymbols	= howmany(numBits, bitsPerSymbol);
551		txTime		= OFDM_QUARTER_SIFS_TIME
552				+ OFDM_QUARTER_PREAMBLE_TIME
553				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
554		break;
555	case IEEE80211_T_TURBO:
556		/* we still save OFDM rates in kbps - so double them */
557		bitsPerSymbol = ((kbps << 1) * TURBO_SYMBOL_TIME) / 1000;
558		KASSERT(bitsPerSymbol != 0, ("turbo bps"));
559
560		numBits       = TURBO_PLCP_BITS + (frameLen << 3);
561		numSymbols    = howmany(numBits, bitsPerSymbol);
562		txTime        = TURBO_SIFS_TIME + TURBO_PREAMBLE_TIME
563			      + (numSymbols * TURBO_SYMBOL_TIME);
564		break;
565	default:
566		panic("%s: unknown phy %u (rate %u)\n", __func__,
567		      rt->info[rix].phy, rate);
568	}
569	return txTime;
570}
571
572static const uint16_t ht20_bps[32] = {
573	26, 52, 78, 104, 156, 208, 234, 260,
574	52, 104, 156, 208, 312, 416, 468, 520,
575	78, 156, 234, 312, 468, 624, 702, 780,
576	104, 208, 312, 416, 624, 832, 936, 1040
577};
578static const uint16_t ht40_bps[32] = {
579	54, 108, 162, 216, 324, 432, 486, 540,
580	108, 216, 324, 432, 648, 864, 972, 1080,
581	162, 324, 486, 648, 972, 1296, 1458, 1620,
582	216, 432, 648, 864, 1296, 1728, 1944, 2160
583};
584
585#define	OFDM_PLCP_BITS	22
586#define	HT_L_STF	8
587#define	HT_L_LTF	8
588#define	HT_L_SIG	4
589#define	HT_SIG		8
590#define	HT_STF		4
591#define	HT_LTF(n)	((n) * 4)
592
593/*
594 * Calculate the transmit duration of an 11n frame.
595 */
596uint32_t
597ieee80211_compute_duration_ht(uint32_t frameLen, uint16_t rate,
598    int streams, int isht40, int isShortGI)
599{
600	uint32_t bitsPerSymbol, numBits, numSymbols, txTime;
601
602	KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
603	KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate));
604
605	if (isht40)
606		bitsPerSymbol = ht40_bps[rate & 0x1f];
607	else
608		bitsPerSymbol = ht20_bps[rate & 0x1f];
609	numBits = OFDM_PLCP_BITS + (frameLen << 3);
610	numSymbols = howmany(numBits, bitsPerSymbol);
611	if (isShortGI)
612		txTime = ((numSymbols * 18) + 4) / 5;   /* 3.6us */
613	else
614		txTime = numSymbols * 4;                /* 4us */
615	return txTime + HT_L_STF + HT_L_LTF +
616	    HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
617}
618
619#undef	HT_LTF
620#undef	HT_STF
621#undef	HT_SIG
622#undef	HT_L_SIG
623#undef	HT_L_LTF
624#undef	HT_L_STF
625#undef	OFDM_PLCP_BITS
626