1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20#include <sys/cdefs.h>
21__FBSDID("$FreeBSD: releng/12.0/sys/dev/wpi/if_wpi.c 327479 2018-01-02 00:07:28Z adrian $");
22
23/*
24 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
25 *
26 * The 3945ABG network adapter doesn't use traditional hardware as
27 * many other adaptors do. Instead at run time the eeprom is set into a known
28 * state and told to load boot firmware. The boot firmware loads an init and a
29 * main  binary firmware image into SRAM on the card via DMA.
30 * Once the firmware is loaded, the driver/hw then
31 * communicate by way of circular dma rings via the SRAM to the firmware.
32 *
33 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
34 * The 4 tx data rings allow for prioritization QoS.
35 *
36 * The rx data ring consists of 32 dma buffers. Two registers are used to
37 * indicate where in the ring the driver and the firmware are up to. The
38 * driver sets the initial read index (reg1) and the initial write index (reg2),
39 * the firmware updates the read index (reg1) on rx of a packet and fires an
40 * interrupt. The driver then processes the buffers starting at reg1 indicating
41 * to the firmware which buffers have been accessed by updating reg2. At the
42 * same time allocating new memory for the processed buffer.
43 *
44 * A similar thing happens with the tx rings. The difference is the firmware
45 * stop processing buffers once the queue is full and until confirmation
46 * of a successful transmition (tx_done) has occurred.
47 *
48 * The command ring operates in the same manner as the tx queues.
49 *
50 * All communication direct to the card (ie eeprom) is classed as Stage1
51 * communication
52 *
53 * All communication via the firmware to the card is classed as State2.
54 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
55 * firmware. The bootstrap firmware and runtime firmware are loaded
56 * from host memory via dma to the card then told to execute. From this point
57 * on the majority of communications between the driver and the card goes
58 * via the firmware.
59 */
60
61#include <sys/param.h>
62#include <sys/sysctl.h>
63#include <sys/sockio.h>
64#include <sys/mbuf.h>
65#include <sys/kernel.h>
66#include <sys/socket.h>
67#include <sys/systm.h>
68#include <sys/malloc.h>
69#include <sys/queue.h>
70#include <sys/taskqueue.h>
71#include <sys/module.h>
72#include <sys/bus.h>
73#include <sys/endian.h>
74#include <sys/linker.h>
75#include <sys/firmware.h>
76
77#include <machine/bus.h>
78#include <machine/resource.h>
79#include <sys/rman.h>
80
81#include <dev/pci/pcireg.h>
82#include <dev/pci/pcivar.h>
83
84#include <net/bpf.h>
85#include <net/if.h>
86#include <net/if_var.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <netinet/in.h>
94#include <netinet/in_systm.h>
95#include <netinet/in_var.h>
96#include <netinet/if_ether.h>
97#include <netinet/ip.h>
98
99#include <net80211/ieee80211_var.h>
100#include <net80211/ieee80211_radiotap.h>
101#include <net80211/ieee80211_regdomain.h>
102#include <net80211/ieee80211_ratectl.h>
103
104#include <dev/wpi/if_wpireg.h>
105#include <dev/wpi/if_wpivar.h>
106#include <dev/wpi/if_wpi_debug.h>
107
108struct wpi_ident {
109	uint16_t	vendor;
110	uint16_t	device;
111	uint16_t	subdevice;
112	const char	*name;
113};
114
115static const struct wpi_ident wpi_ident_table[] = {
116	/* The below entries support ABG regardless of the subid */
117	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
118	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
119	/* The below entries only support BG */
120	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
121	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
122	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
123	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
124	{ 0, 0, 0, NULL }
125};
126
127static int	wpi_probe(device_t);
128static int	wpi_attach(device_t);
129static void	wpi_radiotap_attach(struct wpi_softc *);
130static void	wpi_sysctlattach(struct wpi_softc *);
131static void	wpi_init_beacon(struct wpi_vap *);
132static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
133		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
134		    const uint8_t [IEEE80211_ADDR_LEN],
135		    const uint8_t [IEEE80211_ADDR_LEN]);
136static void	wpi_vap_delete(struct ieee80211vap *);
137static int	wpi_detach(device_t);
138static int	wpi_shutdown(device_t);
139static int	wpi_suspend(device_t);
140static int	wpi_resume(device_t);
141static int	wpi_nic_lock(struct wpi_softc *);
142static int	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
143static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
144static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
145		    void **, bus_size_t, bus_size_t);
146static void	wpi_dma_contig_free(struct wpi_dma_info *);
147static int	wpi_alloc_shared(struct wpi_softc *);
148static void	wpi_free_shared(struct wpi_softc *);
149static int	wpi_alloc_fwmem(struct wpi_softc *);
150static void	wpi_free_fwmem(struct wpi_softc *);
151static int	wpi_alloc_rx_ring(struct wpi_softc *);
152static void	wpi_update_rx_ring(struct wpi_softc *);
153static void	wpi_update_rx_ring_ps(struct wpi_softc *);
154static void	wpi_reset_rx_ring(struct wpi_softc *);
155static void	wpi_free_rx_ring(struct wpi_softc *);
156static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
157		    uint8_t);
158static void	wpi_update_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
159static void	wpi_update_tx_ring_ps(struct wpi_softc *,
160		    struct wpi_tx_ring *);
161static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
162static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
163static int	wpi_read_eeprom(struct wpi_softc *,
164		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
165static uint32_t	wpi_eeprom_channel_flags(struct wpi_eeprom_chan *);
166static void	wpi_read_eeprom_band(struct wpi_softc *, uint8_t, int, int *,
167		    struct ieee80211_channel[]);
168static int	wpi_read_eeprom_channels(struct wpi_softc *, uint8_t);
169static struct wpi_eeprom_chan *wpi_find_eeprom_channel(struct wpi_softc *,
170		    struct ieee80211_channel *);
171static void	wpi_getradiocaps(struct ieee80211com *, int, int *,
172		    struct ieee80211_channel[]);
173static int	wpi_setregdomain(struct ieee80211com *,
174		    struct ieee80211_regdomain *, int,
175		    struct ieee80211_channel[]);
176static int	wpi_read_eeprom_group(struct wpi_softc *, uint8_t);
177static struct ieee80211_node *wpi_node_alloc(struct ieee80211vap *,
178		    const uint8_t mac[IEEE80211_ADDR_LEN]);
179static void	wpi_node_free(struct ieee80211_node *);
180static void	wpi_ibss_recv_mgmt(struct ieee80211_node *, struct mbuf *, int,
181		    const struct ieee80211_rx_stats *,
182		    int, int);
183static void	wpi_restore_node(void *, struct ieee80211_node *);
184static void	wpi_restore_node_table(struct wpi_softc *, struct wpi_vap *);
185static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
186static void	wpi_calib_timeout(void *);
187static void	wpi_rx_done(struct wpi_softc *, struct wpi_rx_desc *,
188		    struct wpi_rx_data *);
189static void	wpi_rx_statistics(struct wpi_softc *, struct wpi_rx_desc *,
190		    struct wpi_rx_data *);
191static void	wpi_tx_done(struct wpi_softc *, struct wpi_rx_desc *);
192static void	wpi_cmd_done(struct wpi_softc *, struct wpi_rx_desc *);
193static void	wpi_notif_intr(struct wpi_softc *);
194static void	wpi_wakeup_intr(struct wpi_softc *);
195#ifdef WPI_DEBUG
196static void	wpi_debug_registers(struct wpi_softc *);
197#endif
198static void	wpi_fatal_intr(struct wpi_softc *);
199static void	wpi_intr(void *);
200static void	wpi_free_txfrags(struct wpi_softc *, uint16_t);
201static int	wpi_cmd2(struct wpi_softc *, struct wpi_buf *);
202static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
203		    struct ieee80211_node *);
204static int	wpi_tx_data_raw(struct wpi_softc *, struct mbuf *,
205		    struct ieee80211_node *,
206		    const struct ieee80211_bpf_params *);
207static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
208		    const struct ieee80211_bpf_params *);
209static int	wpi_transmit(struct ieee80211com *, struct mbuf *);
210static void	wpi_watchdog_rfkill(void *);
211static void	wpi_scan_timeout(void *);
212static void	wpi_tx_timeout(void *);
213static void	wpi_parent(struct ieee80211com *);
214static int	wpi_cmd(struct wpi_softc *, uint8_t, const void *, uint16_t,
215		    int);
216static int	wpi_mrr_setup(struct wpi_softc *);
217static int	wpi_add_node(struct wpi_softc *, struct ieee80211_node *);
218static int	wpi_add_broadcast_node(struct wpi_softc *, int);
219static int	wpi_add_ibss_node(struct wpi_softc *, struct ieee80211_node *);
220static void	wpi_del_node(struct wpi_softc *, struct ieee80211_node *);
221static int	wpi_updateedca(struct ieee80211com *);
222static void	wpi_set_promisc(struct wpi_softc *);
223static void	wpi_update_promisc(struct ieee80211com *);
224static void	wpi_update_mcast(struct ieee80211com *);
225static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
226static int	wpi_set_timing(struct wpi_softc *, struct ieee80211_node *);
227static void	wpi_power_calibration(struct wpi_softc *);
228static int	wpi_set_txpower(struct wpi_softc *, int);
229static int	wpi_get_power_index(struct wpi_softc *,
230		    struct wpi_power_group *, uint8_t, int, int);
231static int	wpi_set_pslevel(struct wpi_softc *, uint8_t, int, int);
232static int	wpi_send_btcoex(struct wpi_softc *);
233static int	wpi_send_rxon(struct wpi_softc *, int, int);
234static int	wpi_config(struct wpi_softc *);
235static uint16_t	wpi_get_active_dwell_time(struct wpi_softc *,
236		    struct ieee80211_channel *, uint8_t);
237static uint16_t	wpi_limit_dwell(struct wpi_softc *, uint16_t);
238static uint16_t	wpi_get_passive_dwell_time(struct wpi_softc *,
239		    struct ieee80211_channel *);
240static uint32_t	wpi_get_scan_pause_time(uint32_t, uint16_t);
241static int	wpi_scan(struct wpi_softc *, struct ieee80211_channel *);
242static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
243static int	wpi_config_beacon(struct wpi_vap *);
244static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
245static void	wpi_update_beacon(struct ieee80211vap *, int);
246static void	wpi_newassoc(struct ieee80211_node *, int);
247static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
248static int	wpi_load_key(struct ieee80211_node *,
249		    const struct ieee80211_key *);
250static void	wpi_load_key_cb(void *, struct ieee80211_node *);
251static int	wpi_set_global_keys(struct ieee80211_node *);
252static int	wpi_del_key(struct ieee80211_node *,
253		    const struct ieee80211_key *);
254static void	wpi_del_key_cb(void *, struct ieee80211_node *);
255static int	wpi_process_key(struct ieee80211vap *,
256		    const struct ieee80211_key *, int);
257static int	wpi_key_set(struct ieee80211vap *,
258		    const struct ieee80211_key *);
259static int	wpi_key_delete(struct ieee80211vap *,
260		    const struct ieee80211_key *);
261static int	wpi_post_alive(struct wpi_softc *);
262static int	wpi_load_bootcode(struct wpi_softc *, const uint8_t *,
263		    uint32_t);
264static int	wpi_load_firmware(struct wpi_softc *);
265static int	wpi_read_firmware(struct wpi_softc *);
266static void	wpi_unload_firmware(struct wpi_softc *);
267static int	wpi_clock_wait(struct wpi_softc *);
268static int	wpi_apm_init(struct wpi_softc *);
269static void	wpi_apm_stop_master(struct wpi_softc *);
270static void	wpi_apm_stop(struct wpi_softc *);
271static void	wpi_nic_config(struct wpi_softc *);
272static int	wpi_hw_init(struct wpi_softc *);
273static void	wpi_hw_stop(struct wpi_softc *);
274static void	wpi_radio_on(void *, int);
275static void	wpi_radio_off(void *, int);
276static int	wpi_init(struct wpi_softc *);
277static void	wpi_stop_locked(struct wpi_softc *);
278static void	wpi_stop(struct wpi_softc *);
279static void	wpi_scan_start(struct ieee80211com *);
280static void	wpi_scan_end(struct ieee80211com *);
281static void	wpi_set_channel(struct ieee80211com *);
282static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
283static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
284
285static device_method_t wpi_methods[] = {
286	/* Device interface */
287	DEVMETHOD(device_probe,		wpi_probe),
288	DEVMETHOD(device_attach,	wpi_attach),
289	DEVMETHOD(device_detach,	wpi_detach),
290	DEVMETHOD(device_shutdown,	wpi_shutdown),
291	DEVMETHOD(device_suspend,	wpi_suspend),
292	DEVMETHOD(device_resume,	wpi_resume),
293
294	DEVMETHOD_END
295};
296
297static driver_t wpi_driver = {
298	"wpi",
299	wpi_methods,
300	sizeof (struct wpi_softc)
301};
302static devclass_t wpi_devclass;
303
304DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
305
306MODULE_VERSION(wpi, 1);
307
308MODULE_DEPEND(wpi, pci,  1, 1, 1);
309MODULE_DEPEND(wpi, wlan, 1, 1, 1);
310MODULE_DEPEND(wpi, firmware, 1, 1, 1);
311
312static int
313wpi_probe(device_t dev)
314{
315	const struct wpi_ident *ident;
316
317	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
318		if (pci_get_vendor(dev) == ident->vendor &&
319		    pci_get_device(dev) == ident->device) {
320			device_set_desc(dev, ident->name);
321			return (BUS_PROBE_DEFAULT);
322		}
323	}
324	return ENXIO;
325}
326
327static int
328wpi_attach(device_t dev)
329{
330	struct wpi_softc *sc = (struct wpi_softc *)device_get_softc(dev);
331	struct ieee80211com *ic;
332	uint8_t i;
333	int error, rid;
334#ifdef WPI_DEBUG
335	int supportsa = 1;
336	const struct wpi_ident *ident;
337#endif
338
339	sc->sc_dev = dev;
340
341#ifdef WPI_DEBUG
342	error = resource_int_value(device_get_name(sc->sc_dev),
343	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
344	if (error != 0)
345		sc->sc_debug = 0;
346#else
347	sc->sc_debug = 0;
348#endif
349
350	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
351
352	/*
353	 * Get the offset of the PCI Express Capability Structure in PCI
354	 * Configuration Space.
355	 */
356	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
357	if (error != 0) {
358		device_printf(dev, "PCIe capability structure not found!\n");
359		return error;
360	}
361
362	/*
363	 * Some card's only support 802.11b/g not a, check to see if
364	 * this is one such card. A 0x0 in the subdevice table indicates
365	 * the entire subdevice range is to be ignored.
366	 */
367#ifdef WPI_DEBUG
368	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
369		if (ident->subdevice &&
370		    pci_get_subdevice(dev) == ident->subdevice) {
371		    supportsa = 0;
372		    break;
373		}
374	}
375#endif
376
377	/* Clear device-specific "PCI retry timeout" register (41h). */
378	pci_write_config(dev, 0x41, 0, 1);
379
380	/* Enable bus-mastering. */
381	pci_enable_busmaster(dev);
382
383	rid = PCIR_BAR(0);
384	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
385	    RF_ACTIVE);
386	if (sc->mem == NULL) {
387		device_printf(dev, "can't map mem space\n");
388		return ENOMEM;
389	}
390	sc->sc_st = rman_get_bustag(sc->mem);
391	sc->sc_sh = rman_get_bushandle(sc->mem);
392
393	rid = 1;
394	if (pci_alloc_msi(dev, &rid) == 0)
395		rid = 1;
396	else
397		rid = 0;
398	/* Install interrupt handler. */
399	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
400	    (rid != 0 ? 0 : RF_SHAREABLE));
401	if (sc->irq == NULL) {
402		device_printf(dev, "can't map interrupt\n");
403		error = ENOMEM;
404		goto fail;
405	}
406
407	WPI_LOCK_INIT(sc);
408	WPI_TX_LOCK_INIT(sc);
409	WPI_RXON_LOCK_INIT(sc);
410	WPI_NT_LOCK_INIT(sc);
411	WPI_TXQ_LOCK_INIT(sc);
412	WPI_TXQ_STATE_LOCK_INIT(sc);
413
414	/* Allocate DMA memory for firmware transfers. */
415	if ((error = wpi_alloc_fwmem(sc)) != 0) {
416		device_printf(dev,
417		    "could not allocate memory for firmware, error %d\n",
418		    error);
419		goto fail;
420	}
421
422	/* Allocate shared page. */
423	if ((error = wpi_alloc_shared(sc)) != 0) {
424		device_printf(dev, "could not allocate shared page\n");
425		goto fail;
426	}
427
428	/* Allocate TX rings - 4 for QoS purposes, 1 for commands. */
429	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
430		if ((error = wpi_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
431			device_printf(dev,
432			    "could not allocate TX ring %d, error %d\n", i,
433			    error);
434			goto fail;
435		}
436	}
437
438	/* Allocate RX ring. */
439	if ((error = wpi_alloc_rx_ring(sc)) != 0) {
440		device_printf(dev, "could not allocate RX ring, error %d\n",
441		    error);
442		goto fail;
443	}
444
445	/* Clear pending interrupts. */
446	WPI_WRITE(sc, WPI_INT, 0xffffffff);
447
448	ic = &sc->sc_ic;
449	ic->ic_softc = sc;
450	ic->ic_name = device_get_nameunit(dev);
451	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
452	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
453
454	/* Set device capabilities. */
455	ic->ic_caps =
456		  IEEE80211_C_STA		/* station mode supported */
457		| IEEE80211_C_IBSS		/* IBSS mode supported */
458		| IEEE80211_C_HOSTAP		/* Host access point mode */
459		| IEEE80211_C_MONITOR		/* monitor mode supported */
460		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
461		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
462		| IEEE80211_C_TXFRAG		/* handle tx frags */
463		| IEEE80211_C_TXPMGT		/* tx power management */
464		| IEEE80211_C_SHSLOT		/* short slot time supported */
465		| IEEE80211_C_WPA		/* 802.11i */
466		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
467		| IEEE80211_C_WME		/* 802.11e */
468		| IEEE80211_C_PMGT		/* Station-side power mgmt */
469		;
470
471	ic->ic_cryptocaps =
472		  IEEE80211_CRYPTO_AES_CCM;
473
474	/*
475	 * Read in the eeprom and also setup the channels for
476	 * net80211. We don't set the rates as net80211 does this for us
477	 */
478	if ((error = wpi_read_eeprom(sc, ic->ic_macaddr)) != 0) {
479		device_printf(dev, "could not read EEPROM, error %d\n",
480		    error);
481		goto fail;
482	}
483
484#ifdef WPI_DEBUG
485	if (bootverbose) {
486		device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n",
487		    sc->domain);
488		device_printf(sc->sc_dev, "Hardware Type: %c\n",
489		    sc->type > 1 ? 'B': '?');
490		device_printf(sc->sc_dev, "Hardware Revision: %c\n",
491		    ((sc->rev & 0xf0) == 0xd0) ? 'D': '?');
492		device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
493		    supportsa ? "does" : "does not");
494
495		/* XXX hw_config uses the PCIDEV for the Hardware rev. Must
496		   check what sc->rev really represents - benjsc 20070615 */
497	}
498#endif
499
500	ieee80211_ifattach(ic);
501	ic->ic_vap_create = wpi_vap_create;
502	ic->ic_vap_delete = wpi_vap_delete;
503	ic->ic_parent = wpi_parent;
504	ic->ic_raw_xmit = wpi_raw_xmit;
505	ic->ic_transmit = wpi_transmit;
506	ic->ic_node_alloc = wpi_node_alloc;
507	sc->sc_node_free = ic->ic_node_free;
508	ic->ic_node_free = wpi_node_free;
509	ic->ic_wme.wme_update = wpi_updateedca;
510	ic->ic_update_promisc = wpi_update_promisc;
511	ic->ic_update_mcast = wpi_update_mcast;
512	ic->ic_newassoc = wpi_newassoc;
513	ic->ic_scan_start = wpi_scan_start;
514	ic->ic_scan_end = wpi_scan_end;
515	ic->ic_set_channel = wpi_set_channel;
516	ic->ic_scan_curchan = wpi_scan_curchan;
517	ic->ic_scan_mindwell = wpi_scan_mindwell;
518	ic->ic_getradiocaps = wpi_getradiocaps;
519	ic->ic_setregdomain = wpi_setregdomain;
520
521	sc->sc_update_rx_ring = wpi_update_rx_ring;
522	sc->sc_update_tx_ring = wpi_update_tx_ring;
523
524	wpi_radiotap_attach(sc);
525
526	/* Setup Tx status flags (constant). */
527	sc->sc_txs.flags = IEEE80211_RATECTL_STATUS_PKTLEN |
528	    IEEE80211_RATECTL_STATUS_SHORT_RETRY |
529	    IEEE80211_RATECTL_STATUS_LONG_RETRY;
530
531	callout_init_mtx(&sc->calib_to, &sc->rxon_mtx, 0);
532	callout_init_mtx(&sc->scan_timeout, &sc->rxon_mtx, 0);
533	callout_init_mtx(&sc->tx_timeout, &sc->txq_state_mtx, 0);
534	callout_init_mtx(&sc->watchdog_rfkill, &sc->sc_mtx, 0);
535	TASK_INIT(&sc->sc_radiooff_task, 0, wpi_radio_off, sc);
536	TASK_INIT(&sc->sc_radioon_task, 0, wpi_radio_on, sc);
537
538	wpi_sysctlattach(sc);
539
540	/*
541	 * Hook our interrupt after all initialization is complete.
542	 */
543	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
544	    NULL, wpi_intr, sc, &sc->sc_ih);
545	if (error != 0) {
546		device_printf(dev, "can't establish interrupt, error %d\n",
547		    error);
548		goto fail;
549	}
550
551	if (bootverbose)
552		ieee80211_announce(ic);
553
554#ifdef WPI_DEBUG
555	if (sc->sc_debug & WPI_DEBUG_HW)
556		ieee80211_announce_channels(ic);
557#endif
558
559	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
560	return 0;
561
562fail:	wpi_detach(dev);
563	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
564	return error;
565}
566
567/*
568 * Attach the interface to 802.11 radiotap.
569 */
570static void
571wpi_radiotap_attach(struct wpi_softc *sc)
572{
573	struct wpi_rx_radiotap_header *rxtap = &sc->sc_rxtap;
574	struct wpi_tx_radiotap_header *txtap = &sc->sc_txtap;
575
576	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
577	ieee80211_radiotap_attach(&sc->sc_ic,
578	    &txtap->wt_ihdr, sizeof(*txtap), WPI_TX_RADIOTAP_PRESENT,
579	    &rxtap->wr_ihdr, sizeof(*rxtap), WPI_RX_RADIOTAP_PRESENT);
580	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
581}
582
583static void
584wpi_sysctlattach(struct wpi_softc *sc)
585{
586#ifdef WPI_DEBUG
587	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
588	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
589
590	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
591	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
592		"control debugging printfs");
593#endif
594}
595
596static void
597wpi_init_beacon(struct wpi_vap *wvp)
598{
599	struct wpi_buf *bcn = &wvp->wv_bcbuf;
600	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
601
602	cmd->id = WPI_ID_BROADCAST;
603	cmd->ofdm_mask = 0xff;
604	cmd->cck_mask = 0x0f;
605	cmd->lifetime = htole32(WPI_LIFETIME_INFINITE);
606
607	/*
608	 * XXX WPI_TX_AUTO_SEQ seems to be ignored - workaround this issue
609	 * XXX by using WPI_TX_NEED_ACK instead (with some side effects).
610	 */
611	cmd->flags = htole32(WPI_TX_NEED_ACK | WPI_TX_INSERT_TSTAMP);
612
613	bcn->code = WPI_CMD_SET_BEACON;
614	bcn->ac = WPI_CMD_QUEUE_NUM;
615	bcn->size = sizeof(struct wpi_cmd_beacon);
616}
617
618static struct ieee80211vap *
619wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
620    enum ieee80211_opmode opmode, int flags,
621    const uint8_t bssid[IEEE80211_ADDR_LEN],
622    const uint8_t mac[IEEE80211_ADDR_LEN])
623{
624	struct wpi_vap *wvp;
625	struct ieee80211vap *vap;
626
627	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
628		return NULL;
629
630	wvp = malloc(sizeof(struct wpi_vap), M_80211_VAP, M_WAITOK | M_ZERO);
631	vap = &wvp->wv_vap;
632	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
633
634	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
635		WPI_VAP_LOCK_INIT(wvp);
636		wpi_init_beacon(wvp);
637	}
638
639	/* Override with driver methods. */
640	vap->iv_key_set = wpi_key_set;
641	vap->iv_key_delete = wpi_key_delete;
642	if (opmode == IEEE80211_M_IBSS) {
643		wvp->wv_recv_mgmt = vap->iv_recv_mgmt;
644		vap->iv_recv_mgmt = wpi_ibss_recv_mgmt;
645	}
646	wvp->wv_newstate = vap->iv_newstate;
647	vap->iv_newstate = wpi_newstate;
648	vap->iv_update_beacon = wpi_update_beacon;
649	vap->iv_max_aid = WPI_ID_IBSS_MAX - WPI_ID_IBSS_MIN + 1;
650
651	ieee80211_ratectl_init(vap);
652	/* Complete setup. */
653	ieee80211_vap_attach(vap, ieee80211_media_change,
654	    ieee80211_media_status, mac);
655	ic->ic_opmode = opmode;
656	return vap;
657}
658
659static void
660wpi_vap_delete(struct ieee80211vap *vap)
661{
662	struct wpi_vap *wvp = WPI_VAP(vap);
663	struct wpi_buf *bcn = &wvp->wv_bcbuf;
664	enum ieee80211_opmode opmode = vap->iv_opmode;
665
666	ieee80211_ratectl_deinit(vap);
667	ieee80211_vap_detach(vap);
668
669	if (opmode == IEEE80211_M_IBSS || opmode == IEEE80211_M_HOSTAP) {
670		if (bcn->m != NULL)
671			m_freem(bcn->m);
672
673		WPI_VAP_LOCK_DESTROY(wvp);
674	}
675
676	free(wvp, M_80211_VAP);
677}
678
679static int
680wpi_detach(device_t dev)
681{
682	struct wpi_softc *sc = device_get_softc(dev);
683	struct ieee80211com *ic = &sc->sc_ic;
684	uint8_t qid;
685
686	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
687
688	if (ic->ic_vap_create == wpi_vap_create) {
689		ieee80211_draintask(ic, &sc->sc_radioon_task);
690		ieee80211_draintask(ic, &sc->sc_radiooff_task);
691
692		wpi_stop(sc);
693
694		callout_drain(&sc->watchdog_rfkill);
695		callout_drain(&sc->tx_timeout);
696		callout_drain(&sc->scan_timeout);
697		callout_drain(&sc->calib_to);
698		ieee80211_ifdetach(ic);
699	}
700
701	/* Uninstall interrupt handler. */
702	if (sc->irq != NULL) {
703		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
704		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
705		    sc->irq);
706		pci_release_msi(dev);
707	}
708
709	if (sc->txq[0].data_dmat) {
710		/* Free DMA resources. */
711		for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
712			wpi_free_tx_ring(sc, &sc->txq[qid]);
713
714		wpi_free_rx_ring(sc);
715		wpi_free_shared(sc);
716	}
717
718	if (sc->fw_dma.tag)
719		wpi_free_fwmem(sc);
720
721	if (sc->mem != NULL)
722		bus_release_resource(dev, SYS_RES_MEMORY,
723		    rman_get_rid(sc->mem), sc->mem);
724
725	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
726	WPI_TXQ_STATE_LOCK_DESTROY(sc);
727	WPI_TXQ_LOCK_DESTROY(sc);
728	WPI_NT_LOCK_DESTROY(sc);
729	WPI_RXON_LOCK_DESTROY(sc);
730	WPI_TX_LOCK_DESTROY(sc);
731	WPI_LOCK_DESTROY(sc);
732	return 0;
733}
734
735static int
736wpi_shutdown(device_t dev)
737{
738	struct wpi_softc *sc = device_get_softc(dev);
739
740	wpi_stop(sc);
741	return 0;
742}
743
744static int
745wpi_suspend(device_t dev)
746{
747	struct wpi_softc *sc = device_get_softc(dev);
748	struct ieee80211com *ic = &sc->sc_ic;
749
750	ieee80211_suspend_all(ic);
751	return 0;
752}
753
754static int
755wpi_resume(device_t dev)
756{
757	struct wpi_softc *sc = device_get_softc(dev);
758	struct ieee80211com *ic = &sc->sc_ic;
759
760	/* Clear device-specific "PCI retry timeout" register (41h). */
761	pci_write_config(dev, 0x41, 0, 1);
762
763	ieee80211_resume_all(ic);
764	return 0;
765}
766
767/*
768 * Grab exclusive access to NIC memory.
769 */
770static int
771wpi_nic_lock(struct wpi_softc *sc)
772{
773	int ntries;
774
775	/* Request exclusive access to NIC. */
776	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
777
778	/* Spin until we actually get the lock. */
779	for (ntries = 0; ntries < 1000; ntries++) {
780		if ((WPI_READ(sc, WPI_GP_CNTRL) &
781		    (WPI_GP_CNTRL_MAC_ACCESS_ENA | WPI_GP_CNTRL_SLEEP)) ==
782		    WPI_GP_CNTRL_MAC_ACCESS_ENA)
783			return 0;
784		DELAY(10);
785	}
786
787	device_printf(sc->sc_dev, "could not lock memory\n");
788
789	return ETIMEDOUT;
790}
791
792/*
793 * Release lock on NIC memory.
794 */
795static __inline void
796wpi_nic_unlock(struct wpi_softc *sc)
797{
798	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
799}
800
801static __inline uint32_t
802wpi_prph_read(struct wpi_softc *sc, uint32_t addr)
803{
804	WPI_WRITE(sc, WPI_PRPH_RADDR, WPI_PRPH_DWORD | addr);
805	WPI_BARRIER_READ_WRITE(sc);
806	return WPI_READ(sc, WPI_PRPH_RDATA);
807}
808
809static __inline void
810wpi_prph_write(struct wpi_softc *sc, uint32_t addr, uint32_t data)
811{
812	WPI_WRITE(sc, WPI_PRPH_WADDR, WPI_PRPH_DWORD | addr);
813	WPI_BARRIER_WRITE(sc);
814	WPI_WRITE(sc, WPI_PRPH_WDATA, data);
815}
816
817static __inline void
818wpi_prph_setbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
819{
820	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) | mask);
821}
822
823static __inline void
824wpi_prph_clrbits(struct wpi_softc *sc, uint32_t addr, uint32_t mask)
825{
826	wpi_prph_write(sc, addr, wpi_prph_read(sc, addr) & ~mask);
827}
828
829static __inline void
830wpi_prph_write_region_4(struct wpi_softc *sc, uint32_t addr,
831    const uint32_t *data, uint32_t count)
832{
833	for (; count != 0; count--, data++, addr += 4)
834		wpi_prph_write(sc, addr, *data);
835}
836
837static __inline uint32_t
838wpi_mem_read(struct wpi_softc *sc, uint32_t addr)
839{
840	WPI_WRITE(sc, WPI_MEM_RADDR, addr);
841	WPI_BARRIER_READ_WRITE(sc);
842	return WPI_READ(sc, WPI_MEM_RDATA);
843}
844
845static __inline void
846wpi_mem_read_region_4(struct wpi_softc *sc, uint32_t addr, uint32_t *data,
847    int count)
848{
849	for (; count > 0; count--, addr += 4)
850		*data++ = wpi_mem_read(sc, addr);
851}
852
853static int
854wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int count)
855{
856	uint8_t *out = data;
857	uint32_t val;
858	int error, ntries;
859
860	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
861
862	if ((error = wpi_nic_lock(sc)) != 0)
863		return error;
864
865	for (; count > 0; count -= 2, addr++) {
866		WPI_WRITE(sc, WPI_EEPROM, addr << 2);
867		for (ntries = 0; ntries < 10; ntries++) {
868			val = WPI_READ(sc, WPI_EEPROM);
869			if (val & WPI_EEPROM_READ_VALID)
870				break;
871			DELAY(5);
872		}
873		if (ntries == 10) {
874			device_printf(sc->sc_dev,
875			    "timeout reading ROM at 0x%x\n", addr);
876			return ETIMEDOUT;
877		}
878		*out++= val >> 16;
879		if (count > 1)
880			*out ++= val >> 24;
881	}
882
883	wpi_nic_unlock(sc);
884
885	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
886
887	return 0;
888}
889
890static void
891wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
892{
893	if (error != 0)
894		return;
895	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
896	*(bus_addr_t *)arg = segs[0].ds_addr;
897}
898
899/*
900 * Allocates a contiguous block of dma memory of the requested size and
901 * alignment.
902 */
903static int
904wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
905    void **kvap, bus_size_t size, bus_size_t alignment)
906{
907	int error;
908
909	dma->tag = NULL;
910	dma->size = size;
911
912	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
913	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
914	    1, size, 0, NULL, NULL, &dma->tag);
915	if (error != 0)
916		goto fail;
917
918	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
919	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
920	if (error != 0)
921		goto fail;
922
923	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
924	    wpi_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
925	if (error != 0)
926		goto fail;
927
928	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
929
930	if (kvap != NULL)
931		*kvap = dma->vaddr;
932
933	return 0;
934
935fail:	wpi_dma_contig_free(dma);
936	return error;
937}
938
939static void
940wpi_dma_contig_free(struct wpi_dma_info *dma)
941{
942	if (dma->vaddr != NULL) {
943		bus_dmamap_sync(dma->tag, dma->map,
944		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
945		bus_dmamap_unload(dma->tag, dma->map);
946		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
947		dma->vaddr = NULL;
948	}
949	if (dma->tag != NULL) {
950		bus_dma_tag_destroy(dma->tag);
951		dma->tag = NULL;
952	}
953}
954
955/*
956 * Allocate a shared page between host and NIC.
957 */
958static int
959wpi_alloc_shared(struct wpi_softc *sc)
960{
961	/* Shared buffer must be aligned on a 4KB boundary. */
962	return wpi_dma_contig_alloc(sc, &sc->shared_dma,
963	    (void **)&sc->shared, sizeof (struct wpi_shared), 4096);
964}
965
966static void
967wpi_free_shared(struct wpi_softc *sc)
968{
969	wpi_dma_contig_free(&sc->shared_dma);
970}
971
972/*
973 * Allocate DMA-safe memory for firmware transfer.
974 */
975static int
976wpi_alloc_fwmem(struct wpi_softc *sc)
977{
978	/* Must be aligned on a 16-byte boundary. */
979	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
980	    WPI_FW_TEXT_MAXSZ + WPI_FW_DATA_MAXSZ, 16);
981}
982
983static void
984wpi_free_fwmem(struct wpi_softc *sc)
985{
986	wpi_dma_contig_free(&sc->fw_dma);
987}
988
989static int
990wpi_alloc_rx_ring(struct wpi_softc *sc)
991{
992	struct wpi_rx_ring *ring = &sc->rxq;
993	bus_size_t size;
994	int i, error;
995
996	ring->cur = 0;
997	ring->update = 0;
998
999	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1000
1001	/* Allocate RX descriptors (16KB aligned.) */
1002	size = WPI_RX_RING_COUNT * sizeof (uint32_t);
1003	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1004	    (void **)&ring->desc, size, WPI_RING_DMA_ALIGN);
1005	if (error != 0) {
1006		device_printf(sc->sc_dev,
1007		    "%s: could not allocate RX ring DMA memory, error %d\n",
1008		    __func__, error);
1009		goto fail;
1010	}
1011
1012	/* Create RX buffer DMA tag. */
1013	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1014	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1015	    MJUMPAGESIZE, 1, MJUMPAGESIZE, 0, NULL, NULL, &ring->data_dmat);
1016	if (error != 0) {
1017		device_printf(sc->sc_dev,
1018		    "%s: could not create RX buf DMA tag, error %d\n",
1019		    __func__, error);
1020		goto fail;
1021	}
1022
1023	/*
1024	 * Allocate and map RX buffers.
1025	 */
1026	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1027		struct wpi_rx_data *data = &ring->data[i];
1028		bus_addr_t paddr;
1029
1030		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1031		if (error != 0) {
1032			device_printf(sc->sc_dev,
1033			    "%s: could not create RX buf DMA map, error %d\n",
1034			    __func__, error);
1035			goto fail;
1036		}
1037
1038		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1039		if (data->m == NULL) {
1040			device_printf(sc->sc_dev,
1041			    "%s: could not allocate RX mbuf\n", __func__);
1042			error = ENOBUFS;
1043			goto fail;
1044		}
1045
1046		error = bus_dmamap_load(ring->data_dmat, data->map,
1047		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1048		    &paddr, BUS_DMA_NOWAIT);
1049		if (error != 0 && error != EFBIG) {
1050			device_printf(sc->sc_dev,
1051			    "%s: can't map mbuf (error %d)\n", __func__,
1052			    error);
1053			goto fail;
1054		}
1055
1056		/* Set physical address of RX buffer. */
1057		ring->desc[i] = htole32(paddr);
1058	}
1059
1060	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1061	    BUS_DMASYNC_PREWRITE);
1062
1063	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1064
1065	return 0;
1066
1067fail:	wpi_free_rx_ring(sc);
1068
1069	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1070
1071	return error;
1072}
1073
1074static void
1075wpi_update_rx_ring(struct wpi_softc *sc)
1076{
1077	WPI_WRITE(sc, WPI_FH_RX_WPTR, sc->rxq.cur & ~7);
1078}
1079
1080static void
1081wpi_update_rx_ring_ps(struct wpi_softc *sc)
1082{
1083	struct wpi_rx_ring *ring = &sc->rxq;
1084
1085	if (ring->update != 0) {
1086		/* Wait for INT_WAKEUP event. */
1087		return;
1088	}
1089
1090	WPI_TXQ_LOCK(sc);
1091	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1092	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1093		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s: wakeup request\n",
1094		    __func__);
1095		ring->update = 1;
1096	} else {
1097		wpi_update_rx_ring(sc);
1098		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1099	}
1100	WPI_TXQ_UNLOCK(sc);
1101}
1102
1103static void
1104wpi_reset_rx_ring(struct wpi_softc *sc)
1105{
1106	struct wpi_rx_ring *ring = &sc->rxq;
1107	int ntries;
1108
1109	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1110
1111	if (wpi_nic_lock(sc) == 0) {
1112		WPI_WRITE(sc, WPI_FH_RX_CONFIG, 0);
1113		for (ntries = 0; ntries < 1000; ntries++) {
1114			if (WPI_READ(sc, WPI_FH_RX_STATUS) &
1115			    WPI_FH_RX_STATUS_IDLE)
1116				break;
1117			DELAY(10);
1118		}
1119		wpi_nic_unlock(sc);
1120	}
1121
1122	ring->cur = 0;
1123	ring->update = 0;
1124}
1125
1126static void
1127wpi_free_rx_ring(struct wpi_softc *sc)
1128{
1129	struct wpi_rx_ring *ring = &sc->rxq;
1130	int i;
1131
1132	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1133
1134	wpi_dma_contig_free(&ring->desc_dma);
1135
1136	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1137		struct wpi_rx_data *data = &ring->data[i];
1138
1139		if (data->m != NULL) {
1140			bus_dmamap_sync(ring->data_dmat, data->map,
1141			    BUS_DMASYNC_POSTREAD);
1142			bus_dmamap_unload(ring->data_dmat, data->map);
1143			m_freem(data->m);
1144			data->m = NULL;
1145		}
1146		if (data->map != NULL)
1147			bus_dmamap_destroy(ring->data_dmat, data->map);
1148	}
1149	if (ring->data_dmat != NULL) {
1150		bus_dma_tag_destroy(ring->data_dmat);
1151		ring->data_dmat = NULL;
1152	}
1153}
1154
1155static int
1156wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, uint8_t qid)
1157{
1158	bus_addr_t paddr;
1159	bus_size_t size;
1160	int i, error;
1161
1162	ring->qid = qid;
1163	ring->queued = 0;
1164	ring->cur = 0;
1165	ring->pending = 0;
1166	ring->update = 0;
1167
1168	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1169
1170	/* Allocate TX descriptors (16KB aligned.) */
1171	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_desc);
1172	error = wpi_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1173	    size, WPI_RING_DMA_ALIGN);
1174	if (error != 0) {
1175		device_printf(sc->sc_dev,
1176		    "%s: could not allocate TX ring DMA memory, error %d\n",
1177		    __func__, error);
1178		goto fail;
1179	}
1180
1181	/* Update shared area with ring physical address. */
1182	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1183	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1184	    BUS_DMASYNC_PREWRITE);
1185
1186	size = WPI_TX_RING_COUNT * sizeof (struct wpi_tx_cmd);
1187	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1188	    size, 4);
1189	if (error != 0) {
1190		device_printf(sc->sc_dev,
1191		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1192		    __func__, error);
1193		goto fail;
1194	}
1195
1196	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1197	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1198	    WPI_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
1199	if (error != 0) {
1200		device_printf(sc->sc_dev,
1201		    "%s: could not create TX buf DMA tag, error %d\n",
1202		    __func__, error);
1203		goto fail;
1204	}
1205
1206	paddr = ring->cmd_dma.paddr;
1207	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1208		struct wpi_tx_data *data = &ring->data[i];
1209
1210		data->cmd_paddr = paddr;
1211		paddr += sizeof (struct wpi_tx_cmd);
1212
1213		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1214		if (error != 0) {
1215			device_printf(sc->sc_dev,
1216			    "%s: could not create TX buf DMA map, error %d\n",
1217			    __func__, error);
1218			goto fail;
1219		}
1220	}
1221
1222	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1223
1224	return 0;
1225
1226fail:	wpi_free_tx_ring(sc, ring);
1227	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1228	return error;
1229}
1230
1231static void
1232wpi_update_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1233{
1234	WPI_WRITE(sc, WPI_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
1235}
1236
1237static void
1238wpi_update_tx_ring_ps(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1239{
1240
1241	if (ring->update != 0) {
1242		/* Wait for INT_WAKEUP event. */
1243		return;
1244	}
1245
1246	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1247	if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_SLEEP) {
1248		DPRINTF(sc, WPI_DEBUG_PWRSAVE, "%s (%d): requesting wakeup\n",
1249		    __func__, ring->qid);
1250		ring->update = 1;
1251	} else {
1252		wpi_update_tx_ring(sc, ring);
1253		WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
1254	}
1255}
1256
1257static void
1258wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1259{
1260	int i;
1261
1262	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1263
1264	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1265		struct wpi_tx_data *data = &ring->data[i];
1266
1267		if (data->m != NULL) {
1268			bus_dmamap_sync(ring->data_dmat, data->map,
1269			    BUS_DMASYNC_POSTWRITE);
1270			bus_dmamap_unload(ring->data_dmat, data->map);
1271			m_freem(data->m);
1272			data->m = NULL;
1273		}
1274		if (data->ni != NULL) {
1275			ieee80211_free_node(data->ni);
1276			data->ni = NULL;
1277		}
1278	}
1279	/* Clear TX descriptors. */
1280	memset(ring->desc, 0, ring->desc_dma.size);
1281	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1282	    BUS_DMASYNC_PREWRITE);
1283	ring->queued = 0;
1284	ring->cur = 0;
1285	ring->pending = 0;
1286	ring->update = 0;
1287}
1288
1289static void
1290wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1291{
1292	int i;
1293
1294	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
1295
1296	wpi_dma_contig_free(&ring->desc_dma);
1297	wpi_dma_contig_free(&ring->cmd_dma);
1298
1299	for (i = 0; i < WPI_TX_RING_COUNT; i++) {
1300		struct wpi_tx_data *data = &ring->data[i];
1301
1302		if (data->m != NULL) {
1303			bus_dmamap_sync(ring->data_dmat, data->map,
1304			    BUS_DMASYNC_POSTWRITE);
1305			bus_dmamap_unload(ring->data_dmat, data->map);
1306			m_freem(data->m);
1307		}
1308		if (data->map != NULL)
1309			bus_dmamap_destroy(ring->data_dmat, data->map);
1310	}
1311	if (ring->data_dmat != NULL) {
1312		bus_dma_tag_destroy(ring->data_dmat);
1313		ring->data_dmat = NULL;
1314	}
1315}
1316
1317/*
1318 * Extract various information from EEPROM.
1319 */
1320static int
1321wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1322{
1323#define WPI_CHK(res) do {		\
1324	if ((error = res) != 0)		\
1325		goto fail;		\
1326} while (0)
1327	uint8_t i;
1328	int error;
1329
1330	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1331
1332	/* Adapter has to be powered on for EEPROM access to work. */
1333	if ((error = wpi_apm_init(sc)) != 0) {
1334		device_printf(sc->sc_dev,
1335		    "%s: could not power ON adapter, error %d\n", __func__,
1336		    error);
1337		return error;
1338	}
1339
1340	if ((WPI_READ(sc, WPI_EEPROM_GP) & 0x6) == 0) {
1341		device_printf(sc->sc_dev, "bad EEPROM signature\n");
1342		error = EIO;
1343		goto fail;
1344	}
1345	/* Clear HW ownership of EEPROM. */
1346	WPI_CLRBITS(sc, WPI_EEPROM_GP, WPI_EEPROM_GP_IF_OWNER);
1347
1348	/* Read the hardware capabilities, revision and SKU type. */
1349	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_SKU_CAP, &sc->cap,
1350	    sizeof(sc->cap)));
1351	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,
1352	    sizeof(sc->rev)));
1353	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type,
1354	    sizeof(sc->type)));
1355
1356	sc->rev = le16toh(sc->rev);
1357	DPRINTF(sc, WPI_DEBUG_EEPROM, "cap=%x rev=%x type=%x\n", sc->cap,
1358	    sc->rev, sc->type);
1359
1360	/* Read the regulatory domain (4 ASCII characters.) */
1361	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain,
1362	    sizeof(sc->domain)));
1363
1364	/* Read MAC address. */
1365	WPI_CHK(wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr,
1366	    IEEE80211_ADDR_LEN));
1367
1368	/* Read the list of authorized channels. */
1369	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
1370		WPI_CHK(wpi_read_eeprom_channels(sc, i));
1371
1372	/* Read the list of TX power groups. */
1373	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
1374		WPI_CHK(wpi_read_eeprom_group(sc, i));
1375
1376fail:	wpi_apm_stop(sc);	/* Power OFF adapter. */
1377
1378	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
1379	    __func__);
1380
1381	return error;
1382#undef WPI_CHK
1383}
1384
1385/*
1386 * Translate EEPROM flags to net80211.
1387 */
1388static uint32_t
1389wpi_eeprom_channel_flags(struct wpi_eeprom_chan *channel)
1390{
1391	uint32_t nflags;
1392
1393	nflags = 0;
1394	if ((channel->flags & WPI_EEPROM_CHAN_ACTIVE) == 0)
1395		nflags |= IEEE80211_CHAN_PASSIVE;
1396	if ((channel->flags & WPI_EEPROM_CHAN_IBSS) == 0)
1397		nflags |= IEEE80211_CHAN_NOADHOC;
1398	if (channel->flags & WPI_EEPROM_CHAN_RADAR) {
1399		nflags |= IEEE80211_CHAN_DFS;
1400		/* XXX apparently IBSS may still be marked */
1401		nflags |= IEEE80211_CHAN_NOADHOC;
1402	}
1403
1404	/* XXX HOSTAP uses WPI_MODE_IBSS */
1405	if (nflags & IEEE80211_CHAN_NOADHOC)
1406		nflags |= IEEE80211_CHAN_NOHOSTAP;
1407
1408	return nflags;
1409}
1410
1411static void
1412wpi_read_eeprom_band(struct wpi_softc *sc, uint8_t n, int maxchans,
1413    int *nchans, struct ieee80211_channel chans[])
1414{
1415	struct wpi_eeprom_chan *channels = sc->eeprom_channels[n];
1416	const struct wpi_chan_band *band = &wpi_bands[n];
1417	uint32_t nflags;
1418	uint8_t bands[IEEE80211_MODE_BYTES];
1419	uint8_t chan, i;
1420	int error;
1421
1422	memset(bands, 0, sizeof(bands));
1423
1424	if (n == 0) {
1425		setbit(bands, IEEE80211_MODE_11B);
1426		setbit(bands, IEEE80211_MODE_11G);
1427	} else
1428		setbit(bands, IEEE80211_MODE_11A);
1429
1430	for (i = 0; i < band->nchan; i++) {
1431		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
1432			DPRINTF(sc, WPI_DEBUG_EEPROM,
1433			    "Channel Not Valid: %d, band %d\n",
1434			     band->chan[i],n);
1435			continue;
1436		}
1437
1438		chan = band->chan[i];
1439		nflags = wpi_eeprom_channel_flags(&channels[i]);
1440		error = ieee80211_add_channel(chans, maxchans, nchans,
1441		    chan, 0, channels[i].maxpwr, nflags, bands);
1442		if (error != 0)
1443			break;
1444
1445		/* Save maximum allowed TX power for this channel. */
1446		sc->maxpwr[chan] = channels[i].maxpwr;
1447
1448		DPRINTF(sc, WPI_DEBUG_EEPROM,
1449		    "adding chan %d flags=0x%x maxpwr=%d, offset %d\n",
1450		    chan, channels[i].flags, sc->maxpwr[chan], *nchans);
1451	}
1452}
1453
1454/**
1455 * Read the eeprom to find out what channels are valid for the given
1456 * band and update net80211 with what we find.
1457 */
1458static int
1459wpi_read_eeprom_channels(struct wpi_softc *sc, uint8_t n)
1460{
1461	struct ieee80211com *ic = &sc->sc_ic;
1462	const struct wpi_chan_band *band = &wpi_bands[n];
1463	int error;
1464
1465	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1466
1467	error = wpi_read_prom_data(sc, band->addr, &sc->eeprom_channels[n],
1468	    band->nchan * sizeof (struct wpi_eeprom_chan));
1469	if (error != 0) {
1470		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1471		return error;
1472	}
1473
1474	wpi_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
1475	    ic->ic_channels);
1476
1477	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1478
1479	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1480
1481	return 0;
1482}
1483
1484static struct wpi_eeprom_chan *
1485wpi_find_eeprom_channel(struct wpi_softc *sc, struct ieee80211_channel *c)
1486{
1487	int i, j;
1488
1489	for (j = 0; j < WPI_CHAN_BANDS_COUNT; j++)
1490		for (i = 0; i < wpi_bands[j].nchan; i++)
1491			if (wpi_bands[j].chan[i] == c->ic_ieee &&
1492			    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
1493				return &sc->eeprom_channels[j][i];
1494
1495	return NULL;
1496}
1497
1498static void
1499wpi_getradiocaps(struct ieee80211com *ic,
1500    int maxchans, int *nchans, struct ieee80211_channel chans[])
1501{
1502	struct wpi_softc *sc = ic->ic_softc;
1503	int i;
1504
1505	/* Parse the list of authorized channels. */
1506	for (i = 0; i < WPI_CHAN_BANDS_COUNT && *nchans < maxchans; i++)
1507		wpi_read_eeprom_band(sc, i, maxchans, nchans, chans);
1508}
1509
1510/*
1511 * Enforce flags read from EEPROM.
1512 */
1513static int
1514wpi_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1515    int nchan, struct ieee80211_channel chans[])
1516{
1517	struct wpi_softc *sc = ic->ic_softc;
1518	int i;
1519
1520	for (i = 0; i < nchan; i++) {
1521		struct ieee80211_channel *c = &chans[i];
1522		struct wpi_eeprom_chan *channel;
1523
1524		channel = wpi_find_eeprom_channel(sc, c);
1525		if (channel == NULL) {
1526			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
1527			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
1528			return EINVAL;
1529		}
1530		c->ic_flags |= wpi_eeprom_channel_flags(channel);
1531	}
1532
1533	return 0;
1534}
1535
1536static int
1537wpi_read_eeprom_group(struct wpi_softc *sc, uint8_t n)
1538{
1539	struct wpi_power_group *group = &sc->groups[n];
1540	struct wpi_eeprom_group rgroup;
1541	int i, error;
1542
1543	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1544
1545	if ((error = wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32,
1546	    &rgroup, sizeof rgroup)) != 0) {
1547		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1548		return error;
1549	}
1550
1551	/* Save TX power group information. */
1552	group->chan   = rgroup.chan;
1553	group->maxpwr = rgroup.maxpwr;
1554	/* Retrieve temperature at which the samples were taken. */
1555	group->temp   = (int16_t)le16toh(rgroup.temp);
1556
1557	DPRINTF(sc, WPI_DEBUG_EEPROM,
1558	    "power group %d: chan=%d maxpwr=%d temp=%d\n", n, group->chan,
1559	    group->maxpwr, group->temp);
1560
1561	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
1562		group->samples[i].index = rgroup.samples[i].index;
1563		group->samples[i].power = rgroup.samples[i].power;
1564
1565		DPRINTF(sc, WPI_DEBUG_EEPROM,
1566		    "\tsample %d: index=%d power=%d\n", i,
1567		    group->samples[i].index, group->samples[i].power);
1568	}
1569
1570	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1571
1572	return 0;
1573}
1574
1575static __inline uint8_t
1576wpi_add_node_entry_adhoc(struct wpi_softc *sc)
1577{
1578	uint8_t newid = WPI_ID_IBSS_MIN;
1579
1580	for (; newid <= WPI_ID_IBSS_MAX; newid++) {
1581		if ((sc->nodesmsk & (1 << newid)) == 0) {
1582			sc->nodesmsk |= 1 << newid;
1583			return newid;
1584		}
1585	}
1586
1587	return WPI_ID_UNDEFINED;
1588}
1589
1590static __inline uint8_t
1591wpi_add_node_entry_sta(struct wpi_softc *sc)
1592{
1593	sc->nodesmsk |= 1 << WPI_ID_BSS;
1594
1595	return WPI_ID_BSS;
1596}
1597
1598static __inline int
1599wpi_check_node_entry(struct wpi_softc *sc, uint8_t id)
1600{
1601	if (id == WPI_ID_UNDEFINED)
1602		return 0;
1603
1604	return (sc->nodesmsk >> id) & 1;
1605}
1606
1607static __inline void
1608wpi_clear_node_table(struct wpi_softc *sc)
1609{
1610	sc->nodesmsk = 0;
1611}
1612
1613static __inline void
1614wpi_del_node_entry(struct wpi_softc *sc, uint8_t id)
1615{
1616	sc->nodesmsk &= ~(1 << id);
1617}
1618
1619static struct ieee80211_node *
1620wpi_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1621{
1622	struct wpi_node *wn;
1623
1624	wn = malloc(sizeof (struct wpi_node), M_80211_NODE,
1625	    M_NOWAIT | M_ZERO);
1626
1627	if (wn == NULL)
1628		return NULL;
1629
1630	wn->id = WPI_ID_UNDEFINED;
1631
1632	return &wn->ni;
1633}
1634
1635static void
1636wpi_node_free(struct ieee80211_node *ni)
1637{
1638	struct wpi_softc *sc = ni->ni_ic->ic_softc;
1639	struct wpi_node *wn = WPI_NODE(ni);
1640
1641	if (wn->id != WPI_ID_UNDEFINED) {
1642		WPI_NT_LOCK(sc);
1643		if (wpi_check_node_entry(sc, wn->id)) {
1644			wpi_del_node_entry(sc, wn->id);
1645			wpi_del_node(sc, ni);
1646		}
1647		WPI_NT_UNLOCK(sc);
1648	}
1649
1650	sc->sc_node_free(ni);
1651}
1652
1653static __inline int
1654wpi_check_bss_filter(struct wpi_softc *sc)
1655{
1656	return (sc->rxon.filter & htole32(WPI_FILTER_BSS)) != 0;
1657}
1658
1659static void
1660wpi_ibss_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
1661    const struct ieee80211_rx_stats *rxs,
1662    int rssi, int nf)
1663{
1664	struct ieee80211vap *vap = ni->ni_vap;
1665	struct wpi_softc *sc = vap->iv_ic->ic_softc;
1666	struct wpi_vap *wvp = WPI_VAP(vap);
1667	uint64_t ni_tstamp, rx_tstamp;
1668
1669	wvp->wv_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
1670
1671	if (vap->iv_state == IEEE80211_S_RUN &&
1672	    (subtype == IEEE80211_FC0_SUBTYPE_BEACON ||
1673	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)) {
1674		ni_tstamp = le64toh(ni->ni_tstamp.tsf);
1675		rx_tstamp = le64toh(sc->rx_tstamp);
1676
1677		if (ni_tstamp >= rx_tstamp) {
1678			DPRINTF(sc, WPI_DEBUG_STATE,
1679			    "ibss merge, tsf %ju tstamp %ju\n",
1680			    (uintmax_t)rx_tstamp, (uintmax_t)ni_tstamp);
1681			(void) ieee80211_ibss_merge(ni);
1682		}
1683	}
1684}
1685
1686static void
1687wpi_restore_node(void *arg, struct ieee80211_node *ni)
1688{
1689	struct wpi_softc *sc = arg;
1690	struct wpi_node *wn = WPI_NODE(ni);
1691	int error;
1692
1693	WPI_NT_LOCK(sc);
1694	if (wn->id != WPI_ID_UNDEFINED) {
1695		wn->id = WPI_ID_UNDEFINED;
1696		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
1697			device_printf(sc->sc_dev,
1698			    "%s: could not add IBSS node, error %d\n",
1699			    __func__, error);
1700		}
1701	}
1702	WPI_NT_UNLOCK(sc);
1703}
1704
1705static void
1706wpi_restore_node_table(struct wpi_softc *sc, struct wpi_vap *wvp)
1707{
1708	struct ieee80211com *ic = &sc->sc_ic;
1709
1710	/* Set group keys once. */
1711	WPI_NT_LOCK(sc);
1712	wvp->wv_gtk = 0;
1713	WPI_NT_UNLOCK(sc);
1714
1715	ieee80211_iterate_nodes(&ic->ic_sta, wpi_restore_node, sc);
1716	ieee80211_crypto_reload_keys(ic);
1717}
1718
1719/**
1720 * Called by net80211 when ever there is a change to 80211 state machine
1721 */
1722static int
1723wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1724{
1725	struct wpi_vap *wvp = WPI_VAP(vap);
1726	struct ieee80211com *ic = vap->iv_ic;
1727	struct wpi_softc *sc = ic->ic_softc;
1728	int error = 0;
1729
1730	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
1731
1732	WPI_TXQ_LOCK(sc);
1733	if (nstate > IEEE80211_S_INIT && sc->sc_running == 0) {
1734		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1735		WPI_TXQ_UNLOCK(sc);
1736
1737		return ENXIO;
1738	}
1739	WPI_TXQ_UNLOCK(sc);
1740
1741	DPRINTF(sc, WPI_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1742		ieee80211_state_name[vap->iv_state],
1743		ieee80211_state_name[nstate]);
1744
1745	if (vap->iv_state == IEEE80211_S_RUN && nstate < IEEE80211_S_RUN) {
1746		if ((error = wpi_set_pslevel(sc, 0, 0, 1)) != 0) {
1747			device_printf(sc->sc_dev,
1748			    "%s: could not set power saving level\n",
1749			    __func__);
1750			return error;
1751		}
1752
1753		wpi_set_led(sc, WPI_LED_LINK, 1, 0);
1754	}
1755
1756	switch (nstate) {
1757	case IEEE80211_S_SCAN:
1758		WPI_RXON_LOCK(sc);
1759		if (wpi_check_bss_filter(sc) != 0) {
1760			sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1761			if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1762				device_printf(sc->sc_dev,
1763				    "%s: could not send RXON\n", __func__);
1764			}
1765		}
1766		WPI_RXON_UNLOCK(sc);
1767		break;
1768
1769	case IEEE80211_S_ASSOC:
1770		if (vap->iv_state != IEEE80211_S_RUN)
1771			break;
1772		/* FALLTHROUGH */
1773	case IEEE80211_S_AUTH:
1774		/*
1775		 * NB: do not optimize AUTH -> AUTH state transmission -
1776		 * this will break powersave with non-QoS AP!
1777		 */
1778
1779		/*
1780		 * The node must be registered in the firmware before auth.
1781		 * Also the associd must be cleared on RUN -> ASSOC
1782		 * transitions.
1783		 */
1784		if ((error = wpi_auth(sc, vap)) != 0) {
1785			device_printf(sc->sc_dev,
1786			    "%s: could not move to AUTH state, error %d\n",
1787			    __func__, error);
1788		}
1789		break;
1790
1791	case IEEE80211_S_RUN:
1792		/*
1793		 * RUN -> RUN transition:
1794		 * STA mode: Just restart the timers.
1795		 * IBSS mode: Process IBSS merge.
1796		 */
1797		if (vap->iv_state == IEEE80211_S_RUN) {
1798			if (vap->iv_opmode != IEEE80211_M_IBSS) {
1799				WPI_RXON_LOCK(sc);
1800				wpi_calib_timeout(sc);
1801				WPI_RXON_UNLOCK(sc);
1802				break;
1803			} else {
1804				/*
1805				 * Drop the BSS_FILTER bit
1806				 * (there is no another way to change bssid).
1807				 */
1808				WPI_RXON_LOCK(sc);
1809				sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
1810				if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
1811					device_printf(sc->sc_dev,
1812					    "%s: could not send RXON\n",
1813					    __func__);
1814				}
1815				WPI_RXON_UNLOCK(sc);
1816
1817				/* Restore all what was lost. */
1818				wpi_restore_node_table(sc, wvp);
1819
1820				/* XXX set conditionally? */
1821				wpi_updateedca(ic);
1822			}
1823		}
1824
1825		/*
1826		 * !RUN -> RUN requires setting the association id
1827		 * which is done with a firmware cmd.  We also defer
1828		 * starting the timers until that work is done.
1829		 */
1830		if ((error = wpi_run(sc, vap)) != 0) {
1831			device_printf(sc->sc_dev,
1832			    "%s: could not move to RUN state\n", __func__);
1833		}
1834		break;
1835
1836	default:
1837		break;
1838	}
1839	if (error != 0) {
1840		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
1841		return error;
1842	}
1843
1844	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
1845
1846	return wvp->wv_newstate(vap, nstate, arg);
1847}
1848
1849static void
1850wpi_calib_timeout(void *arg)
1851{
1852	struct wpi_softc *sc = arg;
1853
1854	if (wpi_check_bss_filter(sc) == 0)
1855		return;
1856
1857	wpi_power_calibration(sc);
1858
1859	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
1860}
1861
1862static __inline uint8_t
1863rate2plcp(const uint8_t rate)
1864{
1865	switch (rate) {
1866	case 12:	return 0xd;
1867	case 18:	return 0xf;
1868	case 24:	return 0x5;
1869	case 36:	return 0x7;
1870	case 48:	return 0x9;
1871	case 72:	return 0xb;
1872	case 96:	return 0x1;
1873	case 108:	return 0x3;
1874	case 2:		return 10;
1875	case 4:		return 20;
1876	case 11:	return 55;
1877	case 22:	return 110;
1878	default:	return 0;
1879	}
1880}
1881
1882static __inline uint8_t
1883plcp2rate(const uint8_t plcp)
1884{
1885	switch (plcp) {
1886	case 0xd:	return 12;
1887	case 0xf:	return 18;
1888	case 0x5:	return 24;
1889	case 0x7:	return 36;
1890	case 0x9:	return 48;
1891	case 0xb:	return 72;
1892	case 0x1:	return 96;
1893	case 0x3:	return 108;
1894	case 10:	return 2;
1895	case 20:	return 4;
1896	case 55:	return 11;
1897	case 110:	return 22;
1898	default:	return 0;
1899	}
1900}
1901
1902/* Quickly determine if a given rate is CCK or OFDM. */
1903#define WPI_RATE_IS_OFDM(rate)	((rate) >= 12 && (rate) != 22)
1904
1905static void
1906wpi_rx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1907    struct wpi_rx_data *data)
1908{
1909	struct ieee80211com *ic = &sc->sc_ic;
1910	struct wpi_rx_ring *ring = &sc->rxq;
1911	struct wpi_rx_stat *stat;
1912	struct wpi_rx_head *head;
1913	struct wpi_rx_tail *tail;
1914	struct ieee80211_frame *wh;
1915	struct ieee80211_node *ni;
1916	struct mbuf *m, *m1;
1917	bus_addr_t paddr;
1918	uint32_t flags;
1919	uint16_t len;
1920	int error;
1921
1922	stat = (struct wpi_rx_stat *)(desc + 1);
1923
1924	if (__predict_false(stat->len > WPI_STAT_MAXLEN)) {
1925		device_printf(sc->sc_dev, "invalid RX statistic header\n");
1926		goto fail1;
1927	}
1928
1929	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1930	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1931	len = le16toh(head->len);
1932	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + len);
1933	flags = le32toh(tail->flags);
1934
1935	DPRINTF(sc, WPI_DEBUG_RECV, "%s: idx %d len %d stat len %u rssi %d"
1936	    " rate %x chan %d tstamp %ju\n", __func__, ring->cur,
1937	    le32toh(desc->len), len, (int8_t)stat->rssi,
1938	    head->plcp, head->chan, (uintmax_t)le64toh(tail->tstamp));
1939
1940	/* Discard frames with a bad FCS early. */
1941	if ((flags & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1942		DPRINTF(sc, WPI_DEBUG_RECV, "%s: RX flags error %x\n",
1943		    __func__, flags);
1944		goto fail1;
1945	}
1946	/* Discard frames that are too short. */
1947	if (len < sizeof (struct ieee80211_frame_ack)) {
1948		DPRINTF(sc, WPI_DEBUG_RECV, "%s: frame too short: %d\n",
1949		    __func__, len);
1950		goto fail1;
1951	}
1952
1953	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1954	if (__predict_false(m1 == NULL)) {
1955		DPRINTF(sc, WPI_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1956		    __func__);
1957		goto fail1;
1958	}
1959	bus_dmamap_unload(ring->data_dmat, data->map);
1960
1961	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
1962	    MJUMPAGESIZE, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1963	if (__predict_false(error != 0 && error != EFBIG)) {
1964		device_printf(sc->sc_dev,
1965		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1966		m_freem(m1);
1967
1968		/* Try to reload the old mbuf. */
1969		error = bus_dmamap_load(ring->data_dmat, data->map,
1970		    mtod(data->m, void *), MJUMPAGESIZE, wpi_dma_map_addr,
1971		    &paddr, BUS_DMA_NOWAIT);
1972		if (error != 0 && error != EFBIG) {
1973			panic("%s: could not load old RX mbuf", __func__);
1974		}
1975		/* Physical address may have changed. */
1976		ring->desc[ring->cur] = htole32(paddr);
1977		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
1978		    BUS_DMASYNC_PREWRITE);
1979		goto fail1;
1980	}
1981
1982	m = data->m;
1983	data->m = m1;
1984	/* Update RX descriptor. */
1985	ring->desc[ring->cur] = htole32(paddr);
1986	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1987	    BUS_DMASYNC_PREWRITE);
1988
1989	/* Finalize mbuf. */
1990	m->m_data = (caddr_t)(head + 1);
1991	m->m_pkthdr.len = m->m_len = len;
1992
1993	/* Grab a reference to the source node. */
1994	wh = mtod(m, struct ieee80211_frame *);
1995
1996	if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1997	    (flags & WPI_RX_CIPHER_MASK) == WPI_RX_CIPHER_CCMP) {
1998		/* Check whether decryption was successful or not. */
1999		if ((flags & WPI_RX_DECRYPT_MASK) != WPI_RX_DECRYPT_OK) {
2000			DPRINTF(sc, WPI_DEBUG_RECV,
2001			    "CCMP decryption failed 0x%x\n", flags);
2002			goto fail2;
2003		}
2004		m->m_flags |= M_WEP;
2005	}
2006
2007	if (len >= sizeof(struct ieee80211_frame_min))
2008		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2009	else
2010		ni = NULL;
2011
2012	sc->rx_tstamp = tail->tstamp;
2013
2014	if (ieee80211_radiotap_active(ic)) {
2015		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
2016
2017		tap->wr_flags = 0;
2018		if (head->flags & htole16(WPI_STAT_FLAG_SHPREAMBLE))
2019			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2020		tap->wr_dbm_antsignal = (int8_t)(stat->rssi + WPI_RSSI_OFFSET);
2021		tap->wr_dbm_antnoise = WPI_RSSI_OFFSET;
2022		tap->wr_tsft = tail->tstamp;
2023		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
2024		tap->wr_rate = plcp2rate(head->plcp);
2025	}
2026
2027	WPI_UNLOCK(sc);
2028
2029	/* Send the frame to the 802.11 layer. */
2030	if (ni != NULL) {
2031		(void)ieee80211_input(ni, m, stat->rssi, WPI_RSSI_OFFSET);
2032		/* Node is no longer needed. */
2033		ieee80211_free_node(ni);
2034	} else
2035		(void)ieee80211_input_all(ic, m, stat->rssi, WPI_RSSI_OFFSET);
2036
2037	WPI_LOCK(sc);
2038
2039	return;
2040
2041fail2:	m_freem(m);
2042
2043fail1:	counter_u64_add(ic->ic_ierrors, 1);
2044}
2045
2046static void
2047wpi_rx_statistics(struct wpi_softc *sc, struct wpi_rx_desc *desc,
2048    struct wpi_rx_data *data)
2049{
2050	/* Ignore */
2051}
2052
2053static void
2054wpi_tx_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2055{
2056	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
2057	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
2058	struct wpi_tx_data *data = &ring->data[desc->idx];
2059	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
2060	struct mbuf *m;
2061	struct ieee80211_node *ni;
2062	uint32_t status = le32toh(stat->status);
2063
2064	KASSERT(data->ni != NULL, ("no node"));
2065	KASSERT(data->m != NULL, ("no mbuf"));
2066
2067	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2068
2069	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: "
2070	    "qid %d idx %d retries %d btkillcnt %d rate %x duration %d "
2071	    "status %x\n", __func__, desc->qid, desc->idx, stat->ackfailcnt,
2072	    stat->btkillcnt, stat->rate, le32toh(stat->duration), status);
2073
2074	/* Unmap and free mbuf. */
2075	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2076	bus_dmamap_unload(ring->data_dmat, data->map);
2077	m = data->m, data->m = NULL;
2078	ni = data->ni, data->ni = NULL;
2079
2080	/* Restore frame header. */
2081	KASSERT(M_LEADINGSPACE(m) >= data->hdrlen, ("no frame header!"));
2082	M_PREPEND(m, data->hdrlen, M_NOWAIT);
2083	KASSERT(m != NULL, ("%s: m is NULL\n", __func__));
2084
2085	/*
2086	 * Update rate control statistics for the node.
2087	 */
2088	txs->pktlen = m->m_pkthdr.len;
2089	txs->short_retries = stat->rtsfailcnt;
2090	txs->long_retries = stat->ackfailcnt / WPI_NTRIES_DEFAULT;
2091	if (!(status & WPI_TX_STATUS_FAIL))
2092		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
2093	else {
2094		switch (status & 0xff) {
2095		case WPI_TX_STATUS_FAIL_SHORT_LIMIT:
2096			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
2097			break;
2098		case WPI_TX_STATUS_FAIL_LONG_LIMIT:
2099			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
2100			break;
2101		case WPI_TX_STATUS_FAIL_LIFE_EXPIRE:
2102			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
2103			break;
2104		default:
2105			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
2106			break;
2107		}
2108	}
2109
2110	ieee80211_ratectl_tx_complete(ni, txs);
2111	ieee80211_tx_complete(ni, m, (status & WPI_TX_STATUS_FAIL) != 0);
2112
2113	WPI_TXQ_STATE_LOCK(sc);
2114	if (--ring->queued > 0)
2115		callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout, sc);
2116	else
2117		callout_stop(&sc->tx_timeout);
2118	WPI_TXQ_STATE_UNLOCK(sc);
2119
2120	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
2121}
2122
2123/*
2124 * Process a "command done" firmware notification.  This is where we wakeup
2125 * processes waiting for a synchronous command completion.
2126 */
2127static void
2128wpi_cmd_done(struct wpi_softc *sc, struct wpi_rx_desc *desc)
2129{
2130	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
2131	struct wpi_tx_data *data;
2132	struct wpi_tx_cmd *cmd;
2133
2134	DPRINTF(sc, WPI_DEBUG_CMD, "cmd notification qid %x idx %d flags %x "
2135				   "type %s len %d\n", desc->qid, desc->idx,
2136				   desc->flags, wpi_cmd_str(desc->type),
2137				   le32toh(desc->len));
2138
2139	if ((desc->qid & WPI_RX_DESC_QID_MSK) != WPI_CMD_QUEUE_NUM)
2140		return;	/* Not a command ack. */
2141
2142	KASSERT(ring->queued == 0, ("ring->queued must be 0"));
2143
2144	data = &ring->data[desc->idx];
2145	cmd = &ring->cmd[desc->idx];
2146
2147	/* If the command was mapped in an mbuf, free it. */
2148	if (data->m != NULL) {
2149		bus_dmamap_sync(ring->data_dmat, data->map,
2150		    BUS_DMASYNC_POSTWRITE);
2151		bus_dmamap_unload(ring->data_dmat, data->map);
2152		m_freem(data->m);
2153		data->m = NULL;
2154	}
2155
2156	wakeup(cmd);
2157
2158	if (desc->type == WPI_CMD_SET_POWER_MODE) {
2159		struct wpi_pmgt_cmd *pcmd = (struct wpi_pmgt_cmd *)cmd->data;
2160
2161		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2162		    BUS_DMASYNC_POSTREAD);
2163
2164		WPI_TXQ_LOCK(sc);
2165		if (le16toh(pcmd->flags) & WPI_PS_ALLOW_SLEEP) {
2166			sc->sc_update_rx_ring = wpi_update_rx_ring_ps;
2167			sc->sc_update_tx_ring = wpi_update_tx_ring_ps;
2168		} else {
2169			sc->sc_update_rx_ring = wpi_update_rx_ring;
2170			sc->sc_update_tx_ring = wpi_update_tx_ring;
2171		}
2172		WPI_TXQ_UNLOCK(sc);
2173	}
2174}
2175
2176static void
2177wpi_notif_intr(struct wpi_softc *sc)
2178{
2179	struct ieee80211com *ic = &sc->sc_ic;
2180	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2181	uint32_t hw;
2182
2183	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
2184	    BUS_DMASYNC_POSTREAD);
2185
2186	hw = le32toh(sc->shared->next) & 0xfff;
2187	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
2188
2189	while (sc->rxq.cur != hw) {
2190		struct wpi_rx_data *data;
2191		struct wpi_rx_desc *desc;
2192		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
2193
2194		data = &sc->rxq.data[sc->rxq.cur];
2195
2196		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2197		    BUS_DMASYNC_POSTREAD);
2198		desc = mtod(data->m, struct wpi_rx_desc *);
2199
2200		DPRINTF(sc, WPI_DEBUG_NOTIFY,
2201		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
2202		    __func__, sc->rxq.cur, desc->qid, desc->idx, desc->flags,
2203		    desc->type, wpi_cmd_str(desc->type), le32toh(desc->len));
2204
2205		if (!(desc->qid & WPI_UNSOLICITED_RX_NOTIF)) {
2206			/* Reply to a command. */
2207			wpi_cmd_done(sc, desc);
2208		}
2209
2210		switch (desc->type) {
2211		case WPI_RX_DONE:
2212			/* An 802.11 frame has been received. */
2213			wpi_rx_done(sc, desc, data);
2214
2215			if (__predict_false(sc->sc_running == 0)) {
2216				/* wpi_stop() was called. */
2217				return;
2218			}
2219
2220			break;
2221
2222		case WPI_TX_DONE:
2223			/* An 802.11 frame has been transmitted. */
2224			wpi_tx_done(sc, desc);
2225			break;
2226
2227		case WPI_RX_STATISTICS:
2228		case WPI_BEACON_STATISTICS:
2229			wpi_rx_statistics(sc, desc, data);
2230			break;
2231
2232		case WPI_BEACON_MISSED:
2233		{
2234			struct wpi_beacon_missed *miss =
2235			    (struct wpi_beacon_missed *)(desc + 1);
2236			uint32_t expected, misses, received, threshold;
2237
2238			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2239			    BUS_DMASYNC_POSTREAD);
2240
2241			misses = le32toh(miss->consecutive);
2242			expected = le32toh(miss->expected);
2243			received = le32toh(miss->received);
2244			threshold = MAX(2, vap->iv_bmissthreshold);
2245
2246			DPRINTF(sc, WPI_DEBUG_BMISS,
2247			    "%s: beacons missed %u(%u) (received %u/%u)\n",
2248			    __func__, misses, le32toh(miss->total), received,
2249			    expected);
2250
2251			if (misses >= threshold ||
2252			    (received == 0 && expected >= threshold)) {
2253				WPI_RXON_LOCK(sc);
2254				if (callout_pending(&sc->scan_timeout)) {
2255					wpi_cmd(sc, WPI_CMD_SCAN_ABORT, NULL,
2256					    0, 1);
2257				}
2258				WPI_RXON_UNLOCK(sc);
2259				if (vap->iv_state == IEEE80211_S_RUN &&
2260				    (ic->ic_flags & IEEE80211_F_SCAN) == 0)
2261					ieee80211_beacon_miss(ic);
2262			}
2263
2264			break;
2265		}
2266#ifdef WPI_DEBUG
2267		case WPI_BEACON_SENT:
2268		{
2269			struct wpi_tx_stat *stat =
2270			    (struct wpi_tx_stat *)(desc + 1);
2271			uint64_t *tsf = (uint64_t *)(stat + 1);
2272			uint32_t *mode = (uint32_t *)(tsf + 1);
2273
2274			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2275			    BUS_DMASYNC_POSTREAD);
2276
2277			DPRINTF(sc, WPI_DEBUG_BEACON,
2278			    "beacon sent: rts %u, ack %u, btkill %u, rate %u, "
2279			    "duration %u, status %x, tsf %ju, mode %x\n",
2280			    stat->rtsfailcnt, stat->ackfailcnt,
2281			    stat->btkillcnt, stat->rate, le32toh(stat->duration),
2282			    le32toh(stat->status), le64toh(*tsf),
2283			    le32toh(*mode));
2284
2285			break;
2286		}
2287#endif
2288		case WPI_UC_READY:
2289		{
2290			struct wpi_ucode_info *uc =
2291			    (struct wpi_ucode_info *)(desc + 1);
2292
2293			/* The microcontroller is ready. */
2294			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2295			    BUS_DMASYNC_POSTREAD);
2296			DPRINTF(sc, WPI_DEBUG_RESET,
2297			    "microcode alive notification version=%d.%d "
2298			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2299			    uc->subtype, le32toh(uc->valid));
2300
2301			if (le32toh(uc->valid) != 1) {
2302				device_printf(sc->sc_dev,
2303				    "microcontroller initialization failed\n");
2304				wpi_stop_locked(sc);
2305				return;
2306			}
2307			/* Save the address of the error log in SRAM. */
2308			sc->errptr = le32toh(uc->errptr);
2309			break;
2310		}
2311		case WPI_STATE_CHANGED:
2312		{
2313			uint32_t *status;
2314			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2315			    BUS_DMASYNC_POSTREAD);
2316
2317			status = (uint32_t *)(desc + 1);
2318
2319			DPRINTF(sc, WPI_DEBUG_STATE, "state changed to %x\n",
2320			    le32toh(*status));
2321
2322			if (le32toh(*status) & 1) {
2323				WPI_NT_LOCK(sc);
2324				wpi_clear_node_table(sc);
2325				WPI_NT_UNLOCK(sc);
2326				ieee80211_runtask(ic,
2327				    &sc->sc_radiooff_task);
2328				return;
2329			}
2330			break;
2331		}
2332#ifdef WPI_DEBUG
2333		case WPI_START_SCAN:
2334		{
2335			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2336			    BUS_DMASYNC_POSTREAD);
2337
2338			struct wpi_start_scan *scan =
2339			    (struct wpi_start_scan *)(desc + 1);
2340			DPRINTF(sc, WPI_DEBUG_SCAN,
2341			    "%s: scanning channel %d status %x\n",
2342			    __func__, scan->chan, le32toh(scan->status));
2343
2344			break;
2345		}
2346#endif
2347		case WPI_STOP_SCAN:
2348		{
2349			struct wpi_stop_scan *scan;
2350			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2351			    BUS_DMASYNC_POSTREAD);
2352
2353			scan =
2354			    (struct wpi_stop_scan *)(desc + 1);
2355
2356			DPRINTF(sc, WPI_DEBUG_SCAN,
2357			    "scan finished nchan=%d status=%d chan=%d\n",
2358			    scan->nchan, scan->status, scan->chan);
2359
2360			WPI_RXON_LOCK(sc);
2361			callout_stop(&sc->scan_timeout);
2362			WPI_RXON_UNLOCK(sc);
2363			if (scan->status == WPI_SCAN_ABORTED)
2364				ieee80211_cancel_scan(vap);
2365			else
2366				ieee80211_scan_next(vap);
2367			break;
2368		}
2369		}
2370
2371		if (sc->rxq.cur % 8 == 0) {
2372			/* Tell the firmware what we have processed. */
2373			sc->sc_update_rx_ring(sc);
2374		}
2375	}
2376}
2377
2378/*
2379 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2380 * from power-down sleep mode.
2381 */
2382static void
2383wpi_wakeup_intr(struct wpi_softc *sc)
2384{
2385	int qid;
2386
2387	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
2388	    "%s: ucode wakeup from power-down sleep\n", __func__);
2389
2390	/* Wakeup RX and TX rings. */
2391	if (sc->rxq.update) {
2392		sc->rxq.update = 0;
2393		wpi_update_rx_ring(sc);
2394	}
2395	WPI_TXQ_LOCK(sc);
2396	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++) {
2397		struct wpi_tx_ring *ring = &sc->txq[qid];
2398
2399		if (ring->update) {
2400			ring->update = 0;
2401			wpi_update_tx_ring(sc, ring);
2402		}
2403	}
2404	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_MAC_ACCESS_REQ);
2405	WPI_TXQ_UNLOCK(sc);
2406}
2407
2408/*
2409 * This function prints firmware registers
2410 */
2411#ifdef WPI_DEBUG
2412static void
2413wpi_debug_registers(struct wpi_softc *sc)
2414{
2415	size_t i;
2416	static const uint32_t csr_tbl[] = {
2417		WPI_HW_IF_CONFIG,
2418		WPI_INT,
2419		WPI_INT_MASK,
2420		WPI_FH_INT,
2421		WPI_GPIO_IN,
2422		WPI_RESET,
2423		WPI_GP_CNTRL,
2424		WPI_EEPROM,
2425		WPI_EEPROM_GP,
2426		WPI_GIO,
2427		WPI_UCODE_GP1,
2428		WPI_UCODE_GP2,
2429		WPI_GIO_CHICKEN,
2430		WPI_ANA_PLL,
2431		WPI_DBG_HPET_MEM,
2432	};
2433	static const uint32_t prph_tbl[] = {
2434		WPI_APMG_CLK_CTRL,
2435		WPI_APMG_PS,
2436		WPI_APMG_PCI_STT,
2437		WPI_APMG_RFKILL,
2438	};
2439
2440	DPRINTF(sc, WPI_DEBUG_REGISTER,"%s","\n");
2441
2442	for (i = 0; i < nitems(csr_tbl); i++) {
2443		DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2444		    wpi_get_csr_string(csr_tbl[i]), WPI_READ(sc, csr_tbl[i]));
2445
2446		if ((i + 1) % 2 == 0)
2447			DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2448	}
2449	DPRINTF(sc, WPI_DEBUG_REGISTER, "\n\n");
2450
2451	if (wpi_nic_lock(sc) == 0) {
2452		for (i = 0; i < nitems(prph_tbl); i++) {
2453			DPRINTF(sc, WPI_DEBUG_REGISTER, "  %-18s: 0x%08x ",
2454			    wpi_get_prph_string(prph_tbl[i]),
2455			    wpi_prph_read(sc, prph_tbl[i]));
2456
2457			if ((i + 1) % 2 == 0)
2458				DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2459		}
2460		DPRINTF(sc, WPI_DEBUG_REGISTER, "\n");
2461		wpi_nic_unlock(sc);
2462	} else {
2463		DPRINTF(sc, WPI_DEBUG_REGISTER,
2464		    "Cannot access internal registers.\n");
2465	}
2466}
2467#endif
2468
2469/*
2470 * Dump the error log of the firmware when a firmware panic occurs.  Although
2471 * we can't debug the firmware because it is neither open source nor free, it
2472 * can help us to identify certain classes of problems.
2473 */
2474static void
2475wpi_fatal_intr(struct wpi_softc *sc)
2476{
2477	struct wpi_fw_dump dump;
2478	uint32_t i, offset, count;
2479
2480	/* Check that the error log address is valid. */
2481	if (sc->errptr < WPI_FW_DATA_BASE ||
2482	    sc->errptr + sizeof (dump) >
2483	    WPI_FW_DATA_BASE + WPI_FW_DATA_MAXSZ) {
2484		printf("%s: bad firmware error log address 0x%08x\n", __func__,
2485		    sc->errptr);
2486		return;
2487	}
2488	if (wpi_nic_lock(sc) != 0) {
2489		printf("%s: could not read firmware error log\n", __func__);
2490		return;
2491	}
2492	/* Read number of entries in the log. */
2493	count = wpi_mem_read(sc, sc->errptr);
2494	if (count == 0 || count * sizeof (dump) > WPI_FW_DATA_MAXSZ) {
2495		printf("%s: invalid count field (count = %u)\n", __func__,
2496		    count);
2497		wpi_nic_unlock(sc);
2498		return;
2499	}
2500	/* Skip "count" field. */
2501	offset = sc->errptr + sizeof (uint32_t);
2502	printf("firmware error log (count = %u):\n", count);
2503	for (i = 0; i < count; i++) {
2504		wpi_mem_read_region_4(sc, offset, (uint32_t *)&dump,
2505		    sizeof (dump) / sizeof (uint32_t));
2506
2507		printf("  error type = \"%s\" (0x%08X)\n",
2508		    (dump.desc < nitems(wpi_fw_errmsg)) ?
2509		        wpi_fw_errmsg[dump.desc] : "UNKNOWN",
2510		    dump.desc);
2511		printf("  error data      = 0x%08X\n",
2512		    dump.data);
2513		printf("  branch link     = 0x%08X%08X\n",
2514		    dump.blink[0], dump.blink[1]);
2515		printf("  interrupt link  = 0x%08X%08X\n",
2516		    dump.ilink[0], dump.ilink[1]);
2517		printf("  time            = %u\n", dump.time);
2518
2519		offset += sizeof (dump);
2520	}
2521	wpi_nic_unlock(sc);
2522	/* Dump driver status (TX and RX rings) while we're here. */
2523	printf("driver status:\n");
2524	WPI_TXQ_LOCK(sc);
2525	for (i = 0; i < WPI_DRV_NTXQUEUES; i++) {
2526		struct wpi_tx_ring *ring = &sc->txq[i];
2527		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2528		    i, ring->qid, ring->cur, ring->queued);
2529	}
2530	WPI_TXQ_UNLOCK(sc);
2531	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2532}
2533
2534static void
2535wpi_intr(void *arg)
2536{
2537	struct wpi_softc *sc = arg;
2538	uint32_t r1, r2;
2539
2540	WPI_LOCK(sc);
2541
2542#if !defined(__HAIKU__)
2543	/* Disable interrupts. */
2544	WPI_WRITE(sc, WPI_INT_MASK, 0);
2545
2546	r1 = WPI_READ(sc, WPI_INT);
2547
2548	if (__predict_false(r1 == 0xffffffff ||
2549			   (r1 & 0xfffffff0) == 0xa5a5a5a0))
2550		goto end;	/* Hardware gone! */
2551
2552	r2 = WPI_READ(sc, WPI_FH_INT);
2553
2554	DPRINTF(sc, WPI_DEBUG_INTR, "%s: reg1=0x%08x reg2=0x%08x\n", __func__,
2555	    r1, r2);
2556
2557	if (r1 == 0 && r2 == 0)
2558		goto done;	/* Interrupt not for us. */
2559#else
2560	r1 = atomic_get((int32 *)&sc->sc_intr_status_1);
2561	r2 = atomic_get((int32 *)&sc->sc_intr_status_2);
2562#endif
2563
2564	/* Acknowledge interrupts. */
2565	WPI_WRITE(sc, WPI_INT, r1);
2566	WPI_WRITE(sc, WPI_FH_INT, r2);
2567
2568	if (__predict_false(r1 & (WPI_INT_SW_ERR | WPI_INT_HW_ERR))) {
2569		struct ieee80211com *ic = &sc->sc_ic;
2570
2571		device_printf(sc->sc_dev, "fatal firmware error\n");
2572#ifdef WPI_DEBUG
2573		wpi_debug_registers(sc);
2574#endif
2575		wpi_fatal_intr(sc);
2576		DPRINTF(sc, WPI_DEBUG_HW,
2577		    "(%s)\n", (r1 & WPI_INT_SW_ERR) ? "(Software Error)" :
2578		    "(Hardware Error)");
2579		ieee80211_restart_all(ic);
2580		goto end;
2581	}
2582
2583	if ((r1 & (WPI_INT_FH_RX | WPI_INT_SW_RX)) ||
2584	    (r2 & WPI_FH_INT_RX))
2585		wpi_notif_intr(sc);
2586
2587	if (r1 & WPI_INT_ALIVE)
2588		wakeup(sc);	/* Firmware is alive. */
2589
2590	if (r1 & WPI_INT_WAKEUP)
2591		wpi_wakeup_intr(sc);
2592
2593done:
2594	/* Re-enable interrupts. */
2595	if (__predict_true(sc->sc_running))
2596		WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
2597
2598end:	WPI_UNLOCK(sc);
2599}
2600
2601static void
2602wpi_free_txfrags(struct wpi_softc *sc, uint16_t ac)
2603{
2604	struct wpi_tx_ring *ring;
2605	struct wpi_tx_data *data;
2606	uint8_t cur;
2607
2608	WPI_TXQ_LOCK(sc);
2609	ring = &sc->txq[ac];
2610
2611	while (ring->pending != 0) {
2612		ring->pending--;
2613		cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2614		data = &ring->data[cur];
2615
2616		bus_dmamap_sync(ring->data_dmat, data->map,
2617		    BUS_DMASYNC_POSTWRITE);
2618		bus_dmamap_unload(ring->data_dmat, data->map);
2619		m_freem(data->m);
2620		data->m = NULL;
2621
2622		ieee80211_node_decref(data->ni);
2623		data->ni = NULL;
2624	}
2625
2626	WPI_TXQ_UNLOCK(sc);
2627}
2628
2629static int
2630wpi_cmd2(struct wpi_softc *sc, struct wpi_buf *buf)
2631{
2632	struct ieee80211_frame *wh;
2633	struct wpi_tx_cmd *cmd;
2634	struct wpi_tx_data *data;
2635	struct wpi_tx_desc *desc;
2636	struct wpi_tx_ring *ring;
2637	struct mbuf *m1;
2638	bus_dma_segment_t *seg, segs[WPI_MAX_SCATTER];
2639	uint8_t cur, pad;
2640	uint16_t hdrlen;
2641	int error, i, nsegs, totlen, frag;
2642
2643	WPI_TXQ_LOCK(sc);
2644
2645	KASSERT(buf->size <= sizeof(buf->data), ("buffer overflow"));
2646
2647	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
2648
2649	if (__predict_false(sc->sc_running == 0)) {
2650		/* wpi_stop() was called */
2651		error = ENETDOWN;
2652		goto end;
2653	}
2654
2655	wh = mtod(buf->m, struct ieee80211_frame *);
2656	hdrlen = ieee80211_anyhdrsize(wh);
2657	totlen = buf->m->m_pkthdr.len;
2658	frag = ((buf->m->m_flags & (M_FRAG | M_LASTFRAG)) == M_FRAG);
2659
2660	if (__predict_false(totlen < sizeof(struct ieee80211_frame_min))) {
2661		error = EINVAL;
2662		goto end;
2663	}
2664
2665	if (hdrlen & 3) {
2666		/* First segment length must be a multiple of 4. */
2667		pad = 4 - (hdrlen & 3);
2668	} else
2669		pad = 0;
2670
2671	ring = &sc->txq[buf->ac];
2672	cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2673	desc = &ring->desc[cur];
2674	data = &ring->data[cur];
2675
2676	/* Prepare TX firmware command. */
2677	cmd = &ring->cmd[cur];
2678	cmd->code = buf->code;
2679	cmd->flags = 0;
2680	cmd->qid = ring->qid;
2681	cmd->idx = cur;
2682
2683	memcpy(cmd->data, buf->data, buf->size);
2684
2685	/* Save and trim IEEE802.11 header. */
2686	memcpy((uint8_t *)(cmd->data + buf->size), wh, hdrlen);
2687	m_adj(buf->m, hdrlen);
2688
2689	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, buf->m,
2690	    segs, &nsegs, BUS_DMA_NOWAIT);
2691	if (error != 0 && error != EFBIG) {
2692		device_printf(sc->sc_dev,
2693		    "%s: can't map mbuf (error %d)\n", __func__, error);
2694		goto end;
2695	}
2696	if (error != 0) {
2697		/* Too many DMA segments, linearize mbuf. */
2698		m1 = m_collapse(buf->m, M_NOWAIT, WPI_MAX_SCATTER - 1);
2699		if (m1 == NULL) {
2700			device_printf(sc->sc_dev,
2701			    "%s: could not defrag mbuf\n", __func__);
2702			error = ENOBUFS;
2703			goto end;
2704		}
2705		buf->m = m1;
2706
2707		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
2708		    buf->m, segs, &nsegs, BUS_DMA_NOWAIT);
2709		if (__predict_false(error != 0)) {
2710			/* XXX fix this (applicable to the iwn(4) too) */
2711			/*
2712			 * NB: Do not return error;
2713			 * original mbuf does not exist anymore.
2714			 */
2715			device_printf(sc->sc_dev,
2716			    "%s: can't map mbuf (error %d)\n", __func__,
2717			    error);
2718			if (ring->qid < WPI_CMD_QUEUE_NUM) {
2719				if_inc_counter(buf->ni->ni_vap->iv_ifp,
2720				    IFCOUNTER_OERRORS, 1);
2721				if (!frag)
2722					ieee80211_free_node(buf->ni);
2723			}
2724			m_freem(buf->m);
2725			error = 0;
2726			goto end;
2727		}
2728	}
2729
2730	KASSERT(nsegs < WPI_MAX_SCATTER,
2731	    ("too many DMA segments, nsegs (%d) should be less than %d",
2732	     nsegs, WPI_MAX_SCATTER));
2733
2734	data->m = buf->m;
2735	data->ni = buf->ni;
2736	data->hdrlen = hdrlen;
2737
2738	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2739	    __func__, ring->qid, cur, totlen, nsegs);
2740
2741	/* Fill TX descriptor. */
2742	desc->nsegs = WPI_PAD32(totlen + pad) << 4 | (1 + nsegs);
2743	/* First DMA segment is used by the TX command. */
2744	desc->segs[0].addr = htole32(data->cmd_paddr);
2745	desc->segs[0].len  = htole32(4 + buf->size + hdrlen + pad);
2746	/* Other DMA segments are for data payload. */
2747	seg = &segs[0];
2748	for (i = 1; i <= nsegs; i++) {
2749		desc->segs[i].addr = htole32(seg->ds_addr);
2750		desc->segs[i].len  = htole32(seg->ds_len);
2751		seg++;
2752	}
2753
2754	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2755	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
2756	    BUS_DMASYNC_PREWRITE);
2757	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2758	    BUS_DMASYNC_PREWRITE);
2759
2760	ring->pending += 1;
2761
2762	if (!frag) {
2763		if (ring->qid < WPI_CMD_QUEUE_NUM) {
2764			WPI_TXQ_STATE_LOCK(sc);
2765			ring->queued += ring->pending;
2766			callout_reset(&sc->tx_timeout, 5*hz, wpi_tx_timeout,
2767			    sc);
2768			WPI_TXQ_STATE_UNLOCK(sc);
2769		}
2770
2771		/* Kick TX ring. */
2772		ring->cur = (ring->cur + ring->pending) % WPI_TX_RING_COUNT;
2773		ring->pending = 0;
2774		sc->sc_update_tx_ring(sc, ring);
2775	} else
2776		ieee80211_node_incref(data->ni);
2777
2778end:	DPRINTF(sc, WPI_DEBUG_TRACE, error ? TRACE_STR_END_ERR : TRACE_STR_END,
2779	    __func__);
2780
2781	WPI_TXQ_UNLOCK(sc);
2782
2783	return (error);
2784}
2785
2786/*
2787 * Construct the data packet for a transmit buffer.
2788 */
2789static int
2790wpi_tx_data(struct wpi_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
2791{
2792	const struct ieee80211_txparam *tp = ni->ni_txparms;
2793	struct ieee80211vap *vap = ni->ni_vap;
2794	struct ieee80211com *ic = ni->ni_ic;
2795	struct wpi_node *wn = WPI_NODE(ni);
2796	struct ieee80211_frame *wh;
2797	struct ieee80211_key *k = NULL;
2798	struct wpi_buf tx_data;
2799	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2800	uint32_t flags;
2801	uint16_t ac, qos;
2802	uint8_t tid, type, rate;
2803	int swcrypt, ismcast, totlen;
2804
2805	wh = mtod(m, struct ieee80211_frame *);
2806	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2807	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2808	swcrypt = 1;
2809
2810	/* Select EDCA Access Category and TX ring for this frame. */
2811	if (IEEE80211_QOS_HAS_SEQ(wh)) {
2812		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
2813		tid = qos & IEEE80211_QOS_TID;
2814	} else {
2815		qos = 0;
2816		tid = 0;
2817	}
2818	ac = M_WME_GETAC(m);
2819
2820	/* Choose a TX rate index. */
2821	if (type == IEEE80211_FC0_TYPE_MGT ||
2822	    type == IEEE80211_FC0_TYPE_CTL ||
2823	    (m->m_flags & M_EAPOL) != 0)
2824		rate = tp->mgmtrate;
2825	else if (ismcast)
2826		rate = tp->mcastrate;
2827	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2828		rate = tp->ucastrate;
2829	else {
2830		/* XXX pass pktlen */
2831		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2832		rate = ni->ni_txrate;
2833	}
2834
2835	/* Encrypt the frame if need be. */
2836	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
2837		/* Retrieve key for TX. */
2838		k = ieee80211_crypto_encap(ni, m);
2839		if (k == NULL)
2840			return (ENOBUFS);
2841
2842		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
2843
2844		/* 802.11 header may have moved. */
2845		wh = mtod(m, struct ieee80211_frame *);
2846	}
2847	totlen = m->m_pkthdr.len;
2848
2849	if (ieee80211_radiotap_active_vap(vap)) {
2850		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
2851
2852		tap->wt_flags = 0;
2853		tap->wt_rate = rate;
2854		if (k != NULL)
2855			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2856		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2857			tap->wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
2858
2859		ieee80211_radiotap_tx(vap, m);
2860	}
2861
2862	flags = 0;
2863	if (!ismcast) {
2864		/* Unicast frame, check if an ACK is expected. */
2865		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
2866		    IEEE80211_QOS_ACKPOLICY_NOACK)
2867			flags |= WPI_TX_NEED_ACK;
2868	}
2869
2870	if (!IEEE80211_QOS_HAS_SEQ(wh))
2871		flags |= WPI_TX_AUTO_SEQ;
2872	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2873		flags |= WPI_TX_MORE_FRAG;
2874
2875	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2876	if (!ismcast) {
2877		/* NB: Group frames are sent using CCK in 802.11b/g. */
2878		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2879			flags |= WPI_TX_NEED_RTS;
2880		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2881		    WPI_RATE_IS_OFDM(rate)) {
2882			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2883				flags |= WPI_TX_NEED_CTS;
2884			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2885				flags |= WPI_TX_NEED_RTS;
2886		}
2887
2888		if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2889			flags |= WPI_TX_FULL_TXOP;
2890	}
2891
2892	memset(tx, 0, sizeof (struct wpi_cmd_data));
2893	if (type == IEEE80211_FC0_TYPE_MGT) {
2894		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2895
2896		/* Tell HW to set timestamp in probe responses. */
2897		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2898			flags |= WPI_TX_INSERT_TSTAMP;
2899		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2900		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2901			tx->timeout = htole16(3);
2902		else
2903			tx->timeout = htole16(2);
2904	}
2905
2906	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
2907		tx->id = WPI_ID_BROADCAST;
2908	else {
2909		if (wn->id == WPI_ID_UNDEFINED) {
2910			device_printf(sc->sc_dev,
2911			    "%s: undefined node id\n", __func__);
2912			return (EINVAL);
2913		}
2914
2915		tx->id = wn->id;
2916	}
2917
2918	if (!swcrypt) {
2919		switch (k->wk_cipher->ic_cipher) {
2920		case IEEE80211_CIPHER_AES_CCM:
2921			tx->security = WPI_CIPHER_CCMP;
2922			break;
2923
2924		default:
2925			break;
2926		}
2927
2928		memcpy(tx->key, k->wk_key, k->wk_keylen);
2929	}
2930
2931	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
2932		struct mbuf *next = m->m_nextpkt;
2933
2934		tx->lnext = htole16(next->m_pkthdr.len);
2935		tx->fnext = htole32(tx->security |
2936				    (flags & WPI_TX_NEED_ACK) |
2937				    WPI_NEXT_STA_ID(tx->id));
2938	}
2939
2940	tx->len = htole16(totlen);
2941	tx->flags = htole32(flags);
2942	tx->plcp = rate2plcp(rate);
2943	tx->tid = tid;
2944	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
2945	tx->ofdm_mask = 0xff;
2946	tx->cck_mask = 0x0f;
2947	tx->rts_ntries = 7;
2948	tx->data_ntries = tp->maxretry;
2949
2950	tx_data.ni = ni;
2951	tx_data.m = m;
2952	tx_data.size = sizeof(struct wpi_cmd_data);
2953	tx_data.code = WPI_CMD_TX_DATA;
2954	tx_data.ac = ac;
2955
2956	return wpi_cmd2(sc, &tx_data);
2957}
2958
2959static int
2960wpi_tx_data_raw(struct wpi_softc *sc, struct mbuf *m,
2961    struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
2962{
2963	struct ieee80211vap *vap = ni->ni_vap;
2964	struct ieee80211_key *k = NULL;
2965	struct ieee80211_frame *wh;
2966	struct wpi_buf tx_data;
2967	struct wpi_cmd_data *tx = (struct wpi_cmd_data *)&tx_data.data;
2968	uint32_t flags;
2969	uint8_t ac, type, rate;
2970	int swcrypt, totlen;
2971
2972	wh = mtod(m, struct ieee80211_frame *);
2973	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2974	swcrypt = 1;
2975
2976	ac = params->ibp_pri & 3;
2977
2978	/* Choose a TX rate index. */
2979	rate = params->ibp_rate0;
2980
2981	flags = 0;
2982	if (!IEEE80211_QOS_HAS_SEQ(wh))
2983		flags |= WPI_TX_AUTO_SEQ;
2984	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2985		flags |= WPI_TX_NEED_ACK;
2986	if (params->ibp_flags & IEEE80211_BPF_RTS)
2987		flags |= WPI_TX_NEED_RTS;
2988	if (params->ibp_flags & IEEE80211_BPF_CTS)
2989		flags |= WPI_TX_NEED_CTS;
2990	if (flags & (WPI_TX_NEED_RTS | WPI_TX_NEED_CTS))
2991		flags |= WPI_TX_FULL_TXOP;
2992
2993	/* Encrypt the frame if need be. */
2994	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
2995		/* Retrieve key for TX. */
2996		k = ieee80211_crypto_encap(ni, m);
2997		if (k == NULL)
2998			return (ENOBUFS);
2999
3000		swcrypt = k->wk_flags & IEEE80211_KEY_SWCRYPT;
3001
3002		/* 802.11 header may have moved. */
3003		wh = mtod(m, struct ieee80211_frame *);
3004	}
3005	totlen = m->m_pkthdr.len;
3006
3007	if (ieee80211_radiotap_active_vap(vap)) {
3008		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
3009
3010		tap->wt_flags = 0;
3011		tap->wt_rate = rate;
3012		if (params->ibp_flags & IEEE80211_BPF_CRYPTO)
3013			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3014
3015		ieee80211_radiotap_tx(vap, m);
3016	}
3017
3018	memset(tx, 0, sizeof (struct wpi_cmd_data));
3019	if (type == IEEE80211_FC0_TYPE_MGT) {
3020		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3021
3022		/* Tell HW to set timestamp in probe responses. */
3023		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3024			flags |= WPI_TX_INSERT_TSTAMP;
3025		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3026		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3027			tx->timeout = htole16(3);
3028		else
3029			tx->timeout = htole16(2);
3030	}
3031
3032	if (!swcrypt) {
3033		switch (k->wk_cipher->ic_cipher) {
3034		case IEEE80211_CIPHER_AES_CCM:
3035			tx->security = WPI_CIPHER_CCMP;
3036			break;
3037
3038		default:
3039			break;
3040		}
3041
3042		memcpy(tx->key, k->wk_key, k->wk_keylen);
3043	}
3044
3045	tx->len = htole16(totlen);
3046	tx->flags = htole32(flags);
3047	tx->plcp = rate2plcp(rate);
3048	tx->id = WPI_ID_BROADCAST;
3049	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
3050	tx->rts_ntries = params->ibp_try1;
3051	tx->data_ntries = params->ibp_try0;
3052
3053	tx_data.ni = ni;
3054	tx_data.m = m;
3055	tx_data.size = sizeof(struct wpi_cmd_data);
3056	tx_data.code = WPI_CMD_TX_DATA;
3057	tx_data.ac = ac;
3058
3059	return wpi_cmd2(sc, &tx_data);
3060}
3061
3062static __inline int
3063wpi_tx_ring_free_space(struct wpi_softc *sc, uint16_t ac)
3064{
3065	struct wpi_tx_ring *ring = &sc->txq[ac];
3066	int retval;
3067
3068	WPI_TXQ_STATE_LOCK(sc);
3069	retval = WPI_TX_RING_HIMARK - ring->queued;
3070	WPI_TXQ_STATE_UNLOCK(sc);
3071
3072	return retval;
3073}
3074
3075static int
3076wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3077    const struct ieee80211_bpf_params *params)
3078{
3079	struct ieee80211com *ic = ni->ni_ic;
3080	struct wpi_softc *sc = ic->ic_softc;
3081	uint16_t ac;
3082	int error = 0;
3083
3084	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3085
3086	ac = M_WME_GETAC(m);
3087
3088	WPI_TX_LOCK(sc);
3089
3090	/* NB: no fragments here */
3091	if (sc->sc_running == 0 || wpi_tx_ring_free_space(sc, ac) < 1) {
3092		error = sc->sc_running ? ENOBUFS : ENETDOWN;
3093		goto unlock;
3094	}
3095
3096	if (params == NULL) {
3097		/*
3098		 * Legacy path; interpret frame contents to decide
3099		 * precisely how to send the frame.
3100		 */
3101		error = wpi_tx_data(sc, m, ni);
3102	} else {
3103		/*
3104		 * Caller supplied explicit parameters to use in
3105		 * sending the frame.
3106		 */
3107		error = wpi_tx_data_raw(sc, m, ni, params);
3108	}
3109
3110unlock:	WPI_TX_UNLOCK(sc);
3111
3112	if (error != 0) {
3113		m_freem(m);
3114		DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3115
3116		return error;
3117	}
3118
3119	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3120
3121	return 0;
3122}
3123
3124static int
3125wpi_transmit(struct ieee80211com *ic, struct mbuf *m)
3126{
3127	struct wpi_softc *sc = ic->ic_softc;
3128	struct ieee80211_node *ni;
3129	struct mbuf *mnext;
3130	uint16_t ac;
3131	int error, nmbufs;
3132
3133	WPI_TX_LOCK(sc);
3134	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: called\n", __func__);
3135
3136	/* Check if interface is up & running. */
3137	if (__predict_false(sc->sc_running == 0)) {
3138		error = ENXIO;
3139		goto unlock;
3140	}
3141
3142	nmbufs = 1;
3143	for (mnext = m->m_nextpkt; mnext != NULL; mnext = mnext->m_nextpkt)
3144		nmbufs++;
3145
3146	/* Check for available space. */
3147	ac = M_WME_GETAC(m);
3148	if (wpi_tx_ring_free_space(sc, ac) < nmbufs) {
3149		error = ENOBUFS;
3150		goto unlock;
3151	}
3152
3153	error = 0;
3154	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3155	do {
3156		mnext = m->m_nextpkt;
3157		if (wpi_tx_data(sc, m, ni) != 0) {
3158			if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS,
3159			    nmbufs);
3160			wpi_free_txfrags(sc, ac);
3161			ieee80211_free_mbuf(m);
3162			ieee80211_free_node(ni);
3163			break;
3164		}
3165	} while((m = mnext) != NULL);
3166
3167	DPRINTF(sc, WPI_DEBUG_XMIT, "%s: done\n", __func__);
3168
3169unlock:	WPI_TX_UNLOCK(sc);
3170
3171	return (error);
3172}
3173
3174static void
3175wpi_watchdog_rfkill(void *arg)
3176{
3177	struct wpi_softc *sc = arg;
3178	struct ieee80211com *ic = &sc->sc_ic;
3179
3180	DPRINTF(sc, WPI_DEBUG_WATCHDOG, "RFkill Watchdog: tick\n");
3181
3182	/* No need to lock firmware memory. */
3183	if ((wpi_prph_read(sc, WPI_APMG_RFKILL) & 0x1) == 0) {
3184		/* Radio kill switch is still off. */
3185		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
3186		    sc);
3187	} else
3188		ieee80211_runtask(ic, &sc->sc_radioon_task);
3189}
3190
3191static void
3192wpi_scan_timeout(void *arg)
3193{
3194	struct wpi_softc *sc = arg;
3195	struct ieee80211com *ic = &sc->sc_ic;
3196
3197	ic_printf(ic, "scan timeout\n");
3198	ieee80211_restart_all(ic);
3199}
3200
3201static void
3202wpi_tx_timeout(void *arg)
3203{
3204	struct wpi_softc *sc = arg;
3205	struct ieee80211com *ic = &sc->sc_ic;
3206
3207	ic_printf(ic, "device timeout\n");
3208	ieee80211_restart_all(ic);
3209}
3210
3211static void
3212wpi_parent(struct ieee80211com *ic)
3213{
3214	struct wpi_softc *sc = ic->ic_softc;
3215	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3216
3217	if (ic->ic_nrunning > 0) {
3218		if (wpi_init(sc) == 0) {
3219			ieee80211_notify_radio(ic, 1);
3220			ieee80211_start_all(ic);
3221		} else {
3222			ieee80211_notify_radio(ic, 0);
3223			ieee80211_stop(vap);
3224		}
3225	} else {
3226		ieee80211_notify_radio(ic, 0);
3227		wpi_stop(sc);
3228	}
3229}
3230
3231/*
3232 * Send a command to the firmware.
3233 */
3234static int
3235wpi_cmd(struct wpi_softc *sc, uint8_t code, const void *buf, uint16_t size,
3236    int async)
3237{
3238	struct wpi_tx_ring *ring = &sc->txq[WPI_CMD_QUEUE_NUM];
3239	struct wpi_tx_desc *desc;
3240	struct wpi_tx_data *data;
3241	struct wpi_tx_cmd *cmd;
3242	struct mbuf *m;
3243	bus_addr_t paddr;
3244	uint16_t totlen;
3245	int error;
3246
3247	WPI_TXQ_LOCK(sc);
3248
3249	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3250
3251	if (__predict_false(sc->sc_running == 0)) {
3252		/* wpi_stop() was called */
3253		if (code == WPI_CMD_SCAN)
3254			error = ENETDOWN;
3255		else
3256			error = 0;
3257
3258		goto fail;
3259	}
3260
3261	if (async == 0)
3262		WPI_LOCK_ASSERT(sc);
3263
3264	DPRINTF(sc, WPI_DEBUG_CMD, "%s: cmd %s size %u async %d\n",
3265	    __func__, wpi_cmd_str(code), size, async);
3266
3267	desc = &ring->desc[ring->cur];
3268	data = &ring->data[ring->cur];
3269	totlen = 4 + size;
3270
3271	if (size > sizeof cmd->data) {
3272		/* Command is too large to fit in a descriptor. */
3273		if (totlen > MCLBYTES) {
3274			error = EINVAL;
3275			goto fail;
3276		}
3277		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3278		if (m == NULL) {
3279			error = ENOMEM;
3280			goto fail;
3281		}
3282		cmd = mtod(m, struct wpi_tx_cmd *);
3283		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3284		    totlen, wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3285		if (error != 0) {
3286			m_freem(m);
3287			goto fail;
3288		}
3289		data->m = m;
3290	} else {
3291		cmd = &ring->cmd[ring->cur];
3292		paddr = data->cmd_paddr;
3293	}
3294
3295	cmd->code = code;
3296	cmd->flags = 0;
3297	cmd->qid = ring->qid;
3298	cmd->idx = ring->cur;
3299	memcpy(cmd->data, buf, size);
3300
3301	desc->nsegs = 1 + (WPI_PAD32(size) << 4);
3302	desc->segs[0].addr = htole32(paddr);
3303	desc->segs[0].len  = htole32(totlen);
3304
3305	if (size > sizeof cmd->data) {
3306		bus_dmamap_sync(ring->data_dmat, data->map,
3307		    BUS_DMASYNC_PREWRITE);
3308	} else {
3309		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3310		    BUS_DMASYNC_PREWRITE);
3311	}
3312	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3313	    BUS_DMASYNC_PREWRITE);
3314
3315	/* Kick command ring. */
3316	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
3317	sc->sc_update_tx_ring(sc, ring);
3318
3319	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3320
3321	WPI_TXQ_UNLOCK(sc);
3322
3323	return async ? 0 : mtx_sleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
3324
3325fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
3326
3327	WPI_TXQ_UNLOCK(sc);
3328
3329	return error;
3330}
3331
3332/*
3333 * Configure HW multi-rate retries.
3334 */
3335static int
3336wpi_mrr_setup(struct wpi_softc *sc)
3337{
3338	struct ieee80211com *ic = &sc->sc_ic;
3339	struct wpi_mrr_setup mrr;
3340	uint8_t i;
3341	int error;
3342
3343	/* CCK rates (not used with 802.11a). */
3344	for (i = WPI_RIDX_CCK1; i <= WPI_RIDX_CCK11; i++) {
3345		mrr.rates[i].flags = 0;
3346		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3347		/* Fallback to the immediate lower CCK rate (if any.) */
3348		mrr.rates[i].next =
3349		    (i == WPI_RIDX_CCK1) ? WPI_RIDX_CCK1 : i - 1;
3350		/* Try twice at this rate before falling back to "next". */
3351		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3352	}
3353	/* OFDM rates (not used with 802.11b). */
3354	for (i = WPI_RIDX_OFDM6; i <= WPI_RIDX_OFDM54; i++) {
3355		mrr.rates[i].flags = 0;
3356		mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
3357		/* Fallback to the immediate lower rate (if any.) */
3358		/* We allow fallback from OFDM/6 to CCK/2 in 11b/g mode. */
3359		mrr.rates[i].next = (i == WPI_RIDX_OFDM6) ?
3360		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
3361			WPI_RIDX_OFDM6 : WPI_RIDX_CCK2) :
3362		    i - 1;
3363		/* Try twice at this rate before falling back to "next". */
3364		mrr.rates[i].ntries = WPI_NTRIES_DEFAULT;
3365	}
3366	/* Setup MRR for control frames. */
3367	mrr.which = htole32(WPI_MRR_CTL);
3368	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3369	if (error != 0) {
3370		device_printf(sc->sc_dev,
3371		    "could not setup MRR for control frames\n");
3372		return error;
3373	}
3374	/* Setup MRR for data frames. */
3375	mrr.which = htole32(WPI_MRR_DATA);
3376	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
3377	if (error != 0) {
3378		device_printf(sc->sc_dev,
3379		    "could not setup MRR for data frames\n");
3380		return error;
3381	}
3382	return 0;
3383}
3384
3385static int
3386wpi_add_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3387{
3388	struct ieee80211com *ic = ni->ni_ic;
3389	struct wpi_vap *wvp = WPI_VAP(ni->ni_vap);
3390	struct wpi_node *wn = WPI_NODE(ni);
3391	struct wpi_node_info node;
3392	int error;
3393
3394	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3395
3396	if (wn->id == WPI_ID_UNDEFINED)
3397		return EINVAL;
3398
3399	memset(&node, 0, sizeof node);
3400	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3401	node.id = wn->id;
3402	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3403	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3404	node.action = htole32(WPI_ACTION_SET_RATE);
3405	node.antenna = WPI_ANTENNA_BOTH;
3406
3407	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding node %d (%s)\n", __func__,
3408	    wn->id, ether_sprintf(ni->ni_macaddr));
3409
3410	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
3411	if (error != 0) {
3412		device_printf(sc->sc_dev,
3413		    "%s: wpi_cmd() call failed with error code %d\n", __func__,
3414		    error);
3415		return error;
3416	}
3417
3418	if (wvp->wv_gtk != 0) {
3419		error = wpi_set_global_keys(ni);
3420		if (error != 0) {
3421			device_printf(sc->sc_dev,
3422			    "%s: error while setting global keys\n", __func__);
3423			return ENXIO;
3424		}
3425	}
3426
3427	return 0;
3428}
3429
3430/*
3431 * Broadcast node is used to send group-addressed and management frames.
3432 */
3433static int
3434wpi_add_broadcast_node(struct wpi_softc *sc, int async)
3435{
3436	struct ieee80211com *ic = &sc->sc_ic;
3437	struct wpi_node_info node;
3438
3439	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3440
3441	memset(&node, 0, sizeof node);
3442	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
3443	node.id = WPI_ID_BROADCAST;
3444	node.plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3445	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
3446	node.action = htole32(WPI_ACTION_SET_RATE);
3447	node.antenna = WPI_ANTENNA_BOTH;
3448
3449	DPRINTF(sc, WPI_DEBUG_NODE, "%s: adding broadcast node\n", __func__);
3450
3451	return wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, async);
3452}
3453
3454static int
3455wpi_add_sta_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3456{
3457	struct wpi_node *wn = WPI_NODE(ni);
3458	int error;
3459
3460	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3461
3462	wn->id = wpi_add_node_entry_sta(sc);
3463
3464	if ((error = wpi_add_node(sc, ni)) != 0) {
3465		wpi_del_node_entry(sc, wn->id);
3466		wn->id = WPI_ID_UNDEFINED;
3467		return error;
3468	}
3469
3470	return 0;
3471}
3472
3473static int
3474wpi_add_ibss_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3475{
3476	struct wpi_node *wn = WPI_NODE(ni);
3477	int error;
3478
3479	KASSERT(wn->id == WPI_ID_UNDEFINED,
3480	    ("the node %d was added before", wn->id));
3481
3482	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3483
3484	if ((wn->id = wpi_add_node_entry_adhoc(sc)) == WPI_ID_UNDEFINED) {
3485		device_printf(sc->sc_dev, "%s: h/w table is full\n", __func__);
3486		return ENOMEM;
3487	}
3488
3489	if ((error = wpi_add_node(sc, ni)) != 0) {
3490		wpi_del_node_entry(sc, wn->id);
3491		wn->id = WPI_ID_UNDEFINED;
3492		return error;
3493	}
3494
3495	return 0;
3496}
3497
3498static void
3499wpi_del_node(struct wpi_softc *sc, struct ieee80211_node *ni)
3500{
3501	struct wpi_node *wn = WPI_NODE(ni);
3502	struct wpi_cmd_del_node node;
3503	int error;
3504
3505	KASSERT(wn->id != WPI_ID_UNDEFINED, ("undefined node id passed"));
3506
3507	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3508
3509	memset(&node, 0, sizeof node);
3510	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3511	node.count = 1;
3512
3513	DPRINTF(sc, WPI_DEBUG_NODE, "%s: deleting node %d (%s)\n", __func__,
3514	    wn->id, ether_sprintf(ni->ni_macaddr));
3515
3516	error = wpi_cmd(sc, WPI_CMD_DEL_NODE, &node, sizeof node, 1);
3517	if (error != 0) {
3518		device_printf(sc->sc_dev,
3519		    "%s: could not delete node %u, error %d\n", __func__,
3520		    wn->id, error);
3521	}
3522}
3523
3524static int
3525wpi_updateedca(struct ieee80211com *ic)
3526{
3527#define WPI_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3528	struct wpi_softc *sc = ic->ic_softc;
3529	struct chanAccParams chp;
3530	struct wpi_edca_params cmd;
3531	int aci, error;
3532
3533	ieee80211_wme_ic_getparams(ic, &chp);
3534
3535	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3536
3537	memset(&cmd, 0, sizeof cmd);
3538	cmd.flags = htole32(WPI_EDCA_UPDATE);
3539	for (aci = 0; aci < WME_NUM_AC; aci++) {
3540		const struct wmeParams *ac = &chp.cap_wmeParams[aci];
3541		cmd.ac[aci].aifsn = ac->wmep_aifsn;
3542		cmd.ac[aci].cwmin = htole16(WPI_EXP2(ac->wmep_logcwmin));
3543		cmd.ac[aci].cwmax = htole16(WPI_EXP2(ac->wmep_logcwmax));
3544		cmd.ac[aci].txoplimit =
3545		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
3546
3547		DPRINTF(sc, WPI_DEBUG_EDCA,
3548		    "setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
3549		    "txoplimit=%d\n", aci, cmd.ac[aci].aifsn,
3550		    cmd.ac[aci].cwmin, cmd.ac[aci].cwmax,
3551		    cmd.ac[aci].txoplimit);
3552	}
3553	error = wpi_cmd(sc, WPI_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
3554
3555	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
3556
3557	return error;
3558#undef WPI_EXP2
3559}
3560
3561static void
3562wpi_set_promisc(struct wpi_softc *sc)
3563{
3564	struct ieee80211com *ic = &sc->sc_ic;
3565	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3566	uint32_t promisc_filter;
3567
3568	promisc_filter = WPI_FILTER_CTL;
3569	if (vap != NULL && vap->iv_opmode != IEEE80211_M_HOSTAP)
3570		promisc_filter |= WPI_FILTER_PROMISC;
3571
3572	if (ic->ic_promisc > 0)
3573		sc->rxon.filter |= htole32(promisc_filter);
3574	else
3575		sc->rxon.filter &= ~htole32(promisc_filter);
3576}
3577
3578static void
3579wpi_update_promisc(struct ieee80211com *ic)
3580{
3581	struct wpi_softc *sc = ic->ic_softc;
3582
3583	WPI_LOCK(sc);
3584	if (sc->sc_running == 0) {
3585		WPI_UNLOCK(sc);
3586		return;
3587	}
3588	WPI_UNLOCK(sc);
3589
3590	WPI_RXON_LOCK(sc);
3591	wpi_set_promisc(sc);
3592
3593	if (wpi_send_rxon(sc, 1, 1) != 0) {
3594		device_printf(sc->sc_dev, "%s: could not send RXON\n",
3595		    __func__);
3596	}
3597	WPI_RXON_UNLOCK(sc);
3598}
3599
3600static void
3601wpi_update_mcast(struct ieee80211com *ic)
3602{
3603	/* Ignore */
3604}
3605
3606static void
3607wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3608{
3609	struct wpi_cmd_led led;
3610
3611	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3612
3613	led.which = which;
3614	led.unit = htole32(100000);	/* on/off in unit of 100ms */
3615	led.off = off;
3616	led.on = on;
3617	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
3618}
3619
3620static int
3621wpi_set_timing(struct wpi_softc *sc, struct ieee80211_node *ni)
3622{
3623	struct wpi_cmd_timing cmd;
3624	uint64_t val, mod;
3625
3626	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3627
3628	memset(&cmd, 0, sizeof cmd);
3629	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3630	cmd.bintval = htole16(ni->ni_intval);
3631	cmd.lintval = htole16(10);
3632
3633	/* Compute remaining time until next beacon. */
3634	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
3635	mod = le64toh(cmd.tstamp) % val;
3636	cmd.binitval = htole32((uint32_t)(val - mod));
3637
3638	DPRINTF(sc, WPI_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3639	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3640
3641	return wpi_cmd(sc, WPI_CMD_TIMING, &cmd, sizeof cmd, 1);
3642}
3643
3644/*
3645 * This function is called periodically (every 60 seconds) to adjust output
3646 * power to temperature changes.
3647 */
3648static void
3649wpi_power_calibration(struct wpi_softc *sc)
3650{
3651	int temp;
3652
3653	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
3654
3655	/* Update sensor data. */
3656	temp = (int)WPI_READ(sc, WPI_UCODE_GP2);
3657	DPRINTF(sc, WPI_DEBUG_TEMP, "Temp in calibration is: %d\n", temp);
3658
3659	/* Sanity-check read value. */
3660	if (temp < -260 || temp > 25) {
3661		/* This can't be correct, ignore. */
3662		DPRINTF(sc, WPI_DEBUG_TEMP,
3663		    "out-of-range temperature reported: %d\n", temp);
3664		return;
3665	}
3666
3667	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d->%d\n", sc->temp, temp);
3668
3669	/* Adjust Tx power if need be. */
3670	if (abs(temp - sc->temp) <= 6)
3671		return;
3672
3673	sc->temp = temp;
3674
3675	if (wpi_set_txpower(sc, 1) != 0) {
3676		/* just warn, too bad for the automatic calibration... */
3677		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3678	}
3679}
3680
3681/*
3682 * Set TX power for current channel.
3683 */
3684static int
3685wpi_set_txpower(struct wpi_softc *sc, int async)
3686{
3687	struct wpi_power_group *group;
3688	struct wpi_cmd_txpower cmd;
3689	uint8_t chan;
3690	int idx, is_chan_5ghz, i;
3691
3692	/* Retrieve current channel from last RXON. */
3693	chan = sc->rxon.chan;
3694	is_chan_5ghz = (sc->rxon.flags & htole32(WPI_RXON_24GHZ)) == 0;
3695
3696	/* Find the TX power group to which this channel belongs. */
3697	if (is_chan_5ghz) {
3698		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3699			if (chan <= group->chan)
3700				break;
3701	} else
3702		group = &sc->groups[0];
3703
3704	memset(&cmd, 0, sizeof cmd);
3705	cmd.band = is_chan_5ghz ? WPI_BAND_5GHZ : WPI_BAND_2GHZ;
3706	cmd.chan = htole16(chan);
3707
3708	/* Set TX power for all OFDM and CCK rates. */
3709	for (i = 0; i <= WPI_RIDX_MAX ; i++) {
3710		/* Retrieve TX power for this channel/rate. */
3711		idx = wpi_get_power_index(sc, group, chan, is_chan_5ghz, i);
3712
3713		cmd.rates[i].plcp = wpi_ridx_to_plcp[i];
3714
3715		if (is_chan_5ghz) {
3716			cmd.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
3717			cmd.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
3718		} else {
3719			cmd.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
3720			cmd.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
3721		}
3722		DPRINTF(sc, WPI_DEBUG_TEMP,
3723		    "chan %d/ridx %d: power index %d\n", chan, i, idx);
3724	}
3725
3726	return wpi_cmd(sc, WPI_CMD_TXPOWER, &cmd, sizeof cmd, async);
3727}
3728
3729/*
3730 * Determine Tx power index for a given channel/rate combination.
3731 * This takes into account the regulatory information from EEPROM and the
3732 * current temperature.
3733 */
3734static int
3735wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3736    uint8_t chan, int is_chan_5ghz, int ridx)
3737{
3738/* Fixed-point arithmetic division using a n-bit fractional part. */
3739#define fdivround(a, b, n)	\
3740	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3741
3742/* Linear interpolation. */
3743#define interpolate(x, x1, y1, x2, y2, n)	\
3744	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3745
3746	struct wpi_power_sample *sample;
3747	int pwr, idx;
3748
3749	/* Default TX power is group maximum TX power minus 3dB. */
3750	pwr = group->maxpwr / 2;
3751
3752	/* Decrease TX power for highest OFDM rates to reduce distortion. */
3753	switch (ridx) {
3754	case WPI_RIDX_OFDM36:
3755		pwr -= is_chan_5ghz ?  5 : 0;
3756		break;
3757	case WPI_RIDX_OFDM48:
3758		pwr -= is_chan_5ghz ? 10 : 7;
3759		break;
3760	case WPI_RIDX_OFDM54:
3761		pwr -= is_chan_5ghz ? 12 : 9;
3762		break;
3763	}
3764
3765	/* Never exceed the channel maximum allowed TX power. */
3766	pwr = min(pwr, sc->maxpwr[chan]);
3767
3768	/* Retrieve TX power index into gain tables from samples. */
3769	for (sample = group->samples; sample < &group->samples[3]; sample++)
3770		if (pwr > sample[1].power)
3771			break;
3772	/* Fixed-point linear interpolation using a 19-bit fractional part. */
3773	idx = interpolate(pwr, sample[0].power, sample[0].index,
3774	    sample[1].power, sample[1].index, 19);
3775
3776	/*-
3777	 * Adjust power index based on current temperature:
3778	 * - if cooler than factory-calibrated: decrease output power
3779	 * - if warmer than factory-calibrated: increase output power
3780	 */
3781	idx -= (sc->temp - group->temp) * 11 / 100;
3782
3783	/* Decrease TX power for CCK rates (-5dB). */
3784	if (ridx >= WPI_RIDX_CCK1)
3785		idx += 10;
3786
3787	/* Make sure idx stays in a valid range. */
3788	if (idx < 0)
3789		return 0;
3790	if (idx > WPI_MAX_PWR_INDEX)
3791		return WPI_MAX_PWR_INDEX;
3792	return idx;
3793
3794#undef interpolate
3795#undef fdivround
3796}
3797
3798/*
3799 * Set STA mode power saving level (between 0 and 5).
3800 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
3801 */
3802static int
3803wpi_set_pslevel(struct wpi_softc *sc, uint8_t dtim, int level, int async)
3804{
3805	struct wpi_pmgt_cmd cmd;
3806	const struct wpi_pmgt *pmgt;
3807	uint32_t max, reg;
3808	uint8_t skip_dtim;
3809	int i;
3810
3811	DPRINTF(sc, WPI_DEBUG_PWRSAVE,
3812	    "%s: dtim=%d, level=%d, async=%d\n",
3813	    __func__, dtim, level, async);
3814
3815	/* Select which PS parameters to use. */
3816	if (dtim <= 10)
3817		pmgt = &wpi_pmgt[0][level];
3818	else
3819		pmgt = &wpi_pmgt[1][level];
3820
3821	memset(&cmd, 0, sizeof cmd);
3822	if (level != 0)	/* not CAM */
3823		cmd.flags |= htole16(WPI_PS_ALLOW_SLEEP);
3824	/* Retrieve PCIe Active State Power Management (ASPM). */
3825	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
3826	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
3827		cmd.flags |= htole16(WPI_PS_PCI_PMGT);
3828
3829	cmd.rxtimeout = htole32(pmgt->rxtimeout * IEEE80211_DUR_TU);
3830	cmd.txtimeout = htole32(pmgt->txtimeout * IEEE80211_DUR_TU);
3831
3832	if (dtim == 0) {
3833		dtim = 1;
3834		skip_dtim = 0;
3835	} else
3836		skip_dtim = pmgt->skip_dtim;
3837
3838	if (skip_dtim != 0) {
3839		cmd.flags |= htole16(WPI_PS_SLEEP_OVER_DTIM);
3840		max = pmgt->intval[4];
3841		if (max == (uint32_t)-1)
3842			max = dtim * (skip_dtim + 1);
3843		else if (max > dtim)
3844			max = rounddown(max, dtim);
3845	} else
3846		max = dtim;
3847
3848	for (i = 0; i < 5; i++)
3849		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
3850
3851	return wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
3852}
3853
3854static int
3855wpi_send_btcoex(struct wpi_softc *sc)
3856{
3857	struct wpi_bluetooth cmd;
3858
3859	memset(&cmd, 0, sizeof cmd);
3860	cmd.flags = WPI_BT_COEX_MODE_4WIRE;
3861	cmd.lead_time = WPI_BT_LEAD_TIME_DEF;
3862	cmd.max_kill = WPI_BT_MAX_KILL_DEF;
3863	DPRINTF(sc, WPI_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
3864	    __func__);
3865	return wpi_cmd(sc, WPI_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
3866}
3867
3868static int
3869wpi_send_rxon(struct wpi_softc *sc, int assoc, int async)
3870{
3871	int error;
3872
3873	if (async)
3874		WPI_RXON_LOCK_ASSERT(sc);
3875
3876	if (assoc && wpi_check_bss_filter(sc) != 0) {
3877		struct wpi_assoc rxon_assoc;
3878
3879		rxon_assoc.flags = sc->rxon.flags;
3880		rxon_assoc.filter = sc->rxon.filter;
3881		rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
3882		rxon_assoc.cck_mask = sc->rxon.cck_mask;
3883		rxon_assoc.reserved = 0;
3884
3885		error = wpi_cmd(sc, WPI_CMD_RXON_ASSOC, &rxon_assoc,
3886		    sizeof (struct wpi_assoc), async);
3887		if (error != 0) {
3888			device_printf(sc->sc_dev,
3889			    "RXON_ASSOC command failed, error %d\n", error);
3890			return error;
3891		}
3892	} else {
3893		if (async) {
3894			WPI_NT_LOCK(sc);
3895			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3896			    sizeof (struct wpi_rxon), async);
3897			if (error == 0)
3898				wpi_clear_node_table(sc);
3899			WPI_NT_UNLOCK(sc);
3900		} else {
3901			error = wpi_cmd(sc, WPI_CMD_RXON, &sc->rxon,
3902			    sizeof (struct wpi_rxon), async);
3903			if (error == 0)
3904				wpi_clear_node_table(sc);
3905		}
3906
3907		if (error != 0) {
3908			device_printf(sc->sc_dev,
3909			    "RXON command failed, error %d\n", error);
3910			return error;
3911		}
3912
3913		/* Add broadcast node. */
3914		error = wpi_add_broadcast_node(sc, async);
3915		if (error != 0) {
3916			device_printf(sc->sc_dev,
3917			    "could not add broadcast node, error %d\n", error);
3918			return error;
3919		}
3920	}
3921
3922	/* Configuration has changed, set Tx power accordingly. */
3923	if ((error = wpi_set_txpower(sc, async)) != 0) {
3924		device_printf(sc->sc_dev,
3925		    "%s: could not set TX power, error %d\n", __func__, error);
3926		return error;
3927	}
3928
3929	return 0;
3930}
3931
3932/**
3933 * Configure the card to listen to a particular channel, this transisions the
3934 * card in to being able to receive frames from remote devices.
3935 */
3936static int
3937wpi_config(struct wpi_softc *sc)
3938{
3939	struct ieee80211com *ic = &sc->sc_ic;
3940	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3941	struct ieee80211_channel *c = ic->ic_curchan;
3942	int error;
3943
3944	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
3945
3946	/* Set power saving level to CAM during initialization. */
3947	if ((error = wpi_set_pslevel(sc, 0, 0, 0)) != 0) {
3948		device_printf(sc->sc_dev,
3949		    "%s: could not set power saving level\n", __func__);
3950		return error;
3951	}
3952
3953	/* Configure bluetooth coexistence. */
3954	if ((error = wpi_send_btcoex(sc)) != 0) {
3955		device_printf(sc->sc_dev,
3956		    "could not configure bluetooth coexistence\n");
3957		return error;
3958	}
3959
3960	/* Configure adapter. */
3961	memset(&sc->rxon, 0, sizeof (struct wpi_rxon));
3962	IEEE80211_ADDR_COPY(sc->rxon.myaddr, vap->iv_myaddr);
3963
3964	/* Set default channel. */
3965	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
3966	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
3967	if (IEEE80211_IS_CHAN_2GHZ(c))
3968		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
3969
3970	sc->rxon.filter = WPI_FILTER_MULTICAST;
3971	switch (ic->ic_opmode) {
3972	case IEEE80211_M_STA:
3973		sc->rxon.mode = WPI_MODE_STA;
3974		break;
3975	case IEEE80211_M_IBSS:
3976		sc->rxon.mode = WPI_MODE_IBSS;
3977		sc->rxon.filter |= WPI_FILTER_BEACON;
3978		break;
3979	case IEEE80211_M_HOSTAP:
3980		/* XXX workaround for beaconing */
3981		sc->rxon.mode = WPI_MODE_IBSS;
3982		sc->rxon.filter |= WPI_FILTER_ASSOC | WPI_FILTER_PROMISC;
3983		break;
3984	case IEEE80211_M_AHDEMO:
3985		sc->rxon.mode = WPI_MODE_HOSTAP;
3986		break;
3987	case IEEE80211_M_MONITOR:
3988		sc->rxon.mode = WPI_MODE_MONITOR;
3989		break;
3990	default:
3991		device_printf(sc->sc_dev, "unknown opmode %d\n",
3992		    ic->ic_opmode);
3993		return EINVAL;
3994	}
3995	sc->rxon.filter = htole32(sc->rxon.filter);
3996	wpi_set_promisc(sc);
3997	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
3998	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
3999
4000	if ((error = wpi_send_rxon(sc, 0, 0)) != 0) {
4001		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4002		    __func__);
4003		return error;
4004	}
4005
4006	/* Setup rate scalling. */
4007	if ((error = wpi_mrr_setup(sc)) != 0) {
4008		device_printf(sc->sc_dev, "could not setup MRR, error %d\n",
4009		    error);
4010		return error;
4011	}
4012
4013	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4014
4015	return 0;
4016}
4017
4018static uint16_t
4019wpi_get_active_dwell_time(struct wpi_softc *sc,
4020    struct ieee80211_channel *c, uint8_t n_probes)
4021{
4022	/* No channel? Default to 2GHz settings. */
4023	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
4024		return (WPI_ACTIVE_DWELL_TIME_2GHZ +
4025		WPI_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
4026	}
4027
4028	/* 5GHz dwell time. */
4029	return (WPI_ACTIVE_DWELL_TIME_5GHZ +
4030	    WPI_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
4031}
4032
4033/*
4034 * Limit the total dwell time.
4035 *
4036 * Returns the dwell time in milliseconds.
4037 */
4038static uint16_t
4039wpi_limit_dwell(struct wpi_softc *sc, uint16_t dwell_time)
4040{
4041	struct ieee80211com *ic = &sc->sc_ic;
4042	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4043	uint16_t bintval = 0;
4044
4045	/* bintval is in TU (1.024mS) */
4046	if (vap != NULL)
4047		bintval = vap->iv_bss->ni_intval;
4048
4049	/*
4050	 * If it's non-zero, we should calculate the minimum of
4051	 * it and the DWELL_BASE.
4052	 *
4053	 * XXX Yes, the math should take into account that bintval
4054	 * is 1.024mS, not 1mS..
4055	 */
4056	if (bintval > 0) {
4057		DPRINTF(sc, WPI_DEBUG_SCAN, "%s: bintval=%d\n", __func__,
4058		    bintval);
4059		return (MIN(dwell_time, bintval - WPI_CHANNEL_TUNE_TIME * 2));
4060	}
4061
4062	/* No association context? Default. */
4063	return dwell_time;
4064}
4065
4066static uint16_t
4067wpi_get_passive_dwell_time(struct wpi_softc *sc, struct ieee80211_channel *c)
4068{
4069	uint16_t passive;
4070
4071	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c))
4072		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_2GHZ;
4073	else
4074		passive = WPI_PASSIVE_DWELL_BASE + WPI_PASSIVE_DWELL_TIME_5GHZ;
4075
4076	/* Clamp to the beacon interval if we're associated. */
4077	return (wpi_limit_dwell(sc, passive));
4078}
4079
4080static uint32_t
4081wpi_get_scan_pause_time(uint32_t time, uint16_t bintval)
4082{
4083	uint32_t mod = (time % bintval) * IEEE80211_DUR_TU;
4084	uint32_t nbeacons = time / bintval;
4085
4086	if (mod > WPI_PAUSE_MAX_TIME)
4087		mod = WPI_PAUSE_MAX_TIME;
4088
4089	return WPI_PAUSE_SCAN(nbeacons, mod);
4090}
4091
4092/*
4093 * Send a scan request to the firmware.
4094 */
4095static int
4096wpi_scan(struct wpi_softc *sc, struct ieee80211_channel *c)
4097{
4098	struct ieee80211com *ic = &sc->sc_ic;
4099	struct ieee80211_scan_state *ss = ic->ic_scan;
4100	struct ieee80211vap *vap = ss->ss_vap;
4101	struct wpi_scan_hdr *hdr;
4102	struct wpi_cmd_data *tx;
4103	struct wpi_scan_essid *essids;
4104	struct wpi_scan_chan *chan;
4105	struct ieee80211_frame *wh;
4106	struct ieee80211_rateset *rs;
4107	uint16_t bintval, buflen, dwell_active, dwell_passive;
4108	uint8_t *buf, *frm, i, nssid;
4109	int bgscan, error;
4110
4111	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4112
4113	/*
4114	 * We are absolutely not allowed to send a scan command when another
4115	 * scan command is pending.
4116	 */
4117	if (callout_pending(&sc->scan_timeout)) {
4118		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
4119		    __func__);
4120		error = EAGAIN;
4121		goto fail;
4122	}
4123
4124	bgscan = wpi_check_bss_filter(sc);
4125	bintval = vap->iv_bss->ni_intval;
4126	if (bgscan != 0 &&
4127	    bintval < WPI_QUIET_TIME_DEFAULT + WPI_CHANNEL_TUNE_TIME * 2) {
4128		error = EOPNOTSUPP;
4129		goto fail;
4130	}
4131
4132	buf = malloc(WPI_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4133	if (buf == NULL) {
4134		device_printf(sc->sc_dev,
4135		    "%s: could not allocate buffer for scan command\n",
4136		    __func__);
4137		error = ENOMEM;
4138		goto fail;
4139	}
4140	hdr = (struct wpi_scan_hdr *)buf;
4141
4142	/*
4143	 * Move to the next channel if no packets are received within 10 msecs
4144	 * after sending the probe request.
4145	 */
4146	hdr->quiet_time = htole16(WPI_QUIET_TIME_DEFAULT);
4147	hdr->quiet_threshold = htole16(1);
4148
4149	if (bgscan != 0) {
4150		/*
4151		 * Max needs to be greater than active and passive and quiet!
4152		 * It's also in microseconds!
4153		 */
4154		hdr->max_svc = htole32(250 * IEEE80211_DUR_TU);
4155		hdr->pause_svc = htole32(wpi_get_scan_pause_time(100,
4156		    bintval));
4157	}
4158
4159	hdr->filter = htole32(WPI_FILTER_MULTICAST | WPI_FILTER_BEACON);
4160
4161	tx = (struct wpi_cmd_data *)(hdr + 1);
4162	tx->flags = htole32(WPI_TX_AUTO_SEQ);
4163	tx->id = WPI_ID_BROADCAST;
4164	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
4165
4166	if (IEEE80211_IS_CHAN_5GHZ(c)) {
4167		/* Send probe requests at 6Mbps. */
4168		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_OFDM6];
4169		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4170	} else {
4171		hdr->flags = htole32(WPI_RXON_24GHZ | WPI_RXON_AUTO);
4172		/* Send probe requests at 1Mbps. */
4173		tx->plcp = wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4174		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4175	}
4176
4177	essids = (struct wpi_scan_essid *)(tx + 1);
4178	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
4179	for (i = 0; i < nssid; i++) {
4180		essids[i].id = IEEE80211_ELEMID_SSID;
4181		essids[i].len = MIN(ss->ss_ssid[i].len, IEEE80211_NWID_LEN);
4182		memcpy(essids[i].data, ss->ss_ssid[i].ssid, essids[i].len);
4183#ifdef WPI_DEBUG
4184		if (sc->sc_debug & WPI_DEBUG_SCAN) {
4185			printf("Scanning Essid: ");
4186			ieee80211_print_essid(essids[i].data, essids[i].len);
4187			printf("\n");
4188		}
4189#endif
4190	}
4191
4192	/*
4193	 * Build a probe request frame.  Most of the following code is a
4194	 * copy & paste of what is done in net80211.
4195	 */
4196	wh = (struct ieee80211_frame *)(essids + WPI_SCAN_MAX_ESSIDS);
4197	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4198		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4199	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4200	IEEE80211_ADDR_COPY(wh->i_addr1, ieee80211broadcastaddr);
4201	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
4202	IEEE80211_ADDR_COPY(wh->i_addr3, ieee80211broadcastaddr);
4203
4204	frm = (uint8_t *)(wh + 1);
4205	frm = ieee80211_add_ssid(frm, NULL, 0);
4206	frm = ieee80211_add_rates(frm, rs);
4207	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4208		frm = ieee80211_add_xrates(frm, rs);
4209
4210	/* Set length of probe request. */
4211	tx->len = htole16(frm - (uint8_t *)wh);
4212
4213	/*
4214	 * Construct information about the channel that we
4215	 * want to scan. The firmware expects this to be directly
4216	 * after the scan probe request
4217	 */
4218	chan = (struct wpi_scan_chan *)frm;
4219	chan->chan = ieee80211_chan2ieee(ic, c);
4220	chan->flags = 0;
4221	if (nssid) {
4222		hdr->crc_threshold = WPI_SCAN_CRC_TH_DEFAULT;
4223		chan->flags |= WPI_CHAN_NPBREQS(nssid);
4224	} else
4225		hdr->crc_threshold = WPI_SCAN_CRC_TH_NEVER;
4226
4227	if (!IEEE80211_IS_CHAN_PASSIVE(c))
4228		chan->flags |= WPI_CHAN_ACTIVE;
4229
4230	/*
4231	 * Calculate the active/passive dwell times.
4232	 */
4233	dwell_active = wpi_get_active_dwell_time(sc, c, nssid);
4234	dwell_passive = wpi_get_passive_dwell_time(sc, c);
4235
4236	/* Make sure they're valid. */
4237	if (dwell_active > dwell_passive)
4238		dwell_active = dwell_passive;
4239
4240	chan->active = htole16(dwell_active);
4241	chan->passive = htole16(dwell_passive);
4242
4243	chan->dsp_gain = 0x6e;  /* Default level */
4244
4245	if (IEEE80211_IS_CHAN_5GHZ(c))
4246		chan->rf_gain = 0x3b;
4247	else
4248		chan->rf_gain = 0x28;
4249
4250	DPRINTF(sc, WPI_DEBUG_SCAN, "Scanning %u Passive: %d\n",
4251	    chan->chan, IEEE80211_IS_CHAN_PASSIVE(c));
4252
4253	hdr->nchan++;
4254
4255	if (hdr->nchan == 1 && sc->rxon.chan == chan->chan) {
4256		/* XXX Force probe request transmission. */
4257		memcpy(chan + 1, chan, sizeof (struct wpi_scan_chan));
4258
4259		chan++;
4260
4261		/* Reduce unnecessary delay. */
4262		chan->flags = 0;
4263		chan->passive = chan->active = hdr->quiet_time;
4264
4265		hdr->nchan++;
4266	}
4267
4268	chan++;
4269
4270	buflen = (uint8_t *)chan - buf;
4271	hdr->len = htole16(buflen);
4272
4273	DPRINTF(sc, WPI_DEBUG_CMD, "sending scan command nchan=%d\n",
4274	    hdr->nchan);
4275	error = wpi_cmd(sc, WPI_CMD_SCAN, buf, buflen, 1);
4276	free(buf, M_DEVBUF);
4277
4278	if (error != 0)
4279		goto fail;
4280
4281	callout_reset(&sc->scan_timeout, 5*hz, wpi_scan_timeout, sc);
4282
4283	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4284
4285	return 0;
4286
4287fail:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
4288
4289	return error;
4290}
4291
4292static int
4293wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
4294{
4295	struct ieee80211com *ic = vap->iv_ic;
4296	struct ieee80211_node *ni = vap->iv_bss;
4297	struct ieee80211_channel *c = ni->ni_chan;
4298	int error;
4299
4300	WPI_RXON_LOCK(sc);
4301
4302	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4303
4304	/* Update adapter configuration. */
4305	sc->rxon.associd = 0;
4306	sc->rxon.filter &= ~htole32(WPI_FILTER_BSS);
4307	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4308	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4309	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4310	if (IEEE80211_IS_CHAN_2GHZ(c))
4311		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4312	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4313		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4314	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4315		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4316	if (IEEE80211_IS_CHAN_A(c)) {
4317		sc->rxon.cck_mask  = 0;
4318		sc->rxon.ofdm_mask = 0x15;
4319	} else if (IEEE80211_IS_CHAN_B(c)) {
4320		sc->rxon.cck_mask  = 0x03;
4321		sc->rxon.ofdm_mask = 0;
4322	} else {
4323		/* Assume 802.11b/g. */
4324		sc->rxon.cck_mask  = 0x0f;
4325		sc->rxon.ofdm_mask = 0x15;
4326	}
4327
4328	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
4329	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
4330	    sc->rxon.ofdm_mask);
4331
4332	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4333		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4334		    __func__);
4335	}
4336
4337	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4338
4339	WPI_RXON_UNLOCK(sc);
4340
4341	return error;
4342}
4343
4344static int
4345wpi_config_beacon(struct wpi_vap *wvp)
4346{
4347	struct ieee80211vap *vap = &wvp->wv_vap;
4348	struct ieee80211com *ic = vap->iv_ic;
4349	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4350	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4351	struct wpi_softc *sc = ic->ic_softc;
4352	struct wpi_cmd_beacon *cmd = (struct wpi_cmd_beacon *)&bcn->data;
4353	struct ieee80211_tim_ie *tie;
4354	struct mbuf *m;
4355	uint8_t *ptr;
4356	int error;
4357
4358	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4359
4360	WPI_VAP_LOCK_ASSERT(wvp);
4361
4362	cmd->len = htole16(bcn->m->m_pkthdr.len);
4363	cmd->plcp = (ic->ic_curmode == IEEE80211_MODE_11A) ?
4364	    wpi_ridx_to_plcp[WPI_RIDX_OFDM6] : wpi_ridx_to_plcp[WPI_RIDX_CCK1];
4365
4366	/* XXX seems to be unused */
4367	if (*(bo->bo_tim) == IEEE80211_ELEMID_TIM) {
4368		tie = (struct ieee80211_tim_ie *) bo->bo_tim;
4369		ptr = mtod(bcn->m, uint8_t *);
4370
4371		cmd->tim = htole16(bo->bo_tim - ptr);
4372		cmd->timsz = tie->tim_len;
4373	}
4374
4375	/* Necessary for recursion in ieee80211_beacon_update(). */
4376	m = bcn->m;
4377	bcn->m = m_dup(m, M_NOWAIT);
4378	if (bcn->m == NULL) {
4379		device_printf(sc->sc_dev,
4380		    "%s: could not copy beacon frame\n", __func__);
4381		error = ENOMEM;
4382		goto end;
4383	}
4384
4385	if ((error = wpi_cmd2(sc, bcn)) != 0) {
4386		device_printf(sc->sc_dev,
4387		    "%s: could not update beacon frame, error %d", __func__,
4388		    error);
4389		m_freem(bcn->m);
4390	}
4391
4392	/* Restore mbuf. */
4393end:	bcn->m = m;
4394
4395	return error;
4396}
4397
4398static int
4399wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
4400{
4401	struct ieee80211vap *vap = ni->ni_vap;
4402	struct wpi_vap *wvp = WPI_VAP(vap);
4403	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4404	struct mbuf *m;
4405	int error;
4406
4407	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4408
4409	if (ni->ni_chan == IEEE80211_CHAN_ANYC)
4410		return EINVAL;
4411
4412	m = ieee80211_beacon_alloc(ni);
4413	if (m == NULL) {
4414		device_printf(sc->sc_dev,
4415		    "%s: could not allocate beacon frame\n", __func__);
4416		return ENOMEM;
4417	}
4418
4419	WPI_VAP_LOCK(wvp);
4420	if (bcn->m != NULL)
4421		m_freem(bcn->m);
4422
4423	bcn->m = m;
4424
4425	error = wpi_config_beacon(wvp);
4426	WPI_VAP_UNLOCK(wvp);
4427
4428	return error;
4429}
4430
4431static void
4432wpi_update_beacon(struct ieee80211vap *vap, int item)
4433{
4434	struct wpi_softc *sc = vap->iv_ic->ic_softc;
4435	struct wpi_vap *wvp = WPI_VAP(vap);
4436	struct wpi_buf *bcn = &wvp->wv_bcbuf;
4437	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
4438	struct ieee80211_node *ni = vap->iv_bss;
4439	int mcast = 0;
4440
4441	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4442
4443	WPI_VAP_LOCK(wvp);
4444	if (bcn->m == NULL) {
4445		bcn->m = ieee80211_beacon_alloc(ni);
4446		if (bcn->m == NULL) {
4447			device_printf(sc->sc_dev,
4448			    "%s: could not allocate beacon frame\n", __func__);
4449
4450			DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR,
4451			    __func__);
4452
4453			WPI_VAP_UNLOCK(wvp);
4454			return;
4455		}
4456	}
4457	WPI_VAP_UNLOCK(wvp);
4458
4459	if (item == IEEE80211_BEACON_TIM)
4460		mcast = 1;	/* TODO */
4461
4462	setbit(bo->bo_flags, item);
4463	ieee80211_beacon_update(ni, bcn->m, mcast);
4464
4465	WPI_VAP_LOCK(wvp);
4466	wpi_config_beacon(wvp);
4467	WPI_VAP_UNLOCK(wvp);
4468
4469	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4470}
4471
4472static void
4473wpi_newassoc(struct ieee80211_node *ni, int isnew)
4474{
4475	struct ieee80211vap *vap = ni->ni_vap;
4476	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4477	struct wpi_node *wn = WPI_NODE(ni);
4478	int error;
4479
4480	WPI_NT_LOCK(sc);
4481
4482	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4483
4484	if (vap->iv_opmode != IEEE80211_M_STA && wn->id == WPI_ID_UNDEFINED) {
4485		if ((error = wpi_add_ibss_node(sc, ni)) != 0) {
4486			device_printf(sc->sc_dev,
4487			    "%s: could not add IBSS node, error %d\n",
4488			    __func__, error);
4489		}
4490	}
4491	WPI_NT_UNLOCK(sc);
4492}
4493
4494static int
4495wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
4496{
4497	struct ieee80211com *ic = vap->iv_ic;
4498	struct ieee80211_node *ni = vap->iv_bss;
4499	struct ieee80211_channel *c = ni->ni_chan;
4500	int error;
4501
4502	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
4503
4504	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
4505		/* Link LED blinks while monitoring. */
4506		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
4507		return 0;
4508	}
4509
4510	/* XXX kernel panic workaround */
4511	if (c == IEEE80211_CHAN_ANYC) {
4512		device_printf(sc->sc_dev, "%s: incomplete configuration\n",
4513		    __func__);
4514		return EINVAL;
4515	}
4516
4517	if ((error = wpi_set_timing(sc, ni)) != 0) {
4518		device_printf(sc->sc_dev,
4519		    "%s: could not set timing, error %d\n", __func__, error);
4520		return error;
4521	}
4522
4523	/* Update adapter configuration. */
4524	WPI_RXON_LOCK(sc);
4525	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4526	sc->rxon.associd = htole16(IEEE80211_NODE_AID(ni));
4527	sc->rxon.chan = ieee80211_chan2ieee(ic, c);
4528	sc->rxon.flags = htole32(WPI_RXON_TSF | WPI_RXON_CTS_TO_SELF);
4529	if (IEEE80211_IS_CHAN_2GHZ(c))
4530		sc->rxon.flags |= htole32(WPI_RXON_AUTO | WPI_RXON_24GHZ);
4531	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4532		sc->rxon.flags |= htole32(WPI_RXON_SHSLOT);
4533	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4534		sc->rxon.flags |= htole32(WPI_RXON_SHPREAMBLE);
4535	if (IEEE80211_IS_CHAN_A(c)) {
4536		sc->rxon.cck_mask  = 0;
4537		sc->rxon.ofdm_mask = 0x15;
4538	} else if (IEEE80211_IS_CHAN_B(c)) {
4539		sc->rxon.cck_mask  = 0x03;
4540		sc->rxon.ofdm_mask = 0;
4541	} else {
4542		/* Assume 802.11b/g. */
4543		sc->rxon.cck_mask  = 0x0f;
4544		sc->rxon.ofdm_mask = 0x15;
4545	}
4546	sc->rxon.filter |= htole32(WPI_FILTER_BSS);
4547
4548	DPRINTF(sc, WPI_DEBUG_STATE, "rxon chan %d flags %x\n",
4549	    sc->rxon.chan, sc->rxon.flags);
4550
4551	if ((error = wpi_send_rxon(sc, 0, 1)) != 0) {
4552		device_printf(sc->sc_dev, "%s: could not send RXON\n",
4553		    __func__);
4554		return error;
4555	}
4556
4557	/* Start periodic calibration timer. */
4558	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
4559
4560	WPI_RXON_UNLOCK(sc);
4561
4562	if (vap->iv_opmode == IEEE80211_M_IBSS ||
4563	    vap->iv_opmode == IEEE80211_M_HOSTAP) {
4564		if ((error = wpi_setup_beacon(sc, ni)) != 0) {
4565			device_printf(sc->sc_dev,
4566			    "%s: could not setup beacon, error %d\n", __func__,
4567			    error);
4568			return error;
4569		}
4570	}
4571
4572	if (vap->iv_opmode == IEEE80211_M_STA) {
4573		/* Add BSS node. */
4574		WPI_NT_LOCK(sc);
4575		error = wpi_add_sta_node(sc, ni);
4576		WPI_NT_UNLOCK(sc);
4577		if (error != 0) {
4578			device_printf(sc->sc_dev,
4579			    "%s: could not add BSS node, error %d\n", __func__,
4580			    error);
4581			return error;
4582		}
4583	}
4584
4585	/* Link LED always on while associated. */
4586	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
4587
4588	/* Enable power-saving mode if requested by user. */
4589	if ((vap->iv_flags & IEEE80211_F_PMGTON) &&
4590	    vap->iv_opmode != IEEE80211_M_IBSS)
4591		(void)wpi_set_pslevel(sc, 0, 3, 1);
4592
4593	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
4594
4595	return 0;
4596}
4597
4598static int
4599wpi_load_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4600{
4601	const struct ieee80211_cipher *cip = k->wk_cipher;
4602	struct ieee80211vap *vap = ni->ni_vap;
4603	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4604	struct wpi_node *wn = WPI_NODE(ni);
4605	struct wpi_node_info node;
4606	uint16_t kflags;
4607	int error;
4608
4609	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4610
4611	if (wpi_check_node_entry(sc, wn->id) == 0) {
4612		device_printf(sc->sc_dev, "%s: node does not exist\n",
4613		    __func__);
4614		return 0;
4615	}
4616
4617	switch (cip->ic_cipher) {
4618	case IEEE80211_CIPHER_AES_CCM:
4619		kflags = WPI_KFLAG_CCMP;
4620		break;
4621
4622	default:
4623		device_printf(sc->sc_dev, "%s: unknown cipher %d\n", __func__,
4624		    cip->ic_cipher);
4625		return 0;
4626	}
4627
4628	kflags |= WPI_KFLAG_KID(k->wk_keyix);
4629	if (k->wk_flags & IEEE80211_KEY_GROUP)
4630		kflags |= WPI_KFLAG_MULTICAST;
4631
4632	memset(&node, 0, sizeof node);
4633	node.id = wn->id;
4634	node.control = WPI_NODE_UPDATE;
4635	node.flags = WPI_FLAG_KEY_SET;
4636	node.kflags = htole16(kflags);
4637	memcpy(node.key, k->wk_key, k->wk_keylen);
4638again:
4639	DPRINTF(sc, WPI_DEBUG_KEY,
4640	    "%s: setting %s key id %d for node %d (%s)\n", __func__,
4641	    (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast", k->wk_keyix,
4642	    node.id, ether_sprintf(ni->ni_macaddr));
4643
4644	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4645	if (error != 0) {
4646		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4647		    error);
4648		return !error;
4649	}
4650
4651	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4652	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4653		kflags |= WPI_KFLAG_MULTICAST;
4654		node.kflags = htole16(kflags);
4655
4656		goto again;
4657	}
4658
4659	return 1;
4660}
4661
4662static void
4663wpi_load_key_cb(void *arg, struct ieee80211_node *ni)
4664{
4665	const struct ieee80211_key *k = arg;
4666	struct ieee80211vap *vap = ni->ni_vap;
4667	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4668	struct wpi_node *wn = WPI_NODE(ni);
4669	int error;
4670
4671	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4672		return;
4673
4674	WPI_NT_LOCK(sc);
4675	error = wpi_load_key(ni, k);
4676	WPI_NT_UNLOCK(sc);
4677
4678	if (error == 0) {
4679		device_printf(sc->sc_dev, "%s: error while setting key\n",
4680		    __func__);
4681	}
4682}
4683
4684static int
4685wpi_set_global_keys(struct ieee80211_node *ni)
4686{
4687	struct ieee80211vap *vap = ni->ni_vap;
4688	struct ieee80211_key *wk = &vap->iv_nw_keys[0];
4689	int error = 1;
4690
4691	for (; wk < &vap->iv_nw_keys[IEEE80211_WEP_NKID] && error; wk++)
4692		if (wk->wk_keyix != IEEE80211_KEYIX_NONE)
4693			error = wpi_load_key(ni, wk);
4694
4695	return !error;
4696}
4697
4698static int
4699wpi_del_key(struct ieee80211_node *ni, const struct ieee80211_key *k)
4700{
4701	struct ieee80211vap *vap = ni->ni_vap;
4702	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4703	struct wpi_node *wn = WPI_NODE(ni);
4704	struct wpi_node_info node;
4705	uint16_t kflags;
4706	int error;
4707
4708	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4709
4710	if (wpi_check_node_entry(sc, wn->id) == 0) {
4711		DPRINTF(sc, WPI_DEBUG_KEY, "%s: node was removed\n", __func__);
4712		return 1;	/* Nothing to do. */
4713	}
4714
4715	kflags = WPI_KFLAG_KID(k->wk_keyix);
4716	if (k->wk_flags & IEEE80211_KEY_GROUP)
4717		kflags |= WPI_KFLAG_MULTICAST;
4718
4719	memset(&node, 0, sizeof node);
4720	node.id = wn->id;
4721	node.control = WPI_NODE_UPDATE;
4722	node.flags = WPI_FLAG_KEY_SET;
4723	node.kflags = htole16(kflags);
4724again:
4725	DPRINTF(sc, WPI_DEBUG_KEY, "%s: deleting %s key %d for node %d (%s)\n",
4726	    __func__, (kflags & WPI_KFLAG_MULTICAST) ? "group" : "ucast",
4727	    k->wk_keyix, node.id, ether_sprintf(ni->ni_macaddr));
4728
4729	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
4730	if (error != 0) {
4731		device_printf(sc->sc_dev, "can't update node info, error %d\n",
4732		    error);
4733		return !error;
4734	}
4735
4736	if (!(kflags & WPI_KFLAG_MULTICAST) && &vap->iv_nw_keys[0] <= k &&
4737	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4738		kflags |= WPI_KFLAG_MULTICAST;
4739		node.kflags = htole16(kflags);
4740
4741		goto again;
4742	}
4743
4744	return 1;
4745}
4746
4747static void
4748wpi_del_key_cb(void *arg, struct ieee80211_node *ni)
4749{
4750	const struct ieee80211_key *k = arg;
4751	struct ieee80211vap *vap = ni->ni_vap;
4752	struct wpi_softc *sc = ni->ni_ic->ic_softc;
4753	struct wpi_node *wn = WPI_NODE(ni);
4754	int error;
4755
4756	if (vap->iv_bss == ni && wn->id == WPI_ID_UNDEFINED)
4757		return;
4758
4759	WPI_NT_LOCK(sc);
4760	error = wpi_del_key(ni, k);
4761	WPI_NT_UNLOCK(sc);
4762
4763	if (error == 0) {
4764		device_printf(sc->sc_dev, "%s: error while deleting key\n",
4765		    __func__);
4766	}
4767}
4768
4769static int
4770wpi_process_key(struct ieee80211vap *vap, const struct ieee80211_key *k,
4771    int set)
4772{
4773	struct ieee80211com *ic = vap->iv_ic;
4774	struct wpi_softc *sc = ic->ic_softc;
4775	struct wpi_vap *wvp = WPI_VAP(vap);
4776	struct ieee80211_node *ni;
4777	int error, ni_ref = 0;
4778
4779	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4780
4781	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
4782		/* Not for us. */
4783		return 1;
4784	}
4785
4786	if (!(k->wk_flags & IEEE80211_KEY_RECV)) {
4787		/* XMIT keys are handled in wpi_tx_data(). */
4788		return 1;
4789	}
4790
4791	/* Handle group keys. */
4792	if (&vap->iv_nw_keys[0] <= k &&
4793	    k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]) {
4794		WPI_NT_LOCK(sc);
4795		if (set)
4796			wvp->wv_gtk |= WPI_VAP_KEY(k->wk_keyix);
4797		else
4798			wvp->wv_gtk &= ~WPI_VAP_KEY(k->wk_keyix);
4799		WPI_NT_UNLOCK(sc);
4800
4801		if (vap->iv_state == IEEE80211_S_RUN) {
4802			ieee80211_iterate_nodes(&ic->ic_sta,
4803			    set ? wpi_load_key_cb : wpi_del_key_cb,
4804			    __DECONST(void *, k));
4805		}
4806
4807		return 1;
4808	}
4809
4810	switch (vap->iv_opmode) {
4811	case IEEE80211_M_STA:
4812		ni = vap->iv_bss;
4813		break;
4814
4815	case IEEE80211_M_IBSS:
4816	case IEEE80211_M_AHDEMO:
4817	case IEEE80211_M_HOSTAP:
4818		ni = ieee80211_find_vap_node(&ic->ic_sta, vap, k->wk_macaddr);
4819		if (ni == NULL)
4820			return 0;	/* should not happen */
4821
4822		ni_ref = 1;
4823		break;
4824
4825	default:
4826		device_printf(sc->sc_dev, "%s: unknown opmode %d\n", __func__,
4827		    vap->iv_opmode);
4828		return 0;
4829	}
4830
4831	WPI_NT_LOCK(sc);
4832	if (set)
4833		error = wpi_load_key(ni, k);
4834	else
4835		error = wpi_del_key(ni, k);
4836	WPI_NT_UNLOCK(sc);
4837
4838	if (ni_ref)
4839		ieee80211_node_decref(ni);
4840
4841	return error;
4842}
4843
4844static int
4845wpi_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
4846{
4847	return wpi_process_key(vap, k, 1);
4848}
4849
4850static int
4851wpi_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
4852{
4853	return wpi_process_key(vap, k, 0);
4854}
4855
4856/*
4857 * This function is called after the runtime firmware notifies us of its
4858 * readiness (called in a process context).
4859 */
4860static int
4861wpi_post_alive(struct wpi_softc *sc)
4862{
4863	int ntries, error;
4864
4865	/* Check (again) that the radio is not disabled. */
4866	if ((error = wpi_nic_lock(sc)) != 0)
4867		return error;
4868
4869	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4870
4871	/* NB: Runtime firmware must be up and running. */
4872	if (!(wpi_prph_read(sc, WPI_APMG_RFKILL) & 1)) {
4873		device_printf(sc->sc_dev,
4874		    "RF switch: radio disabled (%s)\n", __func__);
4875		wpi_nic_unlock(sc);
4876		return EPERM;   /* :-) */
4877	}
4878	wpi_nic_unlock(sc);
4879
4880	/* Wait for thermal sensor to calibrate. */
4881	for (ntries = 0; ntries < 1000; ntries++) {
4882		if ((sc->temp = (int)WPI_READ(sc, WPI_UCODE_GP2)) != 0)
4883			break;
4884		DELAY(10);
4885	}
4886
4887	if (ntries == 1000) {
4888		device_printf(sc->sc_dev,
4889		    "timeout waiting for thermal sensor calibration\n");
4890		return ETIMEDOUT;
4891	}
4892
4893	DPRINTF(sc, WPI_DEBUG_TEMP, "temperature %d\n", sc->temp);
4894	return 0;
4895}
4896
4897/*
4898 * The firmware boot code is small and is intended to be copied directly into
4899 * the NIC internal memory (no DMA transfer).
4900 */
4901static int
4902wpi_load_bootcode(struct wpi_softc *sc, const uint8_t *ucode, uint32_t size)
4903{
4904	int error, ntries;
4905
4906	DPRINTF(sc, WPI_DEBUG_HW, "Loading microcode size 0x%x\n", size);
4907
4908	size /= sizeof (uint32_t);
4909
4910	if ((error = wpi_nic_lock(sc)) != 0)
4911		return error;
4912
4913	/* Copy microcode image into NIC memory. */
4914	wpi_prph_write_region_4(sc, WPI_BSM_SRAM_BASE,
4915	    (const uint32_t *)ucode, size);
4916
4917	wpi_prph_write(sc, WPI_BSM_WR_MEM_SRC, 0);
4918	wpi_prph_write(sc, WPI_BSM_WR_MEM_DST, WPI_FW_TEXT_BASE);
4919	wpi_prph_write(sc, WPI_BSM_WR_DWCOUNT, size);
4920
4921	/* Start boot load now. */
4922	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START);
4923
4924	/* Wait for transfer to complete. */
4925	for (ntries = 0; ntries < 1000; ntries++) {
4926		uint32_t status = WPI_READ(sc, WPI_FH_TX_STATUS);
4927		DPRINTF(sc, WPI_DEBUG_HW,
4928		    "firmware status=0x%x, val=0x%x, result=0x%x\n", status,
4929		    WPI_FH_TX_STATUS_IDLE(6),
4930		    status & WPI_FH_TX_STATUS_IDLE(6));
4931		if (status & WPI_FH_TX_STATUS_IDLE(6)) {
4932			DPRINTF(sc, WPI_DEBUG_HW,
4933			    "Status Match! - ntries = %d\n", ntries);
4934			break;
4935		}
4936		DELAY(10);
4937	}
4938	if (ntries == 1000) {
4939		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4940		    __func__);
4941		wpi_nic_unlock(sc);
4942		return ETIMEDOUT;
4943	}
4944
4945	/* Enable boot after power up. */
4946	wpi_prph_write(sc, WPI_BSM_WR_CTRL, WPI_BSM_WR_CTRL_START_EN);
4947
4948	wpi_nic_unlock(sc);
4949	return 0;
4950}
4951
4952static int
4953wpi_load_firmware(struct wpi_softc *sc)
4954{
4955	struct wpi_fw_info *fw = &sc->fw;
4956	struct wpi_dma_info *dma = &sc->fw_dma;
4957	int error;
4958
4959	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
4960
4961	/* Copy initialization sections into pre-allocated DMA-safe memory. */
4962	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
4963	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4964	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz);
4965	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4966
4967	/* Tell adapter where to find initialization sections. */
4968	if ((error = wpi_nic_lock(sc)) != 0)
4969		return error;
4970	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
4971	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->init.datasz);
4972	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
4973	    dma->paddr + WPI_FW_DATA_MAXSZ);
4974	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
4975	wpi_nic_unlock(sc);
4976
4977	/* Load firmware boot code. */
4978	error = wpi_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
4979	if (error != 0) {
4980		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
4981		    __func__);
4982		return error;
4983	}
4984
4985	/* Now press "execute". */
4986	WPI_WRITE(sc, WPI_RESET, 0);
4987
4988	/* Wait at most one second for first alive notification. */
4989	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
4990		device_printf(sc->sc_dev,
4991		    "%s: timeout waiting for adapter to initialize, error %d\n",
4992		    __func__, error);
4993		return error;
4994	}
4995
4996	/* Copy runtime sections into pre-allocated DMA-safe memory. */
4997	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
4998	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
4999	memcpy(dma->vaddr + WPI_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz);
5000	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
5001
5002	/* Tell adapter where to find runtime sections. */
5003	if ((error = wpi_nic_lock(sc)) != 0)
5004		return error;
5005	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_ADDR, dma->paddr);
5006	wpi_prph_write(sc, WPI_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5007	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_ADDR,
5008	    dma->paddr + WPI_FW_DATA_MAXSZ);
5009	wpi_prph_write(sc, WPI_BSM_DRAM_TEXT_SIZE,
5010	    WPI_FW_UPDATED | fw->main.textsz);
5011	wpi_nic_unlock(sc);
5012
5013	return 0;
5014}
5015
5016static int
5017wpi_read_firmware(struct wpi_softc *sc)
5018{
5019	const struct firmware *fp;
5020	struct wpi_fw_info *fw = &sc->fw;
5021	const struct wpi_firmware_hdr *hdr;
5022	int error;
5023
5024	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5025
5026	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5027	    "Attempting Loading Firmware from %s module\n", WPI_FW_NAME);
5028
5029	WPI_UNLOCK(sc);
5030	fp = firmware_get(WPI_FW_NAME);
5031	WPI_LOCK(sc);
5032
5033	if (fp == NULL) {
5034		device_printf(sc->sc_dev,
5035		    "could not load firmware image '%s'\n", WPI_FW_NAME);
5036		return EINVAL;
5037	}
5038
5039	sc->fw_fp = fp;
5040
5041	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
5042		device_printf(sc->sc_dev,
5043		    "firmware file too short: %zu bytes\n", fp->datasize);
5044		error = EINVAL;
5045		goto fail;
5046	}
5047
5048	fw->size = fp->datasize;
5049	fw->data = (const uint8_t *)fp->data;
5050
5051	/* Extract firmware header information. */
5052	hdr = (const struct wpi_firmware_hdr *)fw->data;
5053
5054	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
5055	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
5056
5057	fw->main.textsz = le32toh(hdr->rtextsz);
5058	fw->main.datasz = le32toh(hdr->rdatasz);
5059	fw->init.textsz = le32toh(hdr->itextsz);
5060	fw->init.datasz = le32toh(hdr->idatasz);
5061	fw->boot.textsz = le32toh(hdr->btextsz);
5062	fw->boot.datasz = 0;
5063
5064	/* Sanity-check firmware header. */
5065	if (fw->main.textsz > WPI_FW_TEXT_MAXSZ ||
5066	    fw->main.datasz > WPI_FW_DATA_MAXSZ ||
5067	    fw->init.textsz > WPI_FW_TEXT_MAXSZ ||
5068	    fw->init.datasz > WPI_FW_DATA_MAXSZ ||
5069	    fw->boot.textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
5070	    (fw->boot.textsz & 3) != 0) {
5071		device_printf(sc->sc_dev, "invalid firmware header\n");
5072		error = EINVAL;
5073		goto fail;
5074	}
5075
5076	/* Check that all firmware sections fit. */
5077	if (fw->size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz +
5078	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5079		device_printf(sc->sc_dev,
5080		    "firmware file too short: %zu bytes\n", fw->size);
5081		error = EINVAL;
5082		goto fail;
5083	}
5084
5085	/* Get pointers to firmware sections. */
5086	fw->main.text = (const uint8_t *)(hdr + 1);
5087	fw->main.data = fw->main.text + fw->main.textsz;
5088	fw->init.text = fw->main.data + fw->main.datasz;
5089	fw->init.data = fw->init.text + fw->init.textsz;
5090	fw->boot.text = fw->init.data + fw->init.datasz;
5091
5092	DPRINTF(sc, WPI_DEBUG_FIRMWARE,
5093	    "Firmware Version: Major %d, Minor %d, Driver %d, \n"
5094	    "runtime (text: %u, data: %u) init (text: %u, data %u) "
5095	    "boot (text %u)\n", hdr->major, hdr->minor, le32toh(hdr->driver),
5096	    fw->main.textsz, fw->main.datasz,
5097	    fw->init.textsz, fw->init.datasz, fw->boot.textsz);
5098
5099	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.text %p\n", fw->main.text);
5100	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->main.data %p\n", fw->main.data);
5101	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.text %p\n", fw->init.text);
5102	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->init.data %p\n", fw->init.data);
5103	DPRINTF(sc, WPI_DEBUG_FIRMWARE, "fw->boot.text %p\n", fw->boot.text);
5104
5105	return 0;
5106
5107fail:	wpi_unload_firmware(sc);
5108	return error;
5109}
5110
5111/**
5112 * Free the referenced firmware image
5113 */
5114static void
5115wpi_unload_firmware(struct wpi_softc *sc)
5116{
5117	if (sc->fw_fp != NULL) {
5118		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
5119		sc->fw_fp = NULL;
5120	}
5121}
5122
5123static int
5124wpi_clock_wait(struct wpi_softc *sc)
5125{
5126	int ntries;
5127
5128	/* Set "initialization complete" bit. */
5129	WPI_SETBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5130
5131	/* Wait for clock stabilization. */
5132	for (ntries = 0; ntries < 2500; ntries++) {
5133		if (WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_MAC_CLOCK_READY)
5134			return 0;
5135		DELAY(100);
5136	}
5137	device_printf(sc->sc_dev,
5138	    "%s: timeout waiting for clock stabilization\n", __func__);
5139
5140	return ETIMEDOUT;
5141}
5142
5143static int
5144wpi_apm_init(struct wpi_softc *sc)
5145{
5146	uint32_t reg;
5147	int error;
5148
5149	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5150
5151	/* Disable L0s exit timer (NMI bug workaround). */
5152	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_DIS_L0S_TIMER);
5153	/* Don't wait for ICH L0s (ICH bug workaround). */
5154	WPI_SETBITS(sc, WPI_GIO_CHICKEN, WPI_GIO_CHICKEN_L1A_NO_L0S_RX);
5155
5156	/* Set FH wait threshold to max (HW bug under stress workaround). */
5157	WPI_SETBITS(sc, WPI_DBG_HPET_MEM, 0xffff0000);
5158
5159	/* Retrieve PCIe Active State Power Management (ASPM). */
5160	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 1);
5161	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5162	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
5163		WPI_SETBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5164	else
5165		WPI_CLRBITS(sc, WPI_GIO, WPI_GIO_L0S_ENA);
5166
5167	WPI_SETBITS(sc, WPI_ANA_PLL, WPI_ANA_PLL_INIT);
5168
5169	/* Wait for clock stabilization before accessing prph. */
5170	if ((error = wpi_clock_wait(sc)) != 0)
5171		return error;
5172
5173	if ((error = wpi_nic_lock(sc)) != 0)
5174		return error;
5175	/* Cleanup. */
5176	wpi_prph_write(sc, WPI_APMG_CLK_DIS, 0x00000400);
5177	wpi_prph_clrbits(sc, WPI_APMG_PS, 0x00000200);
5178
5179	/* Enable DMA and BSM (Bootstrap State Machine). */
5180	wpi_prph_write(sc, WPI_APMG_CLK_EN,
5181	    WPI_APMG_CLK_CTRL_DMA_CLK_RQT | WPI_APMG_CLK_CTRL_BSM_CLK_RQT);
5182	DELAY(20);
5183	/* Disable L1-Active. */
5184	wpi_prph_setbits(sc, WPI_APMG_PCI_STT, WPI_APMG_PCI_STT_L1A_DIS);
5185	wpi_nic_unlock(sc);
5186
5187	return 0;
5188}
5189
5190static void
5191wpi_apm_stop_master(struct wpi_softc *sc)
5192{
5193	int ntries;
5194
5195	/* Stop busmaster DMA activity. */
5196	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_STOP_MASTER);
5197
5198	if ((WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_PS_MASK) ==
5199	    WPI_GP_CNTRL_MAC_PS)
5200		return; /* Already asleep. */
5201
5202	for (ntries = 0; ntries < 100; ntries++) {
5203		if (WPI_READ(sc, WPI_RESET) & WPI_RESET_MASTER_DISABLED)
5204			return;
5205		DELAY(10);
5206	}
5207	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5208	    __func__);
5209}
5210
5211static void
5212wpi_apm_stop(struct wpi_softc *sc)
5213{
5214	wpi_apm_stop_master(sc);
5215
5216	/* Reset the entire device. */
5217	WPI_SETBITS(sc, WPI_RESET, WPI_RESET_SW);
5218	DELAY(10);
5219	/* Clear "initialization complete" bit. */
5220	WPI_CLRBITS(sc, WPI_GP_CNTRL, WPI_GP_CNTRL_INIT_DONE);
5221}
5222
5223static void
5224wpi_nic_config(struct wpi_softc *sc)
5225{
5226	uint32_t rev;
5227
5228	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5229
5230	/* voodoo from the Linux "driver".. */
5231	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
5232	if ((rev & 0xc0) == 0x40)
5233		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MB);
5234	else if (!(rev & 0x80))
5235		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_ALM_MM);
5236
5237	if (sc->cap == 0x80)
5238		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_SKU_MRC);
5239
5240	if ((sc->rev & 0xf0) == 0xd0)
5241		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5242	else
5243		WPI_CLRBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_REV_D);
5244
5245	if (sc->type > 1)
5246		WPI_SETBITS(sc, WPI_HW_IF_CONFIG, WPI_HW_IF_CONFIG_TYPE_B);
5247}
5248
5249static int
5250wpi_hw_init(struct wpi_softc *sc)
5251{
5252	uint8_t chnl;
5253	int ntries, error;
5254
5255	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5256
5257	/* Clear pending interrupts. */
5258	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5259
5260	if ((error = wpi_apm_init(sc)) != 0) {
5261		device_printf(sc->sc_dev,
5262		    "%s: could not power ON adapter, error %d\n", __func__,
5263		    error);
5264		return error;
5265	}
5266
5267	/* Select VMAIN power source. */
5268	if ((error = wpi_nic_lock(sc)) != 0)
5269		return error;
5270	wpi_prph_clrbits(sc, WPI_APMG_PS, WPI_APMG_PS_PWR_SRC_MASK);
5271	wpi_nic_unlock(sc);
5272	/* Spin until VMAIN gets selected. */
5273	for (ntries = 0; ntries < 5000; ntries++) {
5274		if (WPI_READ(sc, WPI_GPIO_IN) & WPI_GPIO_IN_VMAIN)
5275			break;
5276		DELAY(10);
5277	}
5278	if (ntries == 5000) {
5279		device_printf(sc->sc_dev, "timeout selecting power source\n");
5280		return ETIMEDOUT;
5281	}
5282
5283	/* Perform adapter initialization. */
5284	wpi_nic_config(sc);
5285
5286	/* Initialize RX ring. */
5287	if ((error = wpi_nic_lock(sc)) != 0)
5288		return error;
5289	/* Set physical address of RX ring. */
5290	WPI_WRITE(sc, WPI_FH_RX_BASE, sc->rxq.desc_dma.paddr);
5291	/* Set physical address of RX read pointer. */
5292	WPI_WRITE(sc, WPI_FH_RX_RPTR_ADDR, sc->shared_dma.paddr +
5293	    offsetof(struct wpi_shared, next));
5294	WPI_WRITE(sc, WPI_FH_RX_WPTR, 0);
5295	/* Enable RX. */
5296	WPI_WRITE(sc, WPI_FH_RX_CONFIG,
5297	    WPI_FH_RX_CONFIG_DMA_ENA |
5298	    WPI_FH_RX_CONFIG_RDRBD_ENA |
5299	    WPI_FH_RX_CONFIG_WRSTATUS_ENA |
5300	    WPI_FH_RX_CONFIG_MAXFRAG |
5301	    WPI_FH_RX_CONFIG_NRBD(WPI_RX_RING_COUNT_LOG) |
5302	    WPI_FH_RX_CONFIG_IRQ_DST_HOST |
5303	    WPI_FH_RX_CONFIG_IRQ_TIMEOUT(1));
5304	(void)WPI_READ(sc, WPI_FH_RSSR_TBL);	/* barrier */
5305	wpi_nic_unlock(sc);
5306	WPI_WRITE(sc, WPI_FH_RX_WPTR, (WPI_RX_RING_COUNT - 1) & ~7);
5307
5308	/* Initialize TX rings. */
5309	if ((error = wpi_nic_lock(sc)) != 0)
5310		return error;
5311	wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 2);	/* bypass mode */
5312	wpi_prph_write(sc, WPI_ALM_SCHED_ARASTAT, 1);	/* enable RA0 */
5313	/* Enable all 6 TX rings. */
5314	wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0x3f);
5315	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE1, 0x10000);
5316	wpi_prph_write(sc, WPI_ALM_SCHED_SBYPASS_MODE2, 0x30002);
5317	wpi_prph_write(sc, WPI_ALM_SCHED_TXF4MF, 4);
5318	wpi_prph_write(sc, WPI_ALM_SCHED_TXF5MF, 5);
5319	/* Set physical address of TX rings. */
5320	WPI_WRITE(sc, WPI_FH_TX_BASE, sc->shared_dma.paddr);
5321	WPI_WRITE(sc, WPI_FH_MSG_CONFIG, 0xffff05a5);
5322
5323	/* Enable all DMA channels. */
5324	for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5325		WPI_WRITE(sc, WPI_FH_CBBC_CTRL(chnl), 0);
5326		WPI_WRITE(sc, WPI_FH_CBBC_BASE(chnl), 0);
5327		WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0x80200008);
5328	}
5329	wpi_nic_unlock(sc);
5330	(void)WPI_READ(sc, WPI_FH_TX_BASE);	/* barrier */
5331
5332	/* Clear "radio off" and "commands blocked" bits. */
5333	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5334	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_CMD_BLOCKED);
5335
5336	/* Clear pending interrupts. */
5337	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5338	/* Enable interrupts. */
5339	WPI_WRITE(sc, WPI_INT_MASK, WPI_INT_MASK_DEF);
5340
5341	/* _Really_ make sure "radio off" bit is cleared! */
5342	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5343	WPI_WRITE(sc, WPI_UCODE_GP1_CLR, WPI_UCODE_GP1_RFKILL);
5344
5345	if ((error = wpi_load_firmware(sc)) != 0) {
5346		device_printf(sc->sc_dev,
5347		    "%s: could not load firmware, error %d\n", __func__,
5348		    error);
5349		return error;
5350	}
5351	/* Wait at most one second for firmware alive notification. */
5352	if ((error = mtx_sleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
5353		device_printf(sc->sc_dev,
5354		    "%s: timeout waiting for adapter to initialize, error %d\n",
5355		    __func__, error);
5356		return error;
5357	}
5358
5359	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5360
5361	/* Do post-firmware initialization. */
5362	return wpi_post_alive(sc);
5363}
5364
5365static void
5366wpi_hw_stop(struct wpi_softc *sc)
5367{
5368	uint8_t chnl, qid;
5369	int ntries;
5370
5371	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5372
5373	if (WPI_READ(sc, WPI_UCODE_GP1) & WPI_UCODE_GP1_MAC_SLEEP)
5374		wpi_nic_lock(sc);
5375
5376	WPI_WRITE(sc, WPI_RESET, WPI_RESET_NEVO);
5377
5378	/* Disable interrupts. */
5379	WPI_WRITE(sc, WPI_INT_MASK, 0);
5380	WPI_WRITE(sc, WPI_INT, 0xffffffff);
5381	WPI_WRITE(sc, WPI_FH_INT, 0xffffffff);
5382
5383	/* Make sure we no longer hold the NIC lock. */
5384	wpi_nic_unlock(sc);
5385
5386	if (wpi_nic_lock(sc) == 0) {
5387		/* Stop TX scheduler. */
5388		wpi_prph_write(sc, WPI_ALM_SCHED_MODE, 0);
5389		wpi_prph_write(sc, WPI_ALM_SCHED_TXFACT, 0);
5390
5391		/* Stop all DMA channels. */
5392		for (chnl = 0; chnl < WPI_NDMACHNLS; chnl++) {
5393			WPI_WRITE(sc, WPI_FH_TX_CONFIG(chnl), 0);
5394			for (ntries = 0; ntries < 200; ntries++) {
5395				if (WPI_READ(sc, WPI_FH_TX_STATUS) &
5396				    WPI_FH_TX_STATUS_IDLE(chnl))
5397					break;
5398				DELAY(10);
5399			}
5400		}
5401		wpi_nic_unlock(sc);
5402	}
5403
5404	/* Stop RX ring. */
5405	wpi_reset_rx_ring(sc);
5406
5407	/* Reset all TX rings. */
5408	for (qid = 0; qid < WPI_DRV_NTXQUEUES; qid++)
5409		wpi_reset_tx_ring(sc, &sc->txq[qid]);
5410
5411	if (wpi_nic_lock(sc) == 0) {
5412		wpi_prph_write(sc, WPI_APMG_CLK_DIS,
5413		    WPI_APMG_CLK_CTRL_DMA_CLK_RQT);
5414		wpi_nic_unlock(sc);
5415	}
5416	DELAY(5);
5417	/* Power OFF adapter. */
5418	wpi_apm_stop(sc);
5419}
5420
5421static void
5422wpi_radio_on(void *arg0, int pending)
5423{
5424	struct wpi_softc *sc = arg0;
5425	struct ieee80211com *ic = &sc->sc_ic;
5426	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5427
5428	device_printf(sc->sc_dev, "RF switch: radio enabled\n");
5429
5430	WPI_LOCK(sc);
5431	callout_stop(&sc->watchdog_rfkill);
5432	WPI_UNLOCK(sc);
5433
5434	if (vap != NULL)
5435		ieee80211_init(vap);
5436}
5437
5438static void
5439wpi_radio_off(void *arg0, int pending)
5440{
5441	struct wpi_softc *sc = arg0;
5442	struct ieee80211com *ic = &sc->sc_ic;
5443	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5444
5445	device_printf(sc->sc_dev, "RF switch: radio disabled\n");
5446
5447	ieee80211_notify_radio(ic, 0);
5448	wpi_stop(sc);
5449	if (vap != NULL)
5450		ieee80211_stop(vap);
5451
5452	WPI_LOCK(sc);
5453	callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill, sc);
5454	WPI_UNLOCK(sc);
5455}
5456
5457static int
5458wpi_init(struct wpi_softc *sc)
5459{
5460	int error = 0;
5461
5462	WPI_LOCK(sc);
5463
5464	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_BEGIN, __func__);
5465
5466	if (sc->sc_running != 0)
5467		goto end;
5468
5469	/* Check that the radio is not disabled by hardware switch. */
5470	if (!(WPI_READ(sc, WPI_GP_CNTRL) & WPI_GP_CNTRL_RFKILL)) {
5471		device_printf(sc->sc_dev,
5472		    "RF switch: radio disabled (%s)\n", __func__);
5473		callout_reset(&sc->watchdog_rfkill, hz, wpi_watchdog_rfkill,
5474		    sc);
5475		error = EINPROGRESS;
5476		goto end;
5477	}
5478
5479	/* Read firmware images from the filesystem. */
5480	if ((error = wpi_read_firmware(sc)) != 0) {
5481		device_printf(sc->sc_dev,
5482		    "%s: could not read firmware, error %d\n", __func__,
5483		    error);
5484		goto end;
5485	}
5486
5487	sc->sc_running = 1;
5488
5489	/* Initialize hardware and upload firmware. */
5490	error = wpi_hw_init(sc);
5491	wpi_unload_firmware(sc);
5492	if (error != 0) {
5493		device_printf(sc->sc_dev,
5494		    "%s: could not initialize hardware, error %d\n", __func__,
5495		    error);
5496		goto fail;
5497	}
5498
5499	/* Configure adapter now that it is ready. */
5500	if ((error = wpi_config(sc)) != 0) {
5501		device_printf(sc->sc_dev,
5502		    "%s: could not configure device, error %d\n", __func__,
5503		    error);
5504		goto fail;
5505	}
5506
5507	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END, __func__);
5508
5509	WPI_UNLOCK(sc);
5510
5511	return 0;
5512
5513fail:	wpi_stop_locked(sc);
5514
5515end:	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_END_ERR, __func__);
5516	WPI_UNLOCK(sc);
5517
5518	return error;
5519}
5520
5521static void
5522wpi_stop_locked(struct wpi_softc *sc)
5523{
5524
5525	WPI_LOCK_ASSERT(sc);
5526
5527	if (sc->sc_running == 0)
5528		return;
5529
5530	WPI_TX_LOCK(sc);
5531	WPI_TXQ_LOCK(sc);
5532	sc->sc_running = 0;
5533	WPI_TXQ_UNLOCK(sc);
5534	WPI_TX_UNLOCK(sc);
5535
5536	WPI_TXQ_STATE_LOCK(sc);
5537	callout_stop(&sc->tx_timeout);
5538	WPI_TXQ_STATE_UNLOCK(sc);
5539
5540	WPI_RXON_LOCK(sc);
5541	callout_stop(&sc->scan_timeout);
5542	callout_stop(&sc->calib_to);
5543	WPI_RXON_UNLOCK(sc);
5544
5545	/* Power OFF hardware. */
5546	wpi_hw_stop(sc);
5547}
5548
5549static void
5550wpi_stop(struct wpi_softc *sc)
5551{
5552	WPI_LOCK(sc);
5553	wpi_stop_locked(sc);
5554	WPI_UNLOCK(sc);
5555}
5556
5557/*
5558 * Callback from net80211 to start a scan.
5559 */
5560static void
5561wpi_scan_start(struct ieee80211com *ic)
5562{
5563	struct wpi_softc *sc = ic->ic_softc;
5564
5565	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
5566}
5567
5568/*
5569 * Callback from net80211 to terminate a scan.
5570 */
5571static void
5572wpi_scan_end(struct ieee80211com *ic)
5573{
5574	struct wpi_softc *sc = ic->ic_softc;
5575	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5576
5577	if (vap->iv_state == IEEE80211_S_RUN)
5578		wpi_set_led(sc, WPI_LED_LINK, 0, 1);
5579}
5580
5581/**
5582 * Called by the net80211 framework to indicate to the driver
5583 * that the channel should be changed
5584 */
5585static void
5586wpi_set_channel(struct ieee80211com *ic)
5587{
5588	const struct ieee80211_channel *c = ic->ic_curchan;
5589	struct wpi_softc *sc = ic->ic_softc;
5590	int error;
5591
5592	DPRINTF(sc, WPI_DEBUG_TRACE, TRACE_STR_DOING, __func__);
5593
5594	WPI_LOCK(sc);
5595	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
5596	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
5597	WPI_UNLOCK(sc);
5598	WPI_TX_LOCK(sc);
5599	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
5600	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
5601	WPI_TX_UNLOCK(sc);
5602
5603	/*
5604	 * Only need to set the channel in Monitor mode. AP scanning and auth
5605	 * are already taken care of by their respective firmware commands.
5606	 */
5607	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5608		WPI_RXON_LOCK(sc);
5609		sc->rxon.chan = ieee80211_chan2ieee(ic, c);
5610		if (IEEE80211_IS_CHAN_2GHZ(c)) {
5611			sc->rxon.flags |= htole32(WPI_RXON_AUTO |
5612			    WPI_RXON_24GHZ);
5613		} else {
5614			sc->rxon.flags &= ~htole32(WPI_RXON_AUTO |
5615			    WPI_RXON_24GHZ);
5616		}
5617		if ((error = wpi_send_rxon(sc, 0, 1)) != 0)
5618			device_printf(sc->sc_dev,
5619			    "%s: error %d setting channel\n", __func__,
5620			    error);
5621		WPI_RXON_UNLOCK(sc);
5622	}
5623}
5624
5625/**
5626 * Called by net80211 to indicate that we need to scan the current
5627 * channel. The channel is previously be set via the wpi_set_channel
5628 * callback.
5629 */
5630static void
5631wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
5632{
5633	struct ieee80211vap *vap = ss->ss_vap;
5634	struct ieee80211com *ic = vap->iv_ic;
5635	struct wpi_softc *sc = ic->ic_softc;
5636	int error;
5637
5638	WPI_RXON_LOCK(sc);
5639	error = wpi_scan(sc, ic->ic_curchan);
5640	WPI_RXON_UNLOCK(sc);
5641	if (error != 0)
5642		ieee80211_cancel_scan(vap);
5643}
5644
5645/**
5646 * Called by the net80211 framework to indicate
5647 * the minimum dwell time has been met, terminate the scan.
5648 * We don't actually terminate the scan as the firmware will notify
5649 * us when it's finished and we have no way to interrupt it.
5650 */
5651static void
5652wpi_scan_mindwell(struct ieee80211_scan_state *ss)
5653{
5654	/* NB: don't try to abort scan; wait for firmware to finish */
5655}
5656