1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD: releng/12.0/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c 326695 2017-12-08 15:57:29Z pfg $
20 */
21#include "opt_ah.h"
22
23#include "ah.h"
24#include "ah_internal.h"
25#include "ah_devid.h"
26
27#include "ah_eeprom_v14.h"
28
29#include "ar5416/ar5416.h"
30#include "ar5416/ar5416reg.h"
31#include "ar5416/ar5416phy.h"
32
33/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
34#define	EEP_MINOR(_ah) \
35	(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
36#define IS_EEP_MINOR_V2(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
37#define IS_EEP_MINOR_V3(_ah)	(EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
38
39/* Additional Time delay to wait after activiting the Base band */
40#define BASE_ACTIVATE_DELAY	100	/* 100 usec */
41#define PLL_SETTLE_DELAY	300	/* 300 usec */
42#define RTC_PLL_SETTLE_DELAY    1000    /* 1 ms     */
43
44static void ar5416InitDMA(struct ath_hal *ah);
45static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
46static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
47static void ar5416InitQoS(struct ath_hal *ah);
48static void ar5416InitUserSettings(struct ath_hal *ah);
49static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *);
50
51#if 0
52static HAL_BOOL	ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
53#endif
54static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
55
56static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
57static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
58static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
59	struct ar5416eeprom *pEepData,
60	const struct ieee80211_channel *chan, int16_t *ratesArray,
61	uint16_t cfgCtl, uint16_t AntennaReduction,
62	uint16_t twiceMaxRegulatoryPower,
63	uint16_t powerLimit);
64static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
65static void ar5416MarkPhyInactive(struct ath_hal *ah);
66static void ar5416SetIFSTiming(struct ath_hal *ah,
67   const struct ieee80211_channel *chan);
68
69/*
70 * Places the device in and out of reset and then places sane
71 * values in the registers based on EEPROM config, initialization
72 * vectors (as determined by the mode), and station configuration
73 *
74 * bChannelChange is used to preserve DMA/PCU registers across
75 * a HW Reset during channel change.
76 */
77HAL_BOOL
78ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
79	struct ieee80211_channel *chan,
80	HAL_BOOL bChannelChange,
81	HAL_RESET_TYPE resetType,
82	HAL_STATUS *status)
83{
84#define	N(a)	(sizeof (a) / sizeof (a[0]))
85#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
86	struct ath_hal_5212 *ahp = AH5212(ah);
87	HAL_CHANNEL_INTERNAL *ichan;
88	uint32_t saveDefAntenna, saveLedState;
89	uint32_t macStaId1;
90	uint16_t rfXpdGain[2];
91	HAL_STATUS ecode;
92	uint32_t powerVal, rssiThrReg;
93	uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
94	int i;
95	uint64_t tsf = 0;
96
97	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
98
99	/* Bring out of sleep mode */
100	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
101		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
102		    __func__);
103		FAIL(HAL_EIO);
104	}
105
106	/*
107	 * Map public channel to private.
108	 */
109	ichan = ath_hal_checkchannel(ah, chan);
110	if (ichan == AH_NULL)
111		FAIL(HAL_EINVAL);
112	switch (opmode) {
113	case HAL_M_STA:
114	case HAL_M_IBSS:
115	case HAL_M_HOSTAP:
116	case HAL_M_MONITOR:
117		break;
118	default:
119		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
120		    __func__, opmode);
121		FAIL(HAL_EINVAL);
122		break;
123	}
124	HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
125
126	/* Blank the channel survey statistics */
127	ath_hal_survey_clear(ah);
128
129	/* XXX Turn on fast channel change for 5416 */
130
131	/*
132	 * Preserve the bmiss rssi threshold and count threshold
133	 * across resets
134	 */
135	rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
136	/* If reg is zero, first time thru set to default val */
137	if (rssiThrReg == 0)
138		rssiThrReg = INIT_RSSI_THR;
139
140	/*
141	 * Preserve the antenna on a channel change
142	 */
143	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
144
145	/*
146	 * Don't do this for the AR9285 - it breaks RX for single
147	 * antenna designs when diversity is disabled.
148	 *
149	 * I'm not sure what this was working around; it may be
150	 * something to do with the AR5416.  Certainly this register
151	 * isn't supposed to be used by the MIMO chips for anything
152	 * except for defining the default antenna when an external
153	 * phase array / smart antenna is connected.
154	 *
155	 * See PR: kern/179269 .
156	 */
157	if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0)	/* XXX magic constants */
158		saveDefAntenna = 1;
159
160	/* Save hardware flag before chip reset clears the register */
161	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
162		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
163
164	/* Save led state from pci config register */
165	saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
166		(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
167		 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
168
169	/* For chips on which the RTC reset is done, save TSF before it gets cleared */
170	if (AR_SREV_HOWL(ah) ||
171	    (AR_SREV_MERLIN(ah) &&
172	     ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) ||
173	    (resetType == HAL_RESET_FORCE_COLD) ||
174	    (resetType == HAL_RESET_BBPANIC) ||
175	    (ah->ah_config.ah_force_full_reset))
176		tsf = ar5416GetTsf64(ah);
177
178	/* Mark PHY as inactive; marked active in ar5416InitBB() */
179	ar5416MarkPhyInactive(ah);
180
181	if (!ar5416ChipReset(ah, chan, resetType)) {
182		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
183		FAIL(HAL_EIO);
184	}
185
186	/* Restore TSF */
187	if (tsf)
188		ar5416SetTsf64(ah, tsf);
189
190	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
191	if (AR_SREV_MERLIN_10_OR_LATER(ah))
192		OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
193
194	AH5416(ah)->ah_writeIni(ah, chan);
195
196	if(AR_SREV_KIWI_13_OR_LATER(ah) ) {
197		/* Enable ASYNC FIFO */
198		OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
199		    AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
200		OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
201		OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
202		    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
203		OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
204		    AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
205	}
206
207	/* Override ini values (that can be overriden in this fashion) */
208	ar5416OverrideIni(ah, chan);
209
210	/* Setup 11n MAC/Phy mode registers */
211	ar5416Set11nRegs(ah, chan);
212
213	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
214
215	/*
216	 * Some AR91xx SoC devices frequently fail to accept TSF writes
217	 * right after the chip reset. When that happens, write a new
218	 * value after the initvals have been applied, with an offset
219	 * based on measured time difference
220	 */
221	if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) {
222		tsf += 1500;
223		ar5416SetTsf64(ah, tsf);
224	}
225
226	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
227		__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
228	HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
229		__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
230
231	/*
232	 * This routine swaps the analog chains - it should be done
233	 * before any radio register twiddling is done.
234	 */
235	ar5416InitChainMasks(ah);
236
237	/* Setup the open-loop power calibration if required */
238	if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
239		AH5416(ah)->ah_olcInit(ah);
240		AH5416(ah)->ah_olcTempCompensation(ah);
241	}
242
243	/* Setup the transmit power values. */
244	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
245		HALDEBUG(ah, HAL_DEBUG_ANY,
246		    "%s: error init'ing transmit power\n", __func__);
247		FAIL(HAL_EIO);
248	}
249
250	/* Write the analog registers */
251	if (!ahp->ah_rfHal->setRfRegs(ah, chan,
252	    IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
253		HALDEBUG(ah, HAL_DEBUG_ANY,
254		    "%s: ar5212SetRfRegs failed\n", __func__);
255		FAIL(HAL_EIO);
256	}
257
258	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
259	if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
260		ar5416SetDeltaSlope(ah, chan);
261
262	AH5416(ah)->ah_spurMitigate(ah, chan);
263
264	/* Setup board specific options for EEPROM version 3 */
265	if (!ah->ah_setBoardValues(ah, chan)) {
266		HALDEBUG(ah, HAL_DEBUG_ANY,
267		    "%s: error setting board options\n", __func__);
268		FAIL(HAL_EIO);
269	}
270
271	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
272
273	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
274	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
275		| macStaId1
276		| AR_STA_ID1_RTS_USE_DEF
277		| ahp->ah_staId1Defaults
278	);
279	ar5212SetOperatingMode(ah, opmode);
280
281	/* Set Venice BSSID mask according to current state */
282	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
283	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
284
285	/* Restore previous led state */
286	if (AR_SREV_HOWL(ah))
287		OS_REG_WRITE(ah, AR_MAC_LED,
288		    AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ);
289	else
290		OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) |
291		    saveLedState);
292
293        /* Start TSF2 for generic timer 8-15 */
294#ifdef	NOTYET
295	if (AR_SREV_KIWI(ah))
296		ar5416StartTsf2(ah);
297#endif
298
299	/*
300	 * Enable Bluetooth Coexistence if it's enabled.
301	 */
302	if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE)
303		ar5416InitBTCoex(ah);
304
305	/* Restore previous antenna */
306	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
307
308	/* then our BSSID and associate id */
309	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
310	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
311	    (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
312
313	/* Restore bmiss rssi & count thresholds */
314	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
315
316	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */
317
318	/* Restore bmiss rssi & count thresholds */
319	OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
320
321	if (!ar5212SetChannel(ah, chan))
322		FAIL(HAL_EIO);
323
324	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
325
326	/* Set 1:1 QCU to DCU mapping for all queues */
327	for (i = 0; i < AR_NUM_DCU; i++)
328		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
329
330	ahp->ah_intrTxqs = 0;
331	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
332		ah->ah_resetTxQueue(ah, i);
333
334	ar5416InitIMR(ah, opmode);
335	ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
336	ar5416InitQoS(ah);
337	/* This may override the AR_DIAG_SW register */
338	ar5416InitUserSettings(ah);
339
340	/* XXX this won't work for AR9287! */
341	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
342		ar5416SetIFSTiming(ah, chan);
343#if 0
344			/*
345			 * AR5413?
346			 * Force window_length for 1/2 and 1/4 rate channels,
347			 * the ini file sets this to zero otherwise.
348			 */
349			OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
350			    AR_PHY_FRAME_CTL_WINLEN, 3);
351		}
352#endif
353	}
354
355	if (AR_SREV_KIWI_13_OR_LATER(ah)) {
356		/*
357		 * Enable ASYNC FIFO
358		 *
359		 * If Async FIFO is enabled, the following counters change
360		 * as MAC now runs at 117 Mhz instead of 88/44MHz when
361		 * async FIFO is disabled.
362		 *
363		 * Overwrite the delay/timeouts initialized in ProcessIni()
364		 * above.
365		 */
366		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
367		    AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
368		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
369		    AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
370		OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
371		    AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
372
373		OS_REG_WRITE(ah, AR_TIME_OUT,
374		    AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
375		OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
376
377		OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
378		    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
379		OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
380		    AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
381	}
382
383	if (AR_SREV_KIWI_13_OR_LATER(ah)) {
384		/* Enable AGGWEP to accelerate encryption engine */
385		OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
386		    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
387	}
388
389	/*
390	 * disable seq number generation in hw
391	 */
392	 OS_REG_WRITE(ah, AR_STA_ID1,
393	     OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
394
395	ar5416InitDMA(ah);
396
397	/*
398	 * program OBS bus to see MAC interrupts
399	 */
400	OS_REG_WRITE(ah, AR_OBS, 8);
401
402	/*
403	 * Disable the "general" TX/RX mitigation timers.
404	 */
405	OS_REG_WRITE(ah, AR_MIRT, 0);
406
407#ifdef	AH_AR5416_INTERRUPT_MITIGATION
408	/*
409	 * This initialises the RX interrupt mitigation timers.
410	 *
411	 * The mitigation timers begin at idle and are triggered
412	 * upon the RXOK of a single frame (or sub-frame, for A-MPDU.)
413	 * Then, the RX mitigation interrupt will fire:
414	 *
415	 * + 250uS after the last RX'ed frame, or
416	 * + 700uS after the first RX'ed frame
417	 *
418	 * Thus, the LAST field dictates the extra latency
419	 * induced by the RX mitigation method and the FIRST
420	 * field dictates how long to delay before firing an
421	 * RX mitigation interrupt.
422	 *
423	 * Please note this only seems to be for RXOK frames;
424	 * not CRC or PHY error frames.
425	 *
426	 */
427	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250);
428	OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700);
429#endif
430	ar5416InitBB(ah, chan);
431
432	/* Setup compression registers */
433	ar5212SetCompRegs(ah);		/* XXX not needed? */
434
435	/*
436	 * 5416 baseband will check the per rate power table
437	 * and select the lower of the two
438	 */
439	ackTpcPow = 63;
440	ctsTpcPow = 63;
441	chirpTpcPow = 63;
442	powerVal = SM(ackTpcPow, AR_TPC_ACK) |
443		SM(ctsTpcPow, AR_TPC_CTS) |
444		SM(chirpTpcPow, AR_TPC_CHIRP);
445	OS_REG_WRITE(ah, AR_TPC, powerVal);
446
447	if (!ar5416InitCal(ah, chan))
448		FAIL(HAL_ESELFTEST);
449
450	ar5416RestoreChainMask(ah);
451
452	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
453
454	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
455		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
456
457	if (AR_SREV_HOWL(ah)) {
458		/*
459		 * Enable the MBSSID block-ack fix for HOWL.
460		 * This feature is only supported on Howl 1.4, but it is safe to
461		 * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3),
462		 * since bit 22 is unused in those Howl revisions.
463		 */
464		unsigned int reg;
465		reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22));
466		OS_REG_WRITE(ah,AR_STA_ID1, reg);
467		ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg);
468	}
469
470	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
471
472	OS_MARK(ah, AH_MARK_RESET_DONE, 0);
473
474	return AH_TRUE;
475bad:
476	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
477	if (status != AH_NULL)
478		*status = ecode;
479	return AH_FALSE;
480#undef FAIL
481#undef N
482}
483
484#if 0
485/*
486 * This channel change evaluates whether the selected hardware can
487 * perform a synthesizer-only channel change (no reset).  If the
488 * TX is not stopped, or the RFBus cannot be granted in the given
489 * time, the function returns false as a reset is necessary
490 */
491HAL_BOOL
492ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
493{
494	uint32_t       ulCount;
495	uint32_t   data, synthDelay, qnum;
496	uint16_t   rfXpdGain[4];
497	struct ath_hal_5212 *ahp = AH5212(ah);
498	HAL_CHANNEL_INTERNAL *ichan;
499
500	/*
501	 * Map public channel to private.
502	 */
503	ichan = ath_hal_checkchannel(ah, chan);
504
505	/* TX must be stopped or RF Bus grant will not work */
506	for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
507		if (ar5212NumTxPending(ah, qnum)) {
508			HALDEBUG(ah, HAL_DEBUG_ANY,
509			    "%s: frames pending on queue %d\n", __func__, qnum);
510			return AH_FALSE;
511		}
512	}
513
514	/*
515	 * Kill last Baseband Rx Frame - Request analog bus grant
516	 */
517	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
518	if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
519		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
520		    __func__);
521		return AH_FALSE;
522	}
523
524	ar5416Set11nRegs(ah, chan);	/* NB: setup 5416-specific regs */
525
526	/* Change the synth */
527	if (!ar5212SetChannel(ah, chan))
528		return AH_FALSE;
529
530	/* Setup the transmit power values. */
531	if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
532		HALDEBUG(ah, HAL_DEBUG_ANY,
533		    "%s: error init'ing transmit power\n", __func__);
534		return AH_FALSE;
535	}
536
537	/*
538	 * Wait for the frequency synth to settle (synth goes on
539	 * via PHY_ACTIVE_EN).  Read the phy active delay register.
540	 * Value is in 100ns increments.
541	 */
542	data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
543	if (IS_CHAN_CCK(ichan)) {
544		synthDelay = (4 * data) / 22;
545	} else {
546		synthDelay = data / 10;
547	}
548
549	OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
550
551	/* Release the RFBus Grant */
552	OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
553
554	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
555	if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
556		HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
557		ar5212SetSpurMitigation(ah, chan);
558		ar5416SetDeltaSlope(ah, chan);
559	}
560
561	/* XXX spur mitigation for Melin */
562
563	if (!IEEE80211_IS_CHAN_DFS(chan))
564		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
565
566	ichan->channel_time = 0;
567	ichan->tsf_last = ar5416GetTsf64(ah);
568	ar5212TxEnable(ah, AH_TRUE);
569	return AH_TRUE;
570}
571#endif
572
573static void
574ar5416InitDMA(struct ath_hal *ah)
575{
576	struct ath_hal_5212 *ahp = AH5212(ah);
577
578	/*
579	 * set AHB_MODE not to do cacheline prefetches
580	 */
581	OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
582
583	/*
584	 * let mac dma reads be in 128 byte chunks
585	 */
586	OS_REG_WRITE(ah, AR_TXCFG,
587		(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
588
589	/*
590	 * let mac dma writes be in 128 byte chunks
591	 */
592	/*
593	 * XXX If you change this, you must change the headroom
594	 * assigned in ah_maxTxTrigLev - see ar5416InitState().
595	 */
596	OS_REG_WRITE(ah, AR_RXCFG,
597		(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
598
599	/* restore TX trigger level */
600	OS_REG_WRITE(ah, AR_TXCFG,
601		(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
602		    SM(ahp->ah_txTrigLev, AR_FTRIG));
603
604	/*
605	 * Setup receive FIFO threshold to hold off TX activities
606	 */
607	OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
608
609	/*
610	 * reduce the number of usable entries in PCU TXBUF to avoid
611	 * wrap around.
612	 */
613	if (AR_SREV_KITE(ah))
614		/*
615		 * For AR9285 the number of Fifos are reduced to half.
616		 * So set the usable tx buf size also to half to
617		 * avoid data/delimiter underruns
618		 */
619		OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
620	else
621		OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
622}
623
624static void
625ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
626{
627	uint32_t synthDelay;
628
629	/*
630	 * Wait for the frequency synth to settle (synth goes on
631	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
632	 * Value is in 100ns increments.
633	  */
634	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
635	if (IEEE80211_IS_CHAN_CCK(chan)) {
636		synthDelay = (4 * synthDelay) / 22;
637	} else {
638		synthDelay /= 10;
639	}
640
641	/* Turn on PLL on 5416 */
642	HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
643	    __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
644
645	/* Activate the PHY (includes baseband activate and synthesizer on) */
646	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
647
648	/*
649	 * If the AP starts the calibration before the base band timeout
650	 * completes  we could get rx_clear false triggering.  Add an
651	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
652	 * does not happen.
653	 */
654	if (IEEE80211_IS_CHAN_HALF(chan)) {
655		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
656	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
657		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
658	} else {
659		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
660	}
661}
662
663static void
664ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
665{
666	struct ath_hal_5212 *ahp = AH5212(ah);
667
668	/*
669	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
670	 * manipulates the secondary IMR's as queues are enabled
671	 * and disabled.  This is done with RMW ops to insure the
672	 * settings we make here are preserved.
673	 */
674        ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
675			| AR_IMR_RXERR | AR_IMR_RXORN
676                        | AR_IMR_BCNMISC;
677
678#ifdef	AH_AR5416_INTERRUPT_MITIGATION
679	ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
680#else
681	ahp->ah_maskReg |= AR_IMR_RXOK;
682#endif
683	ahp->ah_maskReg |= AR_IMR_TXOK;
684
685	if (opmode == HAL_M_HOSTAP)
686		ahp->ah_maskReg |= AR_IMR_MIB;
687	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
688
689#ifdef  ADRIAN_NOTYET
690	/* This is straight from ath9k */
691	if (! AR_SREV_HOWL(ah)) {
692		OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
693		OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
694		OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
695	}
696#endif
697
698	/* Enable bus errors that are OR'd to set the HIUERR bit */
699#if 0
700	OS_REG_WRITE(ah, AR_IMR_S2,
701	    	OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
702#endif
703}
704
705static void
706ar5416InitQoS(struct ath_hal *ah)
707{
708	/* QoS support */
709	OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
710	OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
711
712	/* Turn on NOACK Support for QoS packets */
713	OS_REG_WRITE(ah, AR_NOACK,
714		SM(2, AR_NOACK_2BIT_VALUE) |
715		SM(5, AR_NOACK_BIT_OFFSET) |
716		SM(0, AR_NOACK_BYTE_OFFSET));
717
718    	/*
719    	 * initialize TXOP for all TIDs
720    	 */
721	OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
722	OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
723	OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
724	OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
725	OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
726}
727
728static void
729ar5416InitUserSettings(struct ath_hal *ah)
730{
731	struct ath_hal_5212 *ahp = AH5212(ah);
732
733	/* Restore user-specified settings */
734	if (ahp->ah_miscMode != 0)
735		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE)
736		    | ahp->ah_miscMode);
737	if (ahp->ah_sifstime != (u_int) -1)
738		ar5212SetSifsTime(ah, ahp->ah_sifstime);
739	if (ahp->ah_slottime != (u_int) -1)
740		ar5212SetSlotTime(ah, ahp->ah_slottime);
741	if (ahp->ah_acktimeout != (u_int) -1)
742		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
743	if (ahp->ah_ctstimeout != (u_int) -1)
744		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
745	if (AH_PRIVATE(ah)->ah_diagreg != 0)
746		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
747	if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1)
748        	ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout);
749}
750
751static void
752ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan)
753{
754	uint32_t rfMode;
755
756	if (chan == AH_NULL)
757		return;
758
759	/* treat channel B as channel G , no  B mode suport in owl */
760	rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
761	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
762
763	if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
764		/* phy mode bits for 5GHz channels require Fast Clock */
765		rfMode |= AR_PHY_MODE_DYNAMIC
766		       |  AR_PHY_MODE_DYN_CCK_DISABLE;
767	} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
768		rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
769			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
770	}
771
772	OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
773}
774
775/*
776 * Places the hardware into reset and then pulls it out of reset
777 */
778HAL_BOOL
779ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan,
780    HAL_RESET_TYPE resetType)
781{
782	OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
783	/*
784	 * Warm reset is optimistic for open-loop TX power control.
785	 */
786	if (AR_SREV_MERLIN(ah) &&
787	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
788		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
789			return AH_FALSE;
790	} else if (ah->ah_config.ah_force_full_reset) {
791		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
792			return AH_FALSE;
793	} else if ((resetType == HAL_RESET_FORCE_COLD) ||
794	    (resetType == HAL_RESET_BBPANIC)) {
795		HALDEBUG(ah, HAL_DEBUG_RESET,
796		    "%s: full reset; resetType=%d\n",
797		    __func__, resetType);
798		if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
799			return AH_FALSE;
800	} else {
801		if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
802			return AH_FALSE;
803	}
804
805	/* Bring out of sleep mode (AGAIN) */
806	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
807	       return AH_FALSE;
808
809#ifdef notyet
810	ahp->ah_chipFullSleep = AH_FALSE;
811#endif
812
813	AH5416(ah)->ah_initPLL(ah, chan);
814
815	/*
816	 * Perform warm reset before the mode/PLL/turbo registers
817	 * are changed in order to deactivate the radio.  Mode changes
818	 * with an active radio can result in corrupted shifts to the
819	 * radio device.
820	 */
821	ar5416SetRfMode(ah, chan);
822
823	return AH_TRUE;
824}
825
826/*
827 * Delta slope coefficient computation.
828 * Required for OFDM operation.
829 */
830static void
831ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
832                          uint32_t *coef_mantissa, uint32_t *coef_exponent)
833{
834#define COEF_SCALE_S 24
835    uint32_t coef_exp, coef_man;
836    /*
837     * ALGO -> coef_exp = 14-floor(log2(coef));
838     * floor(log2(x)) is the highest set bit position
839     */
840    for (coef_exp = 31; coef_exp > 0; coef_exp--)
841            if ((coef_scaled >> coef_exp) & 0x1)
842                    break;
843    /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
844    HALASSERT(coef_exp);
845    coef_exp = 14 - (coef_exp - COEF_SCALE_S);
846
847    /*
848     * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
849     * The coefficient is already shifted up for scaling
850     */
851    coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
852
853    *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
854    *coef_exponent = coef_exp - 16;
855
856#undef COEF_SCALE_S
857}
858
859void
860ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
861{
862#define INIT_CLOCKMHZSCALED	0x64000000
863	uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
864	uint32_t clockMhzScaled;
865
866	CHAN_CENTERS centers;
867
868	/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
869	/* scale for selected channel bandwidth */
870	clockMhzScaled = INIT_CLOCKMHZSCALED;
871	if (IEEE80211_IS_CHAN_TURBO(chan))
872		clockMhzScaled <<= 1;
873	else if (IEEE80211_IS_CHAN_HALF(chan))
874		clockMhzScaled >>= 1;
875	else if (IEEE80211_IS_CHAN_QUARTER(chan))
876		clockMhzScaled >>= 2;
877
878	/*
879	 * ALGO -> coef = 1e8/fcarrier*fclock/40;
880	 * scaled coef to provide precision for this floating calculation
881	 */
882	ar5416GetChannelCenters(ah, chan, &centers);
883	coef_scaled = clockMhzScaled / centers.synth_center;
884
885 	ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
886
887	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
888		AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
889	OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
890		AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
891
892        /*
893         * For Short GI,
894         * scaled coeff is 9/10 that of normal coeff
895         */
896        coef_scaled = (9 * coef_scaled)/10;
897
898        ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
899
900        /* for short gi */
901        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
902                AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
903        OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
904                AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
905#undef INIT_CLOCKMHZSCALED
906}
907
908/*
909 * Set a limit on the overall output power.  Used for dynamic
910 * transmit power control and the like.
911 *
912 * NB: limit is in units of 0.5 dbM.
913 */
914HAL_BOOL
915ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
916{
917	uint16_t dummyXpdGains[2];
918
919	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
920	return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan,
921			dummyXpdGains);
922}
923
924HAL_BOOL
925ar5416GetChipPowerLimits(struct ath_hal *ah,
926	struct ieee80211_channel *chan)
927{
928	struct ath_hal_5212 *ahp = AH5212(ah);
929	int16_t minPower, maxPower;
930
931	/*
932	 * Get Pier table max and min powers.
933	 */
934	if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
935		/* NB: rf code returns 1/4 dBm units, convert */
936		chan->ic_maxpower = maxPower / 2;
937		chan->ic_minpower = minPower / 2;
938	} else {
939		HALDEBUG(ah, HAL_DEBUG_ANY,
940		    "%s: no min/max power for %u/0x%x\n",
941		    __func__, chan->ic_freq, chan->ic_flags);
942		chan->ic_maxpower = AR5416_MAX_RATE_POWER;
943		chan->ic_minpower = 0;
944	}
945	HALDEBUG(ah, HAL_DEBUG_RESET,
946	    "Chan %d: MaxPow = %d MinPow = %d\n",
947	    chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
948	return AH_TRUE;
949}
950
951/**************************************************************
952 * ar5416WriteTxPowerRateRegisters
953 *
954 * Write the TX power rate registers from the raw values given
955 * in ratesArray[].
956 *
957 * The CCK and HT40 rate registers are only written if needed.
958 * HT20 and 11g/11a OFDM rate registers are always written.
959 *
960 * The values written are raw values which should be written
961 * to the registers - so it's up to the caller to pre-adjust
962 * them (eg CCK power offset value, or Merlin TX power offset,
963 * etc.)
964 */
965void
966ar5416WriteTxPowerRateRegisters(struct ath_hal *ah,
967    const struct ieee80211_channel *chan, const int16_t ratesArray[])
968{
969#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
970
971    /* Write the OFDM power per rate set */
972    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
973        POW_SM(ratesArray[rate18mb], 24)
974          | POW_SM(ratesArray[rate12mb], 16)
975          | POW_SM(ratesArray[rate9mb], 8)
976          | POW_SM(ratesArray[rate6mb], 0)
977    );
978    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
979        POW_SM(ratesArray[rate54mb], 24)
980          | POW_SM(ratesArray[rate48mb], 16)
981          | POW_SM(ratesArray[rate36mb], 8)
982          | POW_SM(ratesArray[rate24mb], 0)
983    );
984
985    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
986        /* Write the CCK power per rate set */
987        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
988            POW_SM(ratesArray[rate2s], 24)
989              | POW_SM(ratesArray[rate2l],  16)
990              | POW_SM(ratesArray[rateXr],  8) /* XR target power */
991              | POW_SM(ratesArray[rate1l],   0)
992        );
993        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
994            POW_SM(ratesArray[rate11s], 24)
995              | POW_SM(ratesArray[rate11l], 16)
996              | POW_SM(ratesArray[rate5_5s], 8)
997              | POW_SM(ratesArray[rate5_5l], 0)
998        );
999    HALDEBUG(ah, HAL_DEBUG_RESET,
1000	"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
1001	    __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
1002	    OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
1003    }
1004
1005    /* Write the HT20 power per rate set */
1006    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1007        POW_SM(ratesArray[rateHt20_3], 24)
1008          | POW_SM(ratesArray[rateHt20_2], 16)
1009          | POW_SM(ratesArray[rateHt20_1], 8)
1010          | POW_SM(ratesArray[rateHt20_0], 0)
1011    );
1012    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1013        POW_SM(ratesArray[rateHt20_7], 24)
1014          | POW_SM(ratesArray[rateHt20_6], 16)
1015          | POW_SM(ratesArray[rateHt20_5], 8)
1016          | POW_SM(ratesArray[rateHt20_4], 0)
1017    );
1018
1019    if (IEEE80211_IS_CHAN_HT40(chan)) {
1020        /* Write the HT40 power per rate set */
1021        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1022            POW_SM(ratesArray[rateHt40_3], 24)
1023              | POW_SM(ratesArray[rateHt40_2], 16)
1024              | POW_SM(ratesArray[rateHt40_1], 8)
1025              | POW_SM(ratesArray[rateHt40_0], 0)
1026        );
1027        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1028            POW_SM(ratesArray[rateHt40_7], 24)
1029              | POW_SM(ratesArray[rateHt40_6], 16)
1030              | POW_SM(ratesArray[rateHt40_5], 8)
1031              | POW_SM(ratesArray[rateHt40_4], 0)
1032        );
1033        /* Write the Dup/Ext 40 power per rate set */
1034        OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1035            POW_SM(ratesArray[rateExtOfdm], 24)
1036              | POW_SM(ratesArray[rateExtCck], 16)
1037              | POW_SM(ratesArray[rateDupOfdm], 8)
1038              | POW_SM(ratesArray[rateDupCck], 0)
1039        );
1040    }
1041
1042    /*
1043     * Set max power to 30 dBm and, optionally,
1044     * enable TPC in tx descriptors.
1045     */
1046    OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
1047      (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
1048#undef POW_SM
1049}
1050
1051/**************************************************************
1052 * ar5416SetTransmitPower
1053 *
1054 * Set the transmit power in the baseband for the given
1055 * operating channel and mode.
1056 */
1057HAL_BOOL
1058ar5416SetTransmitPower(struct ath_hal *ah,
1059	const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
1060{
1061#define N(a)            (sizeof (a) / sizeof (a[0]))
1062#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
1063
1064    MODAL_EEP_HEADER	*pModal;
1065    struct ath_hal_5212 *ahp = AH5212(ah);
1066    int16_t		txPowerIndexOffset = 0;
1067    int			i;
1068
1069    uint16_t		cfgCtl;
1070    uint16_t		powerLimit;
1071    uint16_t		twiceAntennaReduction;
1072    uint16_t		twiceMaxRegulatoryPower;
1073    int16_t		maxPower;
1074    HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1075    struct ar5416eeprom	*pEepData = &ee->ee_base;
1076
1077    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1078
1079    /*
1080     * Default to 2, is overridden based on the EEPROM version / value.
1081     */
1082    AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
1083
1084    /* Setup info for the actual eeprom */
1085    OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
1086    cfgCtl = ath_hal_getctl(ah, chan);
1087    powerLimit = chan->ic_maxregpower * 2;
1088    twiceAntennaReduction = chan->ic_maxantgain;
1089    twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1090    pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1091    HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1092	__func__,chan->ic_freq, cfgCtl );
1093
1094    if (IS_EEP_MINOR_V2(ah)) {
1095        AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1096    }
1097
1098    if (!ar5416SetPowerPerRateTable(ah, pEepData,  chan,
1099                                    &AH5416(ah)->ah_ratesArray[0],
1100				    cfgCtl,
1101                                    twiceAntennaReduction,
1102				    twiceMaxRegulatoryPower, powerLimit)) {
1103        HALDEBUG(ah, HAL_DEBUG_ANY,
1104	    "%s: unable to set tx power per rate table\n", __func__);
1105        return AH_FALSE;
1106    }
1107
1108    if (!AH5416(ah)->ah_setPowerCalTable(ah,  pEepData, chan, &txPowerIndexOffset)) {
1109        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1110	    __func__);
1111        return AH_FALSE;
1112    }
1113
1114    maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
1115      AH5416(ah)->ah_ratesArray[rateHt20_0]);
1116
1117    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1118        maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
1119    }
1120
1121    if (IEEE80211_IS_CHAN_HT40(chan)) {
1122        maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
1123    }
1124
1125    ahp->ah_tx6PowerInHalfDbm = maxPower;
1126    AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1127    ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1128
1129    /*
1130     * txPowerIndexOffset is set by the SetPowerTable() call -
1131     *  adjust the rate table (0 offset if rates EEPROM not loaded)
1132     */
1133    for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1134        AH5416(ah)->ah_ratesArray[i] =
1135          (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
1136        if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1137            AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1138    }
1139
1140#ifdef AH_EEPROM_DUMP
1141    /*
1142     * Dump the rate array whilst it represents the intended dBm*2
1143     * values versus what's being adjusted before being programmed
1144     * in. Keep this in mind if you code up this function and enable
1145     * this debugging; the values won't necessarily be what's being
1146     * programmed into the hardware.
1147     */
1148    ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
1149#endif
1150
1151    /*
1152     * Merlin and later have a power offset, so subtract
1153     * pwr_table_offset * 2 from each value. The default
1154     * power offset is -5 dBm - ie, a register value of 0
1155     * equates to a TX power of -5 dBm.
1156     */
1157    if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
1158        int8_t pwr_table_offset;
1159
1160	(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
1161	    &pwr_table_offset);
1162	/* Underflow power gets clamped at raw value 0 */
1163	/* Overflow power gets camped at AR5416_MAX_RATE_POWER */
1164	for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1165		/*
1166		 * + pwr_table_offset is in dBm
1167		 * + ratesArray is in 1/2 dBm
1168		 */
1169		AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2);
1170		if (AH5416(ah)->ah_ratesArray[i] < 0)
1171			AH5416(ah)->ah_ratesArray[i] = 0;
1172		else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1173		    AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1174	}
1175    }
1176
1177    /*
1178     * Adjust rates for OLC where needed
1179     *
1180     * The following CCK rates need adjusting when doing 2.4ghz
1181     * CCK transmission.
1182     *
1183     * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l
1184     * + rateExtCck, rateDupCck
1185     *
1186     * They're adjusted here regardless. The hardware then gets
1187     * programmed as needed. 5GHz operation doesn't program in CCK
1188     * rates for legacy mode but they seem to be initialised for
1189     * HT40 regardless of channel type.
1190     */
1191    if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
1192	    ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
1193        int adj[] = {
1194	              rate2s, rate2l, rate1l, rate11s, rate11l,
1195	              rate5_5s, rate5_5l, rateExtCck, rateDupCck
1196		    };
1197        int cck_ofdm_delta = 2;
1198	int i;
1199	for (i = 0; i < N(adj); i++) {
1200            AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta;
1201	    if (AH5416(ah)->ah_ratesArray[adj[i]] < 0)
1202	        AH5416(ah)->ah_ratesArray[adj[i]] = 0;
1203        }
1204    }
1205
1206    /*
1207     * Adjust the HT40 power to meet the correct target TX power
1208     * for 40MHz mode, based on TX power curves that are established
1209     * for 20MHz mode.
1210     *
1211     * XXX handle overflow/too high power level?
1212     */
1213    if (IEEE80211_IS_CHAN_HT40(chan)) {
1214	AH5416(ah)->ah_ratesArray[rateHt40_0] +=
1215	  AH5416(ah)->ah_ht40PowerIncForPdadc;
1216	AH5416(ah)->ah_ratesArray[rateHt40_1] +=
1217	  AH5416(ah)->ah_ht40PowerIncForPdadc;
1218	AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1219	AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1220	AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1221	AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1222	AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1223	AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1224    }
1225
1226    /* Write the TX power rate registers */
1227    ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
1228
1229    /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1230    OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1231        POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1232          | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1233    );
1234    return AH_TRUE;
1235#undef POW_SM
1236#undef N
1237}
1238
1239/*
1240 * Exported call to check for a recent gain reading and return
1241 * the current state of the thermal calibration gain engine.
1242 */
1243HAL_RFGAIN
1244ar5416GetRfgain(struct ath_hal *ah)
1245{
1246
1247	return (HAL_RFGAIN_INACTIVE);
1248}
1249
1250/*
1251 * Places all of hardware into reset
1252 */
1253HAL_BOOL
1254ar5416Disable(struct ath_hal *ah)
1255{
1256
1257	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1258		return AH_FALSE;
1259	if (! ar5416SetResetReg(ah, HAL_RESET_COLD))
1260		return AH_FALSE;
1261
1262	AH5416(ah)->ah_initPLL(ah, AH_NULL);
1263	return (AH_TRUE);
1264}
1265
1266/*
1267 * Places the PHY and Radio chips into reset.  A full reset
1268 * must be called to leave this state.  The PCI/MAC/PCU are
1269 * not placed into reset as we must receive interrupt to
1270 * re-enable the hardware.
1271 */
1272HAL_BOOL
1273ar5416PhyDisable(struct ath_hal *ah)
1274{
1275
1276	if (! ar5416SetResetReg(ah, HAL_RESET_WARM))
1277		return AH_FALSE;
1278
1279	AH5416(ah)->ah_initPLL(ah, AH_NULL);
1280	return (AH_TRUE);
1281}
1282
1283/*
1284 * Write the given reset bit mask into the reset register
1285 */
1286HAL_BOOL
1287ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1288{
1289	/*
1290	 * Set force wake
1291	 */
1292	OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1293	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1294
1295	switch (type) {
1296	case HAL_RESET_POWER_ON:
1297		return ar5416SetResetPowerOn(ah);
1298	case HAL_RESET_WARM:
1299	case HAL_RESET_COLD:
1300		return ar5416SetReset(ah, type);
1301	default:
1302		HALASSERT(AH_FALSE);
1303		return AH_FALSE;
1304	}
1305}
1306
1307static HAL_BOOL
1308ar5416SetResetPowerOn(struct ath_hal *ah)
1309{
1310    /* Power On Reset (Hard Reset) */
1311
1312    /*
1313     * Set force wake
1314     *
1315     * If the MAC was running, previously calling
1316     * reset will wake up the MAC but it may go back to sleep
1317     * before we can start polling.
1318     * Set force wake  stops that
1319     * This must be called before initiating a hard reset.
1320     */
1321    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1322            AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1323
1324    /*
1325     * PowerOn reset can be used in open loop power control or failure recovery.
1326     * If we do RTC reset while DMA is still running, hardware may corrupt memory.
1327     * Therefore, we need to reset AHB first to stop DMA.
1328     */
1329    if (! AR_SREV_HOWL(ah))
1330    	OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1331    /*
1332     * RTC reset and clear
1333     */
1334    OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1335    OS_DELAY(20);
1336
1337    if (! AR_SREV_HOWL(ah))
1338    	OS_REG_WRITE(ah, AR_RC, 0);
1339
1340    OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1341
1342    /*
1343     * Poll till RTC is ON
1344     */
1345    if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1346        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1347        return AH_FALSE;
1348    }
1349
1350    return ar5416SetReset(ah, HAL_RESET_COLD);
1351}
1352
1353static HAL_BOOL
1354ar5416SetReset(struct ath_hal *ah, int type)
1355{
1356    uint32_t tmpReg, mask;
1357    uint32_t rst_flags;
1358
1359#ifdef	AH_SUPPORT_AR9130	/* Because of the AR9130 specific registers */
1360    if (AR_SREV_HOWL(ah)) {
1361        HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n");
1362        uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1363        val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1364        val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1365        OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1366        (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1367    }
1368#endif	/* AH_SUPPORT_AR9130 */
1369
1370    /*
1371     * Force wake
1372     */
1373    OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1374	AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1375
1376#ifdef	AH_SUPPORT_AR9130
1377    if (AR_SREV_HOWL(ah)) {
1378        rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1379          AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1380    } else {
1381#endif	/* AH_SUPPORT_AR9130 */
1382        /*
1383         * Reset AHB
1384         *
1385         * (In case the last interrupt source was a bus timeout.)
1386         * XXX TODO: this is not the way to do it! It should be recorded
1387         * XXX by the interrupt handler and passed _into_ the
1388         * XXX reset path routine so this occurs.
1389         */
1390        tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1391        if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1392            OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1393            OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1394        } else {
1395	    OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1396        }
1397        rst_flags = AR_RTC_RC_MAC_WARM;
1398        if (type == HAL_RESET_COLD)
1399            rst_flags |= AR_RTC_RC_MAC_COLD;
1400#ifdef	AH_SUPPORT_AR9130
1401    }
1402#endif	/* AH_SUPPORT_AR9130 */
1403
1404    OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
1405
1406    if (AR_SREV_HOWL(ah))
1407        OS_DELAY(10000);
1408    else
1409        OS_DELAY(100);
1410
1411    /*
1412     * Clear resets and force wakeup
1413     */
1414    OS_REG_WRITE(ah, AR_RTC_RC, 0);
1415    if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1416        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1417        return AH_FALSE;
1418    }
1419
1420    /* Clear AHB reset */
1421    if (! AR_SREV_HOWL(ah))
1422        OS_REG_WRITE(ah, AR_RC, 0);
1423
1424    if (AR_SREV_HOWL(ah))
1425        OS_DELAY(50);
1426
1427    if (AR_SREV_HOWL(ah)) {
1428                uint32_t mask;
1429                mask = OS_REG_READ(ah, AR_CFG);
1430                if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1431                        HALDEBUG(ah, HAL_DEBUG_RESET,
1432                                "CFG Byte Swap Set 0x%x\n", mask);
1433                } else {
1434                        mask =
1435                                INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1436                        OS_REG_WRITE(ah, AR_CFG, mask);
1437                        HALDEBUG(ah, HAL_DEBUG_RESET,
1438                                "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG));
1439                }
1440    } else {
1441	if (type == HAL_RESET_COLD) {
1442		if (isBigEndian()) {
1443			/*
1444			 * Set CFG, little-endian for descriptor accesses.
1445			 */
1446			mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1447#ifndef AH_NEED_DESC_SWAP
1448			mask |= AR_CFG_SWTD;
1449#endif
1450			HALDEBUG(ah, HAL_DEBUG_RESET,
1451			    "%s Applying descriptor swap\n", __func__);
1452			OS_REG_WRITE(ah, AR_CFG, mask);
1453		} else
1454			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1455	}
1456    }
1457
1458    return AH_TRUE;
1459}
1460
1461void
1462ar5416InitChainMasks(struct ath_hal *ah)
1463{
1464	int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1465
1466	/* Flip this for this chainmask regardless of chip */
1467	if (rx_chainmask == 0x5)
1468		OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1469
1470	/*
1471	 * Workaround for OWL 1.0 calibration failure; enable multi-chain;
1472	 * then set true mask after calibration.
1473	 */
1474	if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1475		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1476		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1477	} else {
1478		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1479		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1480	}
1481	OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
1482
1483	if (AH5416(ah)->ah_tx_chainmask == 0x5)
1484		OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1485
1486	if (AR_SREV_HOWL(ah)) {
1487		OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1488		OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1489	}
1490}
1491
1492/*
1493 * Work-around for Owl 1.0 calibration failure.
1494 *
1495 * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0
1496 * due to init calibration failures. ar5416RestoreChainMask restores
1497 * these registers to the correct setting.
1498 */
1499void
1500ar5416RestoreChainMask(struct ath_hal *ah)
1501{
1502	int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1503
1504	if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1505		OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1506		OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1507	}
1508}
1509
1510void
1511ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
1512{
1513	uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1514	if (chan != AH_NULL) {
1515		if (IEEE80211_IS_CHAN_HALF(chan))
1516			pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1517		else if (IEEE80211_IS_CHAN_QUARTER(chan))
1518			pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1519
1520		if (IEEE80211_IS_CHAN_5GHZ(chan))
1521			pll |= SM(0xa, AR_RTC_PLL_DIV);
1522		else
1523			pll |= SM(0xb, AR_RTC_PLL_DIV);
1524	} else
1525		pll |= SM(0xb, AR_RTC_PLL_DIV);
1526
1527	OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1528
1529	/* TODO:
1530	* For multi-band owl, switch between bands by reiniting the PLL.
1531	*/
1532
1533	OS_DELAY(RTC_PLL_SETTLE_DELAY);
1534
1535	OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1536}
1537
1538static void
1539ar5416SetDefGainValues(struct ath_hal *ah,
1540    const MODAL_EEP_HEADER *pModal,
1541    const struct ar5416eeprom *eep,
1542    uint8_t txRxAttenLocal, int regChainOffset, int i)
1543{
1544
1545	if (IS_EEP_MINOR_V3(ah)) {
1546		txRxAttenLocal = pModal->txRxAttenCh[i];
1547
1548		if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1549			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1550			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1551			      pModal->bswMargin[i]);
1552			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1553			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1554			      pModal->bswAtten[i]);
1555			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1556			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1557			      pModal->xatten2Margin[i]);
1558			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1559			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1560			      pModal->xatten2Db[i]);
1561		} else {
1562			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1563			      AR_PHY_GAIN_2GHZ_BSW_MARGIN,
1564			      pModal->bswMargin[i]);
1565			OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1566			      AR_PHY_GAIN_2GHZ_BSW_ATTEN,
1567			      pModal->bswAtten[i]);
1568		}
1569	}
1570
1571	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1572		OS_REG_RMW_FIELD(ah,
1573		      AR_PHY_RXGAIN + regChainOffset,
1574		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1575		OS_REG_RMW_FIELD(ah,
1576		      AR_PHY_RXGAIN + regChainOffset,
1577		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
1578	} else {
1579		OS_REG_RMW_FIELD(ah,
1580			  AR_PHY_RXGAIN + regChainOffset,
1581			  AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1582		OS_REG_RMW_FIELD(ah,
1583			  AR_PHY_GAIN_2GHZ + regChainOffset,
1584			  AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]);
1585	}
1586}
1587
1588/*
1589 * Get the register chain offset for the given chain.
1590 *
1591 * Take into account the register chain swapping with AR5416 v2.0.
1592 *
1593 * XXX make sure that the reg chain swapping is only done for
1594 * XXX AR5416 v2.0 or greater, and not later chips?
1595 */
1596int
1597ar5416GetRegChainOffset(struct ath_hal *ah, int i)
1598{
1599	int regChainOffset;
1600
1601	if (AR_SREV_5416_V20_OR_LATER(ah) &&
1602	    (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1603	    AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
1604		/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1605		 * only chains 0 and 2 populated
1606		 */
1607		regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1608	} else {
1609		regChainOffset = i * 0x1000;
1610	}
1611
1612	return regChainOffset;
1613}
1614
1615/*
1616 * Read EEPROM header info and program the device for correct operation
1617 * given the channel value.
1618 */
1619HAL_BOOL
1620ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1621{
1622    const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1623    const struct ar5416eeprom *eep = &ee->ee_base;
1624    const MODAL_EEP_HEADER *pModal;
1625    int			i, regChainOffset;
1626    uint8_t		txRxAttenLocal;    /* workaround for eeprom versions <= 14.2 */
1627
1628    HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1629    pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1630
1631    /* NB: workaround for eeprom versions <= 14.2 */
1632    txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
1633
1634    OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1635    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1636	   if (AR_SREV_MERLIN(ah)) {
1637		if (i >= 2) break;
1638	   }
1639	regChainOffset = ar5416GetRegChainOffset(ah, i);
1640
1641        OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1642
1643        OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1644        	(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1645        	~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1646        	SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1647        	SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1648
1649        /*
1650         * Large signal upgrade,
1651	 * If 14.3 or later EEPROM, use
1652	 * txRxAttenLocal = pModal->txRxAttenCh[i]
1653	 * else txRxAttenLocal is fixed value above.
1654         */
1655
1656        if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah))
1657	    ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
1658    }
1659
1660	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1661                if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1662                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
1663                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
1664                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
1665                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
1666                } else {
1667                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
1668                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
1669                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
1670                        OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
1671                }
1672                OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
1673                OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS,
1674		    !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS));
1675                OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1676		    !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON));
1677        }
1678
1679    OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1680    OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1681
1682    if (! AR_SREV_MERLIN_10_OR_LATER(ah))
1683    	OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1684
1685    OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1686        SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1687        | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1688        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1689        | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1690
1691    OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1692	pModal->txEndToRxOn);
1693
1694    if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1695	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1696	    pModal->thresh62);
1697	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1698	    pModal->thresh62);
1699    } else {
1700	OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1701	    pModal->thresh62);
1702	OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62,
1703	    pModal->thresh62);
1704    }
1705
1706    /* Minor Version Specific application */
1707    if (IS_EEP_MINOR_V2(ah)) {
1708        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
1709	    pModal->txFrameToDataStart);
1710        OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
1711	    pModal->txFrameToPaOn);
1712    }
1713
1714    if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
1715		/* Overwrite switch settling with HT40 value */
1716		OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1717		    pModal->swSettleHt40);
1718
1719    if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
1720         OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
1721
1722        if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
1723                if (IEEE80211_IS_CHAN_2GHZ(chan))
1724                        OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1725			    eep->baseEepHeader.dacLpMode);
1726                else if (eep->baseEepHeader.dacHiPwrMode_5G)
1727                        OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
1728                else
1729                        OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1730			    eep->baseEepHeader.dacLpMode);
1731
1732		OS_DELAY(100);
1733
1734                OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
1735		    pModal->miscBits >> 2);
1736                OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK,
1737		    eep->baseEepHeader.desiredScaleCCK);
1738        }
1739
1740    return (AH_TRUE);
1741}
1742
1743/*
1744 * Helper functions common for AP/CB/XB
1745 */
1746
1747/*
1748 * Set the target power array "ratesArray" from the
1749 * given set of target powers.
1750 *
1751 * This is used by the various chipset/EEPROM TX power
1752 * setup routines.
1753 */
1754void
1755ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah,
1756    const struct ieee80211_channel *chan,
1757    int16_t *ratesArray,
1758    const CAL_TARGET_POWER_LEG *targetPowerCck,
1759    const CAL_TARGET_POWER_LEG *targetPowerCckExt,
1760    const CAL_TARGET_POWER_LEG *targetPowerOfdm,
1761    const CAL_TARGET_POWER_LEG *targetPowerOfdmExt,
1762    const CAL_TARGET_POWER_HT *targetPowerHt20,
1763    const CAL_TARGET_POWER_HT *targetPowerHt40)
1764{
1765#define	N(a)	(sizeof(a)/sizeof(a[0]))
1766	int i;
1767
1768	/* Blank the rates array, to be consistent */
1769	for (i = 0; i < Ar5416RateSize; i++)
1770		ratesArray[i] = 0;
1771
1772	/* Set rates Array from collected data */
1773	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1774	ratesArray[rate18mb] = ratesArray[rate24mb] =
1775	    targetPowerOfdm->tPow2x[0];
1776	ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1];
1777	ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2];
1778	ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3];
1779	ratesArray[rateXr] = targetPowerOfdm->tPow2x[0];
1780
1781	for (i = 0; i < N(targetPowerHt20->tPow2x); i++) {
1782		ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i];
1783	}
1784
1785	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1786		ratesArray[rate1l]  = targetPowerCck->tPow2x[0];
1787		ratesArray[rate2s] = ratesArray[rate2l]  = targetPowerCck->tPow2x[1];
1788		ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2];
1789		ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3];
1790	}
1791	if (IEEE80211_IS_CHAN_HT40(chan)) {
1792		for (i = 0; i < N(targetPowerHt40->tPow2x); i++) {
1793			ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i];
1794		}
1795		ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0];
1796		ratesArray[rateDupCck]  = targetPowerHt40->tPow2x[0];
1797		ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0];
1798		if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1799			ratesArray[rateExtCck]  = targetPowerCckExt->tPow2x[0];
1800		}
1801	}
1802#undef	N
1803}
1804
1805/*
1806 * ar5416SetPowerPerRateTable
1807 *
1808 * Sets the transmit power in the baseband for the given
1809 * operating channel and mode.
1810 */
1811static HAL_BOOL
1812ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1813                           const struct ieee80211_channel *chan,
1814                           int16_t *ratesArray, uint16_t cfgCtl,
1815                           uint16_t AntennaReduction,
1816                           uint16_t twiceMaxRegulatoryPower,
1817                           uint16_t powerLimit)
1818{
1819#define	N(a)	(sizeof(a)/sizeof(a[0]))
1820/* Local defines to distinguish between extension and control CTL's */
1821#define EXT_ADDITIVE (0x8000)
1822#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
1823#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
1824#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
1825
1826	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1827	int i;
1828	int16_t  twiceLargestAntenna;
1829	CAL_CTL_DATA *rep;
1830	CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
1831	CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
1832	CAL_TARGET_POWER_HT  targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
1833	int16_t scaledPower, minCtlPower;
1834
1835#define SUB_NUM_CTL_MODES_AT_5G_40 2   /* excluding HT40, EXT-OFDM */
1836#define SUB_NUM_CTL_MODES_AT_2G_40 3   /* excluding HT40, EXT-OFDM, EXT-CCK */
1837	static const uint16_t ctlModesFor11a[] = {
1838	   CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1839	};
1840	static const uint16_t ctlModesFor11g[] = {
1841	   CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1842	};
1843	const uint16_t *pCtlMode;
1844	uint16_t numCtlModes, ctlMode, freq;
1845	CHAN_CENTERS centers;
1846
1847	ar5416GetChannelCenters(ah,  chan, &centers);
1848
1849	/* Compute TxPower reduction due to Antenna Gain */
1850
1851	twiceLargestAntenna = AH_MAX(AH_MAX(
1852	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1853	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
1854	    pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1855#if 0
1856	/* Turn it back on if we need to calculate per chain antenna gain reduction */
1857	/* Use only if the expected gain > 6dbi */
1858	/* Chain 0 is always used */
1859	twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
1860
1861	/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
1862	if (ahp->ah_tx_chainmask & 0x2)
1863		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1864			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1865
1866	if (ahp->ah_tx_chainmask & 0x4)
1867		twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1868			pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1869#endif
1870	twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
1871
1872	/* XXX setup for 5212 use (really used?) */
1873	ath_hal_eepromSet(ah,
1874	    IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
1875	    twiceLargestAntenna);
1876
1877	/*
1878	 * scaledPower is the minimum of the user input power level and
1879	 * the regulatory allowed power level
1880	 */
1881	scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
1882
1883	/* Reduce scaled Power by number of chains active to get to per chain tx power level */
1884	/* TODO: better value than these? */
1885	switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
1886	case 1:
1887		break;
1888	case 2:
1889		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
1890		break;
1891	case 3:
1892		scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
1893		break;
1894	default:
1895		return AH_FALSE; /* Unsupported number of chains */
1896	}
1897
1898	scaledPower = AH_MAX(0, scaledPower);
1899
1900	/* Get target powers from EEPROM - our baseline for TX Power */
1901	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1902		/* Setup for CTL modes */
1903		numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
1904		pCtlMode = ctlModesFor11g;
1905
1906		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1907				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
1908		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1909				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1910		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT20,
1911				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1912
1913		if (IEEE80211_IS_CHAN_HT40(chan)) {
1914			numCtlModes = N(ctlModesFor11g);    /* All 2G CTL's */
1915
1916			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower2GHT40,
1917				AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1918			/* Get target powers for extension channels */
1919			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPowerCck,
1920				AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
1921			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower2G,
1922				AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1923		}
1924	} else {
1925		/* Setup for CTL modes */
1926		numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
1927		pCtlMode = ctlModesFor11a;
1928
1929		ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1930				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1931		ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT20,
1932				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1933
1934		if (IEEE80211_IS_CHAN_HT40(chan)) {
1935			numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
1936
1937			ar5416GetTargetPowers(ah,  chan, pEepData->calTargetPower5GHT40,
1938				AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1939			ar5416GetTargetPowersLeg(ah,  chan, pEepData->calTargetPower5G,
1940				AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1941		}
1942	}
1943
1944	/*
1945	 * For MIMO, need to apply regulatory caps individually across dynamically
1946	 * running modes: CCK, OFDM, HT20, HT40
1947	 *
1948	 * The outer loop walks through each possible applicable runtime mode.
1949	 * The inner loop walks through each ctlIndex entry in EEPROM.
1950	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
1951	 *
1952	 */
1953	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1954		HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1955		    (pCtlMode[ctlMode] == CTL_2GHT40);
1956		if (isHt40CtlMode) {
1957			freq = centers.ctl_center;
1958		} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
1959			freq = centers.ext_center;
1960		} else {
1961			freq = centers.ctl_center;
1962		}
1963
1964		/* walk through each CTL index stored in EEPROM */
1965		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1966			uint16_t twiceMinEdgePower;
1967
1968			/* compare test group from regulatory channel list with test mode from pCtlMode list */
1969			if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
1970				(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1971				 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1972				rep = &(pEepData->ctlData[i]);
1973				twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
1974							rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
1975							IEEE80211_IS_CHAN_2GHZ(chan));
1976				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1977					/* Find the minimum of all CTL edge powers that apply to this channel */
1978					twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
1979				} else {
1980					/* specific */
1981					twiceMaxEdgePower = twiceMinEdgePower;
1982					break;
1983				}
1984			}
1985		}
1986		minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
1987		/* Apply ctl mode to correct target power set */
1988		switch(pCtlMode[ctlMode]) {
1989		case CTL_11B:
1990			for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
1991				targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
1992			}
1993			break;
1994		case CTL_11A:
1995		case CTL_11G:
1996			for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
1997				targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
1998			}
1999			break;
2000		case CTL_5GHT20:
2001		case CTL_2GHT20:
2002			for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2003				targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
2004			}
2005			break;
2006		case CTL_11B_EXT:
2007			targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
2008			break;
2009		case CTL_11A_EXT:
2010		case CTL_11G_EXT:
2011			targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
2012			break;
2013		case CTL_5GHT40:
2014		case CTL_2GHT40:
2015			for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2016				targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
2017			}
2018			break;
2019		default:
2020			return AH_FALSE;
2021			break;
2022		}
2023	} /* end ctl mode checking */
2024
2025	/* Set rates Array from collected data */
2026	ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
2027	    &targetPowerCck,
2028	    &targetPowerCckExt,
2029	    &targetPowerOfdm,
2030	    &targetPowerOfdmExt,
2031	    &targetPowerHt20,
2032	    &targetPowerHt40);
2033	return AH_TRUE;
2034#undef EXT_ADDITIVE
2035#undef CTL_11A_EXT
2036#undef CTL_11G_EXT
2037#undef CTL_11B_EXT
2038#undef SUB_NUM_CTL_MODES_AT_5G_40
2039#undef SUB_NUM_CTL_MODES_AT_2G_40
2040#undef N
2041}
2042
2043/**************************************************************************
2044 * fbin2freq
2045 *
2046 * Get channel value from binary representation held in eeprom
2047 * RETURNS: the frequency in MHz
2048 */
2049static uint16_t
2050fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2051{
2052    /*
2053     * Reserved value 0xFF provides an empty definition both as
2054     * an fbin and as a frequency - do not convert
2055     */
2056    if (fbin == AR5416_BCHAN_UNUSED) {
2057        return fbin;
2058    }
2059
2060    return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2061}
2062
2063/*
2064 * ar5416GetMaxEdgePower
2065 *
2066 * Find the maximum conformance test limit for the given channel and CTL info
2067 */
2068uint16_t
2069ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2070{
2071    uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2072    int      i;
2073
2074    /* Get the edge power */
2075    for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2076        /*
2077         * If there's an exact channel match or an inband flag set
2078         * on the lower channel use the given rdEdgePower
2079         */
2080        if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2081            twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2082            break;
2083        } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2084            if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2085                twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2086            }
2087            /* Leave loop - no more affecting edges possible in this monotonic increasing list */
2088            break;
2089        }
2090    }
2091    HALASSERT(twiceMaxEdgePower > 0);
2092    return twiceMaxEdgePower;
2093}
2094
2095/**************************************************************
2096 * ar5416GetTargetPowers
2097 *
2098 * Return the rates of target power for the given target power table
2099 * channel, and number of channels
2100 */
2101void
2102ar5416GetTargetPowers(struct ath_hal *ah,  const struct ieee80211_channel *chan,
2103                      CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2104                      CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2105                      HAL_BOOL isHt40Target)
2106{
2107    uint16_t clo, chi;
2108    int i;
2109    int matchIndex = -1, lowIndex = -1;
2110    uint16_t freq;
2111    CHAN_CENTERS centers;
2112
2113    ar5416GetChannelCenters(ah,  chan, &centers);
2114    freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2115
2116    /* Copy the target powers into the temp channel list */
2117    if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2118        matchIndex = 0;
2119    } else {
2120        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2121            if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2122                matchIndex = i;
2123                break;
2124            } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2125                       (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2126            {
2127                lowIndex = i - 1;
2128                break;
2129            }
2130        }
2131        if ((matchIndex == -1) && (lowIndex == -1)) {
2132            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2133            matchIndex = i - 1;
2134        }
2135    }
2136
2137    if (matchIndex != -1) {
2138        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2139    } else {
2140        HALASSERT(lowIndex != -1);
2141        /*
2142         * Get the lower and upper channels, target powers,
2143         * and interpolate between them.
2144         */
2145        clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2146        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2147
2148        for (i = 0; i < numRates; i++) {
2149            pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2150                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2151        }
2152    }
2153}
2154/**************************************************************
2155 * ar5416GetTargetPowersLeg
2156 *
2157 * Return the four rates of target power for the given target power table
2158 * channel, and number of channels
2159 */
2160void
2161ar5416GetTargetPowersLeg(struct ath_hal *ah,
2162                         const struct ieee80211_channel *chan,
2163                         CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2164                         CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2165			 HAL_BOOL isExtTarget)
2166{
2167    uint16_t clo, chi;
2168    int i;
2169    int matchIndex = -1, lowIndex = -1;
2170    uint16_t freq;
2171    CHAN_CENTERS centers;
2172
2173    ar5416GetChannelCenters(ah,  chan, &centers);
2174    freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2175
2176    /* Copy the target powers into the temp channel list */
2177    if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2178        matchIndex = 0;
2179    } else {
2180        for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2181            if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2182                matchIndex = i;
2183                break;
2184            } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2185                       (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2186            {
2187                lowIndex = i - 1;
2188                break;
2189            }
2190        }
2191        if ((matchIndex == -1) && (lowIndex == -1)) {
2192            HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2193            matchIndex = i - 1;
2194        }
2195    }
2196
2197    if (matchIndex != -1) {
2198        OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2199    } else {
2200        HALASSERT(lowIndex != -1);
2201        /*
2202         * Get the lower and upper channels, target powers,
2203         * and interpolate between them.
2204         */
2205        clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2206        chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2207
2208        for (i = 0; i < numRates; i++) {
2209            pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2210                                   powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2211        }
2212    }
2213}
2214
2215/*
2216 * Set the gain boundaries for the given radio chain.
2217 *
2218 * The gain boundaries tell the hardware at what point in the
2219 * PDADC array to "switch over" from one PD gain setting
2220 * to another. There's also a gain overlap between two
2221 * PDADC array gain curves where there's valid PD values
2222 * for 2 gain settings.
2223 *
2224 * The hardware uses the gain overlap and gain boundaries
2225 * to determine which gain curve to use for the given
2226 * target TX power.
2227 */
2228void
2229ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i,
2230    uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[])
2231{
2232	int regChainOffset;
2233
2234	regChainOffset = ar5416GetRegChainOffset(ah, i);
2235
2236	HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d,"
2237	    " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2,
2238	    gainBoundaries[0], gainBoundaries[1], gainBoundaries[2],
2239	    gainBoundaries[3]);
2240	OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2241	    SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2242	    SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)  |
2243	    SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)  |
2244	    SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)  |
2245	    SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2246}
2247
2248/*
2249 * Get the gain values and the number of gain levels given
2250 * in xpdMask.
2251 *
2252 * The EEPROM xpdMask determines which power detector gain
2253 * levels were used during calibration. Each of these mask
2254 * bits maps to a fixed gain level in hardware.
2255 */
2256uint16_t
2257ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask,
2258    uint16_t xpdGainValues[])
2259{
2260    int i;
2261    uint16_t numXpdGain = 0;
2262
2263    for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2264        if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2265            if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2266                HALASSERT(0);
2267                break;
2268            }
2269            xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2270            numXpdGain++;
2271        }
2272    }
2273    return numXpdGain;
2274}
2275
2276/*
2277 * Write the detector gain and biases.
2278 *
2279 * There are four power detector gain levels. The xpdMask in the EEPROM
2280 * determines which power detector gain levels have TX power calibration
2281 * data associated with them. This function writes the number of
2282 * PD gain levels and their values into the hardware.
2283 *
2284 * This is valid for all TX chains - the calibration data itself however
2285 * will likely differ per-chain.
2286 */
2287void
2288ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain,
2289    uint16_t xpdGainValues[])
2290{
2291    HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d,"
2292      " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain,
2293      xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]);
2294
2295    OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2296    	~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 |
2297	AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2298	SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) |
2299	SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2300	SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) |
2301	SM(xpdGainValues[2],  AR_PHY_TPCRG1_PD_GAIN_3));
2302}
2303
2304/*
2305 * Write the PDADC array to the given radio chain i.
2306 *
2307 * The 32 PDADC registers are written without any care about
2308 * their contents - so if various chips treat values as "special",
2309 * this routine will not care.
2310 */
2311void
2312ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[])
2313{
2314	int regOffset, regChainOffset;
2315	int j;
2316	int reg32;
2317
2318	regChainOffset = ar5416GetRegChainOffset(ah, i);
2319	regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2320
2321	for (j = 0; j < 32; j++) {
2322		reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)  |
2323		    ((pdadcValues[4*j + 1] & 0xFF) << 8)  |
2324		    ((pdadcValues[4*j + 2] & 0xFF) << 16) |
2325		    ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2326		OS_REG_WRITE(ah, regOffset, reg32);
2327		HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |"
2328		    " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d"
2329		    " Value %3d | PDADC %3d Value %3d |\n",
2330		    i,
2331		    4*j, pdadcValues[4*j],
2332		    4*j+1, pdadcValues[4*j + 1],
2333		    4*j+2, pdadcValues[4*j + 2],
2334		    4*j+3, pdadcValues[4*j + 3]);
2335		regOffset += 4;
2336	}
2337}
2338
2339/**************************************************************
2340 * ar5416SetPowerCalTable
2341 *
2342 * Pull the PDADC piers from cal data and interpolate them across the given
2343 * points as well as from the nearest pier(s) to get a power detector
2344 * linear voltage to power level table.
2345 */
2346HAL_BOOL
2347ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2348	const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
2349{
2350    CAL_DATA_PER_FREQ *pRawDataset;
2351    uint8_t  *pCalBChans = AH_NULL;
2352    uint16_t pdGainOverlap_t2;
2353    static uint8_t  pdadcValues[AR5416_NUM_PDADC_VALUES];
2354    uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2355    uint16_t numPiers, i;
2356    int16_t  tMinCalPower;
2357    uint16_t numXpdGain, xpdMask;
2358    uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2359    uint32_t regChainOffset;
2360
2361    OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
2362
2363    xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
2364
2365    if (IS_EEP_MINOR_V2(ah)) {
2366        pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
2367    } else {
2368    	pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2369    }
2370
2371    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2372        pCalBChans = pEepData->calFreqPier2G;
2373        numPiers = AR5416_NUM_2G_CAL_PIERS;
2374    } else {
2375        pCalBChans = pEepData->calFreqPier5G;
2376        numPiers = AR5416_NUM_5G_CAL_PIERS;
2377    }
2378
2379    /* Calculate the value of xpdgains from the xpdGain Mask */
2380    numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues);
2381
2382    /* Write the detector gain biases and their number */
2383    ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
2384
2385    for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2386	regChainOffset = ar5416GetRegChainOffset(ah, i);
2387
2388        if (pEepData->baseEepHeader.txMask & (1 << i)) {
2389            if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2390                pRawDataset = pEepData->calPierData2G[i];
2391            } else {
2392                pRawDataset = pEepData->calPierData5G[i];
2393            }
2394
2395            /* Fetch the gain boundaries and the PDADC values */
2396	    ar5416GetGainBoundariesAndPdadcs(ah,  chan, pRawDataset,
2397                                             pCalBChans, numPiers,
2398                                             pdGainOverlap_t2,
2399                                             &tMinCalPower, gainBoundaries,
2400                                             pdadcValues, numXpdGain);
2401
2402            if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
2403		ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2,
2404		  gainBoundaries);
2405            }
2406
2407            /* Write the power values into the baseband power table */
2408	    ar5416WritePdadcValues(ah, i, pdadcValues);
2409        }
2410    }
2411    *pTxPowerIndexOffset = 0;
2412
2413    return AH_TRUE;
2414}
2415
2416/**************************************************************
2417 * ar5416GetGainBoundariesAndPdadcs
2418 *
2419 * Uses the data points read from EEPROM to reconstruct the pdadc power table
2420 * Called by ar5416SetPowerCalTable only.
2421 */
2422void
2423ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2424                                 const struct ieee80211_channel *chan,
2425				 CAL_DATA_PER_FREQ *pRawDataSet,
2426                                 uint8_t * bChans,  uint16_t availPiers,
2427                                 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2428                                 uint8_t * pPDADCValues, uint16_t numXpdGains)
2429{
2430
2431    int       i, j, k;
2432    int16_t   ss;         /* potentially -ve index for taking care of pdGainOverlap */
2433    uint16_t  idxL, idxR, numPiers; /* Pier indexes */
2434
2435    /* filled out Vpd table for all pdGains (chanL) */
2436    static uint8_t   vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2437
2438    /* filled out Vpd table for all pdGains (chanR) */
2439    static uint8_t   vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2440
2441    /* filled out Vpd table for all pdGains (interpolated) */
2442    static uint8_t   vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2443
2444    uint8_t   *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2445    uint8_t   minPwrT4[AR5416_NUM_PD_GAINS];
2446    uint8_t   maxPwrT4[AR5416_NUM_PD_GAINS];
2447    int16_t   vpdStep;
2448    int16_t   tmpVal;
2449    uint16_t  sizeCurrVpdTable, maxIndex, tgtIndex;
2450    HAL_BOOL    match;
2451    int16_t  minDelta = 0;
2452    CHAN_CENTERS centers;
2453
2454    ar5416GetChannelCenters(ah, chan, &centers);
2455
2456    /* Trim numPiers for the number of populated channel Piers */
2457    for (numPiers = 0; numPiers < availPiers; numPiers++) {
2458        if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2459            break;
2460        }
2461    }
2462
2463    /* Find pier indexes around the current channel */
2464    match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
2465	IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
2466
2467    if (match) {
2468        /* Directly fill both vpd tables from the matching index */
2469        for (i = 0; i < numXpdGains; i++) {
2470            minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2471            maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2472            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2473                               pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2474        }
2475    } else {
2476        for (i = 0; i < numXpdGains; i++) {
2477            pVpdL = pRawDataSet[idxL].vpdPdg[i];
2478            pPwrL = pRawDataSet[idxL].pwrPdg[i];
2479            pVpdR = pRawDataSet[idxR].vpdPdg[i];
2480            pPwrR = pRawDataSet[idxR].pwrPdg[i];
2481
2482            /* Start Vpd interpolation from the max of the minimum powers */
2483            minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2484
2485            /* End Vpd interpolation from the min of the max powers */
2486            maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2487            HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2488
2489            /* Fill pier Vpds */
2490            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2491            ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2492
2493            /* Interpolate the final vpd */
2494            for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2495                vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
2496		    IEEE80211_IS_CHAN_2GHZ(chan)),
2497                    bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2498            }
2499        }
2500    }
2501    *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2502
2503    k = 0; /* index for the final table */
2504    for (i = 0; i < numXpdGains; i++) {
2505        if (i == (numXpdGains - 1)) {
2506            pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2507        } else {
2508            pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2509        }
2510
2511        pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2512
2513	/* NB: only applies to owl 1.0 */
2514        if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
2515	    /*
2516             * fix the gain delta, but get a delta that can be applied to min to
2517             * keep the upper power values accurate, don't think max needs to
2518             * be adjusted because should not be at that area of the table?
2519	     */
2520            minDelta = pPdGainBoundaries[0] - 23;
2521            pPdGainBoundaries[0] = 23;
2522        }
2523        else {
2524            minDelta = 0;
2525        }
2526
2527        /* Find starting index for this pdGain */
2528        if (i == 0) {
2529            if (AR_SREV_MERLIN_10_OR_LATER(ah))
2530                ss = (int16_t)(0 - (minPwrT4[i] / 2));
2531            else
2532                ss = 0; /* for the first pdGain, start from index 0 */
2533        } else {
2534	    /* need overlap entries extrapolated below. */
2535            ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2536        }
2537        vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2538        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2539        /*
2540         *-ve ss indicates need to extrapolate data below for this pdGain
2541         */
2542        while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2543            tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2544            pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2545            ss++;
2546        }
2547
2548        sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2549        tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2550        maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2551
2552        while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2553            pPDADCValues[k++] = vpdTableI[i][ss++];
2554        }
2555
2556        vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2557        vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2558        /*
2559         * for last gain, pdGainBoundary == Pmax_t2, so will
2560         * have to extrapolate
2561         */
2562        if (tgtIndex >= maxIndex) {  /* need to extrapolate above */
2563            while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2564                tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2565                          (ss - maxIndex +1) * vpdStep));
2566                pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2567                ss++;
2568            }
2569        }               /* extrapolated above */
2570    }                   /* for all pdGainUsed */
2571
2572    /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2573    while (i < AR5416_PD_GAINS_IN_MASK) {
2574        pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2575        i++;
2576    }
2577
2578    while (k < AR5416_NUM_PDADC_VALUES) {
2579        pPDADCValues[k] = pPDADCValues[k-1];
2580        k++;
2581    }
2582    return;
2583}
2584
2585/*
2586 * The linux ath9k driver and (from what I've been told) the reference
2587 * Atheros driver enables the 11n PHY by default whether or not it's
2588 * configured.
2589 */
2590static void
2591ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
2592{
2593	uint32_t phymode;
2594	uint32_t enableDacFifo = 0;
2595	HAL_HT_MACMODE macmode;		/* MAC - 20/40 mode */
2596
2597	if (AR_SREV_KITE_10_OR_LATER(ah))
2598		enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
2599
2600	/* Enable 11n HT, 20 MHz */
2601	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2602		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
2603
2604	/* Configure baseband for dynamic 20/40 operation */
2605	if (IEEE80211_IS_CHAN_HT40(chan)) {
2606		phymode |= AR_PHY_FC_DYN2040_EN;
2607
2608		/* Configure control (primary) channel at +-10MHz */
2609		if (IEEE80211_IS_CHAN_HT40U(chan))
2610			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2611#if 0
2612		/* Configure 20/25 spacing */
2613		if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2614			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2615#endif
2616		macmode = HAL_HT_MACMODE_2040;
2617	} else
2618		macmode = HAL_HT_MACMODE_20;
2619	OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2620
2621	/* Configure MAC for 20/40 operation */
2622	ar5416Set11nMac2040(ah, macmode);
2623
2624	/* global transmit timeout (25 TUs default)*/
2625	/* XXX - put this elsewhere??? */
2626	OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2627
2628	/* carrier sense timeout */
2629	OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2630	OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
2631}
2632
2633void
2634ar5416GetChannelCenters(struct ath_hal *ah,
2635	const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
2636{
2637	uint16_t freq = ath_hal_gethwchannel(ah, chan);
2638
2639	centers->ctl_center = freq;
2640	centers->synth_center = freq;
2641	/*
2642	 * In 20/40 phy mode, the center frequency is
2643	 * "between" the control and extension channels.
2644	 */
2645	if (IEEE80211_IS_CHAN_HT40U(chan)) {
2646		centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2647		centers->ext_center =
2648		    centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2649	} else if (IEEE80211_IS_CHAN_HT40D(chan)) {
2650		centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2651		centers->ext_center =
2652		    centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2653	} else {
2654		centers->ext_center = freq;
2655	}
2656}
2657
2658/*
2659 * Override the INI vals being programmed.
2660 */
2661static void
2662ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
2663{
2664	uint32_t val;
2665
2666	/*
2667	 * Set the RX_ABORT and RX_DIS and clear if off only after
2668	 * RXE is set for MAC. This prevents frames with corrupted
2669	 * descriptor status.
2670	 */
2671	OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
2672
2673	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
2674		val = OS_REG_READ(ah, AR_PCU_MISC_MODE2);
2675		val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE);
2676		if (!AR_SREV_9271(ah))
2677			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
2678
2679		if (AR_SREV_KIWI_10_OR_LATER(ah))
2680			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
2681
2682		OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
2683	}
2684
2685	/*
2686	 * Disable RIFS search on some chips to avoid baseband
2687	 * hang issues.
2688	 */
2689	if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah))
2690		(void) ar5416SetRifsDelay(ah, chan, AH_FALSE);
2691
2692        if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah))
2693		return;
2694
2695	/*
2696	 * Disable BB clock gating
2697	 * Necessary to avoid issues on AR5416 2.0
2698	 */
2699	OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
2700}
2701
2702struct ini {
2703	uint32_t        *data;          /* NB: !const */
2704	int             rows, cols;
2705};
2706
2707/*
2708 * Override XPA bias level based on operating frequency.
2709 * This is a v14 EEPROM specific thing for the AR9160.
2710 */
2711void
2712ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan)
2713{
2714#define	XPA_LVL_FREQ(cnt)	(pModal->xpaBiasLvlFreq[cnt])
2715	MODAL_EEP_HEADER	*pModal;
2716	HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
2717	struct ar5416eeprom	*eep = &ee->ee_base;
2718	uint8_t biaslevel;
2719
2720	if (! AR_SREV_SOWL(ah))
2721		return;
2722
2723        if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7)
2724                return;
2725
2726	pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]);
2727
2728	if (pModal->xpaBiasLvl != 0xff)
2729		biaslevel = pModal->xpaBiasLvl;
2730	else {
2731		uint16_t resetFreqBin, freqBin, freqCount = 0;
2732		CHAN_CENTERS centers;
2733
2734		ar5416GetChannelCenters(ah, chan, &centers);
2735
2736		resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
2737		freqBin = XPA_LVL_FREQ(0) & 0xff;
2738		biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14);
2739
2740		freqCount++;
2741
2742		while (freqCount < 3) {
2743			if (XPA_LVL_FREQ(freqCount) == 0x0)
2744			break;
2745
2746			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
2747			if (resetFreqBin >= freqBin)
2748				biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14);
2749			else
2750				break;
2751			freqCount++;
2752		}
2753	}
2754
2755	HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n",
2756	    __func__, biaslevel);
2757
2758	/*
2759	 * This is a dirty workaround for the const initval data,
2760	 * which will upset multiple AR9160's on the same board.
2761	 *
2762	 * The HAL should likely just have a private copy of the addac
2763	 * data per instance.
2764	 */
2765	if (IEEE80211_IS_CHAN_2GHZ(chan))
2766                HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) =
2767		    (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
2768        else
2769                HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) =
2770		    (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
2771#undef XPA_LVL_FREQ
2772}
2773
2774static void
2775ar5416MarkPhyInactive(struct ath_hal *ah)
2776{
2777	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2778}
2779
2780#define	AR5416_IFS_SLOT_FULL_RATE_40	0x168	/* 9 us half, 40 MHz core clock (9*40) */
2781#define	AR5416_IFS_SLOT_HALF_RATE_40	0x104	/* 13 us half, 20 MHz core clock (13*20) */
2782#define	AR5416_IFS_SLOT_QUARTER_RATE_40	0xD2	/* 21 us quarter, 10 MHz core clock (21*10) */
2783
2784#define	AR5416_IFS_EIFS_FULL_RATE_40	0xE60	/* (74 + (2 * 9)) * 40MHz core clock */
2785#define	AR5416_IFS_EIFS_HALF_RATE_40	0xDAC	/* (149 + (2 * 13)) * 20MHz core clock */
2786#define	AR5416_IFS_EIFS_QUARTER_RATE_40	0xD48	/* (298 + (2 * 21)) * 10MHz core clock */
2787
2788#define	AR5416_IFS_SLOT_FULL_RATE_44	0x18c	/* 9 us half, 44 MHz core clock (9*44) */
2789#define	AR5416_IFS_SLOT_HALF_RATE_44	0x11e	/* 13 us half, 22 MHz core clock (13*22) */
2790#define	AR5416_IFS_SLOT_QUARTER_RATE_44	0xe7	/* 21 us quarter, 11 MHz core clock (21*11) */
2791
2792#define	AR5416_IFS_EIFS_FULL_RATE_44	0xfd0	/* (74 + (2 * 9)) * 44MHz core clock */
2793#define	AR5416_IFS_EIFS_HALF_RATE_44	0xf0a	/* (149 + (2 * 13)) * 22MHz core clock */
2794#define	AR5416_IFS_EIFS_QUARTER_RATE_44	0xe9c	/* (298 + (2 * 21)) * 11MHz core clock */
2795
2796#define	AR5416_INIT_USEC_40		40
2797#define	AR5416_HALF_RATE_USEC_40	19 /* ((40 / 2) - 1 ) */
2798#define	AR5416_QUARTER_RATE_USEC_40	9  /* ((40 / 4) - 1 ) */
2799
2800#define	AR5416_INIT_USEC_44		44
2801#define	AR5416_HALF_RATE_USEC_44	21 /* ((44 / 2) - 1 ) */
2802#define	AR5416_QUARTER_RATE_USEC_44	10  /* ((44 / 4) - 1 ) */
2803
2804/* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */
2805#define	AR5416_RX_NON_FULL_RATE_LATENCY		63
2806#define	AR5416_TX_HALF_RATE_LATENCY		108
2807#define	AR5416_TX_QUARTER_RATE_LATENCY		216
2808
2809/*
2810 * Adjust various register settings based on half/quarter rate clock setting.
2811 * This includes:
2812 *
2813 * + USEC, TX/RX latency,
2814 * + IFS params: slot, eifs, misc etc.
2815 *
2816 * TODO:
2817 *
2818 * + Verify which other registers need to be tweaked;
2819 * + Verify the behaviour of this for 5GHz fast and non-fast clock mode;
2820 * + This just plain won't work for long distance links - the coverage class
2821 *   code isn't aware of the slot/ifs/ACK/RTS timeout values that need to
2822 *   change;
2823 * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n
2824 *   series chips?
2825 * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock
2826 */
2827static void
2828ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2829{
2830	uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2831	int clk_44 = 0;
2832
2833	HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2834	    IEEE80211_IS_CHAN_QUARTER(chan));
2835
2836	/* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */
2837	if (IEEE80211_IS_CHAN_2GHZ(chan))
2838		clk_44 = 1;
2839	else if (IEEE80211_IS_CHAN_5GHZ(chan) &&
2840	    IS_5GHZ_FAST_CLOCK_EN(ah, chan))
2841		clk_44 = 1;
2842
2843	/* XXX does this need save/restoring for the 11n chips? */
2844	/*
2845	 * XXX TODO: should mask out the txlat/rxlat/usec values?
2846	 */
2847	refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2848
2849	/*
2850	 * XXX This really should calculate things, not use
2851	 * hard coded values! Ew.
2852	 */
2853	if (IEEE80211_IS_CHAN_HALF(chan)) {
2854		if (clk_44) {
2855			slot = AR5416_IFS_SLOT_HALF_RATE_44;
2856			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2857			    AR5416_USEC_RX_LAT_S;
2858			txLat = AR5416_TX_HALF_RATE_LATENCY <<
2859			    AR5416_USEC_TX_LAT_S;
2860			usec = AR5416_HALF_RATE_USEC_44;
2861			eifs = AR5416_IFS_EIFS_HALF_RATE_44;
2862			init_usec = AR5416_INIT_USEC_44 >> 1;
2863		} else {
2864			slot = AR5416_IFS_SLOT_HALF_RATE_40;
2865			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2866			    AR5416_USEC_RX_LAT_S;
2867			txLat = AR5416_TX_HALF_RATE_LATENCY <<
2868			    AR5416_USEC_TX_LAT_S;
2869			usec = AR5416_HALF_RATE_USEC_40;
2870			eifs = AR5416_IFS_EIFS_HALF_RATE_40;
2871			init_usec = AR5416_INIT_USEC_40 >> 1;
2872		}
2873	} else { /* quarter rate */
2874		if (clk_44) {
2875			slot = AR5416_IFS_SLOT_QUARTER_RATE_44;
2876			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2877			    AR5416_USEC_RX_LAT_S;
2878			txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2879			    AR5416_USEC_TX_LAT_S;
2880			usec = AR5416_QUARTER_RATE_USEC_44;
2881			eifs = AR5416_IFS_EIFS_QUARTER_RATE_44;
2882			init_usec = AR5416_INIT_USEC_44 >> 2;
2883		} else {
2884			slot = AR5416_IFS_SLOT_QUARTER_RATE_40;
2885			rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2886			    AR5416_USEC_RX_LAT_S;
2887			txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2888			    AR5416_USEC_TX_LAT_S;
2889			usec = AR5416_QUARTER_RATE_USEC_40;
2890			eifs = AR5416_IFS_EIFS_QUARTER_RATE_40;
2891			init_usec = AR5416_INIT_USEC_40 >> 2;
2892		}
2893	}
2894
2895	/* XXX verify these! */
2896	OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2897	OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2898	OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2899	OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2900	    AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2901}
2902