1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD: releng/12.0/sys/dev/ath/ath_hal/ar5212/ar2413.c 326695 2017-12-08 15:57:29Z pfg $
20 */
21#include "opt_ah.h"
22
23#include "ah.h"
24#include "ah_internal.h"
25
26#include "ar5212/ar5212.h"
27#include "ar5212/ar5212reg.h"
28#include "ar5212/ar5212phy.h"
29
30#include "ah_eeprom_v3.h"
31
32#define AH_5212_2413
33#include "ar5212/ar5212.ini"
34
35#define	N(a)	(sizeof(a)/sizeof(a[0]))
36
37struct ar2413State {
38	RF_HAL_FUNCS	base;		/* public state, must be first */
39	uint16_t	pcdacTable[PWR_TABLE_SIZE_2413];
40
41	uint32_t	Bank1Data[N(ar5212Bank1_2413)];
42	uint32_t	Bank2Data[N(ar5212Bank2_2413)];
43	uint32_t	Bank3Data[N(ar5212Bank3_2413)];
44	uint32_t	Bank6Data[N(ar5212Bank6_2413)];
45	uint32_t	Bank7Data[N(ar5212Bank7_2413)];
46
47	/*
48	 * Private state for reduced stack usage.
49	 */
50	/* filled out Vpd table for all pdGains (chanL) */
51	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
52			    [MAX_PWR_RANGE_IN_HALF_DB];
53	/* filled out Vpd table for all pdGains (chanR) */
54	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
55			    [MAX_PWR_RANGE_IN_HALF_DB];
56	/* filled out Vpd table for all pdGains (interpolated) */
57	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
58			    [MAX_PWR_RANGE_IN_HALF_DB];
59};
60#define	AR2413(ah)	((struct ar2413State *) AH5212(ah)->ah_rfHal)
61
62extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
63		uint32_t numBits, uint32_t firstBit, uint32_t column);
64
65static void
66ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
67	int writes)
68{
69	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
70	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
71	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
72}
73
74/*
75 * Take the MHz channel value and set the Channel value
76 *
77 * ASSUMES: Writes enabled to analog bus
78 */
79static HAL_BOOL
80ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
81{
82	uint16_t freq = ath_hal_gethwchannel(ah, chan);
83	uint32_t channelSel  = 0;
84	uint32_t bModeSynth  = 0;
85	uint32_t aModeRefSel = 0;
86	uint32_t reg32       = 0;
87
88	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
89
90	if (freq < 4800) {
91		uint32_t txctl;
92
93		if (((freq - 2192) % 5) == 0) {
94			channelSel = ((freq - 672) * 2 - 3040)/10;
95			bModeSynth = 0;
96		} else if (((freq - 2224) % 5) == 0) {
97			channelSel = ((freq - 704) * 2 - 3040) / 10;
98			bModeSynth = 1;
99		} else {
100			HALDEBUG(ah, HAL_DEBUG_ANY,
101			    "%s: invalid channel %u MHz\n",
102			    __func__, freq);
103			return AH_FALSE;
104		}
105
106		channelSel = (channelSel << 2) & 0xff;
107		channelSel = ath_hal_reverseBits(channelSel, 8);
108
109		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
110		if (freq == 2484) {
111			/* Enable channel spreading for channel 14 */
112			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
113				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
114		} else {
115			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
116				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
117		}
118	} else if (((freq % 5) == 2) && (freq <= 5435)) {
119		freq = freq - 2; /* Align to even 5MHz raster */
120		channelSel = ath_hal_reverseBits(
121			(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
122            	aModeRefSel = ath_hal_reverseBits(0, 2);
123	} else if ((freq % 20) == 0 && freq >= 5120) {
124		channelSel = ath_hal_reverseBits(
125			((freq - 4800) / 20 << 2), 8);
126		aModeRefSel = ath_hal_reverseBits(3, 2);
127	} else if ((freq % 10) == 0) {
128		channelSel = ath_hal_reverseBits(
129			((freq - 4800) / 10 << 1), 8);
130		aModeRefSel = ath_hal_reverseBits(2, 2);
131	} else if ((freq % 5) == 0) {
132		channelSel = ath_hal_reverseBits(
133			(freq - 4800) / 5, 8);
134		aModeRefSel = ath_hal_reverseBits(1, 2);
135	} else {
136		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
137		    __func__, freq);
138		return AH_FALSE;
139	}
140
141	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
142			(1 << 12) | 0x1;
143	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
144
145	reg32 >>= 8;
146	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
147
148	AH_PRIVATE(ah)->ah_curchan = chan;
149
150	return AH_TRUE;
151}
152
153/*
154 * Reads EEPROM header info from device structure and programs
155 * all rf registers
156 *
157 * REQUIRES: Access to the analog rf device
158 */
159static HAL_BOOL
160ar2413SetRfRegs(struct ath_hal *ah,
161	const struct ieee80211_channel *chan,
162	uint16_t modesIndex, uint16_t *rfXpdGain)
163{
164#define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
165	int i;								    \
166	for (i = 0; i < N(ar5212Bank##_ix##_2413); i++)			    \
167		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
168} while (0)
169	struct ath_hal_5212 *ahp = AH5212(ah);
170	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
171	uint16_t ob2GHz = 0, db2GHz = 0;
172	struct ar2413State *priv = AR2413(ah);
173	int regWrites = 0;
174
175	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
176	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
177
178	HALASSERT(priv);
179
180	/* Setup rf parameters */
181	if (IEEE80211_IS_CHAN_B(chan)) {
182		ob2GHz = ee->ee_obFor24;
183		db2GHz = ee->ee_dbFor24;
184	} else {
185		ob2GHz = ee->ee_obFor24g;
186		db2GHz = ee->ee_dbFor24g;
187	}
188
189	/* Bank 1 Write */
190	RF_BANK_SETUP(priv, 1, 1);
191
192	/* Bank 2 Write */
193	RF_BANK_SETUP(priv, 2, modesIndex);
194
195	/* Bank 3 Write */
196	RF_BANK_SETUP(priv, 3, modesIndex);
197
198	/* Bank 6 Write */
199	RF_BANK_SETUP(priv, 6, modesIndex);
200
201	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 168, 0);
202	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 165, 0);
203
204	/* Bank 7 Setup */
205	RF_BANK_SETUP(priv, 7, modesIndex);
206
207	/* Write Analog registers */
208	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
209	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
210	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
211	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
212	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
213
214	/* Now that we have reprogrammed rfgain value, clear the flag. */
215	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
216
217	return AH_TRUE;
218#undef	RF_BANK_SETUP
219}
220
221/*
222 * Return a reference to the requested RF Bank.
223 */
224static uint32_t *
225ar2413GetRfBank(struct ath_hal *ah, int bank)
226{
227	struct ar2413State *priv = AR2413(ah);
228
229	HALASSERT(priv != AH_NULL);
230	switch (bank) {
231	case 1: return priv->Bank1Data;
232	case 2: return priv->Bank2Data;
233	case 3: return priv->Bank3Data;
234	case 6: return priv->Bank6Data;
235	case 7: return priv->Bank7Data;
236	}
237	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
238	    __func__, bank);
239	return AH_NULL;
240}
241
242/*
243 * Return indices surrounding the value in sorted integer lists.
244 *
245 * NB: the input list is assumed to be sorted in ascending order
246 */
247static void
248GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
249                          uint32_t *vlo, uint32_t *vhi)
250{
251	int16_t target = v;
252	const uint16_t *ep = lp+listSize;
253	const uint16_t *tp;
254
255	/*
256	 * Check first and last elements for out-of-bounds conditions.
257	 */
258	if (target < lp[0]) {
259		*vlo = *vhi = 0;
260		return;
261	}
262	if (target >= ep[-1]) {
263		*vlo = *vhi = listSize - 1;
264		return;
265	}
266
267	/* look for value being near or between 2 values in list */
268	for (tp = lp; tp < ep; tp++) {
269		/*
270		 * If value is close to the current value of the list
271		 * then target is not between values, it is one of the values
272		 */
273		if (*tp == target) {
274			*vlo = *vhi = tp - (const uint16_t *) lp;
275			return;
276		}
277		/*
278		 * Look for value being between current value and next value
279		 * if so return these 2 values
280		 */
281		if (target < tp[1]) {
282			*vlo = tp - (const uint16_t *) lp;
283			*vhi = *vlo + 1;
284			return;
285		}
286	}
287}
288
289/*
290 * Fill the Vpdlist for indices Pmax-Pmin
291 */
292static HAL_BOOL
293ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
294		   const int16_t *pwrList, const uint16_t *VpdList,
295		   uint16_t numIntercepts, uint16_t retVpdList[][64])
296{
297	uint16_t ii, jj, kk;
298	int16_t currPwr = (int16_t)(2*Pmin);
299	/* since Pmin is pwr*2 and pwrList is 4*pwr */
300	uint32_t  idxL, idxR;
301
302	ii = 0;
303	jj = 0;
304
305	if (numIntercepts < 2)
306		return AH_FALSE;
307
308	while (ii <= (uint16_t)(Pmax - Pmin)) {
309		GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
310				   numIntercepts, &(idxL), &(idxR));
311		if (idxR < 1)
312			idxR = 1;			/* extrapolate below */
313		if (idxL == (uint32_t)(numIntercepts - 1))
314			idxL = numIntercepts - 2;	/* extrapolate above */
315		if (pwrList[idxL] == pwrList[idxR])
316			kk = VpdList[idxL];
317		else
318			kk = (uint16_t)
319				(((currPwr - pwrList[idxL])*VpdList[idxR]+
320				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
321				 (pwrList[idxR] - pwrList[idxL]));
322		retVpdList[pdGainIdx][ii] = kk;
323		ii++;
324		currPwr += 2;				/* half dB steps */
325	}
326
327	return AH_TRUE;
328}
329
330/*
331 * Returns interpolated or the scaled up interpolated value
332 */
333static int16_t
334interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
335	int16_t targetLeft, int16_t targetRight)
336{
337	int16_t rv;
338
339	if (srcRight != srcLeft) {
340		rv = ((target - srcLeft)*targetRight +
341		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
342	} else {
343		rv = targetLeft;
344	}
345	return rv;
346}
347
348/*
349 * Uses the data points read from EEPROM to reconstruct the pdadc power table
350 * Called by ar2413SetPowerTable()
351 */
352static int
353ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
354		const RAW_DATA_STRUCT_2413 *pRawDataset,
355		uint16_t pdGainOverlap_t2,
356		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
357		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
358{
359	struct ar2413State *priv = AR2413(ah);
360#define	VpdTable_L	priv->vpdTable_L
361#define	VpdTable_R	priv->vpdTable_R
362#define	VpdTable_I	priv->vpdTable_I
363	uint32_t ii, jj, kk;
364	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
365	uint32_t idxL, idxR;
366	uint32_t numPdGainsUsed = 0;
367	/*
368	 * If desired to support -ve power levels in future, just
369	 * change pwr_I_0 to signed 5-bits.
370	 */
371	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
372	/* to accommodate -ve power levels later on. */
373	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
374	/* to accommodate -ve power levels later on */
375	uint16_t numVpd = 0;
376	uint16_t Vpd_step;
377	int16_t tmpVal ;
378	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
379
380	/* Get upper lower index */
381	GetLowerUpperIndex(channel, pRawDataset->pChannels,
382				 pRawDataset->numChannels, &(idxL), &(idxR));
383
384	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
385		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
386		/* work backwards 'cause highest pdGain for lowest power */
387		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
388		if (numVpd > 0) {
389			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
390			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
391			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
392				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
393			}
394			Pmin_t2[numPdGainsUsed] = (int16_t)
395				(Pmin_t2[numPdGainsUsed] / 2);
396			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
397			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
398				Pmax_t2[numPdGainsUsed] =
399					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
400			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
401			ar2413FillVpdTable(
402					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
403					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
404					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
405					   );
406			ar2413FillVpdTable(
407					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
408					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
409					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
410					   );
411			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
412				VpdTable_I[numPdGainsUsed][kk] =
413					interpolate_signed(
414							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
415							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
416			}
417			/* fill VpdTable_I for this pdGain */
418			numPdGainsUsed++;
419		}
420		/* if this pdGain is used */
421	}
422
423	*pMinCalPower = Pmin_t2[0];
424	kk = 0; /* index for the final table */
425	for (ii = 0; ii < numPdGainsUsed; ii++) {
426		if (ii == (numPdGainsUsed - 1))
427			pPdGainBoundaries[ii] = Pmax_t2[ii] +
428				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
429		else
430			pPdGainBoundaries[ii] = (uint16_t)
431				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
432		if (pPdGainBoundaries[ii] > 63) {
433			HALDEBUG(ah, HAL_DEBUG_ANY,
434			    "%s: clamp pPdGainBoundaries[%d] %d\n",
435			    __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
436			pPdGainBoundaries[ii] = 63;
437		}
438
439		/* Find starting index for this pdGain */
440		if (ii == 0)
441			ss = 0; /* for the first pdGain, start from index 0 */
442		else
443			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
444				pdGainOverlap_t2;
445		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
446		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
447		/*
448		 *-ve ss indicates need to extrapolate data below for this pdGain
449		 */
450		while (ss < 0) {
451			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
452			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
453			ss++;
454		}
455
456		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
457		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
458		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
459
460		while (ss < (int16_t)maxIndex)
461			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
462
463		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
464				       VpdTable_I[ii][sizeCurrVpdTable-2]);
465		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
466		/*
467		 * for last gain, pdGainBoundary == Pmax_t2, so will
468		 * have to extrapolate
469		 */
470		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
471			while(ss < (int16_t)tgtIndex) {
472				tmpVal = (uint16_t)
473					(VpdTable_I[ii][sizeCurrVpdTable-1] +
474					 (ss-maxIndex)*Vpd_step);
475				pPDADCValues[kk++] = (tmpVal > 127) ?
476					127 : tmpVal;
477				ss++;
478			}
479		}				/* extrapolated above */
480	}					/* for all pdGainUsed */
481
482	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
483		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
484		ii++;
485	}
486	while (kk < 128) {
487		pPDADCValues[kk] = pPDADCValues[kk-1];
488		kk++;
489	}
490
491	return numPdGainsUsed;
492#undef VpdTable_L
493#undef VpdTable_R
494#undef VpdTable_I
495}
496
497static HAL_BOOL
498ar2413SetPowerTable(struct ath_hal *ah,
499	int16_t *minPower, int16_t *maxPower,
500	const struct ieee80211_channel *chan,
501	uint16_t *rfXpdGain)
502{
503	uint16_t freq = ath_hal_gethwchannel(ah, chan);
504	struct ath_hal_5212 *ahp = AH5212(ah);
505	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
506	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
507	uint16_t pdGainOverlap_t2;
508	int16_t minCalPower2413_t2;
509	uint16_t *pdadcValues = ahp->ah_pcdacTable;
510	uint16_t gainBoundaries[4];
511	uint32_t reg32, regoffset;
512	int i, numPdGainsUsed;
513#ifndef AH_USE_INIPDGAIN
514	uint32_t tpcrg1;
515#endif
516
517	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
518	    __func__, freq, chan->ic_flags);
519
520	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
521		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
522	else if (IEEE80211_IS_CHAN_B(chan))
523		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
524	else {
525		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
526		return AH_FALSE;
527	}
528
529	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
530					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
531
532	numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
533		freq, pRawDataset, pdGainOverlap_t2,
534		&minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
535	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
536
537#ifdef AH_USE_INIPDGAIN
538	/*
539	 * Use pd_gains curve from eeprom; Atheros always uses
540	 * the default curve from the ini file but some vendors
541	 * (e.g. Zcomax) want to override this curve and not
542	 * honoring their settings results in tx power 5dBm low.
543	 */
544	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
545			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
546#else
547	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
548	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
549		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
550	switch (numPdGainsUsed) {
551	case 3:
552		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
553		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
554		/* fall thru... */
555	case 2:
556		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
557		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
558		/* fall thru... */
559	case 1:
560		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
561		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
562		break;
563	}
564#ifdef AH_DEBUG
565	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
566		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
567		    "pd_gains (default 0x%x, calculated 0x%x)\n",
568		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
569#endif
570	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
571#endif
572
573	/*
574	 * Note the pdadc table may not start at 0 dBm power, could be
575	 * negative or greater than 0.  Need to offset the power
576	 * values by the amount of minPower for griffin
577	 */
578	if (minCalPower2413_t2 != 0)
579		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
580	else
581		ahp->ah_txPowerIndexOffset = 0;
582
583	/* Finally, write the power values into the baseband power table */
584	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
585	for (i = 0; i < 32; i++) {
586		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
587			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
588			((pdadcValues[4*i + 2] & 0xFF) << 16) |
589			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
590		OS_REG_WRITE(ah, regoffset, reg32);
591		regoffset += 4;
592	}
593
594	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
595		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
596		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
597		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
598		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
599		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
600
601	return AH_TRUE;
602}
603
604static int16_t
605ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
606{
607	uint32_t ii,jj;
608	uint16_t Pmin=0,numVpd;
609
610	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
611		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
612		/* work backwards 'cause highest pdGain for lowest power */
613		numVpd = data->pDataPerPDGain[jj].numVpd;
614		if (numVpd > 0) {
615			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
616			return(Pmin);
617		}
618	}
619	return(Pmin);
620}
621
622static int16_t
623ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
624{
625	uint32_t ii;
626	uint16_t Pmax=0,numVpd;
627
628	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
629		/* work forwards cuase lowest pdGain for highest power */
630		numVpd = data->pDataPerPDGain[ii].numVpd;
631		if (numVpd > 0) {
632			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
633			return(Pmax);
634		}
635	}
636	return(Pmax);
637}
638
639static HAL_BOOL
640ar2413GetChannelMaxMinPower(struct ath_hal *ah,
641	const struct ieee80211_channel *chan,
642	int16_t *maxPow, int16_t *minPow)
643{
644	uint16_t freq = chan->ic_freq;		/* NB: never mapped */
645	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
646	const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
647	const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
648	uint16_t numChannels;
649	int totalD,totalF, totalMin,last, i;
650
651	*maxPow = 0;
652
653	if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
654		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
655	else if (IEEE80211_IS_CHAN_B(chan))
656		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
657	else
658		return(AH_FALSE);
659
660	numChannels = pRawDataset->numChannels;
661	data = pRawDataset->pDataPerChannel;
662
663	/* Make sure the channel is in the range of the TP values
664	 *  (freq piers)
665	 */
666	if (numChannels < 1)
667		return(AH_FALSE);
668
669	if ((freq < data[0].channelValue) ||
670	    (freq > data[numChannels-1].channelValue)) {
671		if (freq < data[0].channelValue) {
672			*maxPow = ar2413GetMaxPower(ah, &data[0]);
673			*minPow = ar2413GetMinPower(ah, &data[0]);
674			return(AH_TRUE);
675		} else {
676			*maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
677			*minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
678			return(AH_TRUE);
679		}
680	}
681
682	/* Linearly interpolate the power value now */
683	for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
684	     last = i++);
685	totalD = data[i].channelValue - data[last].channelValue;
686	if (totalD > 0) {
687		totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
688		*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
689				     ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
690		totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
691		*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
692				     ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
693		return(AH_TRUE);
694	} else {
695		if (freq == data[i].channelValue) {
696			*maxPow = ar2413GetMaxPower(ah, &data[i]);
697			*minPow = ar2413GetMinPower(ah, &data[i]);
698			return(AH_TRUE);
699		} else
700			return(AH_FALSE);
701	}
702}
703
704/*
705 * Free memory for analog bank scratch buffers
706 */
707static void
708ar2413RfDetach(struct ath_hal *ah)
709{
710	struct ath_hal_5212 *ahp = AH5212(ah);
711
712	HALASSERT(ahp->ah_rfHal != AH_NULL);
713	ath_hal_free(ahp->ah_rfHal);
714	ahp->ah_rfHal = AH_NULL;
715}
716
717/*
718 * Allocate memory for analog bank scratch buffers
719 * Scratch Buffer will be reinitialized every reset so no need to zero now
720 */
721static HAL_BOOL
722ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
723{
724	struct ath_hal_5212 *ahp = AH5212(ah);
725	struct ar2413State *priv;
726
727	HALASSERT(ah->ah_magic == AR5212_MAGIC);
728
729	HALASSERT(ahp->ah_rfHal == AH_NULL);
730	priv = ath_hal_malloc(sizeof(struct ar2413State));
731	if (priv == AH_NULL) {
732		HALDEBUG(ah, HAL_DEBUG_ANY,
733		    "%s: cannot allocate private state\n", __func__);
734		*status = HAL_ENOMEM;		/* XXX */
735		return AH_FALSE;
736	}
737	priv->base.rfDetach		= ar2413RfDetach;
738	priv->base.writeRegs		= ar2413WriteRegs;
739	priv->base.getRfBank		= ar2413GetRfBank;
740	priv->base.setChannel		= ar2413SetChannel;
741	priv->base.setRfRegs		= ar2413SetRfRegs;
742	priv->base.setPowerTable	= ar2413SetPowerTable;
743	priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
744	priv->base.getNfAdjust		= ar5212GetNfAdjust;
745
746	ahp->ah_pcdacTable = priv->pcdacTable;
747	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
748	ahp->ah_rfHal = &priv->base;
749
750	return AH_TRUE;
751}
752
753static HAL_BOOL
754ar2413Probe(struct ath_hal *ah)
755{
756	return IS_2413(ah);
757}
758AH_RF(RF2413, ar2413Probe, ar2413RfAttach);
759