1/*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2004 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 * $FreeBSD: releng/12.0/sys/dev/ath/ath_hal/ar5210/ar5210_reset.c 326695 2017-12-08 15:57:29Z pfg $
20 */
21#include "opt_ah.h"
22
23#include "ah.h"
24#include "ah_internal.h"
25
26#include "ar5210/ar5210.h"
27#include "ar5210/ar5210reg.h"
28#include "ar5210/ar5210phy.h"
29
30#include "ah_eeprom_v1.h"
31
32typedef struct {
33	uint32_t	Offset;
34	uint32_t	Value;
35} REGISTER_VAL;
36
37static const REGISTER_VAL ar5k0007_init[] = {
38#include "ar5210/ar5k_0007.ini"
39};
40
41/* Default Power Settings for channels outside of EEPROM range */
42static const uint8_t ar5k0007_pwrSettings[17] = {
43/*	gain delta			pc dac */
44/* 54  48  36  24  18  12   9   54  48  36  24  18  12   9   6  ob  db	  */
45    9,  9,  0,  0,  0,  0,  0,   2,  2,  6,  6,  6,  6,  6,  6,  2,  2
46};
47
48/*
49 * The delay, in usecs, between writing AR_RC with a reset
50 * request and waiting for the chip to settle.  If this is
51 * too short then the chip does not come out of sleep state.
52 * Note this value was empirically derived and may be dependent
53 * on the host machine (don't know--the problem was identified
54 * on an IBM 570e laptop; 10us delays worked on other systems).
55 */
56#define	AR_RC_SETTLE_TIME	20000
57
58static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
59		uint32_t resetMask, u_int delay);
60static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *);
61static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
62
63/*
64 * Places the device in and out of reset and then places sane
65 * values in the registers based on EEPROM config, initialization
66 * vectors (as determined by the mode), and station configuration
67 *
68 * bChannelChange is used to preserve DMA/PCU registers across
69 * a HW Reset during channel change.
70 */
71HAL_BOOL
72ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
73	struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
74	HAL_RESET_TYPE resetType,
75	HAL_STATUS *status)
76{
77#define	N(a)	(sizeof (a) /sizeof (a[0]))
78#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
79	struct ath_hal_5210 *ahp = AH5210(ah);
80	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
81	HAL_CHANNEL_INTERNAL *ichan;
82	HAL_STATUS ecode;
83	uint32_t ledstate;
84	int i, q;
85
86	HALDEBUG(ah, HAL_DEBUG_RESET,
87	    "%s: opmode %u channel %u/0x%x %s channel\n", __func__,
88	    opmode, chan->ic_freq, chan->ic_flags,
89	    bChannelChange ? "change" : "same");
90
91	if (!IEEE80211_IS_CHAN_5GHZ(chan)) {
92		/* Only 11a mode */
93		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__);
94		FAIL(HAL_EINVAL);
95	}
96	/*
97	 * Map public channel to private.
98	 */
99	ichan = ath_hal_checkchannel(ah, chan);
100	if (ichan == AH_NULL) {
101		HALDEBUG(ah, HAL_DEBUG_ANY,
102		    "%s: invalid channel %u/0x%x; no mapping\n",
103		    __func__, chan->ic_freq, chan->ic_flags);
104		FAIL(HAL_EINVAL);
105	}
106	switch (opmode) {
107	case HAL_M_STA:
108	case HAL_M_IBSS:
109	case HAL_M_HOSTAP:
110	case HAL_M_MONITOR:
111		break;
112	default:
113		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
114		    __func__, opmode);
115		FAIL(HAL_EINVAL);
116		break;
117	}
118
119	ledstate = OS_REG_READ(ah, AR_PCICFG) &
120		(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
121
122	if (!ar5210ChipReset(ah, chan)) {
123		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
124		    __func__);
125		FAIL(HAL_EIO);
126	}
127
128	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
129	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
130	ar5210SetOperatingMode(ah, opmode);
131
132	switch (opmode) {
133	case HAL_M_HOSTAP:
134		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
135		OS_REG_WRITE(ah, AR_PCICFG,
136			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
137		break;
138	case HAL_M_IBSS:
139		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
140		OS_REG_WRITE(ah, AR_PCICFG,
141			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
142		break;
143	case HAL_M_STA:
144		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
145		OS_REG_WRITE(ah, AR_PCICFG,
146			AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
147		break;
148	case HAL_M_MONITOR:
149		OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
150		OS_REG_WRITE(ah, AR_PCICFG,
151			AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
152		break;
153	}
154
155	/* Restore previous led state */
156	OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
157
158#if 0
159	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
160	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
161#endif
162	/* BSSID, association id, ps-poll */
163	ar5210WriteAssocid(ah, ahp->ah_bssid, ahp->ah_associd);
164
165	OS_REG_WRITE(ah, AR_TXDP0, 0);
166	OS_REG_WRITE(ah, AR_TXDP1, 0);
167	OS_REG_WRITE(ah, AR_RXDP, 0);
168
169	/*
170	 * Initialize interrupt state.
171	 */
172	(void) OS_REG_READ(ah, AR_ISR);		/* cleared on read */
173	OS_REG_WRITE(ah, AR_IMR, 0);
174	OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
175	ahp->ah_maskReg = 0;
176
177	(void) OS_REG_READ(ah, AR_BSR);		/* cleared on read */
178	OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
179	OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
180
181	OS_REG_WRITE(ah, AR_TOPS, 8);		/* timeout prescale */
182	OS_REG_WRITE(ah, AR_RXNOFRM, 8);	/* RX no frame timeout */
183	OS_REG_WRITE(ah, AR_RPGTO, 0);		/* RX frame gap timeout */
184	OS_REG_WRITE(ah, AR_TXNOFRM, 0);	/* TX no frame timeout */
185
186	OS_REG_WRITE(ah, AR_SFR, 0);
187	OS_REG_WRITE(ah, AR_MIBC, 0);		/* unfreeze ctrs + clr state */
188	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
189	OS_REG_WRITE(ah, AR_CFP_DUR, 0);
190
191	ar5210SetRxFilter(ah, 0);		/* nothing for now */
192	OS_REG_WRITE(ah, AR_MCAST_FIL0, 0);	/* multicast filter */
193	OS_REG_WRITE(ah, AR_MCAST_FIL1, 0);	/* XXX was 2 */
194
195	OS_REG_WRITE(ah, AR_TX_MASK0, 0);
196	OS_REG_WRITE(ah, AR_TX_MASK1, 0);
197	OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
198	OS_REG_WRITE(ah, AR_TRIG_LEV, 1);	/* minimum */
199
200	ar5210UpdateDiagReg(ah, 0);
201
202	OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
203	OS_REG_WRITE(ah, AR_TIMER0, 0);		/* next beacon time */
204	OS_REG_WRITE(ah, AR_TSF_L32, 0);	/* local clock */
205	OS_REG_WRITE(ah, AR_TIMER1, ~0);	/* next DMA beacon alert */
206	OS_REG_WRITE(ah, AR_TIMER2, ~0);	/* next SW beacon alert */
207	OS_REG_WRITE(ah, AR_TIMER3, 1);		/* next ATIM window */
208
209	/* Write the INI values for PHYreg initialization */
210	for (i = 0; i < N(ar5k0007_init); i++) {
211		uint32_t reg = ar5k0007_init[i].Offset;
212		/* On channel change, don't reset the PCU registers */
213		if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
214			OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
215	}
216
217	/* Setup the transmit power values for cards since 0x0[0-2]05 */
218	if (!ar5210SetTransmitPower(ah, chan)) {
219		HALDEBUG(ah, HAL_DEBUG_ANY,
220		    "%s: error init'ing transmit power\n", __func__);
221		FAIL(HAL_EIO);
222	}
223
224	OS_REG_WRITE(ah, AR_PHY(10),
225		(OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
226		(ee->ee_xlnaOn << 8));
227	OS_REG_WRITE(ah, AR_PHY(13),
228		(ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
229		(ee->ee_xpaOn << 8) | ee->ee_xpaOn);
230	OS_REG_WRITE(ah, AR_PHY(17),
231		(OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
232		((ee->ee_antenna >> 1) & 0x3F80));
233	OS_REG_WRITE(ah, AR_PHY(18),
234		(OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
235		((ee->ee_antenna << 10) & 0x3F000));
236	OS_REG_WRITE(ah, AR_PHY(25),
237		(OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
238		((ee->ee_thresh62 << 12) & 0x7F000));
239	OS_REG_WRITE(ah, AR_PHY(68),
240		(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
241		(ee->ee_antenna & 0x3));
242
243	if (!ar5210SetChannel(ah, chan)) {
244		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
245		    __func__);
246		FAIL(HAL_EIO);
247	}
248	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
249		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
250
251	/* Activate the PHY */
252	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
253
254	OS_DELAY(1000);		/* Wait a bit (1 msec) */
255
256	/* calibrate the HW and poll the bit going to 0 for completion */
257	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
258		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
259	(void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
260
261	/* Perform noise floor calibration and set status */
262	if (!ar5210CalNoiseFloor(ah, ichan)) {
263		chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
264		HALDEBUG(ah, HAL_DEBUG_ANY,
265		    "%s: noise floor calibration failed\n", __func__);
266		FAIL(HAL_EIO);
267	}
268
269	for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
270		ar5210ResetTxQueue(ah, q);
271
272	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
273		ar5210EnableRfKill(ah);
274
275	/*
276	 * Writing to AR_BEACON will start timers. Hence it should be
277	 * the last register to be written. Do not reset tsf, do not
278	 * enable beacons at this point, but preserve other values
279	 * like beaconInterval.
280	 */
281	OS_REG_WRITE(ah, AR_BEACON,
282		(OS_REG_READ(ah, AR_BEACON) &
283			~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
284
285	/* Restore user-specified slot time and timeouts */
286	if (ahp->ah_sifstime != (u_int) -1)
287		ar5210SetSifsTime(ah, ahp->ah_sifstime);
288	if (ahp->ah_slottime != (u_int) -1)
289		ar5210SetSlotTime(ah, ahp->ah_slottime);
290	if (ahp->ah_acktimeout != (u_int) -1)
291		ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
292	if (ahp->ah_ctstimeout != (u_int) -1)
293		ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
294	if (AH_PRIVATE(ah)->ah_diagreg != 0)
295		ar5210UpdateDiagReg(ah, AH_PRIVATE(ah)->ah_diagreg);
296
297	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */
298
299	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
300
301	return AH_TRUE;
302bad:
303	if (status != AH_NULL)
304		*status = ecode;
305	return AH_FALSE;
306#undef FAIL
307#undef N
308}
309
310static void
311ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
312{
313	struct ath_hal_5210 *ahp = AH5210(ah);
314	uint32_t val;
315
316	val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
317	switch (opmode) {
318	case HAL_M_HOSTAP:
319		OS_REG_WRITE(ah, AR_STA_ID1, val
320			| AR_STA_ID1_AP
321			| AR_STA_ID1_NO_PSPOLL
322			| AR_STA_ID1_DESC_ANTENNA
323			| ahp->ah_staId1Defaults);
324		break;
325	case HAL_M_IBSS:
326		OS_REG_WRITE(ah, AR_STA_ID1, val
327			| AR_STA_ID1_ADHOC
328			| AR_STA_ID1_NO_PSPOLL
329			| AR_STA_ID1_DESC_ANTENNA
330			| ahp->ah_staId1Defaults);
331		break;
332	case HAL_M_STA:
333		OS_REG_WRITE(ah, AR_STA_ID1, val
334			| AR_STA_ID1_NO_PSPOLL
335			| AR_STA_ID1_PWR_SV
336			| ahp->ah_staId1Defaults);
337		break;
338	case HAL_M_MONITOR:
339		OS_REG_WRITE(ah, AR_STA_ID1, val
340			| AR_STA_ID1_NO_PSPOLL
341			| ahp->ah_staId1Defaults);
342		break;
343	}
344}
345
346void
347ar5210SetPCUConfig(struct ath_hal *ah)
348{
349	ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
350}
351
352/*
353 * Places the PHY and Radio chips into reset.  A full reset
354 * must be called to leave this state.  The PCI/MAC/PCU are
355 * not placed into reset as we must receive interrupt to
356 * re-enable the hardware.
357 */
358HAL_BOOL
359ar5210PhyDisable(struct ath_hal *ah)
360{
361	return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
362}
363
364/*
365 * Places all of hardware into reset
366 */
367HAL_BOOL
368ar5210Disable(struct ath_hal *ah)
369{
370#define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
371	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
372		return AH_FALSE;
373
374	/*
375	 * Reset the HW - PCI must be reset after the rest of the
376	 * device has been reset
377	 */
378	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
379		return AH_FALSE;
380	OS_DELAY(1000);
381	(void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
382	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
383
384	return AH_TRUE;
385#undef AR_RC_HW
386}
387
388/*
389 * Places the hardware into reset and then pulls it out of reset
390 */
391HAL_BOOL
392ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan)
393{
394#define	AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
395
396	HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
397		chan && IEEE80211_IS_CHAN_TURBO(chan) ?
398		"enabled" : "disabled");
399
400	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
401		return AH_FALSE;
402
403	/* Place chip in turbo before reset to cleanly reset clocks */
404	OS_REG_WRITE(ah, AR_PHY_FRCTL,
405		chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
406
407	/*
408	 * Reset the HW.
409	 * PCI must be reset after the rest of the device has been reset.
410	 */
411	if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
412		return AH_FALSE;
413	OS_DELAY(1000);
414	if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
415		return AH_FALSE;
416	OS_DELAY(2100);   /* 8245 @ 96Mhz hangs with 2000us. */
417
418	/*
419	 * Bring out of sleep mode (AGAIN)
420	 *
421	 * WARNING WARNING WARNING
422	 *
423	 * There is a problem with the chip where it doesn't always indicate
424	 * that it's awake, so initializePowerUp() will fail.
425	 */
426	if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
427		return AH_FALSE;
428
429	/* Clear warm reset reg */
430	return ar5210SetResetReg(ah, 0, 10);
431#undef AR_RC_HW
432}
433
434enum {
435	FIRPWR_M	= 0x03fc0000,
436	FIRPWR_S	= 18,
437	KCOARSEHIGH_M   = 0x003f8000,
438	KCOARSEHIGH_S   = 15,
439	KCOARSELOW_M	= 0x00007f80,
440	KCOARSELOW_S	= 7,
441	ADCSAT_ICOUNT_M	= 0x0001f800,
442	ADCSAT_ICOUNT_S	= 11,
443	ADCSAT_THRESH_M	= 0x000007e0,
444	ADCSAT_THRESH_S	= 5
445};
446
447/*
448 * Recalibrate the lower PHY chips to account for temperature/environment
449 * changes.
450 */
451HAL_BOOL
452ar5210PerCalibrationN(struct ath_hal *ah,
453	struct ieee80211_channel *chan, u_int chainMask,
454	HAL_BOOL longCal, HAL_BOOL *isCalDone)
455{
456	uint32_t regBeacon;
457	uint32_t reg9858, reg985c, reg9868;
458	HAL_CHANNEL_INTERNAL *ichan;
459
460	ichan = ath_hal_checkchannel(ah, chan);
461	if (ichan == AH_NULL)
462		return AH_FALSE;
463	/* Disable tx and rx */
464	ar5210UpdateDiagReg(ah,
465		OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
466
467	/* Disable Beacon Enable */
468	regBeacon = OS_REG_READ(ah, AR_BEACON);
469	OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
470
471	/* Delay 4ms to ensure that all tx and rx activity has ceased */
472	OS_DELAY(4000);
473
474	/* Disable AGC to radio traffic */
475	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
476	/* Wait for the AGC traffic to cease. */
477	OS_DELAY(10);
478
479	/* Change Channel to relock synth */
480	if (!ar5210SetChannel(ah, chan))
481		return AH_FALSE;
482
483	/* wait for the synthesizer lock to stabilize */
484	OS_DELAY(1000);
485
486	/* Re-enable AGC to radio traffic */
487	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
488
489	/*
490	 * Configure the AGC so that it is highly unlikely (if not
491	 * impossible) for it to send any gain changes to the analog
492	 * chip.  We store off the current values so that they can
493	 * be rewritten below. Setting the following values:
494	 * firpwr	 = -1
495	 * Kcoursehigh   = -1
496	 * Kcourselow	 = -127
497	 * ADCsat_icount = 2
498	 * ADCsat_thresh = 12
499	 */
500	reg9858 = OS_REG_READ(ah, 0x9858);
501	reg985c = OS_REG_READ(ah, 0x985c);
502	reg9868 = OS_REG_READ(ah, 0x9868);
503
504	OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
505					 ((-1 << FIRPWR_S) & FIRPWR_M));
506	OS_REG_WRITE(ah, 0x985c,
507		 (reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
508		 ((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
509		 ((-127 << KCOARSELOW_S) & KCOARSELOW_M));
510	OS_REG_WRITE(ah, 0x9868,
511		 (reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
512		 ((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
513		 ((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
514
515	/* Wait for AGC changes to be enacted */
516	OS_DELAY(20);
517
518	/*
519	 * We disable RF mix/gain stages for the PGA to avoid a
520	 * race condition that will occur with receiving a frame
521	 * and performing the AGC calibration.  This will be
522	 * re-enabled at the end of offset cal.  We turn off AGC
523	 * writes during this write as it will go over the analog bus.
524	 */
525	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
526	OS_DELAY(10);		 /* wait for the AGC traffic to cease */
527	OS_REG_WRITE(ah, 0x98D4, 0x21);
528	OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
529
530	/* wait to make sure that additional AGC traffic has quiesced */
531	OS_DELAY(1000);
532
533	/* AGC calibration (this was added to make the NF threshold check work) */
534	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
535		 OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
536	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) {
537		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
538		    __func__);
539	}
540
541	/* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
542	OS_REG_WRITE(ah, 0x9858, reg9858);
543	OS_REG_WRITE(ah, 0x985c, reg985c);
544	OS_REG_WRITE(ah, 0x9868, reg9868);
545
546	/* Perform noise floor and set status */
547	if (!ar5210CalNoiseFloor(ah, ichan)) {
548		/*
549		 * Delay 5ms before retrying the noise floor -
550		 * just to make sure.  We're in an error
551		 * condition here
552		 */
553		HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
554		    "%s: Performing 2nd Noise Cal\n", __func__);
555		OS_DELAY(5000);
556		if (!ar5210CalNoiseFloor(ah, ichan))
557			chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
558	}
559
560	/* Clear tx and rx disable bit */
561	ar5210UpdateDiagReg(ah,
562		 OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
563
564	/* Re-enable Beacons */
565	OS_REG_WRITE(ah, AR_BEACON, regBeacon);
566
567	*isCalDone = AH_TRUE;
568
569	return AH_TRUE;
570}
571
572HAL_BOOL
573ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
574	HAL_BOOL *isIQdone)
575{
576	return ar5210PerCalibrationN(ah,  chan, 0x1, AH_TRUE, isIQdone);
577}
578
579HAL_BOOL
580ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
581{
582	return AH_TRUE;
583}
584
585/*
586 * Writes the given reset bit mask into the reset register
587 */
588static HAL_BOOL
589ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay)
590{
591	uint32_t mask = resetMask ? resetMask : ~0;
592	HAL_BOOL rt;
593
594	OS_REG_WRITE(ah, AR_RC, resetMask);
595	/* need to wait at least 128 clocks when reseting PCI before read */
596	OS_DELAY(delay);
597
598	resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
599	mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
600	rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
601        if ((resetMask & AR_RC_RMAC) == 0) {
602		if (isBigEndian()) {
603			/*
604			 * Set CFG, little-endian for descriptor accesses.
605			 */
606			mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
607			OS_REG_WRITE(ah, AR_CFG, mask);
608		} else
609			OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
610	}
611	return rt;
612}
613
614/*
615 * Returns: the pcdac value
616 */
617static uint8_t
618getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
619{
620	int32_t	 i;
621	int useNextEntry = AH_FALSE;
622	uint32_t interp;
623
624	for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
625		/* Check for exact entry */
626		if (dBm == AR_I2DBM(i)) {
627			if (pRD->pcdac[i] != 63)
628				return pRD->pcdac[i];
629			useNextEntry = AH_TRUE;
630		} else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
631			/* Interpolate for between entry with a logish scale */
632			if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
633				interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
634				interp = (interp / 1000) + pRD->pcdac[i-1];
635				return interp;
636			}
637			useNextEntry = AH_TRUE;
638		} else if (useNextEntry == AH_TRUE) {
639			/* Grab the next lowest */
640			if (pRD->pcdac[i] != 63)
641				return pRD->pcdac[i];
642		}
643	}
644
645	/* Return the lowest Entry if we haven't returned */
646	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
647		if (pRD->pcdac[i] != 63)
648			return pRD->pcdac[i];
649
650	/* No value to return from table */
651#ifdef AH_DEBUG
652	ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
653#endif
654	return 1;
655}
656
657/*
658 * Find or interpolates the gainF value from the table ptr.
659 */
660static uint8_t
661getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
662	uint8_t pcdac, uint8_t *dBm)
663{
664	uint32_t interp;
665	int low, high, i;
666
667	low = high = -1;
668
669	for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
670		if(pRD->pcdac[i] == 63)
671			continue;
672		if (pcdac == pRD->pcdac[i]) {
673			*dBm = AR_I2DBM(i);
674			return pRD->gainF[i];  /* Exact Match */
675		}
676		if (pcdac > pRD->pcdac[i])
677			low = i;
678		if (pcdac < pRD->pcdac[i]) {
679			high = i;
680			if (low == -1) {
681				*dBm = AR_I2DBM(i);
682				/* PCDAC is lower than lowest setting */
683				return pRD->gainF[i];
684			}
685			break;
686		}
687	}
688	if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
689		/* No settings were found */
690#ifdef AH_DEBUG
691		ath_hal_printf(ah,
692			"%s: no valid entries in the pcdac table: %d\n",
693			__func__, pcdac);
694#endif
695		return 63;
696	}
697	if (i >= AR_TP_SCALING_ENTRIES) {
698		/* PCDAC setting was above the max setting in the table */
699		*dBm = AR_I2DBM(low);
700		return pRD->gainF[low];
701	}
702	/* Only exact if table has no missing entries */
703	*dBm = (low + high) + 3;
704
705	/*
706	 * Perform interpolation between low and high values to find gainF
707	 * linearly scale the pcdac between low and high
708	 */
709	interp = ((pcdac - pRD->pcdac[low]) * 1000) /
710		  (pRD->pcdac[high] - pRD->pcdac[low]);
711	/*
712	 * Multiply the scale ratio by the gainF difference
713	 * (plus a rnd up factor)
714	 */
715	interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
716
717	/* Add ratioed gain_f to low gain_f value */
718	return interp + pRD->gainF[low];
719}
720
721HAL_BOOL
722ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
723{
724	AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
725	/* XXX flush to h/w */
726	return AH_TRUE;
727}
728
729/*
730 * Get TXPower values and set them in the radio
731 */
732static HAL_BOOL
733setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan,
734	uint8_t cp[17])
735{
736	uint16_t freq = ath_hal_gethwchannel(ah, chan);
737	const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
738	uint8_t gainFRD, gainF36, gainF48, gainF54;
739	uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare;
740	uint32_t rd, group;
741	const struct tpcMap  *pRD;
742
743	/* Set OB/DB Values regardless of channel */
744	cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
745	cp[16] = ee->ee_biasCurrents & 0x7;
746
747	if (freq < 5170 || freq > 5320) {
748		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
749		    __func__, freq);
750		return AH_FALSE;
751	}
752
753	HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
754	    ee->ee_version < AR_EEPROM_VER3);
755
756	/* Match regulatory domain */
757	for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
758		if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
759			break;
760	if (rd == AR_REG_DOMAINS_MAX) {
761#ifdef AH_DEBUG
762		ath_hal_printf(ah,
763			"%s: no calibrated regulatory domain matches the "
764			"current regularly domain (0x%0x)\n", __func__,
765			AH_PRIVATE(ah)->ah_currentRD);
766#endif
767		return AH_FALSE;
768	}
769	group = ((freq - 5170) / 10);
770
771	if (group > 11) {
772		/* Pull 5.29 into the 5.27 group */
773		group--;
774	}
775
776	/* Integer divide will set group from 0 to 4 */
777	group = group / 3;
778	pRD   = &ee->ee_tpc[group];
779
780	/* Set PC DAC Values */
781	cp[14] = pRD->regdmn[rd];
782	cp[9]  = AH_MIN(pRD->regdmn[rd], pRD->rate36);
783	cp[8]  = AH_MIN(pRD->regdmn[rd], pRD->rate48);
784	cp[7]  = AH_MIN(pRD->regdmn[rd], pRD->rate54);
785
786	/* Find Corresponding gainF values for RD, 36, 48, 54 */
787	gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
788	gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
789	gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
790	gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
791
792	/* Power Scale if requested */
793	if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
794		static const uint16_t tpcScaleReductionTable[5] =
795			{ 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
796		uint16_t tpScale;
797
798		tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
799		if (dBmRD < tpScale+3)
800			dBmRD = 3;		/* min */
801		else
802			dBmRD -= tpScale;
803		cp[14]  = getPcdac(ah, pRD, dBmRD);
804		gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
805		dBm36   = AH_MIN(dBm36, dBmRD);
806		cp[9]   = getPcdac(ah, pRD, dBm36);
807		gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
808		dBm48   = AH_MIN(dBm48, dBmRD);
809		cp[8]   = getPcdac(ah, pRD, dBm48);
810		gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
811		dBm54   = AH_MIN(dBm54, dBmRD);
812		cp[7]   = getPcdac(ah, pRD, dBm54);
813		gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
814	}
815	/* Record current dBm at rate 6 */
816	AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
817
818	cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
819
820	/* Set GainF Values */
821	cp[0] = gainFRD - gainF54;
822	cp[1] = gainFRD - gainF48;
823	cp[2] = gainFRD - gainF36;
824	/* 9, 12, 18, 24 have no gain_delta from 6 */
825	cp[3] = cp[4] = cp[5] = cp[6] = 0;
826	return AH_TRUE;
827}
828
829/*
830 * Places the device in and out of reset and then places sane
831 * values in the registers based on EEPROM config, initialization
832 * vectors (as determined by the mode), and station configuration
833 */
834HAL_BOOL
835ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
836{
837#define	N(a)	(sizeof (a) / sizeof (a[0]))
838	static const uint32_t pwr_regs_start[17] = {
839		0x00000000, 0x00000000, 0x00000000,
840		0x00000000, 0x00000000, 0xf0000000,
841		0xcc000000, 0x00000000, 0x00000000,
842		0x00000000, 0x0a000000, 0x000000e2,
843		0x0a000020, 0x01000002, 0x01000018,
844		0x40000000, 0x00000418
845	};
846	uint16_t i;
847	uint8_t cp[sizeof(ar5k0007_pwrSettings)];
848	uint32_t pwr_regs[17];
849
850	OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
851	OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
852
853	/* Check the EEPROM tx power calibration settings */
854	if (!setupPowerSettings(ah, chan, cp)) {
855#ifdef AH_DEBUG
856		ath_hal_printf(ah, "%s: unable to setup power settings\n",
857			__func__);
858#endif
859		return AH_FALSE;
860	}
861	if (cp[15] < 1 || cp[15] > 5) {
862#ifdef AH_DEBUG
863		ath_hal_printf(ah, "%s: OB out of range (%u)\n",
864			__func__, cp[15]);
865#endif
866		return AH_FALSE;
867	}
868	if (cp[16] < 1 || cp[16] > 5) {
869#ifdef AH_DEBUG
870		ath_hal_printf(ah, "%s: DB out of range (%u)\n",
871			__func__, cp[16]);
872#endif
873		return AH_FALSE;
874	}
875
876	/* reverse bits of the transmit power array */
877	for (i = 0; i < 7; i++)
878		cp[i] = ath_hal_reverseBits(cp[i], 5);
879	for (i = 7; i < 15; i++)
880		cp[i] = ath_hal_reverseBits(cp[i], 6);
881
882	/* merge transmit power values into the register - quite gross */
883	pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
884	pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
885			((cp[1] >> 3) & 0x03);
886	pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
887	pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
888		       ((cp[4] >> 4) & 0x01);
889	pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
890	pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
891			((cp[7] >> 5) & 0x01);
892	pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
893	pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
894	pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
895	pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
896	pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
897	pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
898
899	/* Set OB */
900	pwr_regs[8] |=  (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
901	pwr_regs[9] |=  (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
902
903	/* Set DB */
904	pwr_regs[9] |=  (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
905
906	/* Write the registers */
907	for (i = 0; i < N(pwr_regs)-1; i++)
908		OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
909	/* last write is a flush */
910	OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
911
912	return AH_TRUE;
913#undef N
914}
915
916/*
917 * Takes the MHz channel value and sets the Channel value
918 *
919 * ASSUMES: Writes enabled to analog bus before AGC is active
920 *   or by disabling the AGC.
921 */
922static HAL_BOOL
923ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan)
924{
925	uint16_t freq = ath_hal_gethwchannel(ah, chan);
926	uint32_t data;
927
928	/* Set the Channel */
929	data = ath_hal_reverseBits((freq - 5120)/10, 5);
930	data = (data << 1) | 0x41;
931	OS_REG_WRITE(ah, AR_PHY(0x27), data);
932	OS_REG_WRITE(ah, AR_PHY(0x30), 0);
933	AH_PRIVATE(ah)->ah_curchan = chan;
934	return AH_TRUE;
935}
936
937int16_t
938ar5210GetNoiseFloor(struct ath_hal *ah)
939{
940	int16_t nf;
941
942	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
943	if (nf & 0x100)
944		nf = 0 - ((nf ^ 0x1ff) + 1);
945	return nf;
946}
947
948#define NORMAL_NF_THRESH (-72)
949/*
950 * Peform the noisefloor calibration and check for
951 * any constant channel interference
952 *
953 * Returns: TRUE for a successful noise floor calibration; else FALSE
954 */
955HAL_BOOL
956ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
957{
958	int32_t nf, nfLoops;
959
960	/* Calibrate the noise floor */
961	OS_REG_WRITE(ah, AR_PHY_AGCCTL,
962		OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
963
964	/* Do not read noise floor until it has done the first update */
965	if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
966#ifdef ATH_HAL_DEBUG
967		ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
968			OS_REG_READ(ah, AR_PHY_AGCCTL));
969		ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
970			OS_REG_READ(ah, AR_RC));
971		ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
972			OS_REG_READ(ah, AR_PHY_ACTIVE));
973#endif /* ATH_HAL_DEBUG */
974		return AH_FALSE;
975	}
976
977	nf = 0;
978	/* Keep checking until the floor is below the threshold or the nf is done */
979	for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
980		OS_DELAY(1000); /* Sleep for 1 ms */
981		nf = ar5210GetNoiseFloor(ah);
982	}
983
984	if (nf > NORMAL_NF_THRESH) {
985		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
986		    __func__, nf);
987		ichan->rawNoiseFloor = 0;
988		return AH_FALSE;
989	}
990	ichan->rawNoiseFloor = nf;
991	return AH_TRUE;
992}
993
994/*
995 * Adjust NF based on statistical values for 5GHz frequencies.
996 */
997int16_t
998ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
999{
1000	return 0;
1001}
1002
1003HAL_RFGAIN
1004ar5210GetRfgain(struct ath_hal *ah)
1005{
1006	return HAL_RFGAIN_INACTIVE;
1007}
1008