1/*
2 * Copyright (c) 2013 Qualcomm Atheros, Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14 * PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "opt_ah.h"
18
19#include "ah.h"
20#include "ah_internal.h"
21#include "ah_devid.h"
22#ifdef AH_DEBUG
23#include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24#endif
25
26#include "ar9300/ar9300.h"
27#include "ar9300/ar9300reg.h"
28#include "ar9300/ar9300phy.h"
29#include "ar9300/ar9300desc.h"
30
31static u_int32_t ar9300_read_loc_timer(struct ath_hal *ah);
32
33void
34ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
35{
36    struct ath_hal_9300 *ahp = AH9300(ah);
37    *hangs = 0;
38
39    if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
40        *hangs |= HAL_RIFS_BB_HANG_WAR;
41    }
42    if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
43        *hangs |= HAL_DFS_BB_HANG_WAR;
44    }
45    if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
46        == HAL_OK)
47    {
48        *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
49    }
50    if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
51        *hangs |= HAL_MAC_HANG_WAR;
52    }
53    if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
54        == HAL_OK)
55    {
56        *hangs |= HAL_PHYRESTART_CLR_WAR;
57    }
58
59    ahp->ah_hang_wars = *hangs;
60}
61
62/*
63 * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
64 * HT20, HT40, fast-clock, turbo mode, etc.
65 */
66static u_int
67ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
68{
69#if 0
70    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
71
72    if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
73        return (ath_hal_mac_usec(ah, clks) / 2);
74    } else {
75        return (ath_hal_mac_usec(ah, clks));
76    }
77#endif
78    return (ath_hal_mac_usec(ah, clks));
79}
80
81u_int
82ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
83{
84#if 0
85    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
86
87    if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
88        return (ath_hal_mac_clks(ah, usecs) * 2);
89    } else {
90        return (ath_hal_mac_clks(ah, usecs));
91    }
92#endif
93    return (ath_hal_mac_clks(ah, usecs));
94}
95
96void
97ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
98{
99    struct ath_hal_9300 *ahp = AH9300(ah);
100
101    OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
102}
103
104HAL_BOOL
105ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
106{
107    struct ath_hal_9300 *ahp = AH9300(ah);
108
109    OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
110    return AH_TRUE;
111}
112
113void
114ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
115{
116    struct ath_hal_9300 *ahp = AH9300(ah);
117
118    OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
119}
120
121HAL_BOOL
122ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
123{
124    struct ath_hal_9300 *ahp = AH9300(ah);
125
126    /* save it since it must be rewritten on reset */
127    OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
128
129    OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
130    OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
131    return AH_TRUE;
132}
133
134/*
135 * Attempt to change the cards operating regulatory domain to the given value
136 * Returns: A_EINVAL for an unsupported regulatory domain.
137 *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
138 */
139HAL_BOOL
140ar9300_set_regulatory_domain(struct ath_hal *ah,
141        u_int16_t reg_domain, HAL_STATUS *status)
142{
143    HAL_STATUS ecode;
144
145    if (AH_PRIVATE(ah)->ah_currentRD == 0) {
146        AH_PRIVATE(ah)->ah_currentRD = reg_domain;
147        return AH_TRUE;
148    }
149    ecode = HAL_EIO;
150
151#if 0
152bad:
153#endif
154    if (status) {
155        *status = ecode;
156    }
157    return AH_FALSE;
158}
159
160/*
161 * Return the wireless modes (a,b,g,t) supported by hardware.
162 *
163 * This value is what is actually supported by the hardware
164 * and is unaffected by regulatory/country code settings.
165 *
166 */
167u_int
168ar9300_get_wireless_modes(struct ath_hal *ah)
169{
170    return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
171}
172
173/*
174 * Set the interrupt and GPIO values so the ISR can disable RF
175 * on a switch signal.  Assumes GPIO port and interrupt polarity
176 * are set prior to call.
177 */
178void
179ar9300_enable_rf_kill(struct ath_hal *ah)
180{
181    /* TODO - can this really be above the hal on the GPIO interface for
182     * TODO - the client only?
183     */
184    struct ath_hal_9300    *ahp = AH9300(ah);
185
186    if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
187    	/* Check RF kill GPIO before set/clear RFSILENT bits. */
188    	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
189            OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
190                           AR_RFSILENT_FORCE);
191            OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
192        }
193        else {
194            OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
195                           AR_RFSILENT_FORCE);
196            OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
197        }
198    }
199    else {
200        /* Connect rfsilent_bb_l to baseband */
201        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
202            AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
203
204        /* Set input mux for rfsilent_bb_l to GPIO #0 */
205        OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206            AR_GPIO_INPUT_MUX2_RFSILENT);
207        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
208            (ahp->ah_gpio_select & 0x0f) << 4);
209
210        /*
211         * Configure the desired GPIO port for input and
212         * enable baseband rf silence
213         */
214        ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
215        OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
216    }
217
218    /*
219     * If radio disable switch connection to GPIO bit x is enabled
220     * program GPIO interrupt.
221     * If rfkill bit on eeprom is 1, setupeeprommap routine has already
222     * verified that it is a later version of eeprom, it has a place for
223     * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
224     * connection is present.
225     */
226     /*
227      * RFKill uses polling not interrupt,
228      * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
229      */
230    if (ath_hal_hasrfkill_int(ah)) {
231        if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
232            /* switch already closed, set to interrupt upon open */
233            ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
234        } else {
235            ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
236        }
237    }
238}
239
240/*
241 * Change the LED blinking pattern to correspond to the connectivity
242 */
243void
244ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
245{
246    static const u_int32_t ledbits[8] = {
247        AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
248        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
249        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
250        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
251        AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
252        AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
253        AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
254        AR_CFG_LED_ASSOC_NONE,
255    };
256
257    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
258}
259
260/*
261 * Sets the Power LED on the cardbus without affecting the Network LED.
262 */
263void
264ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
265{
266    u_int32_t    val;
267
268    val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
269    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
270}
271
272/*
273 * Sets the Network LED on the cardbus without affecting the Power LED.
274 */
275void
276ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
277{
278    u_int32_t    val;
279
280    val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
281    OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
282}
283
284/*
285 * Change association related fields programmed into the hardware.
286 * Writing a valid BSSID to the hardware effectively enables the hardware
287 * to synchronize its TSF to the correct beacons and receive frames coming
288 * from that BSSID. It is called by the SME JOIN operation.
289 */
290void
291ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
292    u_int16_t assoc_id)
293{
294    struct ath_hal_9300 *ahp = AH9300(ah);
295
296    /* save bssid and assoc_id for restore on reset */
297    OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
298    ahp->ah_assoc_id = assoc_id;
299
300    OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
301    OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
302                                 ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
303}
304
305/*
306 * Get the current hardware tsf for stamlme
307 */
308u_int64_t
309ar9300_get_tsf64(struct ath_hal *ah)
310{
311    u_int64_t tsf;
312
313    /* XXX sync multi-word read? */
314    tsf = OS_REG_READ(ah, AR_TSF_U32);
315    tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
316    return tsf;
317}
318
319void
320ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
321{
322    OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
323    OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
324}
325
326/*
327 * Get the current hardware tsf for stamlme
328 */
329u_int32_t
330ar9300_get_tsf32(struct ath_hal *ah)
331{
332    return OS_REG_READ(ah, AR_TSF_L32);
333}
334
335u_int32_t
336ar9300_get_tsf2_32(struct ath_hal *ah)
337{
338    return OS_REG_READ(ah, AR_TSF2_L32);
339}
340
341/*
342 * Reset the current hardware tsf for stamlme.
343 */
344void
345ar9300_reset_tsf(struct ath_hal *ah)
346{
347    int count;
348
349    count = 0;
350    while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
351        count++;
352        if (count > 10) {
353            HALDEBUG(ah, HAL_DEBUG_RESET,
354                "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
355            break;
356        }
357        OS_DELAY(10);
358    }
359    OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
360}
361
362/*
363 * Set or clear hardware basic rate bit
364 * Set hardware basic rate set if basic rate is found
365 * and basic rate is equal or less than 2Mbps
366 */
367void
368ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
369{
370    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
371    u_int32_t reg;
372    u_int8_t xset;
373    int i;
374
375    if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
376        return;
377    }
378    xset = 0;
379    for (i = 0; i < rs->rs_count; i++) {
380        u_int8_t rset = rs->rs_rates[i];
381        /* Basic rate defined? */
382        if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
383            xset = rset;
384        }
385    }
386    /*
387     * Set the h/w bit to reflect whether or not the basic
388     * rate is found to be equal or less than 2Mbps.
389     */
390    reg = OS_REG_READ(ah, AR_STA_ID1);
391    if (xset && xset / 2 <= 2) {
392        OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
393    } else {
394        OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
395    }
396}
397
398/*
399 * Grab a semi-random value from hardware registers - may not
400 * change often
401 */
402u_int32_t
403ar9300_get_random_seed(struct ath_hal *ah)
404{
405    u_int32_t nf;
406
407    nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
408    if (nf & 0x100) {
409        nf = 0 - ((nf ^ 0x1ff) + 1);
410    }
411    return (OS_REG_READ(ah, AR_TSF_U32) ^
412        OS_REG_READ(ah, AR_TSF_L32) ^ nf);
413}
414
415/*
416 * Detect if our card is present
417 */
418HAL_BOOL
419ar9300_detect_card_present(struct ath_hal *ah)
420{
421    u_int16_t mac_version, mac_rev;
422    u_int32_t v;
423
424    /*
425     * Read the Silicon Revision register and compare that
426     * to what we read at attach time.  If the same, we say
427     * a card/device is present.
428     */
429    v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
430    if (v == 0xFF) {
431        /* new SREV format */
432        v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
433        /*
434         * Include 6-bit Chip Type (masked to 0) to differentiate
435         * from pre-Sowl versions
436         */
437        mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
438        mac_rev = MS(v, AR_SREV_REVISION2);
439    } else {
440        mac_version = MS(v, AR_SREV_VERSION);
441        mac_rev = v & AR_SREV_REVISION;
442    }
443    return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
444            AH_PRIVATE(ah)->ah_macRev == mac_rev);
445}
446
447/*
448 * Update MIB Counters
449 */
450void
451ar9300_update_mib_mac_stats(struct ath_hal *ah)
452{
453    struct ath_hal_9300 *ahp = AH9300(ah);
454    HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
455
456    stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
457    stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
458    stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
459    stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
460    stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
461}
462
463void
464ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
465{
466    struct ath_hal_9300 *ahp = AH9300(ah);
467    HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
468
469    stats->ackrcv_bad = istats->ackrcv_bad;
470    stats->rts_bad    = istats->rts_bad;
471    stats->fcs_bad    = istats->fcs_bad;
472    stats->rts_good   = istats->rts_good;
473    stats->beacons    = istats->beacons;
474}
475
476/*
477 * Detect if the HW supports spreading a CCK signal on channel 14
478 */
479HAL_BOOL
480ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
481{
482    return AH_TRUE;
483}
484
485/*
486 * Get the rssi of frame curently being received.
487 */
488u_int32_t
489ar9300_get_cur_rssi(struct ath_hal *ah)
490{
491    /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
492    /* get combined RSSI */
493    return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
494}
495
496#if ATH_GEN_RANDOMNESS
497/*
498 * Get the rssi value from BB on ctl chain0.
499 */
500u_int32_t
501ar9300_get_rssi_chain0(struct ath_hal *ah)
502{
503    /* get ctl chain0 RSSI */
504    return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
505}
506#endif
507
508u_int
509ar9300_get_def_antenna(struct ath_hal *ah)
510{
511    return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
512}
513
514/* Setup coverage class */
515void
516ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
517{
518}
519
520void
521ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
522{
523    OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
524}
525
526HAL_BOOL
527ar9300_set_antenna_switch(struct ath_hal *ah,
528    HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
529    u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
530{
531    struct ath_hal_9300 *ahp = AH9300(ah);
532
533    /*
534     * Owl does not support diversity or changing antennas.
535     *
536     * Instead this API and function are defined differently for AR9300.
537     * To support Tablet PC's, this interface allows the system
538     * to dramatically reduce the TX power on a particular chain.
539     *
540     * Based on the value of (redefined) diversity_control, the
541     * reset code will decrease power on chain 0 or chain 1/2.
542     *
543     * Based on the value of bit 0 of antenna_switch_swap,
544     * the mapping between OID call and chain is defined as:
545     *  0:  map A -> 0, B -> 1;
546     *  1:  map A -> 1, B -> 0;
547     *
548     * NOTE:
549     *   The devices that use this OID should use a tx_chain_mask and
550     *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
551     *   used in order to ensure an active transmit antenna.  This
552     *   API will allow the host to turn off the only transmitting
553     *   antenna to ensure the antenna closest to the user's body is
554     *   powered-down.
555     */
556    /*
557     * Set antenna control for use during reset sequence by
558     * ar9300_decrease_chain_power()
559     */
560    ahp->ah_diversity_control = settings;
561
562    return AH_TRUE;
563}
564
565HAL_BOOL
566ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
567{
568    return AH_TRUE;
569}
570
571HAL_BOOL
572ar9300_set_slot_time(struct ath_hal *ah, u_int us)
573{
574    struct ath_hal_9300 *ahp = AH9300(ah);
575    if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
576        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
577        ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
578        return AH_FALSE;
579    } else {
580        /* convert to system clocks */
581        OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
582        ahp->ah_slot_time = us;
583        return AH_TRUE;
584    }
585}
586
587HAL_BOOL
588ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
589{
590    struct ath_hal_9300 *ahp = AH9300(ah);
591
592    if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
593        HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
594        ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
595        return AH_FALSE;
596    } else {
597        /* convert to system clocks */
598        OS_REG_RMW_FIELD(ah,
599            AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
600        ahp->ah_ack_timeout = us;
601        return AH_TRUE;
602    }
603}
604
605u_int
606ar9300_get_ack_timeout(struct ath_hal *ah)
607{
608    u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
609    return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
610}
611
612HAL_STATUS
613ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
614                 u_int32_t next_start, HAL_QUIET_FLAG flag)
615{
616#define	TU_TO_USEC(_tu)		((_tu) << 10)
617    HAL_STATUS status = HAL_EIO;
618    u_int32_t tsf = 0, j, next_start_us = 0;
619    if (flag & HAL_QUIET_ENABLE) {
620        for (j = 0; j < 2; j++) {
621            next_start_us = TU_TO_USEC(next_start);
622            tsf = OS_REG_READ(ah, AR_TSF_L32);
623            if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
624                next_start_us += tsf;
625            }
626            if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
627                next_start_us +=
628                    ah->ah_config.ah_sw_beacon_response_time;
629            }
630            OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
631            OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
632            OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
633            OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
634            OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
635            if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
636                status = HAL_OK;
637                break;
638            }
639            HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
640                "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
641            /* TSF shouldn't count twice or reg access is taking forever */
642            HALASSERT(j < 1);
643        }
644    } else {
645        OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
646        status = HAL_OK;
647    }
648
649    return status;
650#undef	TU_TO_USEC
651}
652
653//#ifdef ATH_SUPPORT_DFS
654void
655ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
656{
657    uint32_t reg1, reg2;
658
659    reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
660    reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
661    AH9300(ah)->ah_cac_quiet_enabled = enable;
662
663    if (enable) {
664        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
665                     reg1 | AR_PCU_FORCE_QUIET_COLL);
666        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
667                     reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
668    } else {
669        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
670                     reg1 & ~AR_PCU_FORCE_QUIET_COLL);
671        OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
672                     reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
673    }
674}
675//#endif /* ATH_SUPPORT_DFS */
676
677void
678ar9300_set_pcu_config(struct ath_hal *ah)
679{
680    ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
681}
682
683HAL_STATUS
684ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
685    u_int32_t capability, u_int32_t *result)
686{
687    struct ath_hal_9300 *ahp = AH9300(ah);
688    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
689    struct ar9300_ani_state *ani;
690
691    switch (type) {
692    case HAL_CAP_CIPHER:            /* cipher handled in hardware */
693        switch (capability) {
694        case HAL_CIPHER_AES_CCM:
695        case HAL_CIPHER_AES_OCB:
696        case HAL_CIPHER_TKIP:
697        case HAL_CIPHER_WEP:
698        case HAL_CIPHER_MIC:
699        case HAL_CIPHER_CLR:
700            return HAL_OK;
701        default:
702            return HAL_ENOTSUPP;
703        }
704    case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
705        switch (capability) {
706        case 0:         /* hardware capability */
707            return HAL_OK;
708        case 1:
709            return (ahp->ah_sta_id1_defaults &
710                    AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
711        default:
712            return HAL_ENOTSUPP;
713        }
714    case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
715        switch (capability) {
716        case 0: /* hardware capability */
717            return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
718        case 1: /* current setting */
719            return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
720                HAL_ENXIO : HAL_OK;
721        default:
722            return HAL_ENOTSUPP;
723        }
724    case HAL_CAP_WME_TKIPMIC:
725        /* hardware can do TKIP MIC when WMM is turned on */
726        return HAL_OK;
727    case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
728        return HAL_OK;
729    case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
730        switch (capability) {
731        case 0:                 /* hardware capability */
732            return HAL_OK;
733        case 1:                 /* current setting */
734            return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
735                            AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
736                            HAL_OK : HAL_ENXIO;
737        }
738        return HAL_EINVAL;
739    case HAL_CAP_TPC:
740        switch (capability) {
741        case 0:                 /* hardware capability */
742            return HAL_OK;
743        case 1:
744            return ah->ah_config.ath_hal_desc_tpc ?
745                               HAL_OK : HAL_ENXIO;
746        }
747        return HAL_OK;
748    case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
749        return HAL_OK;
750    case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
751        switch (capability) {
752        case 0:                 /* hardware capability */
753            return HAL_OK;
754        case 1:
755            if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
756                /*
757                 * Owl and Merlin have problems in mcast key search.
758                 * Disable this cap. in Ad-hoc mode. see Bug 25776 and
759                 * 26802
760                 */
761                return HAL_ENXIO;
762            } else {
763                return (ahp->ah_sta_id1_defaults &
764                        AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
765            }
766        }
767        return HAL_EINVAL;
768    case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
769        switch (capability) {
770        case 0:                 /* hardware capability */
771            return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
772        case 1:
773            return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
774                HAL_OK : HAL_ENXIO;
775        }
776        return HAL_EINVAL;
777    case HAL_CAP_RFSILENT:      /* rfsilent support  */
778        if (capability == 3) {  /* rfkill interrupt */
779            /*
780             * XXX: Interrupt-based notification of RF Kill state
781             *      changes not working yet. Report that this feature
782             *      is not supported so that polling is used instead.
783             */
784            return (HAL_ENOTSUPP);
785        }
786        return ath_hal_getcapability(ah, type, capability, result);
787    case HAL_CAP_4ADDR_AGGR:
788        return HAL_OK;
789    case HAL_CAP_BB_RIFS_HANG:
790        return HAL_ENOTSUPP;
791    case HAL_CAP_BB_DFS_HANG:
792        return HAL_ENOTSUPP;
793    case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
794        /* Track chips that are known to have BB hangs related
795         * to rx_clear stuck low.
796         */
797        return HAL_ENOTSUPP;
798    case HAL_CAP_MAC_HANG:
799        /* Track chips that are known to have MAC hangs.
800         */
801        return HAL_OK;
802    case HAL_CAP_RIFS_RX_ENABLED:
803        /* Is RIFS RX currently enabled */
804        return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
805#if 0
806    case HAL_CAP_ANT_CFG_2GHZ:
807        *result = p_cap->halNumAntCfg2Ghz;
808        return HAL_OK;
809    case HAL_CAP_ANT_CFG_5GHZ:
810        *result = p_cap->halNumAntCfg5Ghz;
811        return HAL_OK;
812    case HAL_CAP_RX_STBC:
813        *result = p_cap->hal_rx_stbc_support;
814        return HAL_OK;
815    case HAL_CAP_TX_STBC:
816        *result = p_cap->hal_tx_stbc_support;
817        return HAL_OK;
818#endif
819    case HAL_CAP_LDPC:
820        *result = p_cap->halLDPCSupport;
821        return HAL_OK;
822    case HAL_CAP_DYNAMIC_SMPS:
823        return HAL_OK;
824    case HAL_CAP_DS:
825        return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
826                (p_cap->halTxChainMask & 0x3) != 0x3 ||
827                (p_cap->halRxChainMask & 0x3) != 0x3) ?
828            HAL_ENOTSUPP : HAL_OK;
829    case HAL_CAP_TS:
830        return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
831                (p_cap->halTxChainMask & 0x7) != 0x7 ||
832                (p_cap->halRxChainMask & 0x7) != 0x7) ?
833            HAL_ENOTSUPP : HAL_OK;
834    case HAL_CAP_OL_PWRCTRL:
835        return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
836            HAL_OK : HAL_ENOTSUPP;
837    case HAL_CAP_CRDC:
838#if ATH_SUPPORT_CRDC
839        return (AR_SREV_WASP(ah) &&
840                ah->ah_config.ath_hal_crdc_enable) ?
841                    HAL_OK : HAL_ENOTSUPP;
842#else
843        return HAL_ENOTSUPP;
844#endif
845#if 0
846    case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
847        *result = (u_int32_t)(-1);
848        return HAL_OK;
849    case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
850        *result = (u_int32_t)(-1);
851        return HAL_OK;
852#endif
853    case HAL_CAP_BB_PANIC_WATCHDOG:
854        return HAL_OK;
855    case HAL_CAP_PHYRESTART_CLR_WAR:
856        if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
857            (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
858        {
859            return HAL_OK;
860        }
861        else
862        {
863            return HAL_ENOTSUPP;
864        }
865    case HAL_CAP_ENTERPRISE_MODE:
866        *result = ahp->ah_enterprise_mode >> 16;
867        /*
868         * WAR for EV 77658 - Add delimiters to first sub-frame when using
869         * RTS/CTS with aggregation and non-enterprise Osprey.
870         *
871         * Bug fixed in AR9580/Peacock, Wasp1.1 and later
872         */
873        if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
874                !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
875                AR_SREV_WASP_10(ah))) {
876            *result |= AH_ENT_RTSCTS_DELIM_WAR;
877        }
878        return HAL_OK;
879    case HAL_CAP_LDPCWAR:
880        /* WAR for RIFS+LDPC issue is required for all chips currently
881         * supported by ar9300 HAL.
882         */
883        return HAL_OK;
884    case HAL_CAP_ENABLE_APM:
885        *result = p_cap->halApmEnable;
886        return HAL_OK;
887    case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
888        return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
889    case HAL_CAP_PCIE_LCR_OFFSET:
890        *result = p_cap->hal_pcie_lcr_offset;
891        return HAL_OK;
892    case HAL_CAP_SMARTANTENNA:
893        /* FIXME A request is pending with h/w team to add feature bit in
894         * caldata to detect if board has smart antenna or not, once added
895         * we need to fix his piece of code to read and return value without
896         * any compile flags
897         */
898#if UMAC_SUPPORT_SMARTANTENNA
899        /* enable smart antenna for  Peacock, Wasp and scorpion
900           for future chips need to modify */
901        if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
902            return HAL_OK;
903        } else {
904            return HAL_ENOTSUPP;
905        }
906#else
907        return HAL_ENOTSUPP;
908#endif
909
910#ifdef ATH_TRAFFIC_FAST_RECOVER
911    case HAL_CAP_TRAFFIC_FAST_RECOVER:
912        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
913            return HAL_OK;
914        } else {
915            return HAL_ENOTSUPP;
916        }
917#endif
918
919    /* FreeBSD ANI */
920    case HAL_CAP_INTMIT:            /* interference mitigation */
921            switch (capability) {
922            case HAL_CAP_INTMIT_PRESENT:            /* hardware capability */
923                    return HAL_OK;
924            case HAL_CAP_INTMIT_ENABLE:
925                    return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
926                            HAL_OK : HAL_ENXIO;
927            case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
928            case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
929//            case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
930            case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
931            case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
932                    ani = ar9300_ani_get_current_state(ah);
933                    if (ani == AH_NULL)
934                            return HAL_ENXIO;
935                    switch (capability) {
936                    /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
937                    case 2: *result = ani->ofdm_noise_immunity_level; break;
938                    case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
939 //                   case 4: *result = ani->cck_weak_sig_threshold; break;
940                    case 5: *result = ani->firstep_level; break;
941                    case 6: *result = ani->spur_immunity_level; break;
942                    }
943                    return HAL_OK;
944            }
945            return HAL_EINVAL;
946    case HAL_CAP_ENFORCE_TXOP:
947        if (capability == 0)
948            return (HAL_OK);
949        if (capability != 1)
950            return (HAL_ENOTSUPP);
951        (*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
952        return (HAL_OK);
953    case HAL_CAP_TOA_LOCATIONING:
954        if (capability == 0)
955            return HAL_OK;
956        if (capability == 2) {
957            *result = ar9300_read_loc_timer(ah);
958            return (HAL_OK);
959        }
960        return HAL_ENOTSUPP;
961    default:
962        return ath_hal_getcapability(ah, type, capability, result);
963    }
964}
965
966HAL_BOOL
967ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
968        u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
969{
970    struct ath_hal_9300 *ahp = AH9300(ah);
971    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
972    u_int32_t v;
973
974    switch (type) {
975    case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
976        if (! p_cap->halTkipMicTxRxKeySupport)
977            return AH_FALSE;
978
979        if (setting)
980            ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
981        else
982            ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
983
984        OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
985        return AH_TRUE;
986
987    case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
988        if (setting) {
989            ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
990        } else {
991            ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
992        }
993        return AH_TRUE;
994    case HAL_CAP_DIVERSITY:
995        v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
996        if (setting) {
997            v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
998        } else {
999            v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1000        }
1001        OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
1002        return AH_TRUE;
1003    case HAL_CAP_DIAG:              /* hardware diagnostic support */
1004        /*
1005         * NB: could split this up into virtual capabilities,
1006         *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
1007         *     seems worth the additional complexity.
1008         */
1009#ifdef AH_DEBUG
1010        AH_PRIVATE(ah)->ah_diagreg = setting;
1011#else
1012        AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
1013#endif
1014        OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
1015        return AH_TRUE;
1016    case HAL_CAP_TPC:
1017        ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1018        return AH_TRUE;
1019    case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
1020        if (setting) {
1021            ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1022        } else {
1023            ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1024        }
1025        return AH_TRUE;
1026    case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
1027        if (p_cap->halTsfAddSupport) {
1028            if (setting) {
1029                ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1030            } else {
1031                ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1032            }
1033            return AH_TRUE;
1034        }
1035        return AH_FALSE;
1036
1037    /* FreeBSD interrupt mitigation / ANI */
1038    case HAL_CAP_INTMIT: {          /* interference mitigation */
1039            /* This maps the public ANI commands to the internal ANI commands */
1040            /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1041            static const HAL_ANI_CMD cmds[] = {
1042                    HAL_ANI_PRESENT,
1043                    HAL_ANI_MODE,
1044                    HAL_ANI_NOISE_IMMUNITY_LEVEL,
1045                    HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1046                    HAL_ANI_CCK_WEAK_SIGNAL_THR,
1047                    HAL_ANI_FIRSTEP_LEVEL,
1048                    HAL_ANI_SPUR_IMMUNITY_LEVEL,
1049            };
1050#define N(a)    (sizeof(a) / sizeof(a[0]))
1051            return capability < N(cmds) ?
1052                    ar9300_ani_control(ah, cmds[capability], setting) :
1053                    AH_FALSE;
1054#undef N
1055    }
1056
1057    case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
1058        ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1059        OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1060        return AH_TRUE;
1061
1062    case HAL_CAP_ENFORCE_TXOP:
1063        if (capability != 1)
1064            return AH_FALSE;
1065        if (setting) {
1066            ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
1067            OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1068        } else {
1069            ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
1070            OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1071        }
1072        return AH_TRUE;
1073
1074    case HAL_CAP_TOA_LOCATIONING:
1075        if (capability == 0)
1076            return AH_TRUE;
1077        if (capability == 1) {
1078            ar9300_update_loc_ctl_reg(ah, setting);
1079            return AH_TRUE;
1080        }
1081        return AH_FALSE;
1082        /* fall thru... */
1083    default:
1084        return ath_hal_setcapability(ah, type, capability, setting, status);
1085    }
1086}
1087
1088#ifdef AH_DEBUG
1089static void
1090ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1091{
1092    u_int32_t i = 0;
1093
1094    /* Read 0x80d0 to trigger pcie analyzer */
1095    HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1096        "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1097
1098    if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1099        struct ath_hal_9300 *ahp = AH9300(ah);
1100        u_int32_t tf, rf, rc, cc;
1101
1102        tf = OS_REG_READ(ah, AR_TFCNT);
1103        rf = OS_REG_READ(ah, AR_RFCNT);
1104        rc = OS_REG_READ(ah, AR_RCCNT);
1105        cc = OS_REG_READ(ah, AR_CCCNT);
1106
1107        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1108            "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1109        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1110            "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1111        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1112            "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1113        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1114            "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1115
1116        ahp->last_tf = tf;
1117        ahp->last_rf = rf;
1118        ahp->last_rc = rc;
1119        ahp->last_cc = cc;
1120
1121        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1122            "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1123        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1124            "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1125        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1126            "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1127        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1128            "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1129        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1130            "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1131        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1132            "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1133        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1134            "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1135        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1136            "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1137    }
1138
1139    if (args & HAL_DIAG_PRINT_REG_ALL) {
1140        for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1141            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1142                i, OS_REG_READ(ah, i));
1143        }
1144
1145        for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1146            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1147                i, OS_REG_READ(ah, i));
1148        }
1149
1150        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1151            "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1152
1153        HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1154            "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1155
1156        for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1157            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1158                i, OS_REG_READ(ah, i));
1159        }
1160
1161        for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1162            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1163                i, OS_REG_READ(ah, i));
1164        }
1165
1166        for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1167            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1168                i, OS_REG_READ(ah, i));
1169        }
1170
1171        for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1172            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1173                i, OS_REG_READ(ah, i));
1174        }
1175
1176        for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1177            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1178                i, OS_REG_READ(ah, i));
1179        }
1180
1181        for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1182            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1183                i, OS_REG_READ(ah, i));
1184        }
1185
1186        for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1187            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1188                i, OS_REG_READ(ah, i));
1189        }
1190
1191        for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1192            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1193                i, OS_REG_READ(ah, i));
1194        }
1195
1196        for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1197            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1198                i, OS_REG_READ(ah, i));
1199        }
1200
1201        for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1202            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1203                i, OS_REG_READ(ah, i));
1204        }
1205
1206        for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1207            HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1208                i, OS_REG_READ(ah, i));
1209        }
1210    }
1211}
1212#endif
1213
1214HAL_BOOL
1215ar9300_get_diag_state(struct ath_hal *ah, int request,
1216        const void *args, u_int32_t argsize,
1217        void **result, u_int32_t *resultsize)
1218{
1219    struct ath_hal_9300 *ahp = AH9300(ah);
1220    struct ar9300_ani_state *ani;
1221
1222    (void) ahp;
1223    if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1224        return AH_TRUE;
1225    }
1226    switch (request) {
1227#ifdef AH_PRIVATE_DIAG
1228    case HAL_DIAG_EEPROM:
1229        *result = &ahp->ah_eeprom;
1230        *resultsize = sizeof(ar9300_eeprom_t);
1231        return AH_TRUE;
1232
1233#if 0   /* XXX - TODO */
1234    case HAL_DIAG_EEPROM_EXP_11A:
1235    case HAL_DIAG_EEPROM_EXP_11B:
1236    case HAL_DIAG_EEPROM_EXP_11G:
1237        pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1238        *result = pe->p_channels;
1239        *resultsize = (*result == AH_NULL) ? 0 :
1240            roundup(sizeof(u_int16_t) * pe->num_channels,
1241            sizeof(u_int32_t)) +
1242                sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1243        return AH_TRUE;
1244#endif
1245    case HAL_DIAG_RFGAIN:
1246        *result = &ahp->ah_gain_values;
1247        *resultsize = sizeof(GAIN_VALUES);
1248        return AH_TRUE;
1249    case HAL_DIAG_RFGAIN_CURSTEP:
1250        *result = (void *) ahp->ah_gain_values.curr_step;
1251        *resultsize = (*result == AH_NULL) ?
1252                0 : sizeof(GAIN_OPTIMIZATION_STEP);
1253        return AH_TRUE;
1254#if 0   /* XXX - TODO */
1255    case HAL_DIAG_PCDAC:
1256        *result = ahp->ah_pcdac_table;
1257        *resultsize = ahp->ah_pcdac_table_size;
1258        return AH_TRUE;
1259#endif
1260    case HAL_DIAG_ANI_CURRENT:
1261
1262        ani = ar9300_ani_get_current_state(ah);
1263        if (ani == AH_NULL)
1264            return AH_FALSE;
1265        /* Convert ar9300 HAL to FreeBSD HAL ANI state */
1266        /* XXX TODO: add all of these to the HAL ANI state structure */
1267        bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
1268        /* XXX should this be OFDM or CCK noise immunity level? */
1269        ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
1270        ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
1271        ahp->ext_ani_state.firstepLevel = ani->firstep_level;
1272        ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
1273        /* mrc_cck_off */
1274        /* cck_noise_immunity_level */
1275
1276        ahp->ext_ani_state.listenTime = ani->listen_time;
1277
1278        *result = &ahp->ext_ani_state;
1279        *resultsize = sizeof(ahp->ext_ani_state);
1280#if 0
1281        *result = ar9300_ani_get_current_state(ah);
1282        *resultsize = (*result == AH_NULL) ?
1283            0 : sizeof(struct ar9300_ani_state);
1284#endif
1285        return AH_TRUE;
1286    case HAL_DIAG_ANI_STATS:
1287        *result = ar9300_ani_get_current_stats(ah);
1288        *resultsize = (*result == AH_NULL) ?
1289            0 : sizeof(HAL_ANI_STATS);
1290        return AH_TRUE;
1291    case HAL_DIAG_ANI_CMD:
1292        if (argsize != 2*sizeof(u_int32_t)) {
1293            return AH_FALSE;
1294        }
1295        ar9300_ani_control(
1296            ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1297        return AH_TRUE;
1298#if 0
1299    case HAL_DIAG_TXCONT:
1300        /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1301        return AH_TRUE;
1302#endif /* 0 */
1303#endif /* AH_PRIVATE_DIAG */
1304    case HAL_DIAG_CHANNELS:
1305#if 0
1306        *result = &(ahp->ah_priv.ah_channels[0]);
1307        *resultsize =
1308            sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1309#endif
1310        return AH_TRUE;
1311#ifdef AH_DEBUG
1312    case HAL_DIAG_PRINT_REG:
1313        ar9300_print_reg(ah, *((const u_int32_t *)args));
1314        return AH_TRUE;
1315#endif
1316    default:
1317        break;
1318    }
1319
1320    return AH_FALSE;
1321}
1322
1323void
1324ar9300_dma_reg_dump(struct ath_hal *ah)
1325{
1326#ifdef AH_DEBUG
1327#define NUM_DMA_DEBUG_REGS  8
1328#define NUM_QUEUES          10
1329
1330    u_int32_t val[NUM_DMA_DEBUG_REGS];
1331    int       qcu_offset = 0, dcu_offset = 0;
1332    u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1333    int       i, j, k;
1334    int16_t nfarray[HAL_NUM_NF_READINGS];
1335#ifdef	ATH_NF_PER_CHAN
1336    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1337#endif	/* ATH_NF_PER_CHAN */
1338    HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1339
1340     /* selecting DMA OBS 8 */
1341    OS_REG_WRITE(ah, AR_MACMISC,
1342        ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1343         (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1344
1345    ath_hal_printf(ah, "Raw DMA Debug values:\n");
1346    for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1347        if (i % 4 == 0) {
1348            ath_hal_printf(ah, "\n");
1349        }
1350
1351        val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1352        ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1353    }
1354
1355    ath_hal_printf(ah, "\n\n");
1356    ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1357
1358    for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1359        if (i == 8) {
1360            /* only 8 QCU entries in val[0] */
1361            qcu_offset = 0;
1362            qcu_base++;
1363        }
1364
1365        if (i == 6) {
1366            /* only 6 DCU entries in val[4] */
1367            dcu_offset = 0;
1368            dcu_base++;
1369        }
1370
1371        ath_hal_printf(ah,
1372            "%2d          %2x      %1x     %2x           %2x\n",
1373            i,
1374            (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1375            (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1376            val[2] & (0x7 << (i * 3)) >> (i * 3),
1377            (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1378    }
1379
1380    ath_hal_printf(ah, "\n");
1381    ath_hal_printf(ah,
1382        "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1383        (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1384    ath_hal_printf(ah,
1385        "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1386        (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1387    ath_hal_printf(ah,
1388        "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1389        (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1390    ath_hal_printf(ah,
1391        "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1392        (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1393    ath_hal_printf(ah,
1394        "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1395        (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1396    ath_hal_printf(ah,
1397        "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1398        (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1399    ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1400    ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1401
1402    ar9300_upload_noise_floor(ah, 1, nfarray);
1403    ath_hal_printf(ah, "2G:\n");
1404    ath_hal_printf(ah, "Min CCA Out:\n");
1405    ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1406    ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1407                   nfarray[0], nfarray[1], nfarray[2]);
1408    ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1409                   nfarray[3], nfarray[4], nfarray[5]);
1410
1411    ar9300_upload_noise_floor(ah, 0, nfarray);
1412    ath_hal_printf(ah, "5G:\n");
1413    ath_hal_printf(ah, "Min CCA Out:\n");
1414    ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1415    ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1416                   nfarray[0], nfarray[1], nfarray[2]);
1417    ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1418                   nfarray[3], nfarray[4], nfarray[5]);
1419
1420    for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1421        ath_hal_printf(ah, "%s Chain %d NF History:\n",
1422                       ((i < 3) ? "Control " : "Extension "), i%3);
1423        for (j = 0, k = h->base.curr_index;
1424             j < HAL_NF_CAL_HIST_LEN_FULL;
1425             j++, k++) {
1426            ath_hal_printf(ah, "Element %d: %d\n",
1427                j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1428        }
1429        ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1430    }
1431
1432    reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1433    ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1434                   MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1435                   MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1436    reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1437    ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1438                   MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1439                   MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1440    ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1441                   MS(reg, AR_PHY_DESIRED_SZ_ADC),
1442                   MS(reg, AR_PHY_DESIRED_SZ_ADC));
1443    reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1444    ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1445                   MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1446                   MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1447    reg = OS_REG_READ(ah, AR_PHY_AGC);
1448    ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1449                   MS(reg, AR_PHY_AGC_COARSE_HIGH),
1450                   MS(reg, AR_PHY_AGC_COARSE_HIGH));
1451    ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1452                   MS(reg, AR_PHY_AGC_COARSE_LOW),
1453                   MS(reg, AR_PHY_AGC_COARSE_LOW));
1454    ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1455                   MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1456                   MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1457    reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1458    ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1459                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1460    ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1461                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1462                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1463    ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1464                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1465                   MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1466    reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1467    ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1468                   MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1469    ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1470                   MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1471                   MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1472
1473
1474    /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1475    reg = OS_REG_READ(ah, 0xa360);
1476    reg &= ~0x00800000;
1477    OS_REG_WRITE(ah, 0xa360, reg);
1478
1479    /* Step 2a: Set register 0xa364 to 0x1000 */
1480    reg = 0x1000;
1481    OS_REG_WRITE(ah, 0xa364, reg);
1482
1483    /* Step 3a: Read bits 17:0 of register 0x9c20 */
1484    reg = OS_REG_READ(ah, 0x9c20);
1485    reg &= 0x0003ffff;
1486    ath_hal_printf(ah,
1487        "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1488        __func__, reg);
1489
1490    /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1491    reg = OS_REG_READ(ah, 0xa360);
1492    reg &= ~0x00800000;
1493    OS_REG_WRITE(ah, 0xa360, reg);
1494
1495    /* Step 2b: Set register 0xa364 to 0x1400 */
1496    reg = 0x1400;
1497    OS_REG_WRITE(ah, 0xa364, reg);
1498
1499    /* Step 3b: Read bits 17:0 of register 0x9c20 */
1500    reg = OS_REG_READ(ah, 0x9c20);
1501    reg &= 0x0003ffff;
1502    ath_hal_printf(ah,
1503        "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1504        __func__, reg);
1505
1506    /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1507    reg = OS_REG_READ(ah, 0xa360);
1508    reg &= ~0x00800000;
1509    OS_REG_WRITE(ah, 0xa360, reg);
1510
1511    /* Step 2c: Set register 0xa364 to 0x3C00 */
1512    reg = 0x3c00;
1513    OS_REG_WRITE(ah, 0xa364, reg);
1514
1515    /* Step 3c: Read bits 17:0 of register 0x9c20 */
1516    reg = OS_REG_READ(ah, 0x9c20);
1517    reg &= 0x0003ffff;
1518    ath_hal_printf(ah,
1519        "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1520        __func__, reg);
1521
1522    /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1523    reg = OS_REG_READ(ah, 0xa360);
1524    reg &= ~0x001040000;
1525    OS_REG_WRITE(ah, 0xa360, reg);
1526
1527    /* Step 2d: Set register 0xa364 to 0x5005D */
1528    reg = 0x5005D;
1529    OS_REG_WRITE(ah, 0xa364, reg);
1530
1531    /* Step 3d: Read bits 17:0 of register 0xa368 */
1532    reg = OS_REG_READ(ah, 0xa368);
1533    reg &= 0x0003ffff;
1534    ath_hal_printf(ah,
1535        "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1536        __func__, reg);
1537
1538    /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1539    reg = OS_REG_READ(ah, 0xa360);
1540    reg &= ~0x001040000;
1541    OS_REG_WRITE(ah, 0xa360, reg);
1542
1543    /* Step 2e: Set register 0xa364 to 0x7005D */
1544    reg = 0x7005D;
1545    OS_REG_WRITE(ah, 0xa364, reg);
1546
1547    /* Step 3e: Read bits 17:0 of register 0xa368 */
1548    reg = OS_REG_READ(ah, 0xa368);
1549    reg &= 0x0003ffff;
1550    ath_hal_printf(ah,
1551        "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1552       __func__, reg);
1553
1554    /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1555    reg = OS_REG_READ(ah, 0xa360);
1556    reg &= ~0x001000000;
1557    reg |= 0x40000;
1558    OS_REG_WRITE(ah, 0xa360, reg);
1559
1560    /* Step 2f: Set register 0xa364 to 0x3005D */
1561    reg = 0x3005D;
1562    OS_REG_WRITE(ah, 0xa364, reg);
1563
1564    /* Step 3f: Read bits 17:0 of register 0xa368 */
1565    reg = OS_REG_READ(ah, 0xa368);
1566    reg &= 0x0003ffff;
1567    ath_hal_printf(ah,
1568        "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1569        __func__, reg);
1570
1571    /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1572    reg = OS_REG_READ(ah, 0xa360);
1573    reg &= ~0x001000000;
1574    reg |= 0x40000;
1575    OS_REG_WRITE(ah, 0xa360, reg);
1576
1577    /* Step 2g: Set register 0xa364 to 0x6005D */
1578    reg = 0x6005D;
1579    OS_REG_WRITE(ah, 0xa364, reg);
1580
1581    /* Step 3g: Read bits 17:0 of register 0xa368 */
1582    reg = OS_REG_READ(ah, 0xa368);
1583    reg &= 0x0003ffff;
1584    ath_hal_printf(ah,
1585        "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1586        __func__, reg);
1587#endif /* AH_DEBUG */
1588}
1589
1590/*
1591 * Return the busy for rx_frame, rx_clear, and tx_frame
1592 */
1593u_int32_t
1594ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1595    u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1596{
1597    struct ath_hal_9300 *ahp = AH9300(ah);
1598    u_int32_t good = 1;
1599
1600    u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1601    u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1602    u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1603    u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1604
1605    if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1606        /*
1607         * Cycle counter wrap (or initial call); it's not possible
1608         * to accurately calculate a value because the registers
1609         * right shift rather than wrap--so punt and return 0.
1610         */
1611        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1612            "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1613        good = 0;
1614    } else {
1615        u_int32_t cc_d = cc - ahp->ah_cycles;
1616        u_int32_t rc_d = rc - ahp->ah_rx_clear;
1617        u_int32_t rf_d = rf - ahp->ah_rx_frame;
1618        u_int32_t tf_d = tf - ahp->ah_tx_frame;
1619
1620        if (cc_d != 0) {
1621            *rxc_pcnt = rc_d * 100 / cc_d;
1622            *rxf_pcnt = rf_d * 100 / cc_d;
1623            *txf_pcnt = tf_d * 100 / cc_d;
1624        } else {
1625            good = 0;
1626        }
1627    }
1628
1629    ahp->ah_cycles = cc;
1630    ahp->ah_rx_frame = rf;
1631    ahp->ah_rx_clear = rc;
1632    ahp->ah_tx_frame = tf;
1633
1634    return good;
1635}
1636
1637/*
1638 * Return approximation of extension channel busy over an time interval
1639 * 0% (clear) -> 100% (busy)
1640 * -1 for invalid estimate
1641 */
1642uint32_t
1643ar9300_get_11n_ext_busy(struct ath_hal *ah)
1644{
1645    /*
1646     * Overflow condition to check before multiplying to get %
1647     * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1648     */
1649#define OVERFLOW_LIMIT  0x28F5C28
1650#define ERROR_CODE      -1
1651
1652    struct ath_hal_9300 *ahp = AH9300(ah);
1653    u_int32_t busy = 0; /* percentage */
1654    int8_t busyper = 0;
1655    u_int32_t cycle_count, ctl_busy, ext_busy;
1656
1657    /* cycle_count will always be the first to wrap; therefore, read it last
1658     * This sequence of reads is not atomic, and MIB counter wrap
1659     * could happen during it ?
1660     */
1661    ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1662    ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1663    cycle_count = OS_REG_READ(ah, AR_CCCNT);
1664
1665    if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1666        (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1667    {
1668        /*
1669         * Cycle counter wrap (or initial call); it's not possible
1670         * to accurately calculate a value because the registers
1671         * right shift rather than wrap--so punt and return 0.
1672         */
1673        busyper = ERROR_CODE;
1674        HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1675            "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1676    } else {
1677        u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1678        u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1679
1680        /*
1681         * Compute extension channel busy percentage
1682         * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1683         * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1684         * Will never happen, since (ext_busy_delta < cycle_delta) always,
1685         * and shift necessitated by large ext_busy_delta.
1686         * Due to timing difference to read the registers and counter overflow,
1687         * it may still happen that cycle_delta >> 7 = 0.
1688         *
1689         */
1690        if (cycle_delta) {
1691            if (ext_busy_delta > OVERFLOW_LIMIT) {
1692                if (cycle_delta >> 7) {
1693                    busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1694                } else {
1695                    busyper = ERROR_CODE;
1696                }
1697            } else {
1698                busy = (ext_busy_delta * 100) / cycle_delta;
1699            }
1700        } else {
1701            busyper = ERROR_CODE;
1702        }
1703
1704        if (busy > 100) {
1705            busy = 100;
1706        }
1707        if ( busyper != ERROR_CODE ) {
1708            busyper = busy;
1709        }
1710    }
1711
1712    ahp->ah_cycle_count = cycle_count;
1713    ahp->ah_ctl_busy = ctl_busy;
1714    ahp->ah_ext_busy = ext_busy;
1715
1716    return busyper;
1717#undef OVERFLOW_LIMIT
1718#undef ERROR_CODE
1719}
1720
1721/* BB Panic Watchdog declarations */
1722#define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1723#define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1724
1725void
1726ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1727{
1728#define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1729    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1730    u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1731    u_int32_t val, idle_count;
1732
1733    if (idle_tmo_ms != 0) {
1734        /* enable IRQ, disable chip-reset for BB panic */
1735        val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1736            AR_PHY_BB_PANIC_CNTL2_MASK;
1737        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1738            (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1739        /* bound limit to 10 secs */
1740        if (idle_tmo_ms > 10000) {
1741            idle_tmo_ms = 10000;
1742        }
1743        if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1744            idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1745        } else {
1746            idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1747        }
1748        /*
1749         * enable panic in non-IDLE mode,
1750         * disable in IDLE mode,
1751         * set idle time-out
1752         */
1753
1754        // EV92527 : Enable IDLE mode panic
1755
1756        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1757                     AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1758                     AR_PHY_BB_PANIC_IDLE_ENABLE |
1759                     (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1760                     (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1761    } else {
1762        /* disable IRQ, disable chip-reset for BB panic */
1763        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1764            OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1765            ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1766        /* disable panic in non-IDLE mode, disable in IDLE mode */
1767        OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1768            OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1769            ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1770    }
1771
1772    HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1773             __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1774#undef HAL_BB_PANIC_IDLE_TIME_OUT
1775}
1776
1777
1778void
1779ar9300_handle_bb_panic(struct ath_hal *ah)
1780{
1781    u_int32_t status;
1782    /*
1783     * we want to avoid printing in ISR context so we save
1784     * panic watchdog status to be printed later in DPC context
1785     */
1786    AH9300(ah)->ah_bb_panic_last_status = status =
1787        OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1788    /*
1789     * panic watchdog timer should reset on status read
1790     * but to make sure we write 0 to the watchdog status bit
1791     */
1792    OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1793}
1794
1795int
1796ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1797{
1798    bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1799
1800    /*
1801     * For signature 04000539 do not print anything.
1802     * This is a very common occurence as a compromise between
1803     * BB Panic and AH_FALSE detects (EV71009). It indicates
1804     * radar hang, which can be cleared by reprogramming
1805     * radar related register and does not requre a chip reset
1806     */
1807
1808    /* Suppress BB Status mesg following signature */
1809    switch (bb_panic->status) {
1810        case 0x04000539:
1811        case 0x04008009:
1812        case 0x04000b09:
1813        case 0x1300000a:
1814        return -1;
1815    }
1816
1817    bb_panic->tsf = ar9300_get_tsf32(ah);
1818    bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1819    bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1820    bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1821    bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1822    bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1823    bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1824    bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1825    bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1826    bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1827    bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1828    bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1829    bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1830    bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1831    bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1832                                        &bb_panic->rxc_pcnt,
1833                                        &bb_panic->rxf_pcnt,
1834                                        &bb_panic->txf_pcnt);
1835
1836    if (ah->ah_config.ath_hal_show_bb_panic) {
1837        ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1838            "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1839        ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1840            "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1841            bb_panic->wd, bb_panic->det, bb_panic->rdar,
1842            bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1843            bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1844        ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1845            bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1846        ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1847            bb_panic->phy_gen_ctrl);
1848        if (bb_panic->cycles) {
1849            ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1850                "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1851                bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1852        }
1853        ath_hal_printf(ah, "==== BB update: done ====\n\n");
1854    }
1855
1856    return 0; //The returned data will be stored for athstats to retrieve it
1857}
1858
1859/* set the reason for HAL reset */
1860void
1861ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1862{
1863    AH9300(ah)->ah_reset_reason = resetreason;
1864}
1865
1866/*
1867 * Configure 20/40 operation
1868 *
1869 * 20/40 = joint rx clear (control and extension)
1870 * 20    = rx clear (control)
1871 *
1872 * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1873 *         when changing from 20/40 => 20 only
1874 */
1875void
1876ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1877{
1878    u_int32_t macmode;
1879
1880    /* Configure MAC for 20/40 operation */
1881    if (mode == HAL_HT_MACMODE_2040 &&
1882        !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1883        macmode = AR_2040_JOINED_RX_CLEAR;
1884    } else {
1885        macmode = 0;
1886    }
1887    OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1888}
1889
1890/*
1891 * Get Rx clear (control/extension channel)
1892 *
1893 * Returns active low (busy) for ctrl/ext channel
1894 * Owl 2.0
1895 */
1896HAL_HT_RXCLEAR
1897ar9300_get_11n_rx_clear(struct ath_hal *ah)
1898{
1899    HAL_HT_RXCLEAR rxclear = 0;
1900    u_int32_t val;
1901
1902    val = OS_REG_READ(ah, AR_DIAG_SW);
1903
1904    /* control channel */
1905    if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1906        rxclear |= HAL_RX_CLEAR_CTL_LOW;
1907    }
1908    /* extension channel */
1909    if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1910        rxclear |= HAL_RX_CLEAR_EXT_LOW;
1911    }
1912    return rxclear;
1913}
1914
1915/*
1916 * Set Rx clear (control/extension channel)
1917 *
1918 * Useful for forcing the channel to appear busy for
1919 * debugging/diagnostics
1920 * Owl 2.0
1921 */
1922void
1923ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1924{
1925    /* control channel */
1926    if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1927        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1928    } else {
1929        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1930    }
1931    /* extension channel */
1932    if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1933        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1934    } else {
1935        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1936    }
1937}
1938
1939
1940/*
1941 * HAL support code for force ppm tracking workaround.
1942 */
1943
1944u_int32_t
1945ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1946{
1947    u_int32_t retval;
1948    u_int32_t off1;
1949    u_int32_t off2;
1950
1951    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1952        off1 = 0x2000;
1953        off2 = 0x1000;
1954    } else {
1955        off1 = 0x1000;
1956        off2 = 0x2000;
1957    }
1958
1959    retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1960             ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1961             ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1962
1963    return retval;
1964}
1965
1966u_int32_t
1967ar9300_ppm_force(struct ath_hal *ah)
1968{
1969    u_int32_t data_fine;
1970    u_int32_t data4;
1971    //u_int32_t off1;
1972    //u_int32_t off2;
1973    HAL_BOOL signed_val = AH_FALSE;
1974
1975//    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1976//        off1 = 0x2000;
1977//        off2 = 0x1000;
1978//    } else {
1979//        off1 = 0x1000;
1980//        off2 = 0x2000;
1981//    }
1982    data_fine =
1983        AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
1984        OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
1985
1986    /*
1987     * bit [11-0] is new ppm value. bit 11 is the signed bit.
1988     * So check value from bit[10:0].
1989     * Now get the abs val of the ppm value read in bit[0:11].
1990     * After that do bound check on abs value.
1991     * if value is off limit, CAP the value and and restore signed bit.
1992     */
1993    if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
1994    {
1995        /* get the positive value */
1996        data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
1997        signed_val = AH_TRUE;
1998    }
1999    if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
2000    {
2001        HALDEBUG(ah, HAL_DEBUG_REGIO,
2002            "%s Correcting ppm out of range %x\n",
2003            __func__, (data_fine & 0x7ff));
2004        data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
2005    }
2006    /*
2007     * Restore signed value if changed above.
2008     * Use typecast to avoid compilation errors
2009     */
2010    if (signed_val) {
2011        data_fine = (-(int32_t)data_fine) &
2012            AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
2013    }
2014
2015    /* write value */
2016    data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
2017        ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2018    OS_REG_WRITE(ah, AR_PHY_TIMING2,
2019        data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
2020
2021    return data_fine;
2022}
2023
2024void
2025ar9300_ppm_un_force(struct ath_hal *ah)
2026{
2027    u_int32_t data4;
2028
2029    data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
2030    OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
2031}
2032
2033u_int32_t
2034ar9300_ppm_arm_trigger(struct ath_hal *ah)
2035{
2036    u_int32_t val;
2037    u_int32_t ret;
2038
2039    val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
2040    ret = OS_REG_READ(ah, AR_TSF_L32);
2041    OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
2042        val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
2043
2044    /* return low word of TSF at arm time */
2045    return ret;
2046}
2047
2048int
2049ar9300_ppm_get_trigger(struct ath_hal *ah)
2050{
2051    if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
2052        AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
2053    {
2054        /* has not triggered yet, return AH_FALSE */
2055        return 0;
2056    }
2057
2058    /* else triggered, return AH_TRUE */
2059    return 1;
2060}
2061
2062void
2063ar9300_mark_phy_inactive(struct ath_hal *ah)
2064{
2065    OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2066}
2067
2068/* DEBUG */
2069u_int32_t
2070ar9300_ppm_get_force_state(struct ath_hal *ah)
2071{
2072    return
2073        OS_REG_READ(ah, AR_PHY_TIMING2) &
2074        (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2075}
2076
2077/*
2078 * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2079 */
2080HAL_BOOL
2081ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2082{
2083    /*
2084     * XXX FreeBSD todo: reimplement this
2085     */
2086#if 0
2087    p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2088    p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2089    p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2090    p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2091    p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
2092                           p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2093    p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
2094                           p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2095#endif
2096    return AH_FALSE;
2097}
2098
2099void
2100ar9300_clear_mib_counters(struct ath_hal *ah)
2101{
2102    u_int32_t reg_val;
2103
2104    reg_val = OS_REG_READ(ah, AR_MIBC);
2105    OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2106    OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2107}
2108
2109
2110/* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2111HAL_BOOL
2112ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2113{
2114    struct ath_hal_9300 *ahp = AH9300(ah);
2115    HAL_CHANNEL_INTERNAL *ichan =
2116      ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2117    HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2118    u_int32_t tmp = 0;
2119
2120    if (enable) {
2121        if (ahp->ah_rifs_enabled == AH_TRUE) {
2122            return AH_TRUE;
2123        }
2124
2125        OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2126        OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2127                     ahp->ah_rifs_reg[1]);
2128
2129        ahp->ah_rifs_enabled = AH_TRUE;
2130        OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2131    } else {
2132        if (ahp->ah_rifs_enabled == AH_TRUE) {
2133            ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2134                                              AR_PHY_SEARCH_START_DELAY);
2135            ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2136        }
2137        /* Change rifs init delay to 0 */
2138        OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2139                     (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2140        tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2141        if (is_chan_2g) {
2142            if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2143                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2144            } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2145                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2146            }
2147        } else {
2148            if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2149                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2150            } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2151                OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2152            }
2153        }
2154
2155        ahp->ah_rifs_enabled = AH_FALSE;
2156    }
2157    return AH_TRUE;
2158
2159} /* ar9300_set_rifs_delay () */
2160
2161/* Set the current RIFS Rx setting */
2162HAL_BOOL
2163ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2164{
2165    /* Non-Owl 11n chips */
2166    if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2167        if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2168            return ar9300_set_rifs_delay(ah, enable);
2169        }
2170        return AH_FALSE;
2171    }
2172
2173    return AH_TRUE;
2174} /* ar9300_set_11n_rx_rifs () */
2175
2176static hal_mac_hangs_t
2177ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2178  hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2179{
2180    int i = 0;
2181    hal_mac_hangs_t found_hangs = 0;
2182
2183    if (hangs & dcu_chain_state) {
2184        for (i = 0; i < 6; i++) {
2185            if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2186                 hang_check.dcu_chain_state)
2187            {
2188                found_hangs |= dcu_chain_state;
2189                *dcu_chain = i;
2190            }
2191        }
2192        for (i = 0; i < 4; i++) {
2193            if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2194                  hang_check.dcu_chain_state)
2195            {
2196                found_hangs |= dcu_chain_state;
2197                *dcu_chain = i + 6;
2198            }
2199        }
2200    }
2201
2202    if (hangs & dcu_complete_state) {
2203        if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2204            found_hangs |= dcu_complete_state;
2205        }
2206    }
2207
2208    return found_hangs;
2209
2210} /* end - ar9300_compare_dbg_hang */
2211
2212#define NUM_STATUS_READS 50
2213HAL_BOOL
2214ar9300_detect_mac_hang(struct ath_hal *ah)
2215{
2216    struct ath_hal_9300 *ahp = AH9300(ah);
2217    mac_dbg_regs_t mac_dbg;
2218    hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2219    hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2220    int i = 0;
2221    u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2222
2223    if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2224        return AH_FALSE;
2225    }
2226
2227    OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2228
2229    mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2230    mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2231    mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2232
2233    HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2234            mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2235            mac_dbg.dma_dbg_6);
2236
2237    if (hang_sig1 !=
2238            ar9300_compare_dbg_hang(ah, mac_dbg,
2239                 hang_sig1_val, hang_sig1, &dcu_chain))
2240    {
2241        HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2242        return AH_FALSE;
2243    }
2244
2245    shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2246    shift_val *= 5;
2247
2248    for (i = 1; i <= NUM_STATUS_READS; i++) {
2249        if (dcu_chain < 6) {
2250            mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2251            current_dcu_chain_state =
2252                     ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2253        } else {
2254            mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2255            current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2256        }
2257        mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2258
2259        if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2260            || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2261            return AH_FALSE;
2262        }
2263    }
2264    HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2265             ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2266    ahp->ah_hang[MAC_HANG_SIG1]++;
2267    return AH_TRUE;
2268
2269} /* end - ar9300_detect_mac_hang */
2270
2271/* Determine if the baseband is hung by reading the Observation Bus Register */
2272HAL_BOOL
2273ar9300_detect_bb_hang(struct ath_hal *ah)
2274{
2275#define N(a) (sizeof(a) / sizeof(a[0]))
2276    struct ath_hal_9300 *ahp = AH9300(ah);
2277    u_int32_t hang_sig = 0;
2278    int i = 0;
2279    /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2280     *
2281     * 4 known BB hang signatures -
2282     * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2283     * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2284     * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2285     * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2286     *     Rx State (bits 20-24) is 0x7.
2287     */
2288    hal_hw_hang_check_t hang_list [] =
2289    {
2290     /* Offset        Reg Value   Reg Mask    Hang Offset */
2291       {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2292       {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2293       {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2294       {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2295    };
2296
2297    if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2298                               HAL_DFS_BB_HANG_WAR |
2299                               HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2300        return AH_FALSE;
2301    }
2302
2303    hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2304    for (i = 1; i <= NUM_STATUS_READS; i++) {
2305        if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2306            return AH_FALSE;
2307        }
2308    }
2309
2310    for (i = 0; i < N(hang_list); i++) {
2311        if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2312            ahp->ah_hang[hang_list[i].hang_offset]++;
2313            HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2314                     "sig3count=%d sig4count=%d\n", __func__,
2315                     ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2316                     ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2317            return AH_TRUE;
2318        }
2319    }
2320
2321    HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2322                              "<0x806c>=0x%x\n", __func__, hang_sig);
2323
2324    return AH_FALSE;
2325
2326#undef N
2327} /* end - ar9300_detect_bb_hang () */
2328
2329#undef NUM_STATUS_READS
2330
2331HAL_STATUS
2332ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2333{
2334    struct ath_hal_9300     *ahp = AH9300(ah);
2335    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2336    HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2337    const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2338    u_int16_t               ant_config;
2339    u_int32_t               hal_num_ant_config;
2340
2341    hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2342        p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2343
2344    if (cfg < hal_num_ant_config) {
2345        if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2346            OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2347            return HAL_OK;
2348        }
2349    }
2350
2351    return HAL_EINVAL;
2352}
2353
2354/*
2355 * Functions to get/set DCS mode
2356 */
2357void
2358ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2359{
2360    AH9300(ah)->ah_dcs_enable = mode;
2361}
2362
2363u_int32_t
2364ar9300_get_dcs_mode(struct ath_hal *ah)
2365{
2366    return AH9300(ah)->ah_dcs_enable;
2367}
2368
2369#if ATH_BT_COEX
2370void
2371ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2372{
2373    struct ath_hal_9300 *ahp = AH9300(ah);
2374
2375    ahp->ah_bt_module = btinfo->bt_module;
2376    ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2377    ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2378    ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2379    ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2380    ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2381    ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2382    ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2383}
2384
2385void
2386ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2387{
2388    struct ath_hal_9300 *ahp = AH9300(ah);
2389    HAL_BOOL rx_clear_polarity;
2390
2391    /*
2392     * For Kiwi and Osprey, the polarity of rx_clear is active high.
2393     * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2394     */
2395    rx_clear_polarity = !btconf->bt_rxclear_polarity;
2396
2397    ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2398        SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2399        SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2400        SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2401        SM(btconf->bt_mode, AR_BT_MODE) |
2402        SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2403        SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2404        SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2405        SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2406
2407    ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2408
2409    if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2410        /* Enable ACK to go out even though BT has higher priority. */
2411        ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2412    }
2413}
2414
2415void
2416ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2417{
2418    struct ath_hal_9300 *ahp = AH9300(ah);
2419
2420    /* clear the old value, then set the new value */
2421    ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2422    ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2423}
2424
2425void
2426ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2427{
2428    struct ath_hal_9300 *ahp = AH9300(ah);
2429
2430    ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2431    ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2432    ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2433    ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2434
2435    switch (stomp_type) {
2436    case HAL_BT_COEX_STOMP_ALL:
2437        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2438        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2439        break;
2440    case HAL_BT_COEX_STOMP_LOW:
2441        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2442        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2443        break;
2444    case HAL_BT_COEX_STOMP_ALL_FORCE:
2445        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2446        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2447        break;
2448    case HAL_BT_COEX_STOMP_LOW_FORCE:
2449        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2450        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2451        break;
2452    case HAL_BT_COEX_STOMP_NONE:
2453    case HAL_BT_COEX_NO_STOMP:
2454        ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2455        ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2456        break;
2457    default:
2458        /* There is a force_weight from registry */
2459        ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2460        ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2461        break;
2462    }
2463}
2464
2465void
2466ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2467{
2468    struct ath_hal_9300 *ahp = AH9300(ah);
2469
2470    /* clear the old value, then set the new value */
2471    ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2472    ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2473}
2474
2475static void
2476ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2477{
2478    struct ath_hal_9300 *ahp = AH9300(ah);
2479#if ATH_ANT_DIV_COMB
2480    //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2481    const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2482#endif
2483
2484    HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: called, value=%d\n", __func__, value);
2485
2486    if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2487    {
2488        if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2489        {
2490            /* Config antenna diversity */
2491#if ATH_ANT_DIV_COMB
2492            ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2493#endif
2494        }
2495    }
2496}
2497
2498
2499void
2500ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2501    u_int32_t value)
2502{
2503    struct ath_hal_9300 *ahp = AH9300(ah);
2504    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2505
2506    switch (type) {
2507        case HAL_BT_COEX_SET_ACK_PWR:
2508            if (value) {
2509                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2510            } else {
2511                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2512            }
2513            ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2514                ahpriv->ah_extraTxPow, 0);
2515            break;
2516
2517        case HAL_BT_COEX_ANTENNA_DIVERSITY:
2518            if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
2519                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2520                if (value) {
2521                    ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2522                }
2523                else {
2524                    ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2525                }
2526                ar9300_bt_coex_antenna_diversity(ah, value);
2527            }
2528            break;
2529        case HAL_BT_COEX_LOWER_TX_PWR:
2530            if (value) {
2531                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2532            }
2533            else {
2534                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2535            }
2536            ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2537                                      ahpriv->ah_extraTxPow, 0);
2538            break;
2539#if ATH_SUPPORT_MCI
2540        case HAL_BT_COEX_MCI_MAX_TX_PWR:
2541            if ((ah->ah_config.ath_hal_mci_config &
2542                 ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2543            {
2544                if (value) {
2545                    ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2546                    ahp->ah_mci_concur_tx_en = AH_TRUE;
2547                }
2548                else {
2549                    ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2550                    ahp->ah_mci_concur_tx_en = AH_FALSE;
2551                }
2552                ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2553                                          ahpriv->ah_extraTxPow, 0);
2554            }
2555            HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2556                     ahp->ah_mci_concur_tx_en);
2557            break;
2558        case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2559            if (value) {
2560                ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2561            }
2562            else {
2563                ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2564            }
2565            break;
2566#endif
2567        default:
2568            break;
2569    }
2570}
2571
2572void
2573ar9300_bt_coex_disable(struct ath_hal *ah)
2574{
2575    struct ath_hal_9300 *ahp = AH9300(ah);
2576
2577    /* Always drive rx_clear_external output as 0 */
2578    ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2579        HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2580
2581    if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2582        OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2583        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2584    }
2585
2586    OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2587    OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2588    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2589    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2590    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2591    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2592    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2593    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2594
2595    ahp->ah_bt_coex_enabled = AH_FALSE;
2596}
2597
2598int
2599ar9300_bt_coex_enable(struct ath_hal *ah)
2600{
2601    struct ath_hal_9300 *ahp = AH9300(ah);
2602
2603    /* Program coex mode and weight registers to actually enable coex */
2604    OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2605    OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2606    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2607    OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2608    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2609    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2610    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2611    OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2612
2613    if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2614        OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2615    } else {
2616        OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2617    }
2618
2619    OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2620    if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2621        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2622    } else {
2623        OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2624    }
2625
2626    if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2627        /* For 3-wire, configure the desired GPIO port for rx_clear */
2628        ath_hal_gpioCfgOutput(ah,
2629            ahp->ah_wlan_active_gpio_select,
2630            HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2631    }
2632    else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2633        (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2634    {
2635        /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2636        ath_hal_gpioCfgOutput(ah,
2637            ahp->ah_wlan_active_gpio_select,
2638            HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2639    }
2640
2641    /*
2642     * Enable a weak pull down on BT_ACTIVE.
2643     * When BT device is disabled, BT_ACTIVE might be floating.
2644     */
2645    OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2646        (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2647        (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2648
2649    ahp->ah_bt_coex_enabled = AH_TRUE;
2650
2651    return 0;
2652}
2653
2654u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2655{
2656    return 0;
2657}
2658
2659u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2660{
2661    return bOn;
2662}
2663
2664void
2665ar9300_init_bt_coex(struct ath_hal *ah)
2666{
2667    struct ath_hal_9300 *ahp = AH9300(ah);
2668
2669    if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2670        OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2671                   (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2672                    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2673
2674        /*
2675         * Set input mux for bt_prority_async and
2676         * bt_active_async to GPIO pins
2677         */
2678        OS_REG_RMW_FIELD(ah,
2679            AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2680            AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2681            ahp->ah_bt_active_gpio_select);
2682        OS_REG_RMW_FIELD(ah,
2683            AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2684            AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2685            ahp->ah_bt_priority_gpio_select);
2686
2687        /* Configure the desired GPIO ports for input */
2688        ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2689        ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2690
2691        if (ahp->ah_bt_coex_enabled) {
2692            ar9300_bt_coex_enable(ah);
2693        } else {
2694            ar9300_bt_coex_disable(ah);
2695        }
2696    }
2697    else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2698        (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2699    {
2700        /* 2-wire */
2701        if (ahp->ah_bt_coex_enabled) {
2702            /* Connect bt_active_async to baseband */
2703            OS_REG_CLR_BIT(ah,
2704                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2705                (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2706                 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2707            OS_REG_SET_BIT(ah,
2708                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2709                AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2710
2711            /*
2712             * Set input mux for bt_prority_async and
2713             * bt_active_async to GPIO pins
2714             */
2715            OS_REG_RMW_FIELD(ah,
2716                AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2717                AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2718                ahp->ah_bt_active_gpio_select);
2719
2720            /* Configure the desired GPIO ports for input */
2721            ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2722
2723            /* Enable coexistence on initialization */
2724            ar9300_bt_coex_enable(ah);
2725        }
2726    }
2727#if ATH_SUPPORT_MCI
2728    else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2729        if (ahp->ah_bt_coex_enabled) {
2730            ar9300_mci_bt_coex_enable(ah);
2731        }
2732        else {
2733            ar9300_mci_bt_coex_disable(ah);
2734        }
2735    }
2736#endif /* ATH_SUPPORT_MCI */
2737}
2738
2739#endif /* ATH_BT_COEX */
2740
2741HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2742{
2743    u_int32_t val;
2744    int wasp_mm_rev;
2745
2746#define AR_SOC_RST_REVISION_ID      0xB8060090
2747#define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2748    wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2749            AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2750            AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2751#undef AR_SOC_RST_REVISION_ID
2752#undef REG_READ
2753
2754    /*
2755     * Azimuth (ProxySTA) Mode is only supported correctly by
2756     * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2757     *
2758     * Enable this feature for Scorpion at this time. The silicon
2759     * still needs to be validated.
2760     */
2761    if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2762        !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2763        !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2764          ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2765           (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2766            wasp_mm_rev >= 0 /* 1 */))))
2767    {
2768        HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2769                "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2770                __func__, AH_PRIVATE((ah))->ah_macVersion,
2771                AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2772        return HAL_ENOTSUPP;
2773    }
2774
2775    OS_REG_WRITE(ah,
2776        AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2777
2778    /* turn on mode bit[24] for proxy sta */
2779    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2780        OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2781
2782    val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2783    if (enable) {
2784        val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2785               AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2786               AR_AZIMUTH_BA_USES_AD1;
2787        /* turn off filter pass hold (bit 9) */
2788        val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2789    } else {
2790        val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2791                 AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2792                 AR_AZIMUTH_BA_USES_AD1);
2793    }
2794    OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2795
2796    /* enable promiscous mode */
2797    OS_REG_WRITE(ah, AR_RX_FILTER,
2798        OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2799    /* enable promiscous in azimuth mode */
2800    OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2801    OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2802
2803    /* turn on filter pass hold (bit 9) */
2804    OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2805        OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2806
2807    return HAL_OK;
2808}
2809
2810#if 0
2811void ar9300_mat_enable(struct ath_hal *ah, int enable)
2812{
2813    /*
2814     * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2815     * mitigation and turn on key search always for better performance.
2816     */
2817    struct ath_hal_9300 *ahp = AH9300(ah);
2818    struct ath_hal_private *ap = AH_PRIVATE(ah);
2819
2820    ahp->ah_intr_mitigation_rx = !enable;
2821    if (ahp->ah_intr_mitigation_rx) {
2822        /*
2823         * Enable Interrupt Mitigation for Rx.
2824         * If no build-specific limits for the rx interrupt mitigation
2825         * timer have been specified, use conservative defaults.
2826         */
2827        #ifndef AH_RIMT_VAL_LAST
2828            #define AH_RIMT_LAST_MICROSEC 500
2829        #endif
2830        #ifndef AH_RIMT_VAL_FIRST
2831            #define AH_RIMT_FIRST_MICROSEC 2000
2832        #endif
2833        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2834        OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2835    } else {
2836        OS_REG_WRITE(ah, AR_RIMT, 0);
2837    }
2838
2839    ahp->ah_enable_keysearch_always = !!enable;
2840    ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2841}
2842#endif
2843
2844void ar9300_enable_tpc(struct ath_hal *ah)
2845{
2846    u_int32_t val = 0;
2847
2848    ah->ah_config.ath_hal_desc_tpc = 1;
2849
2850    /* Enable TPC */
2851    OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2852
2853    /*
2854     * Disable per chain power reduction since we are already
2855     * accounting for this in our calculations
2856     */
2857    val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2858    if (AR_SREV_WASP(ah)) {
2859        OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2860                         val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2861    } else {
2862        OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2863                         val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2864    }
2865}
2866
2867
2868/*
2869 * ar9300_force_tsf_sync
2870 * This function forces the TSF sync to the given bssid, this is implemented
2871 * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2872 * mode of operation, where we sync the TSF to RootAP TSF values
2873 */
2874void
2875ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2876    u_int16_t assoc_id)
2877{
2878    ar9300_set_operating_mode(ah, HAL_M_STA);
2879    ar9300_write_associd(ah, bssid, assoc_id);
2880}
2881
2882void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2883{
2884    struct ath_hal_9300 *ahp = AH9300(ah);
2885    u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2886    u_int32_t           temp_powertx_rate9_reg_val;
2887    int8_t              olpc_power_offset = 0;
2888    int8_t              tmp_olpc_val = 0;
2889    HAL_RSSI_TX_POWER   old_greentx_status;
2890    u_int8_t            target_power_val_t[ar9300_rate_size];
2891    int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2892
2893    if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2894        !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2895        return;
2896    }
2897
2898    old_greentx_status = AH9300(ah)->green_tx_status;
2899    if (ahp->ah_hw_green_tx_enable) {
2900        tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2901        tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2902    } else {
2903        tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2904        tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2905    }
2906
2907    if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2908        && (rssi > tmp_rss1_thr1))
2909    {
2910        if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2911            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2912        }
2913    } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2914        && (rssi > tmp_rss1_thr2))
2915    {
2916        if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2917            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2918        }
2919    } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2920        if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2921            AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2922        }
2923    }
2924
2925    /* If status is not change, don't do anything */
2926    if (old_greentx_status == AH9300(ah)->green_tx_status) {
2927        return;
2928    }
2929
2930    /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2931    if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2932        && AR_SREV_POSEIDON(ah))
2933    {
2934        if (ahp->ah_hw_green_tx_enable) {
2935            switch (AH9300(ah)->green_tx_status) {
2936            case HAL_RSSI_TX_POWER_SHORT:
2937                /* 1. TxPower Config */
2938                OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2939                    sizeof(target_power_val_t));
2940                /* 1.1 Store OLPC Delta Calibration Offset*/
2941                olpc_power_offset = 0;
2942                /* 2. Store OB/DB */
2943                /* 3. Store TPC settting */
2944                temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2945                                    SM(14, AR_TPC_CTS) |
2946                                    SM(14, AR_TPC_CHIRP) |
2947                                    SM(14, AR_TPC_RPT));
2948                /* 4. Store BB_powertx_rate9 value */
2949                temp_powertx_rate9_reg_val =
2950                    AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2951                break;
2952            case HAL_RSSI_TX_POWER_MIDDLE:
2953                /* 1. TxPower Config */
2954                OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2955                    sizeof(target_power_val_t));
2956                /* 1.1 Store OLPC Delta Calibration Offset*/
2957                olpc_power_offset = 0;
2958                /* 2. Store OB/DB */
2959                /* 3. Store TPC settting */
2960                temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2961                                    SM(18, AR_TPC_CTS) |
2962                                    SM(18, AR_TPC_CHIRP) |
2963                                    SM(18, AR_TPC_RPT));
2964                /* 4. Store BB_powertx_rate9 value */
2965                temp_powertx_rate9_reg_val =
2966                    AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2967                break;
2968            case HAL_RSSI_TX_POWER_LONG:
2969            default:
2970                /* 1. TxPower Config */
2971                OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
2972                    sizeof(target_power_val_t));
2973                /* 1.1 Store OLPC Delta Calibration Offset*/
2974                olpc_power_offset = 0;
2975                /* 2. Store OB/DB1/DB2 */
2976                /* 3. Store TPC settting */
2977                temp_tcp_reg_val =
2978                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
2979                /* 4. Store BB_powertx_rate9 value */
2980                temp_powertx_rate9_reg_val =
2981                  AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
2982                break;
2983            }
2984        } else {
2985            switch (AH9300(ah)->green_tx_status) {
2986            case HAL_RSSI_TX_POWER_SHORT:
2987                /* 1. TxPower Config */
2988                OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
2989                    sizeof(target_power_val_t));
2990                /* 1.1 Store OLPC Delta Calibration Offset*/
2991                olpc_power_offset =
2992                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
2993                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
2994                /* 2. Store OB/DB */
2995                temp_obdb_reg_val =
2996                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
2997                temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
2998                                       AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
2999                                       AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3000                                       AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3001                temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3002                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3003                    AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3004                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3005                    AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3006                SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3007                    AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3008                /* 3. Store TPC settting */
3009                temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
3010                                    SM(6, AR_TPC_CTS) |
3011                                    SM(6, AR_TPC_CHIRP) |
3012                                    SM(6, AR_TPC_RPT));
3013                /* 4. Store BB_powertx_rate9 value */
3014                temp_powertx_rate9_reg_val =
3015                    WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
3016                break;
3017            case HAL_RSSI_TX_POWER_MIDDLE:
3018                /* 1. TxPower Config */
3019                OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
3020                    sizeof(target_power_val_t));
3021                /* 1.1 Store OLPC Delta Calibration Offset*/
3022                olpc_power_offset =
3023                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
3024                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3025                /* 2. Store OB/DB */
3026                temp_obdb_reg_val =
3027                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3028                temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3029                                       AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3030                                       AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3031                                       AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3032                temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3033                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3034                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3035                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3036                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3037                    SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3038                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3039                /* 3. Store TPC settting */
3040                temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
3041                                    SM(14, AR_TPC_CTS) |
3042                                    SM(14, AR_TPC_CHIRP) |
3043                                    SM(14, AR_TPC_RPT));
3044                /* 4. Store BB_powertx_rate9 value */
3045                temp_powertx_rate9_reg_val =
3046                    WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
3047                break;
3048            case HAL_RSSI_TX_POWER_LONG:
3049            default:
3050                /* 1. TxPower Config */
3051                OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3052                    sizeof(target_power_val_t));
3053                /* 1.1 Store OLPC Delta Calibration Offset*/
3054                olpc_power_offset =
3055                    wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
3056                    wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3057                /* 2. Store OB/DB1/DB2 */
3058                temp_obdb_reg_val =
3059                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3060                /* 3. Store TPC settting */
3061                temp_tcp_reg_val =
3062                    AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3063                /* 4. Store BB_powertx_rate9 value */
3064                temp_powertx_rate9_reg_val =
3065                  AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3066                break;
3067            }
3068        }
3069        /* 1.1 Do OLPC Delta Calibration Offset */
3070        tmp_olpc_val =
3071            (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3072        tmp_olpc_val += olpc_power_offset;
3073        OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3074            (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3075            AR_PHY_TPC_OLPC_GAIN_DELTA);
3076
3077        /* 1.2 TxPower Config */
3078        ar9300_transmit_power_reg_write(ah, target_power_val_t);
3079        /* 2. Config OB/DB */
3080        if (!ahp->ah_hw_green_tx_enable) {
3081            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3082        }
3083        /* 3. config TPC settting */
3084        OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3085        /* 4. config BB_powertx_rate9 value */
3086        OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3087    }
3088}
3089
3090#if 0
3091void
3092ar9300_get_vow_stats(
3093    struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3094{
3095    if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3096        p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3097    }
3098    if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3099        p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3100    }
3101    if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3102        p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3103    }
3104    if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3105        p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
3106    }
3107    if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3108        p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
3109    }
3110}
3111#endif
3112
3113/*
3114 * ar9300_is_skip_paprd_by_greentx
3115 *
3116 * This function check if we need to skip PAPRD tuning
3117 * when GreenTx in specific state.
3118 */
3119HAL_BOOL
3120ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3121{
3122    if (AR_SREV_POSEIDON(ah) &&
3123        ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3124        ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3125         (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3126    {
3127        return AH_TRUE;
3128    }
3129    return AH_FALSE;
3130}
3131
3132void
3133ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3134{
3135    unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3136    unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3137    unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3138    unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3139    unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3140    struct ath_hal_9300 *ahp = AH9300(ah);
3141
3142    if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3143        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3144                             AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3145        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3146                             AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3147        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3148                             AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3149        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3150                             AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3151        OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3152                             AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3153    }
3154}
3155
3156void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3157{
3158    struct ath_hal_9300 *ahp = AH9300(ah);
3159
3160    if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3161        if ((value == 0) || (value == 1)) {
3162            OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3163                             AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3164        }
3165    }
3166}
3167
3168void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3169{
3170    OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3171}
3172
3173int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3174{
3175    int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3176
3177    /* RSSI format is 8.4.  Ignore lowest four bits */
3178    val = val >> 4;
3179    return val;
3180}
3181
3182void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3183                                        u_int32_t rssi_threshold)
3184{
3185    struct ath_hal_9300 *ahp = AH9300(ah);
3186
3187    OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3188
3189    /* save value for restoring after chip reset */
3190    ahp->ah_beacon_rssi_threshold = rssi_threshold;
3191}
3192
3193void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3194{
3195    OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3196}
3197
3198void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3199{
3200    if (on) {
3201        OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3202                       AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3203    }
3204    else {
3205        OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3206                       AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3207    }
3208}
3209/*
3210 * Gets the contents of the specified key cache entry.
3211 */
3212HAL_BOOL
3213ar9300_print_keycache(struct ath_hal *ah)
3214{
3215
3216    const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3217    u_int32_t key0, key1, key2, key3, key4;
3218    u_int32_t mac_hi, mac_lo;
3219    u_int16_t entry = 0;
3220    u_int32_t valid = 0;
3221    u_int32_t key_type;
3222
3223    ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3224
3225    for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3226        key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3227        key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3228        key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3229        key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3230        key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3231
3232        key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3233
3234        mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3235        mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3236
3237        if (mac_hi & AR_KEYTABLE_VALID) {
3238            valid = 1;
3239        } else {
3240            valid = 0;
3241        }
3242
3243        if ((mac_hi != 0) && (mac_lo != 0)) {
3244            mac_hi &= ~0x8000;
3245            mac_hi <<= 1;
3246            mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3247            mac_lo <<= 1;
3248        }
3249
3250        ath_hal_printf(ah,
3251            "%03d    "
3252            "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3253            "   %02d     %02d    "
3254            "%02x:%02x:%02x:%02x:%02x:%02x \n",
3255            entry,
3256            (key0 << 24) >> 24, (key0 << 16) >> 24,
3257            (key0 << 8) >> 24, key0 >> 24,
3258            (key1 << 24) >> 24, (key1 << 16) >> 24,
3259            //(key1 << 8) >> 24, key1 >> 24,
3260            (key2 << 24) >> 24, (key2 << 16) >> 24,
3261            (key2 << 8) >> 24, key2 >> 24,
3262            (key3 << 24) >> 24, (key3 << 16) >> 24,
3263            //(key3 << 8) >> 24, key3 >> 24,
3264            (key4 << 24) >> 24, (key4 << 16) >> 24,
3265            (key4 << 8) >> 24, key4 >> 24,
3266            valid, key_type,
3267            (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3268            (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3269    }
3270
3271    return AH_TRUE;
3272}
3273
3274/* enable/disable smart antenna mode */
3275HAL_BOOL
3276ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3277{
3278    struct ath_hal_9300 *ahp = AH9300(ah);
3279
3280    if (enable) {
3281        OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3282    } else {
3283        OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3284    }
3285
3286    /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3287     * and swcom2 with 0
3288     * FIXME Ideally these registers need to be made read from caldata.
3289     * Until the calibration team gets them, keep them along with board
3290     * configuration.
3291     */
3292    if (enable && AR_SREV_SCORPION(ah) &&
3293           (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3294
3295       OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3296       OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3297    }
3298
3299    ahp->ah_smartantenna_enable = enable;
3300    return 1;
3301}
3302
3303#ifdef ATH_TX99_DIAG
3304#ifndef ATH_SUPPORT_HTC
3305void
3306ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3307    u_int32_t txpower)
3308{
3309#define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3310    static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3311    int32_t i;
3312
3313    /* The max power is limited to 63 */
3314    if (txpower <= AR9300_MAX_RATE_POWER) {
3315        for (i = 0; i < ar9300_rate_size; i++) {
3316            p_pwr_array[i] = txpower;
3317        }
3318    } else {
3319        for (i = 0; i < ar9300_rate_size; i++) {
3320            p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3321        }
3322    }
3323
3324    OS_REG_WRITE(ah, 0xa458, 0);
3325
3326    /* Write the OFDM power per rate set */
3327    /* 6 (LSB), 9, 12, 18 (MSB) */
3328    OS_REG_WRITE(ah, 0xa3c0,
3329        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3330          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3331          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3332          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3333    );
3334    /* 24 (LSB), 36, 48, 54 (MSB) */
3335    OS_REG_WRITE(ah, 0xa3c4,
3336        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3337          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3338          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3339          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3340    );
3341
3342    /* Write the CCK power per rate set */
3343    /* 1L (LSB), reserved, 2L, 2S (MSB) */
3344    OS_REG_WRITE(ah, 0xa3c8,
3345        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3346          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3347          /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3348          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3349    );
3350    /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3351    OS_REG_WRITE(ah, 0xa3cc,
3352        PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3353          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3354          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3355          | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3356    );
3357
3358    /* Write the HT20 power per rate set */
3359    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3360    OS_REG_WRITE(ah, 0xa3d0,
3361        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3362          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3363          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3364          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3365    );
3366
3367    /* 6 (LSB), 7, 12, 13 (MSB) */
3368    OS_REG_WRITE(ah, 0xa3d4,
3369        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3370          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3371          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3372          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3373    );
3374
3375    /* 14 (LSB), 15, 20, 21 */
3376    OS_REG_WRITE(ah, 0xa3e4,
3377        PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3378          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3379          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3380          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3381    );
3382
3383    /* Mixed HT20 and HT40 rates */
3384    /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3385    OS_REG_WRITE(ah, 0xa3e8,
3386        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3387          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3388          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3389          | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3390    );
3391
3392    /* Write the HT40 power per rate set */
3393    /* correct PAR difference between HT40 and HT20/LEGACY */
3394    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3395    OS_REG_WRITE(ah, 0xa3d8,
3396        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3397          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3398          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3399          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3400    );
3401
3402    /* 6 (LSB), 7, 12, 13 (MSB) */
3403    OS_REG_WRITE(ah, 0xa3dc,
3404        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3405          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3406          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3407          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3408    );
3409
3410    /* 14 (LSB), 15, 20, 21 */
3411    OS_REG_WRITE(ah, 0xa3ec,
3412        PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3413          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3414          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3415          | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3416    );
3417#undef PWR_MAS
3418}
3419
3420void
3421ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3422{
3423    if (tx_chainmask == 0x5) {
3424        OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3425            OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3426    }
3427    OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3428    OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3429
3430    OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3431    if (tx_chainmask == 0x5) {
3432        OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3433            OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3434    }
3435}
3436
3437void
3438ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3439    int chtype)
3440{
3441    OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3442    OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3443    OS_REG_WRITE(ah, 0xa350,
3444        (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3445
3446    /* 11G mode */
3447    if (!chtype) {
3448        OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3449            OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3450        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3451            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3452                OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3453            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3454                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3455                        | (0x1 << 26)  | (0x7 << 24))
3456                        & ~(0x1 << 22));
3457        } else {
3458            OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3459                OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3460            OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3461                (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3462                        | (0x1 << 26)  | (0x7 << 24))
3463                        & ~(0x1 << 22));
3464        }
3465
3466        /* chain zero */
3467        if ((tx_chain_mask & 0x01) == 0x01) {
3468            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3469                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3470                      | (0x1 << 31) | (0x5 << 15)
3471                      | (0x3 << 9)) & ~(0x1 << 27)
3472                      & ~(0x1 << 12));
3473            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3474                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3475                      | (0x1 << 12) | (0x1 << 10)
3476                      | (0x1 << 9)  | (0x1 << 8)
3477                      | (0x1 << 7)) & ~(0x1 << 11));
3478            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3479                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3480                      | (0x1 << 29) | (0x1 << 25)
3481                      | (0x1 << 23) | (0x1 << 19)
3482                      | (0x1 << 10) | (0x1 << 9)
3483                      | (0x1 << 8)  | (0x1 << 3))
3484                      & ~(0x1 << 28)& ~(0x1 << 24)
3485                      & ~(0x1 << 22)& ~(0x1 << 7));
3486            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3487                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3488                      | (0x1 << 23))& ~(0x1 << 21));
3489            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3490                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3491                      | (0x1 << 12) | (0x1 << 10)
3492                      | (0x1 << 9)  | (0x1 << 8)
3493                      | (0x1 << 6)  | (0x1 << 5)
3494                      | (0x1 << 4)  | (0x1 << 3)
3495                      | (0x1 << 2));
3496            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3497                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3498        }
3499        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3500            /* chain one */
3501            if ((tx_chain_mask & 0x02) == 0x02 ) {
3502                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3503                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3504                          | (0x1 << 31) | (0x5 << 15)
3505                          | (0x3 << 9)) & ~(0x1 << 27)
3506                          & ~(0x1 << 12));
3507                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3508                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3509                          | (0x1 << 12) | (0x1 << 10)
3510                          | (0x1 << 9)  | (0x1 << 8)
3511                          | (0x1 << 7)) & ~(0x1 << 11));
3512                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3513                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3514                          | (0x1 << 29) | (0x1 << 25)
3515                          | (0x1 << 23) | (0x1 << 19)
3516                          | (0x1 << 10) | (0x1 << 9)
3517                          | (0x1 << 8)  | (0x1 << 3))
3518                          & ~(0x1 << 28)& ~(0x1 << 24)
3519                          & ~(0x1 << 22)& ~(0x1 << 7));
3520                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3521                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3522                          | (0x1 << 23))& ~(0x1 << 21));
3523                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3524                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3525                          | (0x1 << 12) | (0x1 << 10)
3526                          | (0x1 << 9)  | (0x1 << 8)
3527                          | (0x1 << 6)  | (0x1 << 5)
3528                          | (0x1 << 4)  | (0x1 << 3)
3529                          | (0x1 << 2));
3530                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3531                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3532            }
3533        }
3534        if (AR_SREV_OSPREY(ah)) {
3535            /* chain two */
3536            if ((tx_chain_mask & 0x04) == 0x04 ) {
3537                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3538                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3539                          | (0x1 << 31) | (0x5 << 15)
3540                          | (0x3 << 9)) & ~(0x1 << 27)
3541                          & ~(0x1 << 12));
3542                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3543                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3544                          | (0x1 << 12) | (0x1 << 10)
3545                          | (0x1 << 9)  | (0x1 << 8)
3546                          | (0x1 << 7)) & ~(0x1 << 11));
3547                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3548                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3549                          | (0x1 << 29) | (0x1 << 25)
3550                          | (0x1 << 23) | (0x1 << 19)
3551                          | (0x1 << 10) | (0x1 << 9)
3552                          | (0x1 << 8)  | (0x1 << 3))
3553                          & ~(0x1 << 28)& ~(0x1 << 24)
3554                          & ~(0x1 << 22)& ~(0x1 << 7));
3555                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3556                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3557                          | (0x1 << 23))& ~(0x1 << 21));
3558                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3559                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3560                          | (0x1 << 12) | (0x1 << 10)
3561                          | (0x1 << 9)  | (0x1 << 8)
3562                          | (0x1 << 6)  | (0x1 << 5)
3563                          | (0x1 << 4)  | (0x1 << 3)
3564                          | (0x1 << 2));
3565                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3566                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3567            }
3568        }
3569
3570        OS_REG_WRITE(ah, 0xa28c, 0x11111);
3571        OS_REG_WRITE(ah, 0xa288, 0x111);
3572    } else {
3573        /* chain zero */
3574        if ((tx_chain_mask & 0x01) == 0x01) {
3575            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3576                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3577                      | (0x1 << 31) | (0x1 << 27)
3578                      | (0x3 << 23) | (0x1 << 19)
3579                      | (0x1 << 15) | (0x3 << 9))
3580                      & ~(0x1 << 12));
3581            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3582                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3583                      | (0x1 << 12) | (0x1 << 10)
3584                      | (0x1 << 9)  | (0x1 << 8)
3585                      | (0x1 << 7)  | (0x1 << 3)
3586                      | (0x1 << 2)  | (0x1 << 1))
3587                      & ~(0x1 << 11)& ~(0x1 << 0));
3588            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3589                (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3590                      | (0x1 << 29) | (0x1 << 25)
3591                      | (0x1 << 23) | (0x1 << 19)
3592                      | (0x1 << 10) | (0x1 << 9)
3593                      | (0x1 << 8)  | (0x1 << 3))
3594                      & ~(0x1 << 28)& ~(0x1 << 24)
3595                      & ~(0x1 << 22)& ~(0x1 << 7));
3596            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3597                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3598                      | (0x1 << 23))& ~(0x1 << 21));
3599            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3600                OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3601                      | (0x3 << 3)  | (0x3 << 0));
3602            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3603                (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3604                      | (0x3 << 29) | (0x3 << 26)
3605                      | (0x2 << 23) | (0x2 << 20)
3606                      | (0x2 << 17))& ~(0x1 << 14));
3607            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3608                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3609                      | (0x1 << 12) | (0x1 << 10)
3610                      | (0x1 << 9)  | (0x1 << 8)
3611                      | (0x1 << 6)  | (0x1 << 5)
3612                      | (0x1 << 4)  | (0x1 << 3)
3613                      | (0x1 << 2));
3614            OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3615                OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3616            if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3617                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3618                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3619                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3620                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3621                          | (0x1 << 26) | (0x7 << 24)
3622                          | (0x3 << 22));
3623            } else {
3624                OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3625                    OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3626                OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3627                    OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3628                          | (0x1 << 26) | (0x7 << 24)
3629                          | (0x3 << 22));
3630            }
3631
3632            if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3633                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3634                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3635                          | (0x1 << 3)  | (0x1 << 2)
3636                          | (0x1 << 1)) & ~(0x1 << 0));
3637                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3638                    OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3639                          | (0x1 << 19) | (0x1 << 3));
3640                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3641                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3642            }
3643            if (AR_SREV_OSPREY(ah)) {
3644                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3645                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3646                          | (0x1 << 3)  | (0x1 << 2)
3647                          | (0x1 << 1)) & ~(0x1 << 0));
3648                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3649                    OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3650                          | (0x1 << 19) | (0x1 << 3));
3651                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3652                    OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3653            }
3654        }
3655        if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3656            /* chain one */
3657            if ((tx_chain_mask & 0x02) == 0x02 ) {
3658                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3659                    (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3660                          | (0x1 << 3)  | (0x1 << 2)
3661                          | (0x1 << 1)) & ~(0x1 << 0));
3662                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3663                    OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3664                          | (0x1 << 19) | (0x1 << 3));
3665                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3666                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3667                if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3668                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3669                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3670                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3671                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3672                              | (0x1 << 26) | (0x7 << 24)
3673                              | (0x3 << 22));
3674                } else {
3675                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3676                        OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3677                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3678                        OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3679                              | (0x1 << 26) | (0x7 << 24)
3680                              | (0x3 << 22));
3681                }
3682
3683                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3684                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3685                          | (0x1 << 31) | (0x1 << 27)
3686                          | (0x3 << 23) | (0x1 << 19)
3687                          | (0x1 << 15) | (0x3 << 9))
3688                          & ~(0x1 << 12));
3689                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3690                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3691                          | (0x1 << 12) | (0x1 << 10)
3692                          | (0x1 << 9)  | (0x1 << 8)
3693                          | (0x1 << 7)  | (0x1 << 3)
3694                          | (0x1 << 2)  | (0x1 << 1))
3695                          & ~(0x1 << 11)& ~(0x1 << 0));
3696                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3697                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3698                          | (0x1 << 29) | (0x1 << 25)
3699                          | (0x1 << 23) | (0x1 << 19)
3700                          | (0x1 << 10) | (0x1 << 9)
3701                          | (0x1 << 8)  | (0x1 << 3))
3702                          & ~(0x1 << 28)& ~(0x1 << 24)
3703                          & ~(0x1 << 22)& ~(0x1 << 7));
3704                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3705                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3706                          | (0x1 << 23))& ~(0x1 << 21));
3707                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3708                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3709                          | (0x3 << 3)  | (0x3 << 0));
3710                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3711                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3712                          | (0x3 << 29) | (0x3 << 26)
3713                          | (0x2 << 23) | (0x2 << 20)
3714                          | (0x2 << 17))& ~(0x1 << 14));
3715                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3716                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3717                          | (0x1 << 12) | (0x1 << 10)
3718                          | (0x1 << 9)  | (0x1 << 8)
3719                          | (0x1 << 6)  | (0x1 << 5)
3720                          | (0x1 << 4)  | (0x1 << 3)
3721                          | (0x1 << 2));
3722                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3723                    OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3724
3725                if (AR_SREV_OSPREY(ah)) {
3726                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3727                        (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3728                              | (0x1 << 3)  | (0x1 << 2)
3729                              | (0x1 << 1)) & ~(0x1 << 0));
3730                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3731                        OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3732                              | (0x1 << 19) | (0x1 << 3));
3733                    OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3734                        OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3735                }
3736            }
3737        }
3738        if (AR_SREV_OSPREY(ah)) {
3739            /* chain two */
3740            if ((tx_chain_mask & 0x04) == 0x04 ) {
3741                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3742                    (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3743                          | (0x1 << 3)  | (0x1 << 2)
3744                          | (0x1 << 1)) & ~(0x1 << 0));
3745                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3746                    OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3747                          | (0x1 << 19) | (0x1 << 3));
3748                OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3749                    OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3750                if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3751                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3752                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3753                    OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3754                        OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3755                              | (0x1 << 26) | (0x7 << 24)
3756                              | (0x3 << 22));
3757                } else {
3758                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3759                        OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3760                    OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3761                        OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3762                              | (0x1 << 26) | (0x7 << 24)
3763                              | (0x3 << 22));
3764                }
3765
3766                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3767                    (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3768                          | (0x1 << 3)  | (0x1 << 2)
3769                          | (0x1 << 1)) & ~(0x1 << 0));
3770                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3771                    OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3772                          | (0x1 << 19) | (0x1 << 3));
3773                OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3774                    OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3775
3776                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3777                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3778                          | (0x1 << 31) | (0x1 << 27)
3779                          | (0x3 << 23) | (0x1 << 19)
3780                          | (0x1 << 15) | (0x3 << 9))
3781                          & ~(0x1 << 12));
3782                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3783                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3784                          | (0x1 << 12) | (0x1 << 10)
3785                          | (0x1 << 9)  | (0x1 << 8)
3786                          | (0x1 << 7)  | (0x1 << 3)
3787                          | (0x1 << 2)  | (0x1 << 1))
3788                          & ~(0x1 << 11)& ~(0x1 << 0));
3789                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3790                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3791                          | (0x1 << 29) | (0x1 << 25)
3792                          | (0x1 << 23) | (0x1 << 19)
3793                          | (0x1 << 10) | (0x1 << 9)
3794                          | (0x1 << 8)  | (0x1 << 3))
3795                          & ~(0x1 << 28)& ~(0x1 << 24)
3796                          & ~(0x1 << 22)& ~(0x1 << 7));
3797                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3798                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3799                          | (0x1 << 23))& ~(0x1 << 21));
3800                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3801                    OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3802                          | (0x3 << 3)  | (0x3 << 0));
3803                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3804                    (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3805                          | (0x3 << 29) | (0x3 << 26)
3806                          | (0x2 << 23) | (0x2 << 20)
3807                          | (0x2 << 17))& ~(0x1 << 14));
3808                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3809                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3810                          | (0x1 << 12) | (0x1 << 10)
3811                          | (0x1 << 9)  | (0x1 << 8)
3812                          | (0x1 << 6)  | (0x1 << 5)
3813                          | (0x1 << 4)  | (0x1 << 3)
3814                          | (0x1 << 2));
3815                OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3816                    OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3817            }
3818        }
3819
3820        OS_REG_WRITE(ah, 0xa28c, 0x22222);
3821        OS_REG_WRITE(ah, 0xa288, 0x222);
3822    }
3823}
3824
3825void
3826ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3827{
3828    u_int32_t val;
3829    u_int32_t qnum = (u_int32_t)data;
3830
3831    /* Disable AGC to A2 */
3832    OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3833    OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3834
3835    OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3836    /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3837    OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3838    OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3839    OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3840    /* 200 ok for HT20, 400 ok for HT40 */
3841    OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3842    OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3843
3844    /* set QCU modes to early termination */
3845    val = OS_REG_READ(ah, AR_QMISC(qnum));
3846    OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3847}
3848
3849void
3850ar9300_tx99_stop(struct ath_hal *ah)
3851{
3852    /* this should follow the setting of start */
3853    OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3854    OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3855}
3856#endif /* ATH_TX99_DIAG */
3857#endif /* ATH_SUPPORT_HTC */
3858
3859HAL_BOOL
3860ar9300Get3StreamSignature(struct ath_hal *ah)
3861{
3862    return AH_FALSE;
3863}
3864
3865HAL_BOOL
3866ar9300ForceVCS(struct ath_hal *ah)
3867{
3868   return AH_FALSE;
3869}
3870
3871HAL_BOOL
3872ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3873{
3874   return AH_FALSE;
3875}
3876
3877static u_int32_t
3878ar9300_read_loc_timer(struct ath_hal *ah)
3879{
3880
3881    return OS_REG_READ(ah, AR_LOC_TIMER_REG);
3882}
3883
3884HAL_BOOL
3885ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3886{
3887    struct ath_hal_9300 *ahp = AH9300(ah);
3888    ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3889    u_int8_t *ctl_index;
3890    u_int32_t offset = 0;
3891
3892    if (!ctl_array)
3893        return AH_FALSE;
3894
3895    /* copy 2G ctl freqbin and power data */
3896    ctl_index = p_eep_data->ctl_index_2g;
3897    OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3898                OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G +     /* ctl_freqbin_2G */
3899                OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));  /* ctl_power_data_2g */
3900    offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3901            ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3902
3903
3904    /* copy 2G ctl freqbin and power data */
3905    ctl_index = p_eep_data->ctl_index_5g;
3906    OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3907                OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G +     /* ctl_freqbin_5G */
3908                OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G));  /* ctl_power_data_5g */
3909
3910    return AH_FALSE;
3911}
3912
3913void
3914ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3915{
3916    struct ath_hal_9300 *ahp = AH9300(ah);
3917
3918    /* optional txchainmask should be subset of primary txchainmask */
3919    if ((mask & ahp->ah_tx_chainmask) != mask) {
3920        ahp->ah_tx_chainmaskopt = 0;
3921        ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3922        return;
3923    }
3924
3925    ahp->ah_tx_chainmaskopt = mask;
3926}
3927