1/*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
5 * Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
6 * Copyright (c) 1997, 1998, 1999
7 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 *    must display the following acknowledgement:
19 *	This product includes software developed by Bill Paul.
20 * 4. Neither the name of the author nor the names of any co-contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
27 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL AUTHORS OR
28 * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
30 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
31 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
33 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
35 * OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD$");
40
41/*
42 * SiS 190/191 PCI Ethernet NIC driver.
43 *
44 * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
45 * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
46 * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
47 * <kmliu@sis.com>.  Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
48 * review and very useful comments.
49 *
50 * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
51 * Linux and Solaris drivers.
52 */
53
54#include <sys/param.h>
55#include <sys/systm.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kernel.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/mbuf.h>
62#include <sys/module.h>
63#include <sys/mutex.h>
64#include <sys/rman.h>
65#include <sys/socket.h>
66#include <sys/sockio.h>
67
68#include <net/bpf.h>
69#include <net/if.h>
70#include <net/if_var.h>
71#include <net/if_arp.h>
72#include <net/ethernet.h>
73#include <net/if_dl.h>
74#include <net/if_media.h>
75#include <net/if_types.h>
76#include <net/if_vlan_var.h>
77
78#include <netinet/in.h>
79#include <netinet/in_systm.h>
80#include <netinet/ip.h>
81#include <netinet/tcp.h>
82
83#include <machine/bus.h>
84#include <machine/in_cksum.h>
85
86#include <dev/mii/mii.h>
87#include <dev/mii/miivar.h>
88
89#include <dev/pci/pcireg.h>
90#include <dev/pci/pcivar.h>
91
92#include <dev/sge/if_sgereg.h>
93
94#if defined(__HAIKU__)
95#include "../../glue.h"
96#endif
97
98MODULE_DEPEND(sge, pci, 1, 1, 1);
99MODULE_DEPEND(sge, ether, 1, 1, 1);
100MODULE_DEPEND(sge, miibus, 1, 1, 1);
101
102/* "device miibus0" required.  See GENERIC if you get errors here. */
103#include "miibus_if.h"
104
105/*
106 * Various supported device vendors/types and their names.
107 */
108static struct sge_type sge_devs[] = {
109	{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
110	{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
111	{ 0, 0, NULL }
112};
113
114static int	sge_probe(device_t);
115static int	sge_attach(device_t);
116static int	sge_detach(device_t);
117static int	sge_shutdown(device_t);
118static int	sge_suspend(device_t);
119static int	sge_resume(device_t);
120
121static int	sge_miibus_readreg(device_t, int, int);
122static int	sge_miibus_writereg(device_t, int, int, int);
123static void	sge_miibus_statchg(device_t);
124
125static int	sge_newbuf(struct sge_softc *, int);
126static int	sge_encap(struct sge_softc *, struct mbuf **);
127static __inline void
128		sge_discard_rxbuf(struct sge_softc *, int);
129static void	sge_rxeof(struct sge_softc *);
130static void	sge_txeof(struct sge_softc *);
131static void	sge_intr(void *);
132static void	sge_tick(void *);
133static void	sge_start(struct ifnet *);
134static void	sge_start_locked(struct ifnet *);
135static int	sge_ioctl(struct ifnet *, u_long, caddr_t);
136static void	sge_init(void *);
137static void	sge_init_locked(struct sge_softc *);
138static void	sge_stop(struct sge_softc *);
139static void	sge_watchdog(struct sge_softc *);
140static int	sge_ifmedia_upd(struct ifnet *);
141static void	sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
142
143static int	sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
144static int	sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
145static uint16_t	sge_read_eeprom(struct sge_softc *, int);
146
147static void	sge_rxfilter(struct sge_softc *);
148static void	sge_setvlan(struct sge_softc *);
149static void	sge_reset(struct sge_softc *);
150static int	sge_list_rx_init(struct sge_softc *);
151static int	sge_list_rx_free(struct sge_softc *);
152static int	sge_list_tx_init(struct sge_softc *);
153static int	sge_list_tx_free(struct sge_softc *);
154
155static int	sge_dma_alloc(struct sge_softc *);
156static void	sge_dma_free(struct sge_softc *);
157static void	sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
158
159static device_method_t sge_methods[] = {
160	/* Device interface */
161	DEVMETHOD(device_probe,		sge_probe),
162	DEVMETHOD(device_attach,	sge_attach),
163	DEVMETHOD(device_detach,	sge_detach),
164	DEVMETHOD(device_suspend,	sge_suspend),
165	DEVMETHOD(device_resume,	sge_resume),
166	DEVMETHOD(device_shutdown,	sge_shutdown),
167
168	/* MII interface */
169	DEVMETHOD(miibus_readreg,	sge_miibus_readreg),
170	DEVMETHOD(miibus_writereg,	sge_miibus_writereg),
171	DEVMETHOD(miibus_statchg,	sge_miibus_statchg),
172
173	DEVMETHOD_END
174};
175
176static driver_t sge_driver = {
177	"sge", sge_methods, sizeof(struct sge_softc)
178};
179
180static devclass_t sge_devclass;
181
182DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
183DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
184
185/* Define to show Tx/Rx error status. */
186#undef SGE_SHOW_ERRORS
187
188#define	SGE_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
189
190static void
191sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
192{
193	bus_addr_t *p;
194
195	if (error != 0)
196		return;
197	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
198	p  = arg;
199	*p = segs->ds_addr;
200}
201
202/*
203 * Read a sequence of words from the EEPROM.
204 */
205static uint16_t
206sge_read_eeprom(struct sge_softc *sc, int offset)
207{
208	uint32_t val;
209	int i;
210
211	KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
212	CSR_WRITE_4(sc, ROMInterface,
213	    EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
214	DELAY(500);
215	for (i = 0; i < SGE_TIMEOUT; i++) {
216		val = CSR_READ_4(sc, ROMInterface);
217		if ((val & EI_REQ) == 0)
218			break;
219		DELAY(100);
220	}
221	if (i == SGE_TIMEOUT) {
222		device_printf(sc->sge_dev,
223		    "EEPROM read timeout : 0x%08x\n", val);
224		return (0xffff);
225	}
226
227	return ((val & EI_DATA) >> EI_DATA_SHIFT);
228}
229
230static int
231sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
232{
233	uint16_t val;
234	int i;
235
236	val = sge_read_eeprom(sc, EEPROMSignature);
237	if (val == 0xffff || val == 0) {
238		device_printf(sc->sge_dev,
239		    "invalid EEPROM signature : 0x%04x\n", val);
240		return (EINVAL);
241	}
242
243	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
244		val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
245		dest[i + 0] = (uint8_t)val;
246		dest[i + 1] = (uint8_t)(val >> 8);
247	}
248
249	if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
250		sc->sge_flags |= SGE_FLAG_RGMII;
251	return (0);
252}
253
254/*
255 * For SiS96x, APC CMOS RAM is used to store ethernet address.
256 * APC CMOS RAM is accessed through ISA bridge.
257 */
258static int
259sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
260{
261#if defined(__HAIKU__)
262	int rgmii = 0;
263	int res = haiku_sge_get_mac_addr_apc(sc->sge_dev, dest, &rgmii);
264	if (rgmii != 0)
265		sc->sge_flags |= SGE_FLAG_RGMII;
266	return res;
267#else
268#if defined(__amd64__) || defined(__i386__)
269	devclass_t pci;
270	device_t bus, dev = NULL;
271	device_t *kids;
272	struct apc_tbl {
273		uint16_t vid;
274		uint16_t did;
275	} *tp, apc_tbls[] = {
276		{ SIS_VENDORID, 0x0965 },
277		{ SIS_VENDORID, 0x0966 },
278		{ SIS_VENDORID, 0x0968 }
279	};
280	uint8_t reg;
281	int busnum, i, j, numkids;
282
283	pci = devclass_find("pci");
284	for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
285		bus = devclass_get_device(pci, busnum);
286		if (!bus)
287			continue;
288		if (device_get_children(bus, &kids, &numkids) != 0)
289			continue;
290		for (i = 0; i < numkids; i++) {
291			dev = kids[i];
292			if (pci_get_class(dev) == PCIC_BRIDGE &&
293			    pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
294				tp = apc_tbls;
295				for (j = 0; j < nitems(apc_tbls); j++) {
296					if (pci_get_vendor(dev) == tp->vid &&
297					    pci_get_device(dev) == tp->did) {
298						free(kids, M_TEMP);
299						goto apc_found;
300					}
301					tp++;
302				}
303			}
304                }
305		free(kids, M_TEMP);
306	}
307	device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
308	return (EINVAL);
309apc_found:
310	/* Enable port 0x78 and 0x79 to access APC registers. */
311	reg = pci_read_config(dev, 0x48, 1);
312	pci_write_config(dev, 0x48, reg & ~0x02, 1);
313	DELAY(50);
314	pci_read_config(dev, 0x48, 1);
315	/* Read stored ethernet address. */
316	for (i = 0; i < ETHER_ADDR_LEN; i++) {
317		outb(0x78, 0x09 + i);
318		dest[i] = inb(0x79);
319	}
320	outb(0x78, 0x12);
321	if ((inb(0x79) & 0x80) != 0)
322		sc->sge_flags |= SGE_FLAG_RGMII;
323	/* Restore access to APC registers. */
324	pci_write_config(dev, 0x48, reg, 1);
325
326	return (0);
327#else
328	return (EINVAL);
329#endif
330#endif
331}
332
333static int
334sge_miibus_readreg(device_t dev, int phy, int reg)
335{
336	struct sge_softc *sc;
337	uint32_t val;
338	int i;
339
340	sc = device_get_softc(dev);
341	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
342	    (reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
343	DELAY(10);
344	for (i = 0; i < SGE_TIMEOUT; i++) {
345		val = CSR_READ_4(sc, GMIIControl);
346		if ((val & GMI_REQ) == 0)
347			break;
348		DELAY(10);
349	}
350	if (i == SGE_TIMEOUT) {
351		device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
352		return (0);
353	}
354	return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
355}
356
357static int
358sge_miibus_writereg(device_t dev, int phy, int reg, int data)
359{
360	struct sge_softc *sc;
361	uint32_t val;
362	int i;
363
364	sc = device_get_softc(dev);
365	CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
366	    (reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
367	    GMI_OP_WR | GMI_REQ);
368	DELAY(10);
369	for (i = 0; i < SGE_TIMEOUT; i++) {
370		val = CSR_READ_4(sc, GMIIControl);
371		if ((val & GMI_REQ) == 0)
372			break;
373		DELAY(10);
374	}
375	if (i == SGE_TIMEOUT)
376		device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
377	return (0);
378}
379
380static void
381sge_miibus_statchg(device_t dev)
382{
383	struct sge_softc *sc;
384	struct mii_data *mii;
385	struct ifnet *ifp;
386	uint32_t ctl, speed;
387
388	sc = device_get_softc(dev);
389	mii = device_get_softc(sc->sge_miibus);
390	ifp = sc->sge_ifp;
391	if (mii == NULL || ifp == NULL ||
392	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
393		return;
394	speed = 0;
395	sc->sge_flags &= ~SGE_FLAG_LINK;
396	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
397	    (IFM_ACTIVE | IFM_AVALID)) {
398		switch (IFM_SUBTYPE(mii->mii_media_active)) {
399		case IFM_10_T:
400			sc->sge_flags |= SGE_FLAG_LINK;
401			speed = SC_SPEED_10;
402			break;
403		case IFM_100_TX:
404			sc->sge_flags |= SGE_FLAG_LINK;
405			speed = SC_SPEED_100;
406			break;
407		case IFM_1000_T:
408			if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
409				sc->sge_flags |= SGE_FLAG_LINK;
410				speed = SC_SPEED_1000;
411			}
412			break;
413		default:
414			break;
415                }
416        }
417	if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
418		return;
419	/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
420	ctl = CSR_READ_4(sc, StationControl);
421	ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
422	if (speed == SC_SPEED_1000) {
423		ctl |= 0x07000000;
424		sc->sge_flags |= SGE_FLAG_SPEED_1000;
425	} else {
426		ctl |= 0x04000000;
427		sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
428	}
429#ifdef notyet
430	if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
431		ctl |= 0x03000000;
432#endif
433	ctl |= speed;
434	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
435		ctl |= SC_FDX;
436		sc->sge_flags |= SGE_FLAG_FDX;
437	} else
438		sc->sge_flags &= ~SGE_FLAG_FDX;
439	CSR_WRITE_4(sc, StationControl, ctl);
440	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
441		CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
442		CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
443	}
444}
445
446static void
447sge_rxfilter(struct sge_softc *sc)
448{
449	struct ifnet *ifp;
450	struct ifmultiaddr *ifma;
451	uint32_t crc, hashes[2];
452	uint16_t rxfilt;
453
454	SGE_LOCK_ASSERT(sc);
455
456	ifp = sc->sge_ifp;
457	rxfilt = CSR_READ_2(sc, RxMacControl);
458	rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
459	rxfilt |= AcceptMyPhys;
460	if ((ifp->if_flags & IFF_BROADCAST) != 0)
461		rxfilt |= AcceptBroadcast;
462	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
463		if ((ifp->if_flags & IFF_PROMISC) != 0)
464			rxfilt |= AcceptAllPhys;
465		rxfilt |= AcceptMulticast;
466		hashes[0] = 0xFFFFFFFF;
467		hashes[1] = 0xFFFFFFFF;
468	} else {
469		rxfilt |= AcceptMulticast;
470		hashes[0] = hashes[1] = 0;
471		/* Now program new ones. */
472		if_maddr_rlock(ifp);
473		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
474			if (ifma->ifma_addr->sa_family != AF_LINK)
475				continue;
476			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
477			    ifma->ifma_addr), ETHER_ADDR_LEN);
478			hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
479		}
480		if_maddr_runlock(ifp);
481	}
482	CSR_WRITE_2(sc, RxMacControl, rxfilt);
483	CSR_WRITE_4(sc, RxHashTable, hashes[0]);
484	CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
485}
486
487static void
488sge_setvlan(struct sge_softc *sc)
489{
490	struct ifnet *ifp;
491	uint16_t rxfilt;
492
493	SGE_LOCK_ASSERT(sc);
494
495	ifp = sc->sge_ifp;
496	if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
497		return;
498	rxfilt = CSR_READ_2(sc, RxMacControl);
499	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
500		rxfilt |= RXMAC_STRIP_VLAN;
501	else
502		rxfilt &= ~RXMAC_STRIP_VLAN;
503	CSR_WRITE_2(sc, RxMacControl, rxfilt);
504}
505
506static void
507sge_reset(struct sge_softc *sc)
508{
509
510	CSR_WRITE_4(sc, IntrMask, 0);
511	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
512
513	/* Soft reset. */
514	CSR_WRITE_4(sc, IntrControl, 0x8000);
515	CSR_READ_4(sc, IntrControl);
516	DELAY(100);
517	CSR_WRITE_4(sc, IntrControl, 0);
518	/* Stop MAC. */
519	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
520	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
521
522	CSR_WRITE_4(sc, IntrMask, 0);
523	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
524
525	CSR_WRITE_4(sc, GMIIControl, 0);
526}
527
528/*
529 * Probe for an SiS chip. Check the PCI vendor and device
530 * IDs against our list and return a device name if we find a match.
531 */
532static int
533sge_probe(device_t dev)
534{
535	struct sge_type *t;
536
537	t = sge_devs;
538	while (t->sge_name != NULL) {
539		if ((pci_get_vendor(dev) == t->sge_vid) &&
540		    (pci_get_device(dev) == t->sge_did)) {
541			device_set_desc(dev, t->sge_name);
542			return (BUS_PROBE_DEFAULT);
543		}
544		t++;
545	}
546
547	return (ENXIO);
548}
549
550/*
551 * Attach the interface.  Allocate softc structures, do ifmedia
552 * setup and ethernet/BPF attach.
553 */
554static int
555sge_attach(device_t dev)
556{
557	struct sge_softc *sc;
558	struct ifnet *ifp;
559	uint8_t eaddr[ETHER_ADDR_LEN];
560	int error = 0, rid;
561
562	sc = device_get_softc(dev);
563	sc->sge_dev = dev;
564
565	mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
566	    MTX_DEF);
567        callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
568
569	/*
570	 * Map control/status registers.
571	 */
572	pci_enable_busmaster(dev);
573
574	/* Allocate resources. */
575	sc->sge_res_id = PCIR_BAR(0);
576	sc->sge_res_type = SYS_RES_MEMORY;
577	sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
578	    &sc->sge_res_id, RF_ACTIVE);
579	if (sc->sge_res == NULL) {
580		device_printf(dev, "couldn't allocate resource\n");
581		error = ENXIO;
582		goto fail;
583	}
584
585	rid = 0;
586	sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
587	    RF_SHAREABLE | RF_ACTIVE);
588	if (sc->sge_irq == NULL) {
589		device_printf(dev, "couldn't allocate IRQ resources\n");
590		error = ENXIO;
591		goto fail;
592	}
593	sc->sge_rev = pci_get_revid(dev);
594	if (pci_get_device(dev) == SIS_DEVICEID_190)
595		sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
596	/* Reset the adapter. */
597	sge_reset(sc);
598
599	/* Get MAC address from the EEPROM. */
600	if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
601		sge_get_mac_addr_apc(sc, eaddr);
602	else
603		sge_get_mac_addr_eeprom(sc, eaddr);
604
605	if ((error = sge_dma_alloc(sc)) != 0)
606		goto fail;
607
608	ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
609	if (ifp == NULL) {
610		device_printf(dev, "cannot allocate ifnet structure.\n");
611		error = ENOSPC;
612		goto fail;
613	}
614	ifp->if_softc = sc;
615	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
616	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
617	ifp->if_ioctl = sge_ioctl;
618	ifp->if_start = sge_start;
619	ifp->if_init = sge_init;
620	ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
621	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
622	IFQ_SET_READY(&ifp->if_snd);
623	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
624	ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
625	ifp->if_capenable = ifp->if_capabilities;
626	/*
627	 * Do MII setup.
628	 */
629	error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
630	    sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
631	if (error != 0) {
632		device_printf(dev, "attaching PHYs failed\n");
633		goto fail;
634	}
635
636	/*
637	 * Call MI attach routine.
638	 */
639	ether_ifattach(ifp, eaddr);
640
641	/* VLAN setup. */
642	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
643	    IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
644	ifp->if_capenable = ifp->if_capabilities;
645	/* Tell the upper layer(s) we support long frames. */
646	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
647
648	/* Hook interrupt last to avoid having to lock softc */
649	error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
650	    NULL, sge_intr, sc, &sc->sge_intrhand);
651	if (error) {
652		device_printf(dev, "couldn't set up irq\n");
653		ether_ifdetach(ifp);
654		goto fail;
655	}
656
657fail:
658	if (error)
659		sge_detach(dev);
660
661	return (error);
662}
663
664/*
665 * Shutdown hardware and free up resources.  This can be called any
666 * time after the mutex has been initialized.  It is called in both
667 * the error case in attach and the normal detach case so it needs
668 * to be careful about only freeing resources that have actually been
669 * allocated.
670 */
671static int
672sge_detach(device_t dev)
673{
674	struct sge_softc *sc;
675	struct ifnet *ifp;
676
677	sc = device_get_softc(dev);
678	ifp = sc->sge_ifp;
679	/* These should only be active if attach succeeded. */
680	if (device_is_attached(dev)) {
681		ether_ifdetach(ifp);
682		SGE_LOCK(sc);
683		sge_stop(sc);
684		SGE_UNLOCK(sc);
685		callout_drain(&sc->sge_stat_ch);
686	}
687	if (sc->sge_miibus)
688		device_delete_child(dev, sc->sge_miibus);
689	bus_generic_detach(dev);
690
691	if (sc->sge_intrhand)
692		bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
693	if (sc->sge_irq)
694		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
695	if (sc->sge_res)
696		bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
697		    sc->sge_res);
698	if (ifp)
699		if_free(ifp);
700	sge_dma_free(sc);
701	mtx_destroy(&sc->sge_mtx);
702
703	return (0);
704}
705
706/*
707 * Stop all chip I/O so that the kernel's probe routines don't
708 * get confused by errant DMAs when rebooting.
709 */
710static int
711sge_shutdown(device_t dev)
712{
713	struct sge_softc *sc;
714
715	sc = device_get_softc(dev);
716	SGE_LOCK(sc);
717	sge_stop(sc);
718	SGE_UNLOCK(sc);
719	return (0);
720}
721
722static int
723sge_suspend(device_t dev)
724{
725	struct sge_softc *sc;
726	struct ifnet *ifp;
727
728	sc = device_get_softc(dev);
729	SGE_LOCK(sc);
730	ifp = sc->sge_ifp;
731	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
732		sge_stop(sc);
733	SGE_UNLOCK(sc);
734	return (0);
735}
736
737static int
738sge_resume(device_t dev)
739{
740	struct sge_softc *sc;
741	struct ifnet *ifp;
742
743	sc = device_get_softc(dev);
744	SGE_LOCK(sc);
745	ifp = sc->sge_ifp;
746	if ((ifp->if_flags & IFF_UP) != 0)
747		sge_init_locked(sc);
748	SGE_UNLOCK(sc);
749	return (0);
750}
751
752static int
753sge_dma_alloc(struct sge_softc *sc)
754{
755	struct sge_chain_data *cd;
756	struct sge_list_data *ld;
757	struct sge_rxdesc *rxd;
758	struct sge_txdesc *txd;
759	int error, i;
760
761	cd = &sc->sge_cdata;
762	ld = &sc->sge_ldata;
763	error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
764	    1, 0,			/* alignment, boundary */
765	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
766	    BUS_SPACE_MAXADDR,		/* highaddr */
767	    NULL, NULL,			/* filter, filterarg */
768	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
769	    1,				/* nsegments */
770	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
771	    0,				/* flags */
772	    NULL,			/* lockfunc */
773	    NULL,			/* lockarg */
774	    &cd->sge_tag);
775	if (error != 0) {
776		device_printf(sc->sge_dev,
777		    "could not create parent DMA tag.\n");
778		goto fail;
779	}
780
781	/* RX descriptor ring */
782	error = bus_dma_tag_create(cd->sge_tag,
783	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
784	    BUS_SPACE_MAXADDR,		/* lowaddr */
785	    BUS_SPACE_MAXADDR,		/* highaddr */
786	    NULL, NULL,			/* filter, filterarg */
787	    SGE_RX_RING_SZ, 1,		/* maxsize,nsegments */
788	    SGE_RX_RING_SZ,		/* maxsegsize */
789	    0,				/* flags */
790	    NULL,			/* lockfunc */
791	    NULL,			/* lockarg */
792	    &cd->sge_rx_tag);
793	if (error != 0) {
794		device_printf(sc->sge_dev,
795		    "could not create Rx ring DMA tag.\n");
796		goto fail;
797	}
798	/* Allocate DMA'able memory and load DMA map for RX ring. */
799	error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
800	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
801	    &cd->sge_rx_dmamap);
802	if (error != 0) {
803		device_printf(sc->sge_dev,
804		    "could not allocate DMA'able memory for Rx ring.\n");
805		goto fail;
806	}
807	error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
808	    ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
809	    &ld->sge_rx_paddr, BUS_DMA_NOWAIT);
810	if (error != 0) {
811		device_printf(sc->sge_dev,
812		    "could not load DMA'able memory for Rx ring.\n");
813	}
814
815	/* TX descriptor ring */
816	error = bus_dma_tag_create(cd->sge_tag,
817	    SGE_DESC_ALIGN, 0,		/* alignment, boundary */
818	    BUS_SPACE_MAXADDR,		/* lowaddr */
819	    BUS_SPACE_MAXADDR,		/* highaddr */
820	    NULL, NULL,			/* filter, filterarg */
821	    SGE_TX_RING_SZ, 1,		/* maxsize,nsegments */
822	    SGE_TX_RING_SZ,		/* maxsegsize */
823	    0,				/* flags */
824	    NULL,			/* lockfunc */
825	    NULL,			/* lockarg */
826	    &cd->sge_tx_tag);
827	if (error != 0) {
828		device_printf(sc->sge_dev,
829		    "could not create Rx ring DMA tag.\n");
830		goto fail;
831	}
832	/* Allocate DMA'able memory and load DMA map for TX ring. */
833	error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
834	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
835	    &cd->sge_tx_dmamap);
836	if (error != 0) {
837		device_printf(sc->sge_dev,
838		    "could not allocate DMA'able memory for Tx ring.\n");
839		goto fail;
840	}
841	error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
842	    ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
843	    &ld->sge_tx_paddr, BUS_DMA_NOWAIT);
844	if (error != 0) {
845		device_printf(sc->sge_dev,
846		    "could not load DMA'able memory for Rx ring.\n");
847		goto fail;
848	}
849
850	/* Create DMA tag for Tx buffers. */
851	error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
852	    BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
853	    SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
854	if (error != 0) {
855		device_printf(sc->sge_dev,
856		    "could not create Tx mbuf DMA tag.\n");
857		goto fail;
858	}
859
860	/* Create DMA tag for Rx buffers. */
861	error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
862	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
863	    MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
864	if (error != 0) {
865		device_printf(sc->sge_dev,
866		    "could not create Rx mbuf DMA tag.\n");
867		goto fail;
868	}
869
870	/* Create DMA maps for Tx buffers. */
871	for (i = 0; i < SGE_TX_RING_CNT; i++) {
872		txd = &cd->sge_txdesc[i];
873		txd->tx_m = NULL;
874		txd->tx_dmamap = NULL;
875		txd->tx_ndesc = 0;
876		error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
877		    &txd->tx_dmamap);
878		if (error != 0) {
879			device_printf(sc->sge_dev,
880			    "could not create Tx DMA map.\n");
881			goto fail;
882		}
883	}
884	/* Create spare DMA map for Rx buffer. */
885	error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
886	if (error != 0) {
887		device_printf(sc->sge_dev,
888		    "could not create spare Rx DMA map.\n");
889		goto fail;
890	}
891	/* Create DMA maps for Rx buffers. */
892	for (i = 0; i < SGE_RX_RING_CNT; i++) {
893		rxd = &cd->sge_rxdesc[i];
894		rxd->rx_m = NULL;
895		rxd->rx_dmamap = NULL;
896		error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
897		    &rxd->rx_dmamap);
898		if (error) {
899			device_printf(sc->sge_dev,
900			    "could not create Rx DMA map.\n");
901			goto fail;
902		}
903	}
904fail:
905	return (error);
906}
907
908static void
909sge_dma_free(struct sge_softc *sc)
910{
911	struct sge_chain_data *cd;
912	struct sge_list_data *ld;
913	struct sge_rxdesc *rxd;
914	struct sge_txdesc *txd;
915	int i;
916
917	cd = &sc->sge_cdata;
918	ld = &sc->sge_ldata;
919	/* Rx ring. */
920	if (cd->sge_rx_tag != NULL) {
921		if (ld->sge_rx_paddr != 0)
922			bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
923		if (ld->sge_rx_ring != NULL)
924			bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
925			    cd->sge_rx_dmamap);
926		ld->sge_rx_ring = NULL;
927		ld->sge_rx_paddr = 0;
928		bus_dma_tag_destroy(cd->sge_rx_tag);
929		cd->sge_rx_tag = NULL;
930	}
931	/* Tx ring. */
932	if (cd->sge_tx_tag != NULL) {
933		if (ld->sge_tx_paddr != 0)
934			bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
935		if (ld->sge_tx_ring != NULL)
936			bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
937			    cd->sge_tx_dmamap);
938		ld->sge_tx_ring = NULL;
939		ld->sge_tx_paddr = 0;
940		bus_dma_tag_destroy(cd->sge_tx_tag);
941		cd->sge_tx_tag = NULL;
942	}
943	/* Rx buffers. */
944	if (cd->sge_rxmbuf_tag != NULL) {
945		for (i = 0; i < SGE_RX_RING_CNT; i++) {
946			rxd = &cd->sge_rxdesc[i];
947			if (rxd->rx_dmamap != NULL) {
948				bus_dmamap_destroy(cd->sge_rxmbuf_tag,
949				    rxd->rx_dmamap);
950				rxd->rx_dmamap = NULL;
951			}
952		}
953		if (cd->sge_rx_spare_map != NULL) {
954			bus_dmamap_destroy(cd->sge_rxmbuf_tag,
955			    cd->sge_rx_spare_map);
956			cd->sge_rx_spare_map = NULL;
957		}
958		bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
959		cd->sge_rxmbuf_tag = NULL;
960	}
961	/* Tx buffers. */
962	if (cd->sge_txmbuf_tag != NULL) {
963		for (i = 0; i < SGE_TX_RING_CNT; i++) {
964			txd = &cd->sge_txdesc[i];
965			if (txd->tx_dmamap != NULL) {
966				bus_dmamap_destroy(cd->sge_txmbuf_tag,
967				    txd->tx_dmamap);
968				txd->tx_dmamap = NULL;
969			}
970		}
971		bus_dma_tag_destroy(cd->sge_txmbuf_tag);
972		cd->sge_txmbuf_tag = NULL;
973	}
974	if (cd->sge_tag != NULL)
975		bus_dma_tag_destroy(cd->sge_tag);
976	cd->sge_tag = NULL;
977}
978
979/*
980 * Initialize the TX descriptors.
981 */
982static int
983sge_list_tx_init(struct sge_softc *sc)
984{
985	struct sge_list_data *ld;
986	struct sge_chain_data *cd;
987
988	SGE_LOCK_ASSERT(sc);
989	ld = &sc->sge_ldata;
990	cd = &sc->sge_cdata;
991	bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
992	ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
993	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
994	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
995	cd->sge_tx_prod = 0;
996	cd->sge_tx_cons = 0;
997	cd->sge_tx_cnt = 0;
998	return (0);
999}
1000
1001static int
1002sge_list_tx_free(struct sge_softc *sc)
1003{
1004	struct sge_chain_data *cd;
1005	struct sge_txdesc *txd;
1006	int i;
1007
1008	SGE_LOCK_ASSERT(sc);
1009	cd = &sc->sge_cdata;
1010	for (i = 0; i < SGE_TX_RING_CNT; i++) {
1011		txd = &cd->sge_txdesc[i];
1012		if (txd->tx_m != NULL) {
1013			bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1014			    BUS_DMASYNC_POSTWRITE);
1015			bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1016			m_freem(txd->tx_m);
1017			txd->tx_m = NULL;
1018			txd->tx_ndesc = 0;
1019		}
1020	}
1021
1022	return (0);
1023}
1024
1025/*
1026 * Initialize the RX descriptors and allocate mbufs for them.  Note that
1027 * we arrange the descriptors in a closed ring, so that the last descriptor
1028 * has RING_END flag set.
1029 */
1030static int
1031sge_list_rx_init(struct sge_softc *sc)
1032{
1033	struct sge_chain_data *cd;
1034	int i;
1035
1036	SGE_LOCK_ASSERT(sc);
1037	cd = &sc->sge_cdata;
1038	cd->sge_rx_cons = 0;
1039	bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
1040	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1041		if (sge_newbuf(sc, i) != 0)
1042			return (ENOBUFS);
1043	}
1044	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1045	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1046	return (0);
1047}
1048
1049static int
1050sge_list_rx_free(struct sge_softc *sc)
1051{
1052	struct sge_chain_data *cd;
1053	struct sge_rxdesc *rxd;
1054	int i;
1055
1056	SGE_LOCK_ASSERT(sc);
1057	cd = &sc->sge_cdata;
1058	for (i = 0; i < SGE_RX_RING_CNT; i++) {
1059		rxd = &cd->sge_rxdesc[i];
1060		if (rxd->rx_m != NULL) {
1061			bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1062			    BUS_DMASYNC_POSTREAD);
1063			bus_dmamap_unload(cd->sge_rxmbuf_tag,
1064			    rxd->rx_dmamap);
1065			m_freem(rxd->rx_m);
1066			rxd->rx_m = NULL;
1067		}
1068	}
1069	return (0);
1070}
1071
1072/*
1073 * Initialize an RX descriptor and attach an MBUF cluster.
1074 */
1075static int
1076sge_newbuf(struct sge_softc *sc, int prod)
1077{
1078	struct mbuf *m;
1079	struct sge_desc *desc;
1080	struct sge_chain_data *cd;
1081	struct sge_rxdesc *rxd;
1082	bus_dma_segment_t segs[1];
1083	bus_dmamap_t map;
1084	int error, nsegs;
1085
1086	SGE_LOCK_ASSERT(sc);
1087
1088	cd = &sc->sge_cdata;
1089	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1090	if (m == NULL)
1091		return (ENOBUFS);
1092	m->m_len = m->m_pkthdr.len = MCLBYTES;
1093	m_adj(m, SGE_RX_BUF_ALIGN);
1094	error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
1095	    cd->sge_rx_spare_map, m, segs, &nsegs, 0);
1096	if (error != 0) {
1097		m_freem(m);
1098		return (error);
1099	}
1100	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1101	rxd = &cd->sge_rxdesc[prod];
1102	if (rxd->rx_m != NULL) {
1103		bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1104		    BUS_DMASYNC_POSTREAD);
1105		bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
1106	}
1107	map = rxd->rx_dmamap;
1108	rxd->rx_dmamap = cd->sge_rx_spare_map;
1109	cd->sge_rx_spare_map = map;
1110	bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
1111	    BUS_DMASYNC_PREREAD);
1112	rxd->rx_m = m;
1113
1114	desc = &sc->sge_ldata.sge_rx_ring[prod];
1115	desc->sge_sts_size = 0;
1116	desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
1117	desc->sge_flags = htole32(segs[0].ds_len);
1118	if (prod == SGE_RX_RING_CNT - 1)
1119		desc->sge_flags |= htole32(RING_END);
1120	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1121	return (0);
1122}
1123
1124static __inline void
1125sge_discard_rxbuf(struct sge_softc *sc, int index)
1126{
1127	struct sge_desc *desc;
1128
1129	desc = &sc->sge_ldata.sge_rx_ring[index];
1130	desc->sge_sts_size = 0;
1131	desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
1132	if (index == SGE_RX_RING_CNT - 1)
1133		desc->sge_flags |= htole32(RING_END);
1134	desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
1135}
1136
1137/*
1138 * A frame has been uploaded: pass the resulting mbuf chain up to
1139 * the higher level protocols.
1140 */
1141static void
1142sge_rxeof(struct sge_softc *sc)
1143{
1144        struct ifnet *ifp;
1145        struct mbuf *m;
1146	struct sge_chain_data *cd;
1147	struct sge_desc	*cur_rx;
1148	uint32_t rxinfo, rxstat;
1149	int cons, prog;
1150
1151	SGE_LOCK_ASSERT(sc);
1152
1153	ifp = sc->sge_ifp;
1154	cd = &sc->sge_cdata;
1155
1156	bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1157	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1158	cons = cd->sge_rx_cons;
1159	for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
1160	    SGE_INC(cons, SGE_RX_RING_CNT)) {
1161		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1162			break;
1163		cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
1164		rxinfo = le32toh(cur_rx->sge_cmdsts);
1165		if ((rxinfo & RDC_OWN) != 0)
1166			break;
1167		rxstat = le32toh(cur_rx->sge_sts_size);
1168		if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
1169		    SGE_RX_NSEGS(rxstat) != 1) {
1170			/* XXX We don't support multi-segment frames yet. */
1171#ifdef SGE_SHOW_ERRORS
1172			device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
1173			    RX_ERR_BITS);
1174#endif
1175			sge_discard_rxbuf(sc, cons);
1176			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1177			continue;
1178		}
1179		m = cd->sge_rxdesc[cons].rx_m;
1180		if (sge_newbuf(sc, cons) != 0) {
1181			sge_discard_rxbuf(sc, cons);
1182			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1183			continue;
1184		}
1185		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1186			if ((rxinfo & RDC_IP_CSUM) != 0 &&
1187			    (rxinfo & RDC_IP_CSUM_OK) != 0)
1188				m->m_pkthdr.csum_flags |=
1189				    CSUM_IP_CHECKED | CSUM_IP_VALID;
1190			if (((rxinfo & RDC_TCP_CSUM) != 0 &&
1191			    (rxinfo & RDC_TCP_CSUM_OK) != 0) ||
1192			    ((rxinfo & RDC_UDP_CSUM) != 0 &&
1193			    (rxinfo & RDC_UDP_CSUM_OK) != 0)) {
1194				m->m_pkthdr.csum_flags |=
1195				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1196				m->m_pkthdr.csum_data = 0xffff;
1197			}
1198		}
1199		/* Check for VLAN tagged frame. */
1200		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
1201		    (rxstat & RDS_VLAN) != 0) {
1202			m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
1203			m->m_flags |= M_VLANTAG;
1204		}
1205		/*
1206		 * Account for 10bytes auto padding which is used
1207		 * to align IP header on 32bit boundary.  Also note,
1208		 * CRC bytes is automatically removed by the
1209		 * hardware.
1210		 */
1211		m->m_data += SGE_RX_PAD_BYTES;
1212		m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
1213		    SGE_RX_PAD_BYTES;
1214		m->m_pkthdr.rcvif = ifp;
1215		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1216		SGE_UNLOCK(sc);
1217		(*ifp->if_input)(ifp, m);
1218		SGE_LOCK(sc);
1219	}
1220
1221	if (prog > 0) {
1222		bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
1223		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1224		cd->sge_rx_cons = cons;
1225	}
1226}
1227
1228/*
1229 * A frame was downloaded to the chip.  It's safe for us to clean up
1230 * the list buffers.
1231 */
1232static void
1233sge_txeof(struct sge_softc *sc)
1234{
1235	struct ifnet *ifp;
1236	struct sge_list_data *ld;
1237	struct sge_chain_data *cd;
1238	struct sge_txdesc *txd;
1239	uint32_t txstat;
1240	int cons, nsegs, prod;
1241
1242	SGE_LOCK_ASSERT(sc);
1243
1244	ifp = sc->sge_ifp;
1245	ld = &sc->sge_ldata;
1246	cd = &sc->sge_cdata;
1247
1248	if (cd->sge_tx_cnt == 0)
1249		return;
1250	bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
1251	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1252	cons = cd->sge_tx_cons;
1253	prod = cd->sge_tx_prod;
1254	for (; cons != prod;) {
1255		txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
1256		if ((txstat & TDC_OWN) != 0)
1257			break;
1258		/*
1259		 * Only the first descriptor of multi-descriptor transmission
1260		 * is updated by controller.  Driver should skip entire
1261		 * chained buffers for the transmitted frame. In other words
1262		 * TDC_OWN bit is valid only at the first descriptor of a
1263		 * multi-descriptor transmission.
1264		 */
1265		if (SGE_TX_ERROR(txstat) != 0) {
1266#ifdef SGE_SHOW_ERRORS
1267			device_printf(sc->sge_dev, "Tx error : 0x%b\n",
1268			    txstat, TX_ERR_BITS);
1269#endif
1270			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1271		} else {
1272#ifdef notyet
1273			if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & 0xFFFF) - 1);
1274#endif
1275			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1276		}
1277		txd = &cd->sge_txdesc[cons];
1278		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
1279			ld->sge_tx_ring[cons].sge_cmdsts = 0;
1280			SGE_INC(cons, SGE_TX_RING_CNT);
1281		}
1282		/* Reclaim transmitted mbuf. */
1283		KASSERT(txd->tx_m != NULL,
1284		    ("%s: freeing NULL mbuf\n", __func__));
1285		bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
1286		    BUS_DMASYNC_POSTWRITE);
1287		bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
1288		m_freem(txd->tx_m);
1289		txd->tx_m = NULL;
1290		cd->sge_tx_cnt -= txd->tx_ndesc;
1291		KASSERT(cd->sge_tx_cnt >= 0,
1292		    ("%s: Active Tx desc counter was garbled\n", __func__));
1293		txd->tx_ndesc = 0;
1294		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1295	}
1296	cd->sge_tx_cons = cons;
1297	if (cd->sge_tx_cnt == 0)
1298		sc->sge_timer = 0;
1299}
1300
1301static void
1302sge_tick(void *arg)
1303{
1304	struct sge_softc *sc;
1305	struct mii_data *mii;
1306	struct ifnet *ifp;
1307
1308	sc = arg;
1309	SGE_LOCK_ASSERT(sc);
1310
1311	ifp = sc->sge_ifp;
1312	mii = device_get_softc(sc->sge_miibus);
1313	mii_tick(mii);
1314	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1315		sge_miibus_statchg(sc->sge_dev);
1316		if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
1317		    !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1318			sge_start_locked(ifp);
1319	}
1320	/*
1321	 * Reclaim transmitted frames here as we do not request
1322	 * Tx completion interrupt for every queued frames to
1323	 * reduce excessive interrupts.
1324	 */
1325	sge_txeof(sc);
1326	sge_watchdog(sc);
1327	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1328}
1329
1330static void
1331sge_intr(void *arg)
1332{
1333	struct sge_softc *sc;
1334	struct ifnet *ifp;
1335	uint32_t status;
1336
1337	sc = arg;
1338	SGE_LOCK(sc);
1339	ifp = sc->sge_ifp;
1340
1341#ifndef __HAIKU__
1342	status = CSR_READ_4(sc, IntrStatus);
1343	if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
1344		/* Not ours. */
1345		SGE_UNLOCK(sc);
1346		return;
1347	}
1348	/* Acknowledge interrupts. */
1349	CSR_WRITE_4(sc, IntrStatus, status);
1350	/* Disable further interrupts. */
1351	CSR_WRITE_4(sc, IntrMask, 0);
1352#else
1353	status = sc->haiku_interrupt_status;
1354#endif
1355
1356	/*
1357	 * It seems the controller supports some kind of interrupt
1358	 * moderation mechanism but we still don't know how to
1359	 * enable that.  To reduce number of generated interrupts
1360	 * under load we check pending interrupts in a loop.  This
1361	 * will increase number of register access and is not correct
1362	 * way to handle interrupt moderation but there seems to be
1363	 * no other way at this time.
1364	 */
1365	for (;;) {
1366		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1367			break;
1368		if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1369			sge_rxeof(sc);
1370			/* Wakeup Rx MAC. */
1371			if ((status & INTR_RX_IDLE) != 0)
1372				CSR_WRITE_4(sc, RX_CTL,
1373				    0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1374		}
1375		if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1376			sge_txeof(sc);
1377		status = CSR_READ_4(sc, IntrStatus);
1378		if ((status & SGE_INTRS) == 0)
1379			break;
1380		/* Acknowledge interrupts. */
1381		CSR_WRITE_4(sc, IntrStatus, status);
1382	}
1383	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1384		/* Re-enable interrupts */
1385		CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1386		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1387			sge_start_locked(ifp);
1388	}
1389	SGE_UNLOCK(sc);
1390}
1391
1392/*
1393 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1394 * pointers to the fragment pointers.
1395 */
1396static int
1397sge_encap(struct sge_softc *sc, struct mbuf **m_head)
1398{
1399	struct mbuf *m;
1400	struct sge_desc *desc;
1401	struct sge_txdesc *txd;
1402	bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
1403	uint32_t cflags, mss;
1404	int error, i, nsegs, prod, si;
1405
1406	SGE_LOCK_ASSERT(sc);
1407
1408	si = prod = sc->sge_cdata.sge_tx_prod;
1409	txd = &sc->sge_cdata.sge_txdesc[prod];
1410	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1411		struct ether_header *eh;
1412		struct ip *ip;
1413		struct tcphdr *tcp;
1414		uint32_t ip_off, poff;
1415
1416		if (M_WRITABLE(*m_head) == 0) {
1417			/* Get a writable copy. */
1418			m = m_dup(*m_head, M_NOWAIT);
1419			m_freem(*m_head);
1420			if (m == NULL) {
1421				*m_head = NULL;
1422				return (ENOBUFS);
1423			}
1424			*m_head = m;
1425		}
1426		ip_off = sizeof(struct ether_header);
1427		m = m_pullup(*m_head, ip_off);
1428		if (m == NULL) {
1429			*m_head = NULL;
1430			return (ENOBUFS);
1431		}
1432		eh = mtod(m, struct ether_header *);
1433		/* Check the existence of VLAN tag. */
1434		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1435			ip_off = sizeof(struct ether_vlan_header);
1436			m = m_pullup(m, ip_off);
1437			if (m == NULL) {
1438				*m_head = NULL;
1439				return (ENOBUFS);
1440			}
1441		}
1442		m = m_pullup(m, ip_off + sizeof(struct ip));
1443		if (m == NULL) {
1444			*m_head = NULL;
1445			return (ENOBUFS);
1446		}
1447		ip = (struct ip *)(mtod(m, char *) + ip_off);
1448		poff = ip_off + (ip->ip_hl << 2);
1449		m = m_pullup(m, poff + sizeof(struct tcphdr));
1450		if (m == NULL) {
1451			*m_head = NULL;
1452			return (ENOBUFS);
1453		}
1454		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1455		m = m_pullup(m, poff + (tcp->th_off << 2));
1456		if (m == NULL) {
1457			*m_head = NULL;
1458			return (ENOBUFS);
1459		}
1460		/*
1461		 * Reset IP checksum and recompute TCP pseudo
1462		 * checksum that NDIS specification requires.
1463		 */
1464		ip = (struct ip *)(mtod(m, char *) + ip_off);
1465		ip->ip_sum = 0;
1466		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1467		tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1468		    htons(IPPROTO_TCP));
1469		*m_head = m;
1470	}
1471
1472	error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1473	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1474	if (error == EFBIG) {
1475		m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
1476		if (m == NULL) {
1477			m_freem(*m_head);
1478			*m_head = NULL;
1479			return (ENOBUFS);
1480		}
1481		*m_head = m;
1482		error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
1483		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1484		if (error != 0) {
1485			m_freem(*m_head);
1486			*m_head = NULL;
1487			return (error);
1488		}
1489	} else if (error != 0)
1490		return (error);
1491
1492	KASSERT(nsegs != 0, ("zero segment returned"));
1493	/* Check descriptor overrun. */
1494	if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
1495		bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
1496		return (ENOBUFS);
1497	}
1498	bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
1499	    BUS_DMASYNC_PREWRITE);
1500
1501	m = *m_head;
1502	cflags = 0;
1503	mss = 0;
1504	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1505		cflags |= TDC_LS;
1506		mss = (uint32_t)m->m_pkthdr.tso_segsz;
1507		mss <<= 16;
1508	} else {
1509		if (m->m_pkthdr.csum_flags & CSUM_IP)
1510			cflags |= TDC_IP_CSUM;
1511		if (m->m_pkthdr.csum_flags & CSUM_TCP)
1512			cflags |= TDC_TCP_CSUM;
1513		if (m->m_pkthdr.csum_flags & CSUM_UDP)
1514			cflags |= TDC_UDP_CSUM;
1515	}
1516	for (i = 0; i < nsegs; i++) {
1517		desc = &sc->sge_ldata.sge_tx_ring[prod];
1518		if (i == 0) {
1519			desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
1520			desc->sge_cmdsts = 0;
1521		} else {
1522			desc->sge_sts_size = 0;
1523			desc->sge_cmdsts = htole32(TDC_OWN);
1524		}
1525		desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
1526		desc->sge_flags = htole32(txsegs[i].ds_len);
1527		if (prod == SGE_TX_RING_CNT - 1)
1528			desc->sge_flags |= htole32(RING_END);
1529		sc->sge_cdata.sge_tx_cnt++;
1530		SGE_INC(prod, SGE_TX_RING_CNT);
1531	}
1532	/* Update producer index. */
1533	sc->sge_cdata.sge_tx_prod = prod;
1534
1535	desc = &sc->sge_ldata.sge_tx_ring[si];
1536	/* Configure VLAN. */
1537	if((m->m_flags & M_VLANTAG) != 0) {
1538		cflags |= m->m_pkthdr.ether_vtag;
1539		desc->sge_sts_size |= htole32(TDS_INS_VLAN);
1540	}
1541	desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
1542#if 1
1543	if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1544		desc->sge_cmdsts |= htole32(TDC_BST);
1545#else
1546	if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
1547		desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
1548		if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
1549			desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
1550	}
1551#endif
1552	/* Request interrupt and give ownership to controller. */
1553	desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
1554	txd->tx_m = m;
1555	txd->tx_ndesc = nsegs;
1556	return (0);
1557}
1558
1559static void
1560sge_start(struct ifnet *ifp)
1561{
1562	struct sge_softc *sc;
1563
1564	sc = ifp->if_softc;
1565	SGE_LOCK(sc);
1566	sge_start_locked(ifp);
1567	SGE_UNLOCK(sc);
1568}
1569
1570static void
1571sge_start_locked(struct ifnet *ifp)
1572{
1573	struct sge_softc *sc;
1574	struct mbuf *m_head;
1575	int queued = 0;
1576
1577	sc = ifp->if_softc;
1578	SGE_LOCK_ASSERT(sc);
1579
1580	if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
1581	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1582	    IFF_DRV_RUNNING)
1583		return;
1584
1585	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1586		if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
1587		    SGE_MAXTXSEGS)) {
1588			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1589			break;
1590		}
1591		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1592		if (m_head == NULL)
1593			break;
1594		if (sge_encap(sc, &m_head)) {
1595			if (m_head == NULL)
1596				break;
1597			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1598			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1599			break;
1600		}
1601		queued++;
1602		/*
1603		 * If there's a BPF listener, bounce a copy of this frame
1604		 * to him.
1605		 */
1606		BPF_MTAP(ifp, m_head);
1607	}
1608
1609	if (queued > 0) {
1610		bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
1611		    sc->sge_cdata.sge_tx_dmamap,
1612		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1613		CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1614		sc->sge_timer = 5;
1615	}
1616}
1617
1618static void
1619sge_init(void *arg)
1620{
1621	struct sge_softc *sc;
1622
1623	sc = arg;
1624	SGE_LOCK(sc);
1625	sge_init_locked(sc);
1626	SGE_UNLOCK(sc);
1627}
1628
1629static void
1630sge_init_locked(struct sge_softc *sc)
1631{
1632	struct ifnet *ifp;
1633	struct mii_data *mii;
1634	uint16_t rxfilt;
1635	int i;
1636
1637	SGE_LOCK_ASSERT(sc);
1638	ifp = sc->sge_ifp;
1639	mii = device_get_softc(sc->sge_miibus);
1640	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1641		return;
1642	/*
1643	 * Cancel pending I/O and free all RX/TX buffers.
1644	 */
1645	sge_stop(sc);
1646	sge_reset(sc);
1647
1648	/* Init circular RX list. */
1649	if (sge_list_rx_init(sc) == ENOBUFS) {
1650		device_printf(sc->sge_dev, "no memory for Rx buffers\n");
1651		sge_stop(sc);
1652		return;
1653	}
1654	/* Init TX descriptors. */
1655	sge_list_tx_init(sc);
1656	/*
1657	 * Load the address of the RX and TX lists.
1658	 */
1659	CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
1660	CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
1661
1662	CSR_WRITE_4(sc, TxMacControl, 0x60);
1663	CSR_WRITE_4(sc, RxWakeOnLan, 0);
1664	CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1665	/* Allow receiving VLAN frames. */
1666	CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1667	    SGE_RX_PAD_BYTES);
1668
1669	for (i = 0; i < ETHER_ADDR_LEN; i++)
1670		CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
1671	/* Configure RX MAC. */
1672	rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1673	CSR_WRITE_2(sc, RxMacControl, rxfilt);
1674	sge_rxfilter(sc);
1675	sge_setvlan(sc);
1676
1677	/* Initialize default speed/duplex information. */
1678	if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
1679		sc->sge_flags |= SGE_FLAG_SPEED_1000;
1680	sc->sge_flags |= SGE_FLAG_FDX;
1681	if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
1682		CSR_WRITE_4(sc, StationControl, 0x04008001);
1683	else
1684		CSR_WRITE_4(sc, StationControl, 0x04000001);
1685	/*
1686	 * XXX Try to mitigate interrupts.
1687	 */
1688	CSR_WRITE_4(sc, IntrControl, 0x08880000);
1689#ifdef notyet
1690	if (sc->sge_intrcontrol != 0)
1691		CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
1692	if (sc->sge_intrtimer != 0)
1693		CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
1694#endif
1695
1696	/*
1697	 * Clear and enable interrupts.
1698	 */
1699	CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1700	CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
1701
1702	/* Enable receiver and transmitter. */
1703	CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1704	CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1705
1706	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1707	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1708
1709	sc->sge_flags &= ~SGE_FLAG_LINK;
1710	mii_mediachg(mii);
1711	callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
1712}
1713
1714/*
1715 * Set media options.
1716 */
1717static int
1718sge_ifmedia_upd(struct ifnet *ifp)
1719{
1720	struct sge_softc *sc;
1721	struct mii_data *mii;
1722		struct mii_softc *miisc;
1723	int error;
1724
1725	sc = ifp->if_softc;
1726	SGE_LOCK(sc);
1727	mii = device_get_softc(sc->sge_miibus);
1728	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1729		PHY_RESET(miisc);
1730	error = mii_mediachg(mii);
1731	SGE_UNLOCK(sc);
1732
1733	return (error);
1734}
1735
1736/*
1737 * Report current media status.
1738 */
1739static void
1740sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1741{
1742	struct sge_softc *sc;
1743	struct mii_data *mii;
1744
1745	sc = ifp->if_softc;
1746	SGE_LOCK(sc);
1747	mii = device_get_softc(sc->sge_miibus);
1748	if ((ifp->if_flags & IFF_UP) == 0) {
1749		SGE_UNLOCK(sc);
1750		return;
1751	}
1752	mii_pollstat(mii);
1753	ifmr->ifm_active = mii->mii_media_active;
1754	ifmr->ifm_status = mii->mii_media_status;
1755	SGE_UNLOCK(sc);
1756}
1757
1758static int
1759sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1760{
1761	struct sge_softc *sc;
1762	struct ifreq *ifr;
1763	struct mii_data *mii;
1764	int error = 0, mask, reinit;
1765
1766	sc = ifp->if_softc;
1767	ifr = (struct ifreq *)data;
1768
1769	switch(command) {
1770	case SIOCSIFFLAGS:
1771		SGE_LOCK(sc);
1772		if ((ifp->if_flags & IFF_UP) != 0) {
1773			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1774			    ((ifp->if_flags ^ sc->sge_if_flags) &
1775			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1776				sge_rxfilter(sc);
1777			else
1778				sge_init_locked(sc);
1779		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1780			sge_stop(sc);
1781		sc->sge_if_flags = ifp->if_flags;
1782		SGE_UNLOCK(sc);
1783		break;
1784	case SIOCSIFCAP:
1785		SGE_LOCK(sc);
1786		reinit = 0;
1787		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1788		if ((mask & IFCAP_TXCSUM) != 0 &&
1789		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1790			ifp->if_capenable ^= IFCAP_TXCSUM;
1791			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1792				ifp->if_hwassist |= SGE_CSUM_FEATURES;
1793			else
1794				ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
1795		}
1796		if ((mask & IFCAP_RXCSUM) != 0 &&
1797		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1798			ifp->if_capenable ^= IFCAP_RXCSUM;
1799		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1800		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1801			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1802		if ((mask & IFCAP_TSO4) != 0 &&
1803		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1804			ifp->if_capenable ^= IFCAP_TSO4;
1805			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1806				ifp->if_hwassist |= CSUM_TSO;
1807			else
1808				ifp->if_hwassist &= ~CSUM_TSO;
1809		}
1810		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1811		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1812			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1813		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1814		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1815			/*
1816			 * Due to unknown reason, toggling VLAN hardware
1817			 * tagging require interface reinitialization.
1818			 */
1819			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1820			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1821				ifp->if_capenable &=
1822				    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1823			reinit = 1;
1824		}
1825		if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1826			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1827			sge_init_locked(sc);
1828		}
1829		SGE_UNLOCK(sc);
1830		VLAN_CAPABILITIES(ifp);
1831		break;
1832	case SIOCADDMULTI:
1833	case SIOCDELMULTI:
1834		SGE_LOCK(sc);
1835		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1836			sge_rxfilter(sc);
1837		SGE_UNLOCK(sc);
1838		break;
1839	case SIOCGIFMEDIA:
1840	case SIOCSIFMEDIA:
1841		mii = device_get_softc(sc->sge_miibus);
1842		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1843		break;
1844	default:
1845		error = ether_ioctl(ifp, command, data);
1846		break;
1847	}
1848
1849	return (error);
1850}
1851
1852static void
1853sge_watchdog(struct sge_softc *sc)
1854{
1855	struct ifnet *ifp;
1856
1857	SGE_LOCK_ASSERT(sc);
1858	if (sc->sge_timer == 0 || --sc->sge_timer > 0)
1859		return;
1860
1861	ifp = sc->sge_ifp;
1862	if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
1863		if (1 || bootverbose)
1864			device_printf(sc->sge_dev,
1865			    "watchdog timeout (lost link)\n");
1866		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1867		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1868		sge_init_locked(sc);
1869		return;
1870	}
1871	device_printf(sc->sge_dev, "watchdog timeout\n");
1872	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1873
1874	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1875	sge_init_locked(sc);
1876	if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
1877		sge_start_locked(ifp);
1878}
1879
1880/*
1881 * Stop the adapter and free any mbufs allocated to the
1882 * RX and TX lists.
1883 */
1884static void
1885sge_stop(struct sge_softc *sc)
1886{
1887	struct ifnet *ifp;
1888
1889	ifp = sc->sge_ifp;
1890
1891	SGE_LOCK_ASSERT(sc);
1892
1893	sc->sge_timer = 0;
1894	callout_stop(&sc->sge_stat_ch);
1895	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1896
1897	CSR_WRITE_4(sc, IntrMask, 0);
1898	CSR_READ_4(sc, IntrMask);
1899	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1900	/* Stop TX/RX MAC. */
1901	CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1902	CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1903	/* XXX Can we assume active DMA cycles gone? */
1904	DELAY(2000);
1905	CSR_WRITE_4(sc, IntrMask, 0);
1906	CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1907
1908	sc->sge_flags &= ~SGE_FLAG_LINK;
1909	sge_list_rx_free(sc);
1910	sge_list_tx_free(sc);
1911}
1912