1/*-
2 * Copyright (c) 1997, 1998
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: releng/12.0/sys/dev/rl/if_rl.c 338951 2018-09-26 19:41:00Z imp $");
35
36/*
37 * RealTek 8129/8139 PCI NIC driver
38 *
39 * Supports several extremely cheap PCI 10/100 adapters based on
40 * the RealTek chipset. Datasheets can be obtained from
41 * www.realtek.com.tw.
42 *
43 * Written by Bill Paul <wpaul@ctr.columbia.edu>
44 * Electrical Engineering Department
45 * Columbia University, New York City
46 */
47/*
48 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49 * probably the worst PCI ethernet controller ever made, with the possible
50 * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51 * DMA, but it has a terrible interface that nullifies any performance
52 * gains that bus-master DMA usually offers.
53 *
54 * For transmission, the chip offers a series of four TX descriptor
55 * registers. Each transmit frame must be in a contiguous buffer, aligned
56 * on a longword (32-bit) boundary. This means we almost always have to
57 * do mbuf copies in order to transmit a frame, except in the unlikely
58 * case where a) the packet fits into a single mbuf, and b) the packet
59 * is 32-bit aligned within the mbuf's data area. The presence of only
60 * four descriptor registers means that we can never have more than four
61 * packets queued for transmission at any one time.
62 *
63 * Reception is not much better. The driver has to allocate a single large
64 * buffer area (up to 64K in size) into which the chip will DMA received
65 * frames. Because we don't know where within this region received packets
66 * will begin or end, we have no choice but to copy data from the buffer
67 * area into mbufs in order to pass the packets up to the higher protocol
68 * levels.
69 *
70 * It's impossible given this rotten design to really achieve decent
71 * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72 * some equally overmuscled CPU to drive it.
73 *
74 * On the bright side, the 8139 does have a built-in PHY, although
75 * rather than using an MDIO serial interface like most other NICs, the
76 * PHY registers are directly accessible through the 8139's register
77 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78 * filter.
79 *
80 * The 8129 chip is an older version of the 8139 that uses an external PHY
81 * chip. The 8129 has a serial MDIO interface for accessing the MII where
82 * the 8139 lets you directly access the on-board PHY registers. We need
83 * to select which interface to use depending on the chip type.
84 */
85
86#ifdef HAVE_KERNEL_OPTION_HEADERS
87#include "opt_device_polling.h"
88#endif
89
90#include <sys/param.h>
91#include <sys/endian.h>
92#include <sys/systm.h>
93#include <sys/sockio.h>
94#include <sys/mbuf.h>
95#include <sys/malloc.h>
96#include <sys/kernel.h>
97#include <sys/module.h>
98#include <sys/socket.h>
99#include <sys/sysctl.h>
100
101#include <net/if.h>
102#include <net/if_var.h>
103#include <net/if_arp.h>
104#include <net/ethernet.h>
105#include <net/if_dl.h>
106#include <net/if_media.h>
107#include <net/if_types.h>
108
109#include <net/bpf.h>
110
111#include <machine/bus.h>
112#include <machine/resource.h>
113#include <sys/bus.h>
114#include <sys/rman.h>
115
116#include <dev/mii/mii.h>
117#include <dev/mii/mii_bitbang.h>
118#include <dev/mii/miivar.h>
119
120#include <dev/pci/pcireg.h>
121#include <dev/pci/pcivar.h>
122
123MODULE_DEPEND(rl, pci, 1, 1, 1);
124MODULE_DEPEND(rl, ether, 1, 1, 1);
125MODULE_DEPEND(rl, miibus, 1, 1, 1);
126
127/* "device miibus" required.  See GENERIC if you get errors here. */
128#include "miibus_if.h"
129
130#include <dev/rl/if_rlreg.h>
131
132/*
133 * Various supported device vendors/types and their names.
134 */
135static const struct rl_type rl_devs[] = {
136	{ RT_VENDORID, RT_DEVICEID_8129, RL_8129,
137		"RealTek 8129 10/100BaseTX" },
138	{ RT_VENDORID, RT_DEVICEID_8139, RL_8139,
139		"RealTek 8139 10/100BaseTX" },
140	{ RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
141		"RealTek 8139 10/100BaseTX" },
142	{ RT_VENDORID, RT_DEVICEID_8138, RL_8139,
143		"RealTek 8139 10/100BaseTX CardBus" },
144	{ RT_VENDORID, RT_DEVICEID_8100, RL_8139,
145		"RealTek 8100 10/100BaseTX" },
146	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
147		"Accton MPX 5030/5038 10/100BaseTX" },
148	{ DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
149		"Delta Electronics 8139 10/100BaseTX" },
150	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
151		"Addtron Technology 8139 10/100BaseTX" },
152	{ DLINK_VENDORID, DLINK_DEVICEID_520TX_REVC1, RL_8139,
153		"D-Link DFE-520TX (rev. C1) 10/100BaseTX" },
154	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
155		"D-Link DFE-530TX+ 10/100BaseTX" },
156	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
157		"D-Link DFE-690TXD 10/100BaseTX" },
158	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
159		"Nortel Networks 10/100BaseTX" },
160	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
161		"Corega FEther CB-TXD" },
162	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
163		"Corega FEtherII CB-TXD" },
164	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
165		"Peppercon AG ROL-F" },
166	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
167		"Planex FNW-3603-TX" },
168	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
169		"Planex FNW-3800-TX" },
170	{ CP_VENDORID, RT_DEVICEID_8139, RL_8139,
171		"Compaq HNE-300" },
172	{ LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
173		"LevelOne FPC-0106TX" },
174	{ EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
175		"Edimax EP-4103DL CardBus" }
176};
177
178static int rl_attach(device_t);
179static int rl_detach(device_t);
180static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
181static int rl_dma_alloc(struct rl_softc *);
182static void rl_dma_free(struct rl_softc *);
183static void rl_eeprom_putbyte(struct rl_softc *, int);
184static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
185static int rl_encap(struct rl_softc *, struct mbuf **);
186static int rl_list_tx_init(struct rl_softc *);
187static int rl_list_rx_init(struct rl_softc *);
188static int rl_ifmedia_upd(struct ifnet *);
189static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
190static int rl_ioctl(struct ifnet *, u_long, caddr_t);
191static void rl_intr(void *);
192static void rl_init(void *);
193static void rl_init_locked(struct rl_softc *sc);
194static int rl_miibus_readreg(device_t, int, int);
195static void rl_miibus_statchg(device_t);
196static int rl_miibus_writereg(device_t, int, int, int);
197#ifdef DEVICE_POLLING
198static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
199static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
200#endif
201static int rl_probe(device_t);
202static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
203static void rl_reset(struct rl_softc *);
204static int rl_resume(device_t);
205static int rl_rxeof(struct rl_softc *);
206static void rl_rxfilter(struct rl_softc *);
207static int rl_shutdown(device_t);
208static void rl_start(struct ifnet *);
209static void rl_start_locked(struct ifnet *);
210static void rl_stop(struct rl_softc *);
211static int rl_suspend(device_t);
212static void rl_tick(void *);
213static void rl_txeof(struct rl_softc *);
214static void rl_watchdog(struct rl_softc *);
215static void rl_setwol(struct rl_softc *);
216static void rl_clrwol(struct rl_softc *);
217
218/*
219 * MII bit-bang glue
220 */
221static uint32_t rl_mii_bitbang_read(device_t);
222static void rl_mii_bitbang_write(device_t, uint32_t);
223
224static const struct mii_bitbang_ops rl_mii_bitbang_ops = {
225	rl_mii_bitbang_read,
226	rl_mii_bitbang_write,
227	{
228		RL_MII_DATAOUT,	/* MII_BIT_MDO */
229		RL_MII_DATAIN,	/* MII_BIT_MDI */
230		RL_MII_CLK,	/* MII_BIT_MDC */
231		RL_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
232		0,		/* MII_BIT_DIR_PHY_HOST */
233	}
234};
235
236static device_method_t rl_methods[] = {
237	/* Device interface */
238	DEVMETHOD(device_probe,		rl_probe),
239	DEVMETHOD(device_attach,	rl_attach),
240	DEVMETHOD(device_detach,	rl_detach),
241	DEVMETHOD(device_suspend,	rl_suspend),
242	DEVMETHOD(device_resume,	rl_resume),
243	DEVMETHOD(device_shutdown,	rl_shutdown),
244
245	/* MII interface */
246	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
247	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
248	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
249
250	DEVMETHOD_END
251};
252
253static driver_t rl_driver = {
254	"rl",
255	rl_methods,
256	sizeof(struct rl_softc)
257};
258
259static devclass_t rl_devclass;
260
261DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
262MODULE_PNP_INFO("U16:vendor;U16:device", pci, rl, rl_devs,
263    nitems(rl_devs) - 1);
264DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
265DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
266
267#define EE_SET(x)					\
268	CSR_WRITE_1(sc, RL_EECMD,			\
269		CSR_READ_1(sc, RL_EECMD) | x)
270
271#define EE_CLR(x)					\
272	CSR_WRITE_1(sc, RL_EECMD,			\
273		CSR_READ_1(sc, RL_EECMD) & ~x)
274
275/*
276 * Send a read command and address to the EEPROM, check for ACK.
277 */
278static void
279rl_eeprom_putbyte(struct rl_softc *sc, int addr)
280{
281	int			d, i;
282
283	d = addr | sc->rl_eecmd_read;
284
285	/*
286	 * Feed in each bit and strobe the clock.
287	 */
288	for (i = 0x400; i; i >>= 1) {
289		if (d & i) {
290			EE_SET(RL_EE_DATAIN);
291		} else {
292			EE_CLR(RL_EE_DATAIN);
293		}
294		DELAY(100);
295		EE_SET(RL_EE_CLK);
296		DELAY(150);
297		EE_CLR(RL_EE_CLK);
298		DELAY(100);
299	}
300}
301
302/*
303 * Read a word of data stored in the EEPROM at address 'addr.'
304 */
305static void
306rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
307{
308	int			i;
309	uint16_t		word = 0;
310
311	/* Enter EEPROM access mode. */
312	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
313
314	/*
315	 * Send address of word we want to read.
316	 */
317	rl_eeprom_putbyte(sc, addr);
318
319	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
320
321	/*
322	 * Start reading bits from EEPROM.
323	 */
324	for (i = 0x8000; i; i >>= 1) {
325		EE_SET(RL_EE_CLK);
326		DELAY(100);
327		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
328			word |= i;
329		EE_CLR(RL_EE_CLK);
330		DELAY(100);
331	}
332
333	/* Turn off EEPROM access mode. */
334	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
335
336	*dest = word;
337}
338
339/*
340 * Read a sequence of words from the EEPROM.
341 */
342static void
343rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
344{
345	int			i;
346	uint16_t		word = 0, *ptr;
347
348	for (i = 0; i < cnt; i++) {
349		rl_eeprom_getword(sc, off + i, &word);
350		ptr = (uint16_t *)(dest + (i * 2));
351		if (swap)
352			*ptr = ntohs(word);
353		else
354			*ptr = word;
355	}
356}
357
358/*
359 * Read the MII serial port for the MII bit-bang module.
360 */
361static uint32_t
362rl_mii_bitbang_read(device_t dev)
363{
364	struct rl_softc *sc;
365	uint32_t val;
366
367	sc = device_get_softc(dev);
368
369	val = CSR_READ_1(sc, RL_MII);
370	CSR_BARRIER(sc, RL_MII, 1,
371	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
372
373	return (val);
374}
375
376/*
377 * Write the MII serial port for the MII bit-bang module.
378 */
379static void
380rl_mii_bitbang_write(device_t dev, uint32_t val)
381{
382	struct rl_softc *sc;
383
384	sc = device_get_softc(dev);
385
386	CSR_WRITE_1(sc, RL_MII, val);
387	CSR_BARRIER(sc, RL_MII, 1,
388	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
389}
390
391static int
392rl_miibus_readreg(device_t dev, int phy, int reg)
393{
394	struct rl_softc		*sc;
395	uint16_t		rl8139_reg;
396
397	sc = device_get_softc(dev);
398
399	if (sc->rl_type == RL_8139) {
400		switch (reg) {
401		case MII_BMCR:
402			rl8139_reg = RL_BMCR;
403			break;
404		case MII_BMSR:
405			rl8139_reg = RL_BMSR;
406			break;
407		case MII_ANAR:
408			rl8139_reg = RL_ANAR;
409			break;
410		case MII_ANER:
411			rl8139_reg = RL_ANER;
412			break;
413		case MII_ANLPAR:
414			rl8139_reg = RL_LPAR;
415			break;
416		case MII_PHYIDR1:
417		case MII_PHYIDR2:
418			return (0);
419		/*
420		 * Allow the rlphy driver to read the media status
421		 * register. If we have a link partner which does not
422		 * support NWAY, this is the register which will tell
423		 * us the results of parallel detection.
424		 */
425		case RL_MEDIASTAT:
426			return (CSR_READ_1(sc, RL_MEDIASTAT));
427		default:
428			device_printf(sc->rl_dev, "bad phy register\n");
429			return (0);
430		}
431		return (CSR_READ_2(sc, rl8139_reg));
432	}
433
434	return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg));
435}
436
437static int
438rl_miibus_writereg(device_t dev, int phy, int reg, int data)
439{
440	struct rl_softc		*sc;
441	uint16_t		rl8139_reg;
442
443	sc = device_get_softc(dev);
444
445	if (sc->rl_type == RL_8139) {
446		switch (reg) {
447		case MII_BMCR:
448			rl8139_reg = RL_BMCR;
449			break;
450		case MII_BMSR:
451			rl8139_reg = RL_BMSR;
452			break;
453		case MII_ANAR:
454			rl8139_reg = RL_ANAR;
455			break;
456		case MII_ANER:
457			rl8139_reg = RL_ANER;
458			break;
459		case MII_ANLPAR:
460			rl8139_reg = RL_LPAR;
461			break;
462		case MII_PHYIDR1:
463		case MII_PHYIDR2:
464			return (0);
465			break;
466		default:
467			device_printf(sc->rl_dev, "bad phy register\n");
468			return (0);
469		}
470		CSR_WRITE_2(sc, rl8139_reg, data);
471		return (0);
472	}
473
474	mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data);
475
476	return (0);
477}
478
479static void
480rl_miibus_statchg(device_t dev)
481{
482	struct rl_softc		*sc;
483	struct ifnet		*ifp;
484	struct mii_data		*mii;
485
486	sc = device_get_softc(dev);
487	mii = device_get_softc(sc->rl_miibus);
488	ifp = sc->rl_ifp;
489	if (mii == NULL || ifp == NULL ||
490	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
491		return;
492
493	sc->rl_flags &= ~RL_FLAG_LINK;
494	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
495	    (IFM_ACTIVE | IFM_AVALID)) {
496		switch (IFM_SUBTYPE(mii->mii_media_active)) {
497		case IFM_10_T:
498		case IFM_100_TX:
499			sc->rl_flags |= RL_FLAG_LINK;
500			break;
501		default:
502			break;
503		}
504	}
505	/*
506	 * RealTek controllers do not provide any interface to
507	 * Tx/Rx MACs for resolved speed, duplex and flow-control
508	 * parameters.
509	 */
510}
511
512/*
513 * Program the 64-bit multicast hash filter.
514 */
515static void
516rl_rxfilter(struct rl_softc *sc)
517{
518	struct ifnet		*ifp = sc->rl_ifp;
519	int			h = 0;
520	uint32_t		hashes[2] = { 0, 0 };
521	struct ifmultiaddr	*ifma;
522	uint32_t		rxfilt;
523
524	RL_LOCK_ASSERT(sc);
525
526	rxfilt = CSR_READ_4(sc, RL_RXCFG);
527	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
528	    RL_RXCFG_RX_MULTI);
529	/* Always accept frames destined for this host. */
530	rxfilt |= RL_RXCFG_RX_INDIV;
531	/* Set capture broadcast bit to capture broadcast frames. */
532	if (ifp->if_flags & IFF_BROADCAST)
533		rxfilt |= RL_RXCFG_RX_BROAD;
534	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
535		rxfilt |= RL_RXCFG_RX_MULTI;
536		if (ifp->if_flags & IFF_PROMISC)
537			rxfilt |= RL_RXCFG_RX_ALLPHYS;
538		hashes[0] = 0xFFFFFFFF;
539		hashes[1] = 0xFFFFFFFF;
540	} else {
541		/* Now program new ones. */
542		if_maddr_rlock(ifp);
543		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
544			if (ifma->ifma_addr->sa_family != AF_LINK)
545				continue;
546			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
547			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
548			if (h < 32)
549				hashes[0] |= (1 << h);
550			else
551				hashes[1] |= (1 << (h - 32));
552		}
553		if_maddr_runlock(ifp);
554		if (hashes[0] != 0 || hashes[1] != 0)
555			rxfilt |= RL_RXCFG_RX_MULTI;
556	}
557
558	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
559	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
560	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
561}
562
563static void
564rl_reset(struct rl_softc *sc)
565{
566	int			i;
567
568	RL_LOCK_ASSERT(sc);
569
570	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
571
572	for (i = 0; i < RL_TIMEOUT; i++) {
573		DELAY(10);
574		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
575			break;
576	}
577	if (i == RL_TIMEOUT)
578		device_printf(sc->rl_dev, "reset never completed!\n");
579}
580
581/*
582 * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
583 * IDs against our list and return a device name if we find a match.
584 */
585static int
586rl_probe(device_t dev)
587{
588	const struct rl_type	*t;
589	uint16_t		devid, revid, vendor;
590	int			i;
591
592	vendor = pci_get_vendor(dev);
593	devid = pci_get_device(dev);
594	revid = pci_get_revid(dev);
595
596	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
597		if (revid == 0x20) {
598			/* 8139C+, let re(4) take care of this device. */
599			return (ENXIO);
600		}
601	}
602	t = rl_devs;
603	for (i = 0; i < nitems(rl_devs); i++, t++) {
604		if (vendor == t->rl_vid && devid == t->rl_did) {
605			device_set_desc(dev, t->rl_name);
606			return (BUS_PROBE_DEFAULT);
607		}
608	}
609
610	return (ENXIO);
611}
612
613struct rl_dmamap_arg {
614	bus_addr_t	rl_busaddr;
615};
616
617static void
618rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
619{
620	struct rl_dmamap_arg	*ctx;
621
622	if (error != 0)
623		return;
624
625	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
626
627        ctx = (struct rl_dmamap_arg *)arg;
628        ctx->rl_busaddr = segs[0].ds_addr;
629}
630
631/*
632 * Attach the interface. Allocate softc structures, do ifmedia
633 * setup and ethernet/BPF attach.
634 */
635static int
636rl_attach(device_t dev)
637{
638	uint8_t			eaddr[ETHER_ADDR_LEN];
639	uint16_t		as[3];
640	struct ifnet		*ifp;
641	struct rl_softc		*sc;
642	const struct rl_type	*t;
643	struct sysctl_ctx_list	*ctx;
644	struct sysctl_oid_list	*children;
645	int			error = 0, hwrev, i, phy, pmc, rid;
646	int			prefer_iomap, unit;
647	uint16_t		rl_did = 0;
648	char			tn[32];
649
650	sc = device_get_softc(dev);
651	unit = device_get_unit(dev);
652	sc->rl_dev = dev;
653
654	sc->rl_twister_enable = 0;
655	snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
656	TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
657	ctx = device_get_sysctl_ctx(sc->rl_dev);
658	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
659	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
660	   &sc->rl_twister_enable, 0, "");
661
662	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
663	    MTX_DEF);
664	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
665
666	pci_enable_busmaster(dev);
667
668
669	/*
670	 * Map control/status registers.
671	 * Default to using PIO access for this driver. On SMP systems,
672	 * there appear to be problems with memory mapped mode: it looks
673	 * like doing too many memory mapped access back to back in rapid
674	 * succession can hang the bus. I'm inclined to blame this on
675	 * crummy design/construction on the part of RealTek. Memory
676	 * mapped mode does appear to work on uniprocessor systems though.
677	 */
678	prefer_iomap = 1;
679	snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit);
680	TUNABLE_INT_FETCH(tn, &prefer_iomap);
681	if (prefer_iomap) {
682		sc->rl_res_id = PCIR_BAR(0);
683		sc->rl_res_type = SYS_RES_IOPORT;
684		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
685		    &sc->rl_res_id, RF_ACTIVE);
686	}
687	if (prefer_iomap == 0 || sc->rl_res == NULL) {
688		sc->rl_res_id = PCIR_BAR(1);
689		sc->rl_res_type = SYS_RES_MEMORY;
690		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
691		    &sc->rl_res_id, RF_ACTIVE);
692	}
693	if (sc->rl_res == NULL) {
694		device_printf(dev, "couldn't map ports/memory\n");
695		error = ENXIO;
696		goto fail;
697	}
698
699#ifdef notdef
700	/*
701	 * Detect the Realtek 8139B. For some reason, this chip is very
702	 * unstable when left to autoselect the media
703	 * The best workaround is to set the device to the required
704	 * media type or to set it to the 10 Meg speed.
705	 */
706	if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
707		device_printf(dev,
708"Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
709#endif
710
711	sc->rl_btag = rman_get_bustag(sc->rl_res);
712	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
713
714	/* Allocate interrupt */
715	rid = 0;
716	sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
717	    RF_SHAREABLE | RF_ACTIVE);
718
719	if (sc->rl_irq[0] == NULL) {
720		device_printf(dev, "couldn't map interrupt\n");
721		error = ENXIO;
722		goto fail;
723	}
724
725	sc->rl_cfg0 = RL_8139_CFG0;
726	sc->rl_cfg1 = RL_8139_CFG1;
727	sc->rl_cfg2 = 0;
728	sc->rl_cfg3 = RL_8139_CFG3;
729	sc->rl_cfg4 = RL_8139_CFG4;
730	sc->rl_cfg5 = RL_8139_CFG5;
731
732	/*
733	 * Reset the adapter. Only take the lock here as it's needed in
734	 * order to call rl_reset().
735	 */
736	RL_LOCK(sc);
737	rl_reset(sc);
738	RL_UNLOCK(sc);
739
740	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
741	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
742	if (rl_did != 0x8129)
743		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
744
745	/*
746	 * Get station address from the EEPROM.
747	 */
748	rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
749	for (i = 0; i < 3; i++) {
750		eaddr[(i * 2) + 0] = as[i] & 0xff;
751		eaddr[(i * 2) + 1] = as[i] >> 8;
752	}
753
754	/*
755	 * Now read the exact device type from the EEPROM to find
756	 * out if it's an 8129 or 8139.
757	 */
758	rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
759
760	t = rl_devs;
761	sc->rl_type = 0;
762	while(t->rl_name != NULL) {
763		if (rl_did == t->rl_did) {
764			sc->rl_type = t->rl_basetype;
765			break;
766		}
767		t++;
768	}
769
770	if (sc->rl_type == 0) {
771		device_printf(dev, "unknown device ID: %x assuming 8139\n",
772		    rl_did);
773		sc->rl_type = RL_8139;
774		/*
775		 * Read RL_IDR register to get ethernet address as accessing
776		 * EEPROM may not extract correct address.
777		 */
778		for (i = 0; i < ETHER_ADDR_LEN; i++)
779			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
780	}
781
782	if ((error = rl_dma_alloc(sc)) != 0)
783		goto fail;
784
785	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
786	if (ifp == NULL) {
787		device_printf(dev, "can not if_alloc()\n");
788		error = ENOSPC;
789		goto fail;
790	}
791
792#define	RL_PHYAD_INTERNAL	0
793
794	/* Do MII setup */
795	phy = MII_PHY_ANY;
796	if (sc->rl_type == RL_8139)
797		phy = RL_PHYAD_INTERNAL;
798	error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd,
799	    rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
800	if (error != 0) {
801		device_printf(dev, "attaching PHYs failed\n");
802		goto fail;
803	}
804
805	ifp->if_softc = sc;
806	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
807	ifp->if_mtu = ETHERMTU;
808	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
809	ifp->if_ioctl = rl_ioctl;
810	ifp->if_start = rl_start;
811	ifp->if_init = rl_init;
812	ifp->if_capabilities = IFCAP_VLAN_MTU;
813	/* Check WOL for RTL8139B or newer controllers. */
814	if (sc->rl_type == RL_8139 &&
815	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
816		hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
817		switch (hwrev) {
818		case RL_HWREV_8139B:
819		case RL_HWREV_8130:
820		case RL_HWREV_8139C:
821		case RL_HWREV_8139D:
822		case RL_HWREV_8101:
823		case RL_HWREV_8100:
824			ifp->if_capabilities |= IFCAP_WOL;
825			/* Disable WOL. */
826			rl_clrwol(sc);
827			break;
828		default:
829			break;
830		}
831	}
832	ifp->if_capenable = ifp->if_capabilities;
833	ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
834#ifdef DEVICE_POLLING
835	ifp->if_capabilities |= IFCAP_POLLING;
836#endif
837	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
838	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
839	IFQ_SET_READY(&ifp->if_snd);
840
841	/*
842	 * Call MI attach routine.
843	 */
844	ether_ifattach(ifp, eaddr);
845
846	/* Hook interrupt last to avoid having to lock softc */
847	error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
848	    NULL, rl_intr, sc, &sc->rl_intrhand[0]);
849	if (error) {
850		device_printf(sc->rl_dev, "couldn't set up irq\n");
851		ether_ifdetach(ifp);
852	}
853
854fail:
855	if (error)
856		rl_detach(dev);
857
858	return (error);
859}
860
861/*
862 * Shutdown hardware and free up resources. This can be called any
863 * time after the mutex has been initialized. It is called in both
864 * the error case in attach and the normal detach case so it needs
865 * to be careful about only freeing resources that have actually been
866 * allocated.
867 */
868static int
869rl_detach(device_t dev)
870{
871	struct rl_softc		*sc;
872	struct ifnet		*ifp;
873
874	sc = device_get_softc(dev);
875	ifp = sc->rl_ifp;
876
877	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
878
879#ifdef DEVICE_POLLING
880	if (ifp->if_capenable & IFCAP_POLLING)
881		ether_poll_deregister(ifp);
882#endif
883	/* These should only be active if attach succeeded */
884	if (device_is_attached(dev)) {
885		RL_LOCK(sc);
886		rl_stop(sc);
887		RL_UNLOCK(sc);
888		callout_drain(&sc->rl_stat_callout);
889		ether_ifdetach(ifp);
890	}
891#if 0
892	sc->suspended = 1;
893#endif
894	if (sc->rl_miibus)
895		device_delete_child(dev, sc->rl_miibus);
896	bus_generic_detach(dev);
897
898	if (sc->rl_intrhand[0])
899		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
900	if (sc->rl_irq[0])
901		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
902	if (sc->rl_res)
903		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
904		    sc->rl_res);
905
906	if (ifp)
907		if_free(ifp);
908
909	rl_dma_free(sc);
910
911	mtx_destroy(&sc->rl_mtx);
912
913	return (0);
914}
915
916static int
917rl_dma_alloc(struct rl_softc *sc)
918{
919	struct rl_dmamap_arg	ctx;
920	int			error, i;
921
922	/*
923	 * Allocate the parent bus DMA tag appropriate for PCI.
924	 */
925	error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev),	/* parent */
926	    1, 0,			/* alignment, boundary */
927	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
928	    BUS_SPACE_MAXADDR,		/* highaddr */
929	    NULL, NULL,			/* filter, filterarg */
930	    BUS_SPACE_MAXSIZE_32BIT, 0,	/* maxsize, nsegments */
931	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
932	    0,				/* flags */
933	    NULL, NULL,			/* lockfunc, lockarg */
934	    &sc->rl_parent_tag);
935	if (error) {
936                device_printf(sc->rl_dev,
937		    "failed to create parent DMA tag.\n");
938		goto fail;
939	}
940	/* Create DMA tag for Rx memory block. */
941	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
942	    RL_RX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
943	    BUS_SPACE_MAXADDR,		/* lowaddr */
944	    BUS_SPACE_MAXADDR,		/* highaddr */
945	    NULL, NULL,			/* filter, filterarg */
946	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1,	/* maxsize,nsegments */
947	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ,	/* maxsegsize */
948	    0,				/* flags */
949	    NULL, NULL,			/* lockfunc, lockarg */
950	    &sc->rl_cdata.rl_rx_tag);
951	if (error) {
952                device_printf(sc->rl_dev,
953		    "failed to create Rx memory block DMA tag.\n");
954		goto fail;
955	}
956	/* Create DMA tag for Tx buffer. */
957	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
958	    RL_TX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
959	    BUS_SPACE_MAXADDR,		/* lowaddr */
960	    BUS_SPACE_MAXADDR,		/* highaddr */
961	    NULL, NULL,			/* filter, filterarg */
962	    MCLBYTES, 1,		/* maxsize, nsegments */
963	    MCLBYTES,			/* maxsegsize */
964	    0,				/* flags */
965	    NULL, NULL,			/* lockfunc, lockarg */
966	    &sc->rl_cdata.rl_tx_tag);
967	if (error) {
968                device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
969		goto fail;
970	}
971
972	/*
973	 * Allocate DMA'able memory and load DMA map for Rx memory block.
974	 */
975	error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
976	    (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
977	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
978	if (error != 0) {
979		device_printf(sc->rl_dev,
980		    "failed to allocate Rx DMA memory block.\n");
981		goto fail;
982	}
983	ctx.rl_busaddr = 0;
984	error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
985	    sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
986	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
987	    BUS_DMA_NOWAIT);
988	if (error != 0 || ctx.rl_busaddr == 0) {
989		device_printf(sc->rl_dev,
990		    "could not load Rx DMA memory block.\n");
991		goto fail;
992	}
993	sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
994
995	/* Create DMA maps for Tx buffers. */
996	for (i = 0; i < RL_TX_LIST_CNT; i++) {
997		sc->rl_cdata.rl_tx_chain[i] = NULL;
998		sc->rl_cdata.rl_tx_dmamap[i] = NULL;
999		error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
1000		    &sc->rl_cdata.rl_tx_dmamap[i]);
1001		if (error != 0) {
1002			device_printf(sc->rl_dev,
1003			    "could not create Tx dmamap.\n");
1004			goto fail;
1005		}
1006	}
1007
1008	/* Leave a few bytes before the start of the RX ring buffer. */
1009	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
1010	sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
1011
1012fail:
1013	return (error);
1014}
1015
1016static void
1017rl_dma_free(struct rl_softc *sc)
1018{
1019	int			i;
1020
1021	/* Rx memory block. */
1022	if (sc->rl_cdata.rl_rx_tag != NULL) {
1023		if (sc->rl_cdata.rl_rx_buf_paddr != 0)
1024			bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
1025			    sc->rl_cdata.rl_rx_dmamap);
1026		if (sc->rl_cdata.rl_rx_buf_ptr != NULL)
1027			bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
1028			    sc->rl_cdata.rl_rx_buf_ptr,
1029			    sc->rl_cdata.rl_rx_dmamap);
1030		sc->rl_cdata.rl_rx_buf_ptr = NULL;
1031		sc->rl_cdata.rl_rx_buf = NULL;
1032		sc->rl_cdata.rl_rx_buf_paddr = 0;
1033		bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
1034		sc->rl_cdata.rl_tx_tag = NULL;
1035	}
1036
1037	/* Tx buffers. */
1038	if (sc->rl_cdata.rl_tx_tag != NULL) {
1039		for (i = 0; i < RL_TX_LIST_CNT; i++) {
1040			if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
1041				bus_dmamap_destroy(
1042				    sc->rl_cdata.rl_tx_tag,
1043				    sc->rl_cdata.rl_tx_dmamap[i]);
1044				sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1045			}
1046		}
1047		bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1048		sc->rl_cdata.rl_tx_tag = NULL;
1049	}
1050
1051	if (sc->rl_parent_tag != NULL) {
1052		bus_dma_tag_destroy(sc->rl_parent_tag);
1053		sc->rl_parent_tag = NULL;
1054	}
1055}
1056
1057/*
1058 * Initialize the transmit descriptors.
1059 */
1060static int
1061rl_list_tx_init(struct rl_softc *sc)
1062{
1063	struct rl_chain_data	*cd;
1064	int			i;
1065
1066	RL_LOCK_ASSERT(sc);
1067
1068	cd = &sc->rl_cdata;
1069	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1070		cd->rl_tx_chain[i] = NULL;
1071		CSR_WRITE_4(sc,
1072		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1073	}
1074
1075	sc->rl_cdata.cur_tx = 0;
1076	sc->rl_cdata.last_tx = 0;
1077
1078	return (0);
1079}
1080
1081static int
1082rl_list_rx_init(struct rl_softc *sc)
1083{
1084
1085	RL_LOCK_ASSERT(sc);
1086
1087	bzero(sc->rl_cdata.rl_rx_buf_ptr,
1088	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
1089	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
1090	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1091
1092	return (0);
1093}
1094
1095/*
1096 * A frame has been uploaded: pass the resulting mbuf chain up to
1097 * the higher level protocols.
1098 *
1099 * You know there's something wrong with a PCI bus-master chip design
1100 * when you have to use m_devget().
1101 *
1102 * The receive operation is badly documented in the datasheet, so I'll
1103 * attempt to document it here. The driver provides a buffer area and
1104 * places its base address in the RX buffer start address register.
1105 * The chip then begins copying frames into the RX buffer. Each frame
1106 * is preceded by a 32-bit RX status word which specifies the length
1107 * of the frame and certain other status bits. Each frame (starting with
1108 * the status word) is also 32-bit aligned. The frame length is in the
1109 * first 16 bits of the status word; the lower 15 bits correspond with
1110 * the 'rx status register' mentioned in the datasheet.
1111 *
1112 * Note: to make the Alpha happy, the frame payload needs to be aligned
1113 * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1114 * as the offset argument to m_devget().
1115 */
1116static int
1117rl_rxeof(struct rl_softc *sc)
1118{
1119	struct mbuf		*m;
1120	struct ifnet		*ifp = sc->rl_ifp;
1121	uint8_t			*rxbufpos;
1122	int			total_len = 0;
1123	int			wrap = 0;
1124	int			rx_npkts = 0;
1125	uint32_t		rxstat;
1126	uint16_t		cur_rx;
1127	uint16_t		limit;
1128	uint16_t		max_bytes, rx_bytes = 0;
1129
1130	RL_LOCK_ASSERT(sc);
1131
1132	bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
1133	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1134
1135	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1136
1137	/* Do not try to read past this point. */
1138	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1139
1140	if (limit < cur_rx)
1141		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1142	else
1143		max_bytes = limit - cur_rx;
1144
1145	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1146#ifdef DEVICE_POLLING
1147		if (ifp->if_capenable & IFCAP_POLLING) {
1148			if (sc->rxcycles <= 0)
1149				break;
1150			sc->rxcycles--;
1151		}
1152#endif
1153		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1154		rxstat = le32toh(*(uint32_t *)rxbufpos);
1155
1156		/*
1157		 * Here's a totally undocumented fact for you. When the
1158		 * RealTek chip is in the process of copying a packet into
1159		 * RAM for you, the length will be 0xfff0. If you spot a
1160		 * packet header with this value, you need to stop. The
1161		 * datasheet makes absolutely no mention of this and
1162		 * RealTek should be shot for this.
1163		 */
1164		total_len = rxstat >> 16;
1165		if (total_len == RL_RXSTAT_UNFINISHED)
1166			break;
1167
1168		if (!(rxstat & RL_RXSTAT_RXOK) ||
1169		    total_len < ETHER_MIN_LEN ||
1170		    total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
1171			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1172			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1173			rl_init_locked(sc);
1174			return (rx_npkts);
1175		}
1176
1177		/* No errors; receive the packet. */
1178		rx_bytes += total_len + 4;
1179
1180		/*
1181		 * XXX The RealTek chip includes the CRC with every
1182		 * received frame, and there's no way to turn this
1183		 * behavior off (at least, I can't find anything in
1184		 * the manual that explains how to do it) so we have
1185		 * to trim off the CRC manually.
1186		 */
1187		total_len -= ETHER_CRC_LEN;
1188
1189		/*
1190		 * Avoid trying to read more bytes than we know
1191		 * the chip has prepared for us.
1192		 */
1193		if (rx_bytes > max_bytes)
1194			break;
1195
1196		rxbufpos = sc->rl_cdata.rl_rx_buf +
1197			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1198		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1199			rxbufpos = sc->rl_cdata.rl_rx_buf;
1200
1201		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1202		if (total_len > wrap) {
1203			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1204			    NULL);
1205			if (m != NULL)
1206				m_copyback(m, wrap, total_len - wrap,
1207					sc->rl_cdata.rl_rx_buf);
1208			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1209		} else {
1210			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1211			    NULL);
1212			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1213		}
1214
1215		/* Round up to 32-bit boundary. */
1216		cur_rx = (cur_rx + 3) & ~3;
1217		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1218
1219		if (m == NULL) {
1220			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1221			continue;
1222		}
1223
1224		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1225		RL_UNLOCK(sc);
1226		(*ifp->if_input)(ifp, m);
1227		RL_LOCK(sc);
1228		rx_npkts++;
1229	}
1230
1231	/* No need to sync Rx memory block as we didn't modify it. */
1232	return (rx_npkts);
1233}
1234
1235/*
1236 * A frame was downloaded to the chip. It's safe for us to clean up
1237 * the list buffers.
1238 */
1239static void
1240rl_txeof(struct rl_softc *sc)
1241{
1242	struct ifnet		*ifp = sc->rl_ifp;
1243	uint32_t		txstat;
1244
1245	RL_LOCK_ASSERT(sc);
1246
1247	/*
1248	 * Go through our tx list and free mbufs for those
1249	 * frames that have been uploaded.
1250	 */
1251	do {
1252		if (RL_LAST_TXMBUF(sc) == NULL)
1253			break;
1254		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1255		if (!(txstat & (RL_TXSTAT_TX_OK|
1256		    RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1257			break;
1258
1259		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & RL_TXSTAT_COLLCNT) >> 24);
1260
1261		bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
1262		    BUS_DMASYNC_POSTWRITE);
1263		bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
1264		m_freem(RL_LAST_TXMBUF(sc));
1265		RL_LAST_TXMBUF(sc) = NULL;
1266		/*
1267		 * If there was a transmit underrun, bump the TX threshold.
1268		 * Make sure not to overflow the 63 * 32byte we can address
1269		 * with the 6 available bit.
1270		 */
1271		if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1272		    (sc->rl_txthresh < 2016))
1273			sc->rl_txthresh += 32;
1274		if (txstat & RL_TXSTAT_TX_OK)
1275			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1276		else {
1277			int			oldthresh;
1278			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1279			if ((txstat & RL_TXSTAT_TXABRT) ||
1280			    (txstat & RL_TXSTAT_OUTOFWIN))
1281				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1282			oldthresh = sc->rl_txthresh;
1283			/* error recovery */
1284			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1285			rl_init_locked(sc);
1286			/* restore original threshold */
1287			sc->rl_txthresh = oldthresh;
1288			return;
1289		}
1290		RL_INC(sc->rl_cdata.last_tx);
1291		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1292	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1293
1294	if (RL_LAST_TXMBUF(sc) == NULL)
1295		sc->rl_watchdog_timer = 0;
1296}
1297
1298static void
1299rl_twister_update(struct rl_softc *sc)
1300{
1301	uint16_t linktest;
1302	/*
1303	 * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
1304	 * Linux driver.  Values undocumented otherwise.
1305	 */
1306	static const uint32_t param[4][4] = {
1307		{0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
1308		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1309		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1310		{0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
1311	};
1312
1313	/*
1314	 * Tune the so-called twister registers of the RTL8139.  These
1315	 * are used to compensate for impedance mismatches.  The
1316	 * method for tuning these registers is undocumented and the
1317	 * following procedure is collected from public sources.
1318	 */
1319	switch (sc->rl_twister)
1320	{
1321	case CHK_LINK:
1322		/*
1323		 * If we have a sufficient link, then we can proceed in
1324		 * the state machine to the next stage.  If not, then
1325		 * disable further tuning after writing sane defaults.
1326		 */
1327		if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
1328			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
1329			sc->rl_twister = FIND_ROW;
1330		} else {
1331			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
1332			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1333			CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1334			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1335			sc->rl_twister = DONE;
1336		}
1337		break;
1338	case FIND_ROW:
1339		/*
1340		 * Read how long it took to see the echo to find the tuning
1341		 * row to use.
1342		 */
1343		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1344		if (linktest == RL_CSCFG_ROW3)
1345			sc->rl_twist_row = 3;
1346		else if (linktest == RL_CSCFG_ROW2)
1347			sc->rl_twist_row = 2;
1348		else if (linktest == RL_CSCFG_ROW1)
1349			sc->rl_twist_row = 1;
1350		else
1351			sc->rl_twist_row = 0;
1352		sc->rl_twist_col = 0;
1353		sc->rl_twister = SET_PARAM;
1354		break;
1355	case SET_PARAM:
1356		if (sc->rl_twist_col == 0)
1357			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1358		CSR_WRITE_4(sc, RL_PARA7C,
1359		    param[sc->rl_twist_row][sc->rl_twist_col]);
1360		if (++sc->rl_twist_col == 4) {
1361			if (sc->rl_twist_row == 3)
1362				sc->rl_twister = RECHK_LONG;
1363			else
1364				sc->rl_twister = DONE;
1365		}
1366		break;
1367	case RECHK_LONG:
1368		/*
1369		 * For long cables, we have to double check to make sure we
1370		 * don't mistune.
1371		 */
1372		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1373		if (linktest == RL_CSCFG_ROW3)
1374			sc->rl_twister = DONE;
1375		else {
1376			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
1377			sc->rl_twister = RETUNE;
1378		}
1379		break;
1380	case RETUNE:
1381		/* Retune for a shorter cable (try column 2) */
1382		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1383		CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1384		CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1385		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1386		sc->rl_twist_row--;
1387		sc->rl_twist_col = 0;
1388		sc->rl_twister = SET_PARAM;
1389		break;
1390
1391	case DONE:
1392		break;
1393	}
1394
1395}
1396
1397static void
1398rl_tick(void *xsc)
1399{
1400	struct rl_softc		*sc = xsc;
1401	struct mii_data		*mii;
1402	int _ticks;
1403
1404	RL_LOCK_ASSERT(sc);
1405	/*
1406	 * If we're doing the twister cable calibration, then we need to defer
1407	 * watchdog timeouts.  This is a no-op in normal operations, but
1408	 * can falsely trigger when the cable calibration takes a while and
1409	 * there was traffic ready to go when rl was started.
1410	 *
1411	 * We don't defer mii_tick since that updates the mii status, which
1412	 * helps the twister process, at least according to similar patches
1413	 * for the Linux driver I found online while doing the fixes.  Worst
1414	 * case is a few extra mii reads during calibration.
1415	 */
1416	mii = device_get_softc(sc->rl_miibus);
1417	mii_tick(mii);
1418	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1419		rl_miibus_statchg(sc->rl_dev);
1420	if (sc->rl_twister_enable) {
1421		if (sc->rl_twister == DONE)
1422			rl_watchdog(sc);
1423		else
1424			rl_twister_update(sc);
1425		if (sc->rl_twister == DONE)
1426			_ticks = hz;
1427		else
1428			_ticks = hz / 10;
1429	} else {
1430		rl_watchdog(sc);
1431		_ticks = hz;
1432	}
1433
1434	callout_reset(&sc->rl_stat_callout, _ticks, rl_tick, sc);
1435}
1436
1437#ifdef DEVICE_POLLING
1438static int
1439rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1440{
1441	struct rl_softc *sc = ifp->if_softc;
1442	int rx_npkts = 0;
1443
1444	RL_LOCK(sc);
1445	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1446		rx_npkts = rl_poll_locked(ifp, cmd, count);
1447	RL_UNLOCK(sc);
1448	return (rx_npkts);
1449}
1450
1451static int
1452rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1453{
1454	struct rl_softc *sc = ifp->if_softc;
1455	int rx_npkts;
1456
1457	RL_LOCK_ASSERT(sc);
1458
1459	sc->rxcycles = count;
1460	rx_npkts = rl_rxeof(sc);
1461	rl_txeof(sc);
1462
1463	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1464		rl_start_locked(ifp);
1465
1466	if (cmd == POLL_AND_CHECK_STATUS) {
1467		uint16_t	status;
1468
1469		/* We should also check the status register. */
1470		status = CSR_READ_2(sc, RL_ISR);
1471		if (status == 0xffff)
1472			return (rx_npkts);
1473		if (status != 0)
1474			CSR_WRITE_2(sc, RL_ISR, status);
1475
1476		/* XXX We should check behaviour on receiver stalls. */
1477
1478		if (status & RL_ISR_SYSTEM_ERR) {
1479			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1480			rl_init_locked(sc);
1481		}
1482	}
1483	return (rx_npkts);
1484}
1485#endif /* DEVICE_POLLING */
1486
1487static void
1488rl_intr(void *arg)
1489{
1490	struct rl_softc		*sc = arg;
1491	struct ifnet		*ifp = sc->rl_ifp;
1492	uint16_t		status;
1493	int			count;
1494
1495	RL_LOCK(sc);
1496
1497	if (sc->suspended)
1498		goto done_locked;
1499
1500#ifdef DEVICE_POLLING
1501	if  (ifp->if_capenable & IFCAP_POLLING)
1502		goto done_locked;
1503#endif
1504
1505	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1506		goto done_locked2;
1507	status = CSR_READ_2(sc, RL_ISR);
1508	if (status == 0xffff || (status & RL_INTRS) == 0)
1509		goto done_locked;
1510	/*
1511	 * Ours, disable further interrupts.
1512	 */
1513	CSR_WRITE_2(sc, RL_IMR, 0);
1514	for (count = 16; count > 0; count--) {
1515		CSR_WRITE_2(sc, RL_ISR, status);
1516		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1517			if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR))
1518				rl_rxeof(sc);
1519			if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR))
1520				rl_txeof(sc);
1521			if (status & RL_ISR_SYSTEM_ERR) {
1522				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1523				rl_init_locked(sc);
1524				RL_UNLOCK(sc);
1525				return;
1526			}
1527		}
1528		status = CSR_READ_2(sc, RL_ISR);
1529		/* If the card has gone away, the read returns 0xffff. */
1530		if (status == 0xffff || (status & RL_INTRS) == 0)
1531			break;
1532	}
1533
1534	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1535		rl_start_locked(ifp);
1536
1537done_locked2:
1538	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1539		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1540done_locked:
1541	RL_UNLOCK(sc);
1542}
1543
1544/*
1545 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1546 * pointers to the fragment pointers.
1547 */
1548static int
1549rl_encap(struct rl_softc *sc, struct mbuf **m_head)
1550{
1551	struct mbuf		*m;
1552	bus_dma_segment_t	txsegs[1];
1553	int			error, nsegs, padlen;
1554
1555	RL_LOCK_ASSERT(sc);
1556
1557	m = *m_head;
1558	padlen = 0;
1559	/*
1560	 * Hardware doesn't auto-pad, so we have to make sure
1561	 * pad short frames out to the minimum frame length.
1562	 */
1563	if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
1564		padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
1565	/*
1566	 * The RealTek is brain damaged and wants longword-aligned
1567	 * TX buffers, plus we can only have one fragment buffer
1568	 * per packet. We have to copy pretty much all the time.
1569	 */
1570	if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
1571	    (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
1572		m = m_defrag(*m_head, M_NOWAIT);
1573		if (m == NULL) {
1574			m_freem(*m_head);
1575			*m_head = NULL;
1576			return (ENOMEM);
1577		}
1578	}
1579	*m_head = m;
1580
1581	if (padlen > 0) {
1582		/*
1583		 * Make security-conscious people happy: zero out the
1584		 * bytes in the pad area, since we don't know what
1585		 * this mbuf cluster buffer's previous user might
1586		 * have left in it.
1587		 */
1588		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1589		m->m_pkthdr.len += padlen;
1590		m->m_len = m->m_pkthdr.len;
1591	}
1592
1593	error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
1594	    RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
1595	if (error != 0)
1596		return (error);
1597	if (nsegs == 0) {
1598		m_freem(*m_head);
1599		*m_head = NULL;
1600		return (EIO);
1601	}
1602
1603	RL_CUR_TXMBUF(sc) = m;
1604	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
1605	    BUS_DMASYNC_PREWRITE);
1606	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
1607
1608	return (0);
1609}
1610
1611/*
1612 * Main transmit routine.
1613 */
1614static void
1615rl_start(struct ifnet *ifp)
1616{
1617	struct rl_softc		*sc = ifp->if_softc;
1618
1619	RL_LOCK(sc);
1620	rl_start_locked(ifp);
1621	RL_UNLOCK(sc);
1622}
1623
1624static void
1625rl_start_locked(struct ifnet *ifp)
1626{
1627	struct rl_softc		*sc = ifp->if_softc;
1628	struct mbuf		*m_head = NULL;
1629
1630	RL_LOCK_ASSERT(sc);
1631
1632	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1633	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
1634		return;
1635
1636	while (RL_CUR_TXMBUF(sc) == NULL) {
1637
1638		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1639
1640		if (m_head == NULL)
1641			break;
1642
1643		if (rl_encap(sc, &m_head)) {
1644			if (m_head == NULL)
1645				break;
1646			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1647			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1648			break;
1649		}
1650
1651		/* Pass a copy of this mbuf chain to the bpf subsystem. */
1652		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1653
1654		/* Transmit the frame. */
1655		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1656		    RL_TXTHRESH(sc->rl_txthresh) |
1657		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1658
1659		RL_INC(sc->rl_cdata.cur_tx);
1660
1661		/* Set a timeout in case the chip goes out to lunch. */
1662		sc->rl_watchdog_timer = 5;
1663	}
1664
1665	/*
1666	 * We broke out of the loop because all our TX slots are
1667	 * full. Mark the NIC as busy until it drains some of the
1668	 * packets from the queue.
1669	 */
1670	if (RL_CUR_TXMBUF(sc) != NULL)
1671		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1672}
1673
1674static void
1675rl_init(void *xsc)
1676{
1677	struct rl_softc		*sc = xsc;
1678
1679	RL_LOCK(sc);
1680	rl_init_locked(sc);
1681	RL_UNLOCK(sc);
1682}
1683
1684static void
1685rl_init_locked(struct rl_softc *sc)
1686{
1687	struct ifnet		*ifp = sc->rl_ifp;
1688	struct mii_data		*mii;
1689	uint32_t		eaddr[2];
1690
1691	RL_LOCK_ASSERT(sc);
1692
1693	mii = device_get_softc(sc->rl_miibus);
1694
1695	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1696		return;
1697
1698	/*
1699	 * Cancel pending I/O and free all RX/TX buffers.
1700	 */
1701	rl_stop(sc);
1702
1703	rl_reset(sc);
1704	if (sc->rl_twister_enable) {
1705		/*
1706		 * Reset twister register tuning state.  The twister
1707		 * registers and their tuning are undocumented, but
1708		 * are necessary to cope with bad links.  rl_twister =
1709		 * DONE here will disable this entirely.
1710		 */
1711		sc->rl_twister = CHK_LINK;
1712	}
1713
1714	/*
1715	 * Init our MAC address.  Even though the chipset
1716	 * documentation doesn't mention it, we need to enter "Config
1717	 * register write enable" mode to modify the ID registers.
1718	 */
1719	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1720	bzero(eaddr, sizeof(eaddr));
1721	bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
1722	CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
1723	CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
1724	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1725
1726	/* Init the RX memory block pointer register. */
1727	CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
1728	    RL_RX_8139_BUF_RESERVE);
1729	/* Init TX descriptors. */
1730	rl_list_tx_init(sc);
1731	/* Init Rx memory block. */
1732	rl_list_rx_init(sc);
1733
1734	/*
1735	 * Enable transmit and receive.
1736	 */
1737	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1738
1739	/*
1740	 * Set the initial TX and RX configuration.
1741	 */
1742	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1743	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1744
1745	/* Set RX filter. */
1746	rl_rxfilter(sc);
1747
1748#ifdef DEVICE_POLLING
1749	/* Disable interrupts if we are polling. */
1750	if (ifp->if_capenable & IFCAP_POLLING)
1751		CSR_WRITE_2(sc, RL_IMR, 0);
1752	else
1753#endif
1754	/* Enable interrupts. */
1755	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1756
1757	/* Set initial TX threshold */
1758	sc->rl_txthresh = RL_TX_THRESH_INIT;
1759
1760	/* Start RX/TX process. */
1761	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1762
1763	/* Enable receiver and transmitter. */
1764	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1765
1766	sc->rl_flags &= ~RL_FLAG_LINK;
1767	mii_mediachg(mii);
1768
1769	CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1770
1771	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1772	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1773
1774	callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1775}
1776
1777/*
1778 * Set media options.
1779 */
1780static int
1781rl_ifmedia_upd(struct ifnet *ifp)
1782{
1783	struct rl_softc		*sc = ifp->if_softc;
1784	struct mii_data		*mii;
1785
1786	mii = device_get_softc(sc->rl_miibus);
1787
1788	RL_LOCK(sc);
1789	mii_mediachg(mii);
1790	RL_UNLOCK(sc);
1791
1792	return (0);
1793}
1794
1795/*
1796 * Report current media status.
1797 */
1798static void
1799rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1800{
1801	struct rl_softc		*sc = ifp->if_softc;
1802	struct mii_data		*mii;
1803
1804	mii = device_get_softc(sc->rl_miibus);
1805
1806	RL_LOCK(sc);
1807	mii_pollstat(mii);
1808	ifmr->ifm_active = mii->mii_media_active;
1809	ifmr->ifm_status = mii->mii_media_status;
1810	RL_UNLOCK(sc);
1811}
1812
1813static int
1814rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1815{
1816	struct ifreq		*ifr = (struct ifreq *)data;
1817	struct mii_data		*mii;
1818	struct rl_softc		*sc = ifp->if_softc;
1819	int			error = 0, mask;
1820
1821	switch (command) {
1822	case SIOCSIFFLAGS:
1823		RL_LOCK(sc);
1824		if (ifp->if_flags & IFF_UP) {
1825			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1826			    ((ifp->if_flags ^ sc->rl_if_flags) &
1827                            (IFF_PROMISC | IFF_ALLMULTI)))
1828				rl_rxfilter(sc);
1829                        else
1830				rl_init_locked(sc);
1831                } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1832			rl_stop(sc);
1833		sc->rl_if_flags = ifp->if_flags;
1834		RL_UNLOCK(sc);
1835		break;
1836	case SIOCADDMULTI:
1837	case SIOCDELMULTI:
1838		RL_LOCK(sc);
1839		rl_rxfilter(sc);
1840		RL_UNLOCK(sc);
1841		break;
1842	case SIOCGIFMEDIA:
1843	case SIOCSIFMEDIA:
1844		mii = device_get_softc(sc->rl_miibus);
1845		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1846		break;
1847	case SIOCSIFCAP:
1848		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1849#ifdef DEVICE_POLLING
1850		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1851		    !(ifp->if_capenable & IFCAP_POLLING)) {
1852			error = ether_poll_register(rl_poll, ifp);
1853			if (error)
1854				return(error);
1855			RL_LOCK(sc);
1856			/* Disable interrupts */
1857			CSR_WRITE_2(sc, RL_IMR, 0x0000);
1858			ifp->if_capenable |= IFCAP_POLLING;
1859			RL_UNLOCK(sc);
1860			return (error);
1861
1862		}
1863		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1864		    ifp->if_capenable & IFCAP_POLLING) {
1865			error = ether_poll_deregister(ifp);
1866			/* Enable interrupts. */
1867			RL_LOCK(sc);
1868			CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1869			ifp->if_capenable &= ~IFCAP_POLLING;
1870			RL_UNLOCK(sc);
1871			return (error);
1872		}
1873#endif /* DEVICE_POLLING */
1874		if ((mask & IFCAP_WOL) != 0 &&
1875		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1876			if ((mask & IFCAP_WOL_UCAST) != 0)
1877				ifp->if_capenable ^= IFCAP_WOL_UCAST;
1878			if ((mask & IFCAP_WOL_MCAST) != 0)
1879				ifp->if_capenable ^= IFCAP_WOL_MCAST;
1880			if ((mask & IFCAP_WOL_MAGIC) != 0)
1881				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1882		}
1883		break;
1884	default:
1885		error = ether_ioctl(ifp, command, data);
1886		break;
1887	}
1888
1889	return (error);
1890}
1891
1892static void
1893rl_watchdog(struct rl_softc *sc)
1894{
1895
1896	RL_LOCK_ASSERT(sc);
1897
1898	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
1899		return;
1900
1901	device_printf(sc->rl_dev, "watchdog timeout\n");
1902	if_inc_counter(sc->rl_ifp, IFCOUNTER_OERRORS, 1);
1903
1904	rl_txeof(sc);
1905	rl_rxeof(sc);
1906	sc->rl_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1907	rl_init_locked(sc);
1908}
1909
1910/*
1911 * Stop the adapter and free any mbufs allocated to the
1912 * RX and TX lists.
1913 */
1914static void
1915rl_stop(struct rl_softc *sc)
1916{
1917	int			i;
1918	struct ifnet		*ifp = sc->rl_ifp;
1919
1920	RL_LOCK_ASSERT(sc);
1921
1922	sc->rl_watchdog_timer = 0;
1923	callout_stop(&sc->rl_stat_callout);
1924	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1925	sc->rl_flags &= ~RL_FLAG_LINK;
1926
1927	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1928	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1929	for (i = 0; i < RL_TIMEOUT; i++) {
1930		DELAY(10);
1931		if ((CSR_READ_1(sc, RL_COMMAND) &
1932		    (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
1933			break;
1934	}
1935	if (i == RL_TIMEOUT)
1936		device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
1937
1938	/*
1939	 * Free the TX list buffers.
1940	 */
1941	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1942		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1943			bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
1944			    sc->rl_cdata.rl_tx_dmamap[i],
1945			    BUS_DMASYNC_POSTWRITE);
1946			bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
1947			    sc->rl_cdata.rl_tx_dmamap[i]);
1948			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1949			sc->rl_cdata.rl_tx_chain[i] = NULL;
1950			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1951			    0x0000000);
1952		}
1953	}
1954}
1955
1956/*
1957 * Device suspend routine.  Stop the interface and save some PCI
1958 * settings in case the BIOS doesn't restore them properly on
1959 * resume.
1960 */
1961static int
1962rl_suspend(device_t dev)
1963{
1964	struct rl_softc		*sc;
1965
1966	sc = device_get_softc(dev);
1967
1968	RL_LOCK(sc);
1969	rl_stop(sc);
1970	rl_setwol(sc);
1971	sc->suspended = 1;
1972	RL_UNLOCK(sc);
1973
1974	return (0);
1975}
1976
1977/*
1978 * Device resume routine.  Restore some PCI settings in case the BIOS
1979 * doesn't, re-enable busmastering, and restart the interface if
1980 * appropriate.
1981 */
1982static int
1983rl_resume(device_t dev)
1984{
1985	struct rl_softc		*sc;
1986	struct ifnet		*ifp;
1987	int			pmc;
1988	uint16_t		pmstat;
1989
1990	sc = device_get_softc(dev);
1991	ifp = sc->rl_ifp;
1992
1993	RL_LOCK(sc);
1994
1995	if ((ifp->if_capabilities & IFCAP_WOL) != 0 &&
1996	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
1997		/* Disable PME and clear PME status. */
1998		pmstat = pci_read_config(sc->rl_dev,
1999		    pmc + PCIR_POWER_STATUS, 2);
2000		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2001			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2002			pci_write_config(sc->rl_dev,
2003			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2004		}
2005		/*
2006		 * Clear WOL matching such that normal Rx filtering
2007		 * wouldn't interfere with WOL patterns.
2008		 */
2009		rl_clrwol(sc);
2010	}
2011
2012	/* reinitialize interface if necessary */
2013	if (ifp->if_flags & IFF_UP)
2014		rl_init_locked(sc);
2015
2016	sc->suspended = 0;
2017
2018	RL_UNLOCK(sc);
2019
2020	return (0);
2021}
2022
2023/*
2024 * Stop all chip I/O so that the kernel's probe routines don't
2025 * get confused by errant DMAs when rebooting.
2026 */
2027static int
2028rl_shutdown(device_t dev)
2029{
2030	struct rl_softc		*sc;
2031
2032	sc = device_get_softc(dev);
2033
2034	RL_LOCK(sc);
2035	rl_stop(sc);
2036	/*
2037	 * Mark interface as down since otherwise we will panic if
2038	 * interrupt comes in later on, which can happen in some
2039	 * cases.
2040	 */
2041	sc->rl_ifp->if_flags &= ~IFF_UP;
2042	rl_setwol(sc);
2043	RL_UNLOCK(sc);
2044
2045	return (0);
2046}
2047
2048static void
2049rl_setwol(struct rl_softc *sc)
2050{
2051	struct ifnet		*ifp;
2052	int			pmc;
2053	uint16_t		pmstat;
2054	uint8_t			v;
2055
2056	RL_LOCK_ASSERT(sc);
2057
2058	ifp = sc->rl_ifp;
2059	if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2060		return;
2061	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2062		return;
2063
2064	/* Enable config register write. */
2065	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2066
2067	/* Enable PME. */
2068	v = CSR_READ_1(sc, sc->rl_cfg1);
2069	v &= ~RL_CFG1_PME;
2070	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2071		v |= RL_CFG1_PME;
2072	CSR_WRITE_1(sc, sc->rl_cfg1, v);
2073
2074	v = CSR_READ_1(sc, sc->rl_cfg3);
2075	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2076	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2077		v |= RL_CFG3_WOL_MAGIC;
2078	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2079
2080	v = CSR_READ_1(sc, sc->rl_cfg5);
2081	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2082	v &= ~RL_CFG5_WOL_LANWAKE;
2083	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2084		v |= RL_CFG5_WOL_UCAST;
2085	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2086		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2087	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2088		v |= RL_CFG5_WOL_LANWAKE;
2089	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2090
2091	/* Config register write done. */
2092	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2093
2094	/* Request PME if WOL is requested. */
2095	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2096	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2097	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2098		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2099	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2100}
2101
2102static void
2103rl_clrwol(struct rl_softc *sc)
2104{
2105	struct ifnet		*ifp;
2106	uint8_t			v;
2107
2108	ifp = sc->rl_ifp;
2109	if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2110		return;
2111
2112	/* Enable config register write. */
2113	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2114
2115	v = CSR_READ_1(sc, sc->rl_cfg3);
2116	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2117	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2118
2119	/* Config register write done. */
2120	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2121
2122	v = CSR_READ_1(sc, sc->rl_cfg5);
2123	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2124	v &= ~RL_CFG5_WOL_LANWAKE;
2125	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2126}
2127