1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: releng/12.0/sys/dev/jme/if_jme.c 333813 2018-05-18 20:13:34Z mmacy $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/proc.h>
43#include <sys/queue.h>
44#include <sys/socket.h>
45#include <sys/sockio.h>
46#include <sys/sysctl.h>
47#include <sys/taskqueue.h>
48
49#include <net/bpf.h>
50#include <net/if.h>
51#include <net/if_var.h>
52#include <net/if_arp.h>
53#include <net/ethernet.h>
54#include <net/if_dl.h>
55#include <net/if_media.h>
56#include <net/if_types.h>
57#include <net/if_vlan_var.h>
58
59#include <netinet/in.h>
60#include <netinet/in_systm.h>
61#include <netinet/ip.h>
62#include <netinet/tcp.h>
63
64#include <dev/mii/mii.h>
65#include <dev/mii/miivar.h>
66
67#include <dev/pci/pcireg.h>
68#include <dev/pci/pcivar.h>
69
70#include <machine/bus.h>
71#include <machine/in_cksum.h>
72
73#include <dev/jme/if_jmereg.h>
74#include <dev/jme/if_jmevar.h>
75
76/* "device miibus" required.  See GENERIC if you get errors here. */
77#include "miibus_if.h"
78
79/* Define the following to disable printing Rx errors. */
80#undef	JME_SHOW_ERRORS
81
82#define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
83
84MODULE_DEPEND(jme, pci, 1, 1, 1);
85MODULE_DEPEND(jme, ether, 1, 1, 1);
86MODULE_DEPEND(jme, miibus, 1, 1, 1);
87
88/* Tunables. */
89static int msi_disable = 0;
90static int msix_disable = 0;
91TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
92TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
93
94/*
95 * Devices supported by this driver.
96 */
97static struct jme_dev {
98	uint16_t	jme_vendorid;
99	uint16_t	jme_deviceid;
100	const char	*jme_name;
101} jme_devs[] = {
102	{ VENDORID_JMICRON, DEVICEID_JMC250,
103	    "JMicron Inc, JMC25x Gigabit Ethernet" },
104	{ VENDORID_JMICRON, DEVICEID_JMC260,
105	    "JMicron Inc, JMC26x Fast Ethernet" },
106};
107
108static int jme_miibus_readreg(device_t, int, int);
109static int jme_miibus_writereg(device_t, int, int, int);
110static void jme_miibus_statchg(device_t);
111static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
112static int jme_mediachange(struct ifnet *);
113static int jme_probe(device_t);
114static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
115static int jme_eeprom_macaddr(struct jme_softc *);
116static int jme_efuse_macaddr(struct jme_softc *);
117static void jme_reg_macaddr(struct jme_softc *);
118static void jme_set_macaddr(struct jme_softc *, uint8_t *);
119static void jme_map_intr_vector(struct jme_softc *);
120static int jme_attach(device_t);
121static int jme_detach(device_t);
122static void jme_sysctl_node(struct jme_softc *);
123static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
124static int jme_dma_alloc(struct jme_softc *);
125static void jme_dma_free(struct jme_softc *);
126static int jme_shutdown(device_t);
127static void jme_setlinkspeed(struct jme_softc *);
128static void jme_setwol(struct jme_softc *);
129static int jme_suspend(device_t);
130static int jme_resume(device_t);
131static int jme_encap(struct jme_softc *, struct mbuf **);
132static void jme_start(struct ifnet *);
133static void jme_start_locked(struct ifnet *);
134static void jme_watchdog(struct jme_softc *);
135static int jme_ioctl(struct ifnet *, u_long, caddr_t);
136static void jme_mac_config(struct jme_softc *);
137static void jme_link_task(void *, int);
138static int jme_intr(void *);
139static void jme_int_task(void *, int);
140static void jme_txeof(struct jme_softc *);
141static __inline void jme_discard_rxbuf(struct jme_softc *, int);
142static void jme_rxeof(struct jme_softc *);
143static int jme_rxintr(struct jme_softc *, int);
144static void jme_tick(void *);
145static void jme_reset(struct jme_softc *);
146static void jme_init(void *);
147static void jme_init_locked(struct jme_softc *);
148static void jme_stop(struct jme_softc *);
149static void jme_stop_tx(struct jme_softc *);
150static void jme_stop_rx(struct jme_softc *);
151static int jme_init_rx_ring(struct jme_softc *);
152static void jme_init_tx_ring(struct jme_softc *);
153static void jme_init_ssb(struct jme_softc *);
154static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
155static void jme_set_vlan(struct jme_softc *);
156static void jme_set_filter(struct jme_softc *);
157static void jme_stats_clear(struct jme_softc *);
158static void jme_stats_save(struct jme_softc *);
159static void jme_stats_update(struct jme_softc *);
160static void jme_phy_down(struct jme_softc *);
161static void jme_phy_up(struct jme_softc *);
162static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
163static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
164static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
165static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
166static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
167static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
168
169
170static device_method_t jme_methods[] = {
171	/* Device interface. */
172	DEVMETHOD(device_probe,		jme_probe),
173	DEVMETHOD(device_attach,	jme_attach),
174	DEVMETHOD(device_detach,	jme_detach),
175	DEVMETHOD(device_shutdown,	jme_shutdown),
176	DEVMETHOD(device_suspend,	jme_suspend),
177	DEVMETHOD(device_resume,	jme_resume),
178
179	/* MII interface. */
180	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
181	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
182	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
183
184	{ NULL, NULL }
185};
186
187static driver_t jme_driver = {
188	"jme",
189	jme_methods,
190	sizeof(struct jme_softc)
191};
192
193static devclass_t jme_devclass;
194
195DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
196DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
197
198static struct resource_spec jme_res_spec_mem[] = {
199	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
200	{ -1,			0,		0 }
201};
202
203static struct resource_spec jme_irq_spec_legacy[] = {
204	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
205	{ -1,			0,		0 }
206};
207
208static struct resource_spec jme_irq_spec_msi[] = {
209	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
210	{ -1,			0,		0 }
211};
212
213/*
214 *	Read a PHY register on the MII of the JMC250.
215 */
216static int
217jme_miibus_readreg(device_t dev, int phy, int reg)
218{
219	struct jme_softc *sc;
220	uint32_t val;
221	int i;
222
223	sc = device_get_softc(dev);
224
225	/* For FPGA version, PHY address 0 should be ignored. */
226	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
227		return (0);
228
229	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
230	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
231	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
232		DELAY(1);
233		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
234			break;
235	}
236
237	if (i == 0) {
238		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
239		return (0);
240	}
241
242	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
243}
244
245/*
246 *	Write a PHY register on the MII of the JMC250.
247 */
248static int
249jme_miibus_writereg(device_t dev, int phy, int reg, int val)
250{
251	struct jme_softc *sc;
252	int i;
253
254	sc = device_get_softc(dev);
255
256	/* For FPGA version, PHY address 0 should be ignored. */
257	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
258		return (0);
259
260	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
261	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
262	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
263	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
264		DELAY(1);
265		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
266			break;
267	}
268
269	if (i == 0)
270		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
271
272	return (0);
273}
274
275/*
276 *	Callback from MII layer when media changes.
277 */
278static void
279jme_miibus_statchg(device_t dev)
280{
281	struct jme_softc *sc;
282
283	sc = device_get_softc(dev);
284	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
285}
286
287/*
288 *	Get the current interface media status.
289 */
290static void
291jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
292{
293	struct jme_softc *sc;
294	struct mii_data *mii;
295
296	sc = ifp->if_softc;
297	JME_LOCK(sc);
298	if ((ifp->if_flags & IFF_UP) == 0) {
299		JME_UNLOCK(sc);
300		return;
301	}
302	mii = device_get_softc(sc->jme_miibus);
303
304	mii_pollstat(mii);
305	ifmr->ifm_status = mii->mii_media_status;
306	ifmr->ifm_active = mii->mii_media_active;
307	JME_UNLOCK(sc);
308}
309
310/*
311 *	Set hardware to newly-selected media.
312 */
313static int
314jme_mediachange(struct ifnet *ifp)
315{
316	struct jme_softc *sc;
317	struct mii_data *mii;
318	struct mii_softc *miisc;
319	int error;
320
321	sc = ifp->if_softc;
322	JME_LOCK(sc);
323	mii = device_get_softc(sc->jme_miibus);
324	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
325		PHY_RESET(miisc);
326	error = mii_mediachg(mii);
327	JME_UNLOCK(sc);
328
329	return (error);
330}
331
332static int
333jme_probe(device_t dev)
334{
335	struct jme_dev *sp;
336	int i;
337	uint16_t vendor, devid;
338
339	vendor = pci_get_vendor(dev);
340	devid = pci_get_device(dev);
341	sp = jme_devs;
342	for (i = 0; i < nitems(jme_devs); i++, sp++) {
343		if (vendor == sp->jme_vendorid &&
344		    devid == sp->jme_deviceid) {
345			device_set_desc(dev, sp->jme_name);
346			return (BUS_PROBE_DEFAULT);
347		}
348	}
349
350	return (ENXIO);
351}
352
353static int
354jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
355{
356	uint32_t reg;
357	int i;
358
359	*val = 0;
360	for (i = JME_TIMEOUT; i > 0; i--) {
361		reg = CSR_READ_4(sc, JME_SMBCSR);
362		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
363			break;
364		DELAY(1);
365	}
366
367	if (i == 0) {
368		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
369		return (ETIMEDOUT);
370	}
371
372	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
373	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
374	for (i = JME_TIMEOUT; i > 0; i--) {
375		DELAY(1);
376		reg = CSR_READ_4(sc, JME_SMBINTF);
377		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
378			break;
379	}
380
381	if (i == 0) {
382		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
383		return (ETIMEDOUT);
384	}
385
386	reg = CSR_READ_4(sc, JME_SMBINTF);
387	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
388
389	return (0);
390}
391
392static int
393jme_eeprom_macaddr(struct jme_softc *sc)
394{
395	uint8_t eaddr[ETHER_ADDR_LEN];
396	uint8_t fup, reg, val;
397	uint32_t offset;
398	int match;
399
400	offset = 0;
401	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
402	    fup != JME_EEPROM_SIG0)
403		return (ENOENT);
404	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
405	    fup != JME_EEPROM_SIG1)
406		return (ENOENT);
407	match = 0;
408	do {
409		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
410			break;
411		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
412		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
413			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
414				break;
415			if (reg >= JME_PAR0 &&
416			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
417				if (jme_eeprom_read_byte(sc, offset + 2,
418				    &val) != 0)
419					break;
420				eaddr[reg - JME_PAR0] = val;
421				match++;
422			}
423		}
424		/* Check for the end of EEPROM descriptor. */
425		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
426			break;
427		/* Try next eeprom descriptor. */
428		offset += JME_EEPROM_DESC_BYTES;
429	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
430
431	if (match == ETHER_ADDR_LEN) {
432		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
433		return (0);
434	}
435
436	return (ENOENT);
437}
438
439static int
440jme_efuse_macaddr(struct jme_softc *sc)
441{
442	uint32_t reg;
443	int i;
444
445	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
446	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
447	    EFUSE_CTL1_AUTOLAOD_DONE)
448		return (ENOENT);
449	/* Reset eFuse controller. */
450	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
451	reg |= EFUSE_CTL2_RESET;
452	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
453	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
454	reg &= ~EFUSE_CTL2_RESET;
455	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
456
457	/* Have eFuse reload station address to MAC controller. */
458	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
459	reg &= ~EFUSE_CTL1_CMD_MASK;
460	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
461	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
462
463	/*
464	 * Verify completion of eFuse autload command.  It should be
465	 * completed within 108us.
466	 */
467	DELAY(110);
468	for (i = 10; i > 0; i--) {
469		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
470		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
471		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
472			DELAY(20);
473			continue;
474		}
475		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
476			break;
477		/* Station address loading is still in progress. */
478		DELAY(20);
479	}
480	if (i == 0) {
481		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
482		return (ETIMEDOUT);
483	}
484
485	return (0);
486}
487
488static void
489jme_reg_macaddr(struct jme_softc *sc)
490{
491	uint32_t par0, par1;
492
493	/* Read station address. */
494	par0 = CSR_READ_4(sc, JME_PAR0);
495	par1 = CSR_READ_4(sc, JME_PAR1);
496	par1 &= 0xFFFF;
497	if ((par0 == 0 && par1 == 0) ||
498	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
499		device_printf(sc->jme_dev,
500		    "Failed to retrieve Ethernet address.\n");
501	} else {
502		/*
503		 * For controllers that use eFuse, the station address
504		 * could also be extracted from JME_PCI_PAR0 and
505		 * JME_PCI_PAR1 registers in PCI configuration space.
506		 * Each register holds exactly half of station address(24bits)
507		 * so use JME_PAR0, JME_PAR1 registers instead.
508		 */
509		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
510		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
511		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
512		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
513		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
514		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
515	}
516}
517
518static void
519jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
520{
521	uint32_t val;
522	int i;
523
524	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
525		/*
526		 * Avoid reprogramming station address if the address
527		 * is the same as previous one.  Note, reprogrammed
528		 * station address is permanent as if it was written
529		 * to EEPROM. So if station address was changed by
530		 * admistrator it's possible to lose factory configured
531		 * address when driver fails to restore its address.
532		 * (e.g. reboot or system crash)
533		 */
534		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
535			for (i = 0; i < ETHER_ADDR_LEN; i++) {
536				val = JME_EFUSE_EEPROM_FUNC0 <<
537				    JME_EFUSE_EEPROM_FUNC_SHIFT;
538				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
539				    JME_EFUSE_EEPROM_PAGE_SHIFT;
540				val |= (JME_PAR0 + i) <<
541				    JME_EFUSE_EEPROM_ADDR_SHIFT;
542				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
543				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
544				    val | JME_EFUSE_EEPROM_WRITE, 4);
545			}
546		}
547	} else {
548		CSR_WRITE_4(sc, JME_PAR0,
549		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
550		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
551	}
552}
553
554static void
555jme_map_intr_vector(struct jme_softc *sc)
556{
557	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
558
559	bzero(map, sizeof(map));
560
561	/* Map Tx interrupts source to MSI/MSIX vector 2. */
562	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
563	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
564	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
565	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
566	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
567	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
568	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
569	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
570	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
571	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
572	map[MSINUM_REG_INDEX(N_INTR_TXQ5_COMP)] |=
573	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
574	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
575	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
576	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
577	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
578	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
579	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
580	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
581	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
582
583	/* Map Rx interrupts source to MSI/MSIX vector 1. */
584	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
585	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
586	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
587	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
588	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
589	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
590	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
591	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
592	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
593	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
594	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
595	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
596	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
597	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
598	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
599	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
600	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
601	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
602	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
603	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
604	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
605	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
606	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
607	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
608	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
609	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
610	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
611	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
612	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
613	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
614	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
615	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
616
617	/* Map all other interrupts source to MSI/MSIX vector 0. */
618	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
619	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
620	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
621	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
622}
623
624static int
625jme_attach(device_t dev)
626{
627	struct jme_softc *sc;
628	struct ifnet *ifp;
629	struct mii_softc *miisc;
630	struct mii_data *mii;
631	uint32_t reg;
632	uint16_t burst;
633	int error, i, mii_flags, msic, msixc, pmc;
634
635	error = 0;
636	sc = device_get_softc(dev);
637	sc->jme_dev = dev;
638
639	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
640	    MTX_DEF);
641	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
642	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
643	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
644
645	/*
646	 * Map the device. JMC250 supports both memory mapped and I/O
647	 * register space access. Because I/O register access should
648	 * use different BARs to access registers it's waste of time
649	 * to use I/O register spce access. JMC250 uses 16K to map
650	 * entire memory space.
651	 */
652	pci_enable_busmaster(dev);
653	sc->jme_res_spec = jme_res_spec_mem;
654	sc->jme_irq_spec = jme_irq_spec_legacy;
655	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
656	if (error != 0) {
657		device_printf(dev, "cannot allocate memory resources.\n");
658		goto fail;
659	}
660
661	/* Allocate IRQ resources. */
662	msixc = pci_msix_count(dev);
663	msic = pci_msi_count(dev);
664	if (bootverbose) {
665		device_printf(dev, "MSIX count : %d\n", msixc);
666		device_printf(dev, "MSI count : %d\n", msic);
667	}
668
669	/* Use 1 MSI/MSI-X. */
670	if (msixc > 1)
671		msixc = 1;
672	if (msic > 1)
673		msic = 1;
674	/* Prefer MSIX over MSI. */
675	if (msix_disable == 0 || msi_disable == 0) {
676		if (msix_disable == 0 && msixc > 0 &&
677		    pci_alloc_msix(dev, &msixc) == 0) {
678			if (msixc == 1) {
679				device_printf(dev, "Using %d MSIX messages.\n",
680				    msixc);
681				sc->jme_flags |= JME_FLAG_MSIX;
682				sc->jme_irq_spec = jme_irq_spec_msi;
683			} else
684				pci_release_msi(dev);
685		}
686		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
687		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
688			if (msic == 1) {
689				device_printf(dev, "Using %d MSI messages.\n",
690				    msic);
691				sc->jme_flags |= JME_FLAG_MSI;
692				sc->jme_irq_spec = jme_irq_spec_msi;
693			} else
694				pci_release_msi(dev);
695		}
696		/* Map interrupt vector 0, 1 and 2. */
697		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
698		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
699			jme_map_intr_vector(sc);
700	}
701
702	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
703	if (error != 0) {
704		device_printf(dev, "cannot allocate IRQ resources.\n");
705		goto fail;
706	}
707
708	sc->jme_rev = pci_get_device(dev);
709	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
710		sc->jme_flags |= JME_FLAG_FASTETH;
711		sc->jme_flags |= JME_FLAG_NOJUMBO;
712	}
713	reg = CSR_READ_4(sc, JME_CHIPMODE);
714	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
715	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
716	    CHIPMODE_NOT_FPGA)
717		sc->jme_flags |= JME_FLAG_FPGA;
718	if (bootverbose) {
719		device_printf(dev, "PCI device revision : 0x%04x\n",
720		    sc->jme_rev);
721		device_printf(dev, "Chip revision : 0x%02x\n",
722		    sc->jme_chip_rev);
723		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
724			device_printf(dev, "FPGA revision : 0x%04x\n",
725			    (reg & CHIPMODE_FPGA_REV_MASK) >>
726			    CHIPMODE_FPGA_REV_SHIFT);
727	}
728	if (sc->jme_chip_rev == 0xFF) {
729		device_printf(dev, "Unknown chip revision : 0x%02x\n",
730		    sc->jme_rev);
731		error = ENXIO;
732		goto fail;
733	}
734
735	/* Identify controller features and bugs. */
736	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
737		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
738		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
739			sc->jme_flags |= JME_FLAG_DMA32BIT;
740		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
741			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
742		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
743		sc->jme_flags |= JME_FLAG_HWMIB;
744	}
745
746	/* Reset the ethernet controller. */
747	jme_reset(sc);
748
749	/* Get station address. */
750	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
751		error = jme_efuse_macaddr(sc);
752		if (error == 0)
753			jme_reg_macaddr(sc);
754	} else {
755		error = ENOENT;
756		reg = CSR_READ_4(sc, JME_SMBCSR);
757		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
758			error = jme_eeprom_macaddr(sc);
759		if (error != 0 && bootverbose)
760			device_printf(sc->jme_dev,
761			    "ethernet hardware address not found in EEPROM.\n");
762		if (error != 0)
763			jme_reg_macaddr(sc);
764	}
765
766	/*
767	 * Save PHY address.
768	 * Integrated JR0211 has fixed PHY address whereas FPGA version
769	 * requires PHY probing to get correct PHY address.
770	 */
771	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
772		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
773		    GPREG0_PHY_ADDR_MASK;
774		if (bootverbose)
775			device_printf(dev, "PHY is at address %d.\n",
776			    sc->jme_phyaddr);
777	} else
778		sc->jme_phyaddr = 0;
779
780	/* Set max allowable DMA size. */
781	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
782		sc->jme_flags |= JME_FLAG_PCIE;
783		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
784		if (bootverbose) {
785			device_printf(dev, "Read request size : %d bytes.\n",
786			    128 << ((burst >> 12) & 0x07));
787			device_printf(dev, "TLP payload size : %d bytes.\n",
788			    128 << ((burst >> 5) & 0x07));
789		}
790		switch ((burst >> 12) & 0x07) {
791		case 0:
792			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
793			break;
794		case 1:
795			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
796			break;
797		default:
798			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
799			break;
800		}
801		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
802	} else {
803		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
804		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
805	}
806	/* Create coalescing sysctl node. */
807	jme_sysctl_node(sc);
808	if ((error = jme_dma_alloc(sc)) != 0)
809		goto fail;
810
811	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
812	if (ifp == NULL) {
813		device_printf(dev, "cannot allocate ifnet structure.\n");
814		error = ENXIO;
815		goto fail;
816	}
817
818	ifp->if_softc = sc;
819	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
820	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
821	ifp->if_ioctl = jme_ioctl;
822	ifp->if_start = jme_start;
823	ifp->if_init = jme_init;
824	ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
825	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
826	IFQ_SET_READY(&ifp->if_snd);
827	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
828	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
829	ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
830	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
831		sc->jme_flags |= JME_FLAG_PMCAP;
832		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
833	}
834	ifp->if_capenable = ifp->if_capabilities;
835
836	/* Wakeup PHY. */
837	jme_phy_up(sc);
838	mii_flags = MIIF_DOPAUSE;
839	/* Ask PHY calibration to PHY driver. */
840	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
841		mii_flags |= MIIF_MACPRIV0;
842	/* Set up MII bus. */
843	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
844	    jme_mediastatus, BMSR_DEFCAPMASK,
845	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
846	    MII_OFFSET_ANY, mii_flags);
847	if (error != 0) {
848		device_printf(dev, "attaching PHYs failed\n");
849		goto fail;
850	}
851
852	/*
853	 * Force PHY to FPGA mode.
854	 */
855	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
856		mii = device_get_softc(sc->jme_miibus);
857		if (mii->mii_instance != 0) {
858			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
859				if (miisc->mii_phy != 0) {
860					sc->jme_phyaddr = miisc->mii_phy;
861					break;
862				}
863			}
864			if (sc->jme_phyaddr != 0) {
865				device_printf(sc->jme_dev,
866				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
867				/* vendor magic. */
868				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
869				    0x0004);
870			}
871		}
872	}
873
874	ether_ifattach(ifp, sc->jme_eaddr);
875
876	/* VLAN capability setup */
877	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
878	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
879	ifp->if_capenable = ifp->if_capabilities;
880
881	/* Tell the upper layer(s) we support long frames. */
882	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
883
884	/* Create local taskq. */
885	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
886	    taskqueue_thread_enqueue, &sc->jme_tq);
887	if (sc->jme_tq == NULL) {
888		device_printf(dev, "could not create taskqueue.\n");
889		ether_ifdetach(ifp);
890		error = ENXIO;
891		goto fail;
892	}
893	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
894	    device_get_nameunit(sc->jme_dev));
895
896	for (i = 0; i < 1; i++) {
897		error = bus_setup_intr(dev, sc->jme_irq[i],
898		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
899		    &sc->jme_intrhand[i]);
900		if (error != 0)
901			break;
902	}
903
904	if (error != 0) {
905		device_printf(dev, "could not set up interrupt handler.\n");
906		taskqueue_free(sc->jme_tq);
907		sc->jme_tq = NULL;
908		ether_ifdetach(ifp);
909		goto fail;
910	}
911
912fail:
913	if (error != 0)
914		jme_detach(dev);
915
916	return (error);
917}
918
919static int
920jme_detach(device_t dev)
921{
922	struct jme_softc *sc;
923	struct ifnet *ifp;
924	int i;
925
926	sc = device_get_softc(dev);
927
928	ifp = sc->jme_ifp;
929	if (device_is_attached(dev)) {
930		JME_LOCK(sc);
931		sc->jme_flags |= JME_FLAG_DETACH;
932		jme_stop(sc);
933		JME_UNLOCK(sc);
934		callout_drain(&sc->jme_tick_ch);
935		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
936		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
937		/* Restore possibly modified station address. */
938		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
939			jme_set_macaddr(sc, sc->jme_eaddr);
940		ether_ifdetach(ifp);
941	}
942
943	if (sc->jme_tq != NULL) {
944		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
945		taskqueue_free(sc->jme_tq);
946		sc->jme_tq = NULL;
947	}
948
949	if (sc->jme_miibus != NULL) {
950		device_delete_child(dev, sc->jme_miibus);
951		sc->jme_miibus = NULL;
952	}
953	bus_generic_detach(dev);
954	jme_dma_free(sc);
955
956	if (ifp != NULL) {
957		if_free(ifp);
958		sc->jme_ifp = NULL;
959	}
960
961	for (i = 0; i < 1; i++) {
962		if (sc->jme_intrhand[i] != NULL) {
963			bus_teardown_intr(dev, sc->jme_irq[i],
964			    sc->jme_intrhand[i]);
965			sc->jme_intrhand[i] = NULL;
966		}
967	}
968
969	if (sc->jme_irq[0] != NULL)
970		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
971	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
972		pci_release_msi(dev);
973	if (sc->jme_res[0] != NULL)
974		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
975	mtx_destroy(&sc->jme_mtx);
976
977	return (0);
978}
979
980#define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
981	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
982
983static void
984jme_sysctl_node(struct jme_softc *sc)
985{
986	struct sysctl_ctx_list *ctx;
987	struct sysctl_oid_list *child, *parent;
988	struct sysctl_oid *tree;
989	struct jme_hw_stats *stats;
990	int error;
991
992	stats = &sc->jme_stats;
993	ctx = device_get_sysctl_ctx(sc->jme_dev);
994	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
995
996	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
997	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0,
998	    sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
999
1000	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
1001	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0,
1002	    sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
1003
1004	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
1005	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0,
1006	    sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
1007
1008	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
1009	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0,
1010	    sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
1011
1012	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1013	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0,
1014	    sysctl_hw_jme_proc_limit, "I",
1015	    "max number of Rx events to process");
1016
1017	/* Pull in device tunables. */
1018	sc->jme_process_limit = JME_PROC_DEFAULT;
1019	error = resource_int_value(device_get_name(sc->jme_dev),
1020	    device_get_unit(sc->jme_dev), "process_limit",
1021	    &sc->jme_process_limit);
1022	if (error == 0) {
1023		if (sc->jme_process_limit < JME_PROC_MIN ||
1024		    sc->jme_process_limit > JME_PROC_MAX) {
1025			device_printf(sc->jme_dev,
1026			    "process_limit value out of range; "
1027			    "using default: %d\n", JME_PROC_DEFAULT);
1028			sc->jme_process_limit = JME_PROC_DEFAULT;
1029		}
1030	}
1031
1032	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1033	error = resource_int_value(device_get_name(sc->jme_dev),
1034	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1035	if (error == 0) {
1036		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1037		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1038			device_printf(sc->jme_dev,
1039			    "tx_coal_to value out of range; "
1040			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1041			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1042		}
1043	}
1044
1045	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1046	error = resource_int_value(device_get_name(sc->jme_dev),
1047	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1048	if (error == 0) {
1049		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1050		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1051			device_printf(sc->jme_dev,
1052			    "tx_coal_pkt value out of range; "
1053			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1054			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1055		}
1056	}
1057
1058	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1059	error = resource_int_value(device_get_name(sc->jme_dev),
1060	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1061	if (error == 0) {
1062		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1063		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1064			device_printf(sc->jme_dev,
1065			    "rx_coal_to value out of range; "
1066			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1067			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1068		}
1069	}
1070
1071	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1072	error = resource_int_value(device_get_name(sc->jme_dev),
1073	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1074	if (error == 0) {
1075		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1076		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1077			device_printf(sc->jme_dev,
1078			    "tx_coal_pkt value out of range; "
1079			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1080			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1081		}
1082	}
1083
1084	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1085		return;
1086
1087	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1088	    NULL, "JME statistics");
1089	parent = SYSCTL_CHILDREN(tree);
1090
1091	/* Rx statistics. */
1092	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1093	    NULL, "Rx MAC statistics");
1094	child = SYSCTL_CHILDREN(tree);
1095	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1096	    &stats->rx_good_frames, "Good frames");
1097	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1098	    &stats->rx_crc_errs, "CRC errors");
1099	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1100	    &stats->rx_mii_errs, "MII errors");
1101	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1102	    &stats->rx_fifo_oflows, "FIFO overflows");
1103	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1104	    &stats->rx_desc_empty, "Descriptor empty");
1105	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1106	    &stats->rx_bad_frames, "Bad frames");
1107
1108	/* Tx statistics. */
1109	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1110	    NULL, "Tx MAC statistics");
1111	child = SYSCTL_CHILDREN(tree);
1112	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1113	    &stats->tx_good_frames, "Good frames");
1114	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1115	    &stats->tx_bad_frames, "Bad frames");
1116}
1117
1118#undef	JME_SYSCTL_STAT_ADD32
1119
1120struct jme_dmamap_arg {
1121	bus_addr_t	jme_busaddr;
1122};
1123
1124static void
1125jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1126{
1127	struct jme_dmamap_arg *ctx;
1128
1129	if (error != 0)
1130		return;
1131
1132	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1133
1134	ctx = (struct jme_dmamap_arg *)arg;
1135	ctx->jme_busaddr = segs[0].ds_addr;
1136}
1137
1138static int
1139jme_dma_alloc(struct jme_softc *sc)
1140{
1141	struct jme_dmamap_arg ctx;
1142	struct jme_txdesc *txd;
1143	struct jme_rxdesc *rxd;
1144	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1145	int error, i;
1146
1147	lowaddr = BUS_SPACE_MAXADDR;
1148	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1149		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1150
1151again:
1152	/* Create parent ring tag. */
1153	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1154	    1, 0,			/* algnmnt, boundary */
1155	    lowaddr,			/* lowaddr */
1156	    BUS_SPACE_MAXADDR,		/* highaddr */
1157	    NULL, NULL,			/* filter, filterarg */
1158	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1159	    0,				/* nsegments */
1160	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1161	    0,				/* flags */
1162	    NULL, NULL,			/* lockfunc, lockarg */
1163	    &sc->jme_cdata.jme_ring_tag);
1164	if (error != 0) {
1165		device_printf(sc->jme_dev,
1166		    "could not create parent ring DMA tag.\n");
1167		goto fail;
1168	}
1169	/* Create tag for Tx ring. */
1170	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1171	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1172	    BUS_SPACE_MAXADDR,		/* lowaddr */
1173	    BUS_SPACE_MAXADDR,		/* highaddr */
1174	    NULL, NULL,			/* filter, filterarg */
1175	    JME_TX_RING_SIZE,		/* maxsize */
1176	    1,				/* nsegments */
1177	    JME_TX_RING_SIZE,		/* maxsegsize */
1178	    0,				/* flags */
1179	    NULL, NULL,			/* lockfunc, lockarg */
1180	    &sc->jme_cdata.jme_tx_ring_tag);
1181	if (error != 0) {
1182		device_printf(sc->jme_dev,
1183		    "could not allocate Tx ring DMA tag.\n");
1184		goto fail;
1185	}
1186
1187	/* Create tag for Rx ring. */
1188	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1189	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1190	    lowaddr,			/* lowaddr */
1191	    BUS_SPACE_MAXADDR,		/* highaddr */
1192	    NULL, NULL,			/* filter, filterarg */
1193	    JME_RX_RING_SIZE,		/* maxsize */
1194	    1,				/* nsegments */
1195	    JME_RX_RING_SIZE,		/* maxsegsize */
1196	    0,				/* flags */
1197	    NULL, NULL,			/* lockfunc, lockarg */
1198	    &sc->jme_cdata.jme_rx_ring_tag);
1199	if (error != 0) {
1200		device_printf(sc->jme_dev,
1201		    "could not allocate Rx ring DMA tag.\n");
1202		goto fail;
1203	}
1204
1205	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1206	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1207	    (void **)&sc->jme_rdata.jme_tx_ring,
1208	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1209	    &sc->jme_cdata.jme_tx_ring_map);
1210	if (error != 0) {
1211		device_printf(sc->jme_dev,
1212		    "could not allocate DMA'able memory for Tx ring.\n");
1213		goto fail;
1214	}
1215
1216	ctx.jme_busaddr = 0;
1217	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1218	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1219	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1220	if (error != 0 || ctx.jme_busaddr == 0) {
1221		device_printf(sc->jme_dev,
1222		    "could not load DMA'able memory for Tx ring.\n");
1223		goto fail;
1224	}
1225	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1226
1227	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1228	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1229	    (void **)&sc->jme_rdata.jme_rx_ring,
1230	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1231	    &sc->jme_cdata.jme_rx_ring_map);
1232	if (error != 0) {
1233		device_printf(sc->jme_dev,
1234		    "could not allocate DMA'able memory for Rx ring.\n");
1235		goto fail;
1236	}
1237
1238	ctx.jme_busaddr = 0;
1239	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1240	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1241	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1242	if (error != 0 || ctx.jme_busaddr == 0) {
1243		device_printf(sc->jme_dev,
1244		    "could not load DMA'able memory for Rx ring.\n");
1245		goto fail;
1246	}
1247	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1248
1249	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1250		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1251		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1252		    JME_TX_RING_SIZE;
1253		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1254		    JME_RX_RING_SIZE;
1255		if ((JME_ADDR_HI(tx_ring_end) !=
1256		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1257		    (JME_ADDR_HI(rx_ring_end) !=
1258		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1259			device_printf(sc->jme_dev, "4GB boundary crossed, "
1260			    "switching to 32bit DMA address mode.\n");
1261			jme_dma_free(sc);
1262			/* Limit DMA address space to 32bit and try again. */
1263			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1264			goto again;
1265		}
1266	}
1267
1268	lowaddr = BUS_SPACE_MAXADDR;
1269	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1270		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1271	/* Create parent buffer tag. */
1272	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1273	    1, 0,			/* algnmnt, boundary */
1274	    lowaddr,			/* lowaddr */
1275	    BUS_SPACE_MAXADDR,		/* highaddr */
1276	    NULL, NULL,			/* filter, filterarg */
1277	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1278	    0,				/* nsegments */
1279	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1280	    0,				/* flags */
1281	    NULL, NULL,			/* lockfunc, lockarg */
1282	    &sc->jme_cdata.jme_buffer_tag);
1283	if (error != 0) {
1284		device_printf(sc->jme_dev,
1285		    "could not create parent buffer DMA tag.\n");
1286		goto fail;
1287	}
1288
1289	/* Create shadow status block tag. */
1290	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1291	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1292	    BUS_SPACE_MAXADDR,		/* lowaddr */
1293	    BUS_SPACE_MAXADDR,		/* highaddr */
1294	    NULL, NULL,			/* filter, filterarg */
1295	    JME_SSB_SIZE,		/* maxsize */
1296	    1,				/* nsegments */
1297	    JME_SSB_SIZE,		/* maxsegsize */
1298	    0,				/* flags */
1299	    NULL, NULL,			/* lockfunc, lockarg */
1300	    &sc->jme_cdata.jme_ssb_tag);
1301	if (error != 0) {
1302		device_printf(sc->jme_dev,
1303		    "could not create shared status block DMA tag.\n");
1304		goto fail;
1305	}
1306
1307	/* Create tag for Tx buffers. */
1308	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1309	    1, 0,			/* algnmnt, boundary */
1310	    BUS_SPACE_MAXADDR,		/* lowaddr */
1311	    BUS_SPACE_MAXADDR,		/* highaddr */
1312	    NULL, NULL,			/* filter, filterarg */
1313	    JME_TSO_MAXSIZE,		/* maxsize */
1314	    JME_MAXTXSEGS,		/* nsegments */
1315	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1316	    0,				/* flags */
1317	    NULL, NULL,			/* lockfunc, lockarg */
1318	    &sc->jme_cdata.jme_tx_tag);
1319	if (error != 0) {
1320		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1321		goto fail;
1322	}
1323
1324	/* Create tag for Rx buffers. */
1325	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1326	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1327	    BUS_SPACE_MAXADDR,		/* lowaddr */
1328	    BUS_SPACE_MAXADDR,		/* highaddr */
1329	    NULL, NULL,			/* filter, filterarg */
1330	    MCLBYTES,			/* maxsize */
1331	    1,				/* nsegments */
1332	    MCLBYTES,			/* maxsegsize */
1333	    0,				/* flags */
1334	    NULL, NULL,			/* lockfunc, lockarg */
1335	    &sc->jme_cdata.jme_rx_tag);
1336	if (error != 0) {
1337		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1338		goto fail;
1339	}
1340
1341	/*
1342	 * Allocate DMA'able memory and load the DMA map for shared
1343	 * status block.
1344	 */
1345	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1346	    (void **)&sc->jme_rdata.jme_ssb_block,
1347	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1348	    &sc->jme_cdata.jme_ssb_map);
1349	if (error != 0) {
1350		device_printf(sc->jme_dev, "could not allocate DMA'able "
1351		    "memory for shared status block.\n");
1352		goto fail;
1353	}
1354
1355	ctx.jme_busaddr = 0;
1356	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1357	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1358	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1359	if (error != 0 || ctx.jme_busaddr == 0) {
1360		device_printf(sc->jme_dev, "could not load DMA'able memory "
1361		    "for shared status block.\n");
1362		goto fail;
1363	}
1364	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1365
1366	/* Create DMA maps for Tx buffers. */
1367	for (i = 0; i < JME_TX_RING_CNT; i++) {
1368		txd = &sc->jme_cdata.jme_txdesc[i];
1369		txd->tx_m = NULL;
1370		txd->tx_dmamap = NULL;
1371		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1372		    &txd->tx_dmamap);
1373		if (error != 0) {
1374			device_printf(sc->jme_dev,
1375			    "could not create Tx dmamap.\n");
1376			goto fail;
1377		}
1378	}
1379	/* Create DMA maps for Rx buffers. */
1380	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1381	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1382		device_printf(sc->jme_dev,
1383		    "could not create spare Rx dmamap.\n");
1384		goto fail;
1385	}
1386	for (i = 0; i < JME_RX_RING_CNT; i++) {
1387		rxd = &sc->jme_cdata.jme_rxdesc[i];
1388		rxd->rx_m = NULL;
1389		rxd->rx_dmamap = NULL;
1390		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1391		    &rxd->rx_dmamap);
1392		if (error != 0) {
1393			device_printf(sc->jme_dev,
1394			    "could not create Rx dmamap.\n");
1395			goto fail;
1396		}
1397	}
1398
1399fail:
1400	return (error);
1401}
1402
1403static void
1404jme_dma_free(struct jme_softc *sc)
1405{
1406	struct jme_txdesc *txd;
1407	struct jme_rxdesc *rxd;
1408	int i;
1409
1410	/* Tx ring */
1411	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1412		if (sc->jme_rdata.jme_tx_ring_paddr)
1413			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1414			    sc->jme_cdata.jme_tx_ring_map);
1415		if (sc->jme_rdata.jme_tx_ring)
1416			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1417			    sc->jme_rdata.jme_tx_ring,
1418			    sc->jme_cdata.jme_tx_ring_map);
1419		sc->jme_rdata.jme_tx_ring = NULL;
1420		sc->jme_rdata.jme_tx_ring_paddr = 0;
1421		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1422		sc->jme_cdata.jme_tx_ring_tag = NULL;
1423	}
1424	/* Rx ring */
1425	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1426		if (sc->jme_rdata.jme_rx_ring_paddr)
1427			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1428			    sc->jme_cdata.jme_rx_ring_map);
1429		if (sc->jme_rdata.jme_rx_ring)
1430			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1431			    sc->jme_rdata.jme_rx_ring,
1432			    sc->jme_cdata.jme_rx_ring_map);
1433		sc->jme_rdata.jme_rx_ring = NULL;
1434		sc->jme_rdata.jme_rx_ring_paddr = 0;
1435		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1436		sc->jme_cdata.jme_rx_ring_tag = NULL;
1437	}
1438	/* Tx buffers */
1439	if (sc->jme_cdata.jme_tx_tag != NULL) {
1440		for (i = 0; i < JME_TX_RING_CNT; i++) {
1441			txd = &sc->jme_cdata.jme_txdesc[i];
1442			if (txd->tx_dmamap != NULL) {
1443				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1444				    txd->tx_dmamap);
1445				txd->tx_dmamap = NULL;
1446			}
1447		}
1448		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1449		sc->jme_cdata.jme_tx_tag = NULL;
1450	}
1451	/* Rx buffers */
1452	if (sc->jme_cdata.jme_rx_tag != NULL) {
1453		for (i = 0; i < JME_RX_RING_CNT; i++) {
1454			rxd = &sc->jme_cdata.jme_rxdesc[i];
1455			if (rxd->rx_dmamap != NULL) {
1456				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1457				    rxd->rx_dmamap);
1458				rxd->rx_dmamap = NULL;
1459			}
1460		}
1461		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1462			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1463			    sc->jme_cdata.jme_rx_sparemap);
1464			sc->jme_cdata.jme_rx_sparemap = NULL;
1465		}
1466		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1467		sc->jme_cdata.jme_rx_tag = NULL;
1468	}
1469
1470	/* Shared status block. */
1471	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1472		if (sc->jme_rdata.jme_ssb_block_paddr)
1473			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1474			    sc->jme_cdata.jme_ssb_map);
1475		if (sc->jme_rdata.jme_ssb_block)
1476			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1477			    sc->jme_rdata.jme_ssb_block,
1478			    sc->jme_cdata.jme_ssb_map);
1479		sc->jme_rdata.jme_ssb_block = NULL;
1480		sc->jme_rdata.jme_ssb_block_paddr = 0;
1481		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1482		sc->jme_cdata.jme_ssb_tag = NULL;
1483	}
1484
1485	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1486		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1487		sc->jme_cdata.jme_buffer_tag = NULL;
1488	}
1489	if (sc->jme_cdata.jme_ring_tag != NULL) {
1490		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1491		sc->jme_cdata.jme_ring_tag = NULL;
1492	}
1493}
1494
1495/*
1496 *	Make sure the interface is stopped at reboot time.
1497 */
1498static int
1499jme_shutdown(device_t dev)
1500{
1501
1502	return (jme_suspend(dev));
1503}
1504
1505/*
1506 * Unlike other ethernet controllers, JMC250 requires
1507 * explicit resetting link speed to 10/100Mbps as gigabit
1508 * link will cunsume more power than 375mA.
1509 * Note, we reset the link speed to 10/100Mbps with
1510 * auto-negotiation but we don't know whether that operation
1511 * would succeed or not as we have no control after powering
1512 * off. If the renegotiation fail WOL may not work. Running
1513 * at 1Gbps draws more power than 375mA at 3.3V which is
1514 * specified in PCI specification and that would result in
1515 * complete shutdowning power to ethernet controller.
1516 *
1517 * TODO
1518 *  Save current negotiated media speed/duplex/flow-control
1519 *  to softc and restore the same link again after resuming.
1520 *  PHY handling such as power down/resetting to 100Mbps
1521 *  may be better handled in suspend method in phy driver.
1522 */
1523static void
1524jme_setlinkspeed(struct jme_softc *sc)
1525{
1526	struct mii_data *mii;
1527	int aneg, i;
1528
1529	JME_LOCK_ASSERT(sc);
1530
1531	mii = device_get_softc(sc->jme_miibus);
1532	mii_pollstat(mii);
1533	aneg = 0;
1534	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1535		switch IFM_SUBTYPE(mii->mii_media_active) {
1536		case IFM_10_T:
1537		case IFM_100_TX:
1538			return;
1539		case IFM_1000_T:
1540			aneg++;
1541		default:
1542			break;
1543		}
1544	}
1545	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1546	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1547	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1548	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1549	    BMCR_AUTOEN | BMCR_STARTNEG);
1550	DELAY(1000);
1551	if (aneg != 0) {
1552		/* Poll link state until jme(4) get a 10/100 link. */
1553		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1554			mii_pollstat(mii);
1555			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1556				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1557				case IFM_10_T:
1558				case IFM_100_TX:
1559					jme_mac_config(sc);
1560					return;
1561				default:
1562					break;
1563				}
1564			}
1565			JME_UNLOCK(sc);
1566			pause("jmelnk", hz);
1567			JME_LOCK(sc);
1568		}
1569		if (i == MII_ANEGTICKS_GIGE)
1570			device_printf(sc->jme_dev, "establishing link failed, "
1571			    "WOL may not work!");
1572	}
1573	/*
1574	 * No link, force MAC to have 100Mbps, full-duplex link.
1575	 * This is the last resort and may/may not work.
1576	 */
1577	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1578	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1579	jme_mac_config(sc);
1580}
1581
1582static void
1583jme_setwol(struct jme_softc *sc)
1584{
1585	struct ifnet *ifp;
1586	uint32_t gpr, pmcs;
1587	uint16_t pmstat;
1588	int pmc;
1589
1590	JME_LOCK_ASSERT(sc);
1591
1592	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1593		/* Remove Tx MAC/offload clock to save more power. */
1594		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1595			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1596			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1597			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1598		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1599			CSR_WRITE_4(sc, JME_GPREG1,
1600			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1601		/* No PME capability, PHY power down. */
1602		jme_phy_down(sc);
1603		return;
1604	}
1605
1606	ifp = sc->jme_ifp;
1607	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1608	pmcs = CSR_READ_4(sc, JME_PMCS);
1609	pmcs &= ~PMCS_WOL_ENB_MASK;
1610	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1611		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1612		/* Enable PME message. */
1613		gpr |= GPREG0_PME_ENB;
1614		/* For gigabit controllers, reset link speed to 10/100. */
1615		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1616			jme_setlinkspeed(sc);
1617	}
1618
1619	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1620	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1621	/* Remove Tx MAC/offload clock to save more power. */
1622	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1623		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1624		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1625		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1626	/* Request PME. */
1627	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1628	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1629	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1630		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1631	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1632	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1633		/* No WOL, PHY power down. */
1634		jme_phy_down(sc);
1635	}
1636}
1637
1638static int
1639jme_suspend(device_t dev)
1640{
1641	struct jme_softc *sc;
1642
1643	sc = device_get_softc(dev);
1644
1645	JME_LOCK(sc);
1646	jme_stop(sc);
1647	jme_setwol(sc);
1648	JME_UNLOCK(sc);
1649
1650	return (0);
1651}
1652
1653static int
1654jme_resume(device_t dev)
1655{
1656	struct jme_softc *sc;
1657	struct ifnet *ifp;
1658	uint16_t pmstat;
1659	int pmc;
1660
1661	sc = device_get_softc(dev);
1662
1663	JME_LOCK(sc);
1664	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1665		pmstat = pci_read_config(sc->jme_dev,
1666		    pmc + PCIR_POWER_STATUS, 2);
1667		/* Disable PME clear PME status. */
1668		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1669		pci_write_config(sc->jme_dev,
1670		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1671	}
1672	/* Wakeup PHY. */
1673	jme_phy_up(sc);
1674	ifp = sc->jme_ifp;
1675	if ((ifp->if_flags & IFF_UP) != 0) {
1676		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1677		jme_init_locked(sc);
1678	}
1679
1680	JME_UNLOCK(sc);
1681
1682	return (0);
1683}
1684
1685static int
1686jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1687{
1688	struct jme_txdesc *txd;
1689	struct jme_desc *desc;
1690	struct mbuf *m;
1691	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1692	int error, i, nsegs, prod;
1693	uint32_t cflags, tsosegsz;
1694
1695	JME_LOCK_ASSERT(sc);
1696
1697	M_ASSERTPKTHDR((*m_head));
1698
1699	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1700		/*
1701		 * Due to the adherence to NDIS specification JMC250
1702		 * assumes upper stack computed TCP pseudo checksum
1703		 * without including payload length. This breaks
1704		 * checksum offload for TSO case so recompute TCP
1705		 * pseudo checksum for JMC250. Hopefully this wouldn't
1706		 * be much burden on modern CPUs.
1707		 */
1708		struct ether_header *eh;
1709		struct ip *ip;
1710		struct tcphdr *tcp;
1711		uint32_t ip_off, poff;
1712
1713		if (M_WRITABLE(*m_head) == 0) {
1714			/* Get a writable copy. */
1715			m = m_dup(*m_head, M_NOWAIT);
1716			m_freem(*m_head);
1717			if (m == NULL) {
1718				*m_head = NULL;
1719				return (ENOBUFS);
1720			}
1721			*m_head = m;
1722		}
1723		ip_off = sizeof(struct ether_header);
1724		m = m_pullup(*m_head, ip_off);
1725		if (m == NULL) {
1726			*m_head = NULL;
1727			return (ENOBUFS);
1728		}
1729		eh = mtod(m, struct ether_header *);
1730		/* Check the existence of VLAN tag. */
1731		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1732			ip_off = sizeof(struct ether_vlan_header);
1733			m = m_pullup(m, ip_off);
1734			if (m == NULL) {
1735				*m_head = NULL;
1736				return (ENOBUFS);
1737			}
1738		}
1739		m = m_pullup(m, ip_off + sizeof(struct ip));
1740		if (m == NULL) {
1741			*m_head = NULL;
1742			return (ENOBUFS);
1743		}
1744		ip = (struct ip *)(mtod(m, char *) + ip_off);
1745		poff = ip_off + (ip->ip_hl << 2);
1746		m = m_pullup(m, poff + sizeof(struct tcphdr));
1747		if (m == NULL) {
1748			*m_head = NULL;
1749			return (ENOBUFS);
1750		}
1751		/*
1752		 * Reset IP checksum and recompute TCP pseudo
1753		 * checksum that NDIS specification requires.
1754		 */
1755		ip = (struct ip *)(mtod(m, char *) + ip_off);
1756		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1757		ip->ip_sum = 0;
1758		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1759			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1760			    ip->ip_dst.s_addr,
1761			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1762			/* No need to TSO, force IP checksum offload. */
1763			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1764			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1765		} else
1766			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1767			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1768		*m_head = m;
1769	}
1770
1771	prod = sc->jme_cdata.jme_tx_prod;
1772	txd = &sc->jme_cdata.jme_txdesc[prod];
1773
1774	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1775	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1776	if (error == EFBIG) {
1777		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1778		if (m == NULL) {
1779			m_freem(*m_head);
1780			*m_head = NULL;
1781			return (ENOMEM);
1782		}
1783		*m_head = m;
1784		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1785		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1786		if (error != 0) {
1787			m_freem(*m_head);
1788			*m_head = NULL;
1789			return (error);
1790		}
1791	} else if (error != 0)
1792		return (error);
1793	if (nsegs == 0) {
1794		m_freem(*m_head);
1795		*m_head = NULL;
1796		return (EIO);
1797	}
1798
1799	/*
1800	 * Check descriptor overrun. Leave one free descriptor.
1801	 * Since we always use 64bit address mode for transmitting,
1802	 * each Tx request requires one more dummy descriptor.
1803	 */
1804	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1805		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1806		return (ENOBUFS);
1807	}
1808
1809	m = *m_head;
1810	cflags = 0;
1811	tsosegsz = 0;
1812	/* Configure checksum offload and TSO. */
1813	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1814		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1815		    JME_TD_MSS_SHIFT;
1816		cflags |= JME_TD_TSO;
1817	} else {
1818		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1819			cflags |= JME_TD_IPCSUM;
1820		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1821			cflags |= JME_TD_TCPCSUM;
1822		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1823			cflags |= JME_TD_UDPCSUM;
1824	}
1825	/* Configure VLAN. */
1826	if ((m->m_flags & M_VLANTAG) != 0) {
1827		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1828		cflags |= JME_TD_VLAN_TAG;
1829	}
1830
1831	desc = &sc->jme_rdata.jme_tx_ring[prod];
1832	desc->flags = htole32(cflags);
1833	desc->buflen = htole32(tsosegsz);
1834	desc->addr_hi = htole32(m->m_pkthdr.len);
1835	desc->addr_lo = 0;
1836	sc->jme_cdata.jme_tx_cnt++;
1837	JME_DESC_INC(prod, JME_TX_RING_CNT);
1838	for (i = 0; i < nsegs; i++) {
1839		desc = &sc->jme_rdata.jme_tx_ring[prod];
1840		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1841		desc->buflen = htole32(txsegs[i].ds_len);
1842		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1843		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1844		sc->jme_cdata.jme_tx_cnt++;
1845		JME_DESC_INC(prod, JME_TX_RING_CNT);
1846	}
1847
1848	/* Update producer index. */
1849	sc->jme_cdata.jme_tx_prod = prod;
1850	/*
1851	 * Finally request interrupt and give the first descriptor
1852	 * owenership to hardware.
1853	 */
1854	desc = txd->tx_desc;
1855	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1856
1857	txd->tx_m = m;
1858	txd->tx_ndesc = nsegs + 1;
1859
1860	/* Sync descriptors. */
1861	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1862	    BUS_DMASYNC_PREWRITE);
1863	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1864	    sc->jme_cdata.jme_tx_ring_map,
1865	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1866
1867	return (0);
1868}
1869
1870static void
1871jme_start(struct ifnet *ifp)
1872{
1873        struct jme_softc *sc;
1874
1875	sc = ifp->if_softc;
1876	JME_LOCK(sc);
1877	jme_start_locked(ifp);
1878	JME_UNLOCK(sc);
1879}
1880
1881static void
1882jme_start_locked(struct ifnet *ifp)
1883{
1884        struct jme_softc *sc;
1885        struct mbuf *m_head;
1886	int enq;
1887
1888	sc = ifp->if_softc;
1889
1890	JME_LOCK_ASSERT(sc);
1891
1892	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1893		jme_txeof(sc);
1894
1895	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1896	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1897		return;
1898
1899	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1900		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1901		if (m_head == NULL)
1902			break;
1903		/*
1904		 * Pack the data into the transmit ring. If we
1905		 * don't have room, set the OACTIVE flag and wait
1906		 * for the NIC to drain the ring.
1907		 */
1908		if (jme_encap(sc, &m_head)) {
1909			if (m_head == NULL)
1910				break;
1911			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1912			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1913			break;
1914		}
1915
1916		enq++;
1917		/*
1918		 * If there's a BPF listener, bounce a copy of this frame
1919		 * to him.
1920		 */
1921		ETHER_BPF_MTAP(ifp, m_head);
1922	}
1923
1924	if (enq > 0) {
1925		/*
1926		 * Reading TXCSR takes very long time under heavy load
1927		 * so cache TXCSR value and writes the ORed value with
1928		 * the kick command to the TXCSR. This saves one register
1929		 * access cycle.
1930		 */
1931		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1932		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1933		/* Set a timeout in case the chip goes out to lunch. */
1934		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1935	}
1936}
1937
1938static void
1939jme_watchdog(struct jme_softc *sc)
1940{
1941	struct ifnet *ifp;
1942
1943	JME_LOCK_ASSERT(sc);
1944
1945	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1946		return;
1947
1948	ifp = sc->jme_ifp;
1949	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1950		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1951		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1952		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1953		jme_init_locked(sc);
1954		return;
1955	}
1956	jme_txeof(sc);
1957	if (sc->jme_cdata.jme_tx_cnt == 0) {
1958		if_printf(sc->jme_ifp,
1959		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1960		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1961			jme_start_locked(ifp);
1962		return;
1963	}
1964
1965	if_printf(sc->jme_ifp, "watchdog timeout\n");
1966	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1967	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1968	jme_init_locked(sc);
1969	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1970		jme_start_locked(ifp);
1971}
1972
1973static int
1974jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1975{
1976	struct jme_softc *sc;
1977	struct ifreq *ifr;
1978	struct mii_data *mii;
1979	uint32_t reg;
1980	int error, mask;
1981
1982	sc = ifp->if_softc;
1983	ifr = (struct ifreq *)data;
1984	error = 0;
1985	switch (cmd) {
1986	case SIOCSIFMTU:
1987		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1988		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1989		    ifr->ifr_mtu > JME_MAX_MTU)) {
1990			error = EINVAL;
1991			break;
1992		}
1993
1994		if (ifp->if_mtu != ifr->ifr_mtu) {
1995			/*
1996			 * No special configuration is required when interface
1997			 * MTU is changed but availability of TSO/Tx checksum
1998			 * offload should be chcked against new MTU size as
1999			 * FIFO size is just 2K.
2000			 */
2001			JME_LOCK(sc);
2002			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
2003				ifp->if_capenable &=
2004				    ~(IFCAP_TXCSUM | IFCAP_TSO4);
2005				ifp->if_hwassist &=
2006				    ~(JME_CSUM_FEATURES | CSUM_TSO);
2007				VLAN_CAPABILITIES(ifp);
2008			}
2009			ifp->if_mtu = ifr->ifr_mtu;
2010			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2011				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2012				jme_init_locked(sc);
2013			}
2014			JME_UNLOCK(sc);
2015		}
2016		break;
2017	case SIOCSIFFLAGS:
2018		JME_LOCK(sc);
2019		if ((ifp->if_flags & IFF_UP) != 0) {
2020			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2021				if (((ifp->if_flags ^ sc->jme_if_flags)
2022				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2023					jme_set_filter(sc);
2024			} else {
2025				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2026					jme_init_locked(sc);
2027			}
2028		} else {
2029			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2030				jme_stop(sc);
2031		}
2032		sc->jme_if_flags = ifp->if_flags;
2033		JME_UNLOCK(sc);
2034		break;
2035	case SIOCADDMULTI:
2036	case SIOCDELMULTI:
2037		JME_LOCK(sc);
2038		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2039			jme_set_filter(sc);
2040		JME_UNLOCK(sc);
2041		break;
2042	case SIOCSIFMEDIA:
2043	case SIOCGIFMEDIA:
2044		mii = device_get_softc(sc->jme_miibus);
2045		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2046		break;
2047	case SIOCSIFCAP:
2048		JME_LOCK(sc);
2049		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2050		if ((mask & IFCAP_TXCSUM) != 0 &&
2051		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2052			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2053				ifp->if_capenable ^= IFCAP_TXCSUM;
2054				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2055					ifp->if_hwassist |= JME_CSUM_FEATURES;
2056				else
2057					ifp->if_hwassist &= ~JME_CSUM_FEATURES;
2058			}
2059		}
2060		if ((mask & IFCAP_RXCSUM) != 0 &&
2061		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
2062			ifp->if_capenable ^= IFCAP_RXCSUM;
2063			reg = CSR_READ_4(sc, JME_RXMAC);
2064			reg &= ~RXMAC_CSUM_ENB;
2065			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2066				reg |= RXMAC_CSUM_ENB;
2067			CSR_WRITE_4(sc, JME_RXMAC, reg);
2068		}
2069		if ((mask & IFCAP_TSO4) != 0 &&
2070		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2071			if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
2072				ifp->if_capenable ^= IFCAP_TSO4;
2073				if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
2074					ifp->if_hwassist |= CSUM_TSO;
2075				else
2076					ifp->if_hwassist &= ~CSUM_TSO;
2077			}
2078		}
2079		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2080		    (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
2081			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2082		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2083		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2084			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2085		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2086		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2087			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2088		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2089		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2090			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2091			jme_set_vlan(sc);
2092		}
2093		JME_UNLOCK(sc);
2094		VLAN_CAPABILITIES(ifp);
2095		break;
2096	default:
2097		error = ether_ioctl(ifp, cmd, data);
2098		break;
2099	}
2100
2101	return (error);
2102}
2103
2104static void
2105jme_mac_config(struct jme_softc *sc)
2106{
2107	struct mii_data *mii;
2108	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2109	uint32_t txclk;
2110
2111	JME_LOCK_ASSERT(sc);
2112
2113	mii = device_get_softc(sc->jme_miibus);
2114
2115	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2116	DELAY(10);
2117	CSR_WRITE_4(sc, JME_GHC, 0);
2118	ghc = 0;
2119	txclk = 0;
2120	rxmac = CSR_READ_4(sc, JME_RXMAC);
2121	rxmac &= ~RXMAC_FC_ENB;
2122	txmac = CSR_READ_4(sc, JME_TXMAC);
2123	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2124	txpause = CSR_READ_4(sc, JME_TXPFC);
2125	txpause &= ~TXPFC_PAUSE_ENB;
2126	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2127		ghc |= GHC_FULL_DUPLEX;
2128		rxmac &= ~RXMAC_COLL_DET_ENB;
2129		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2130		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2131		    TXMAC_FRAME_BURST);
2132		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2133			txpause |= TXPFC_PAUSE_ENB;
2134		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2135			rxmac |= RXMAC_FC_ENB;
2136		/* Disable retry transmit timer/retry limit. */
2137		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2138		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2139	} else {
2140		rxmac |= RXMAC_COLL_DET_ENB;
2141		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2142		/* Enable retry transmit timer/retry limit. */
2143		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2144		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2145	}
2146		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2147	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2148	case IFM_10_T:
2149		ghc |= GHC_SPEED_10;
2150		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2151		break;
2152	case IFM_100_TX:
2153		ghc |= GHC_SPEED_100;
2154		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2155		break;
2156	case IFM_1000_T:
2157		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2158			break;
2159		ghc |= GHC_SPEED_1000;
2160		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2161		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2162			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2163		break;
2164	default:
2165		break;
2166	}
2167	if (sc->jme_rev == DEVICEID_JMC250 &&
2168	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2169		/*
2170		 * Workaround occasional packet loss issue of JMC250 A2
2171		 * when it runs on half-duplex media.
2172		 */
2173		gpreg = CSR_READ_4(sc, JME_GPREG1);
2174		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2175			gpreg &= ~GPREG1_HDPX_FIX;
2176		else
2177			gpreg |= GPREG1_HDPX_FIX;
2178		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2179		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2180		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2181			/* Extend interface FIFO depth. */
2182			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2183			    0x1B, 0x0000);
2184		} else {
2185			/* Select default interface FIFO depth. */
2186			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2187			    0x1B, 0x0004);
2188		}
2189	}
2190	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2191		ghc |= txclk;
2192	CSR_WRITE_4(sc, JME_GHC, ghc);
2193	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2194	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2195	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2196}
2197
2198static void
2199jme_link_task(void *arg, int pending)
2200{
2201	struct jme_softc *sc;
2202	struct mii_data *mii;
2203	struct ifnet *ifp;
2204	struct jme_txdesc *txd;
2205	bus_addr_t paddr;
2206	int i;
2207
2208	sc = (struct jme_softc *)arg;
2209
2210	JME_LOCK(sc);
2211	mii = device_get_softc(sc->jme_miibus);
2212	ifp = sc->jme_ifp;
2213	if (mii == NULL || ifp == NULL ||
2214	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2215		JME_UNLOCK(sc);
2216		return;
2217	}
2218
2219	sc->jme_flags &= ~JME_FLAG_LINK;
2220	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2221		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2222		case IFM_10_T:
2223		case IFM_100_TX:
2224			sc->jme_flags |= JME_FLAG_LINK;
2225			break;
2226		case IFM_1000_T:
2227			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2228				break;
2229			sc->jme_flags |= JME_FLAG_LINK;
2230			break;
2231		default:
2232			break;
2233		}
2234	}
2235
2236	/*
2237	 * Disabling Rx/Tx MACs have a side-effect of resetting
2238	 * JME_TXNDA/JME_RXNDA register to the first address of
2239	 * Tx/Rx descriptor address. So driver should reset its
2240	 * internal procucer/consumer pointer and reclaim any
2241	 * allocated resources. Note, just saving the value of
2242	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2243	 * and restoring JME_TXNDA/JME_RXNDA register is not
2244	 * sufficient to make sure correct MAC state because
2245	 * stopping MAC operation can take a while and hardware
2246	 * might have updated JME_TXNDA/JME_RXNDA registers
2247	 * during the stop operation.
2248	 */
2249	/* Block execution of task. */
2250	taskqueue_block(sc->jme_tq);
2251	/* Disable interrupts and stop driver. */
2252	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2253	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2254	callout_stop(&sc->jme_tick_ch);
2255	sc->jme_watchdog_timer = 0;
2256
2257	/* Stop receiver/transmitter. */
2258	jme_stop_rx(sc);
2259	jme_stop_tx(sc);
2260
2261	/* XXX Drain all queued tasks. */
2262	JME_UNLOCK(sc);
2263	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2264	JME_LOCK(sc);
2265
2266	if (sc->jme_cdata.jme_rxhead != NULL)
2267		m_freem(sc->jme_cdata.jme_rxhead);
2268	JME_RXCHAIN_RESET(sc);
2269	jme_txeof(sc);
2270	if (sc->jme_cdata.jme_tx_cnt != 0) {
2271		/* Remove queued packets for transmit. */
2272		for (i = 0; i < JME_TX_RING_CNT; i++) {
2273			txd = &sc->jme_cdata.jme_txdesc[i];
2274			if (txd->tx_m != NULL) {
2275				bus_dmamap_sync(
2276				    sc->jme_cdata.jme_tx_tag,
2277				    txd->tx_dmamap,
2278				    BUS_DMASYNC_POSTWRITE);
2279				bus_dmamap_unload(
2280				    sc->jme_cdata.jme_tx_tag,
2281				    txd->tx_dmamap);
2282				m_freem(txd->tx_m);
2283				txd->tx_m = NULL;
2284				txd->tx_ndesc = 0;
2285				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2286			}
2287		}
2288	}
2289
2290	/*
2291	 * Reuse configured Rx descriptors and reset
2292	 * producer/consumer index.
2293	 */
2294	sc->jme_cdata.jme_rx_cons = 0;
2295	sc->jme_morework = 0;
2296	jme_init_tx_ring(sc);
2297	/* Initialize shadow status block. */
2298	jme_init_ssb(sc);
2299
2300	/* Program MAC with resolved speed/duplex/flow-control. */
2301	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2302		jme_mac_config(sc);
2303		jme_stats_clear(sc);
2304
2305		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2306		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2307
2308		/* Set Tx ring address to the hardware. */
2309		paddr = JME_TX_RING_ADDR(sc, 0);
2310		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2311		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2312
2313		/* Set Rx ring address to the hardware. */
2314		paddr = JME_RX_RING_ADDR(sc, 0);
2315		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2316		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2317
2318		/* Restart receiver/transmitter. */
2319		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2320		    RXCSR_RXQ_START);
2321		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2322		/* Lastly enable TX/RX clock. */
2323		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2324			CSR_WRITE_4(sc, JME_GHC,
2325			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2326		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2327			CSR_WRITE_4(sc, JME_GPREG1,
2328			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2329	}
2330
2331	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2332	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2333	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2334	/* Unblock execution of task. */
2335	taskqueue_unblock(sc->jme_tq);
2336	/* Reenable interrupts. */
2337	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2338
2339	JME_UNLOCK(sc);
2340}
2341
2342static int
2343jme_intr(void *arg)
2344{
2345	struct jme_softc *sc;
2346	uint32_t status;
2347
2348	sc = (struct jme_softc *)arg;
2349
2350	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2351	if (status == 0 || status == 0xFFFFFFFF)
2352		return (FILTER_STRAY);
2353	/* Disable interrupts. */
2354	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2355	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2356
2357	return (FILTER_HANDLED);
2358}
2359
2360static void
2361jme_int_task(void *arg, int pending)
2362{
2363	struct jme_softc *sc;
2364	struct ifnet *ifp;
2365	uint32_t status;
2366	int more;
2367
2368	sc = (struct jme_softc *)arg;
2369	ifp = sc->jme_ifp;
2370
2371	JME_LOCK(sc);
2372	status = CSR_READ_4(sc, JME_INTR_STATUS);
2373	if (sc->jme_morework != 0) {
2374		sc->jme_morework = 0;
2375		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2376	}
2377	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2378		goto done;
2379	/* Reset PCC counter/timer and Ack interrupts. */
2380	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2381	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2382		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2383	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2384		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2385	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2386	more = 0;
2387	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2388		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2389			more = jme_rxintr(sc, sc->jme_process_limit);
2390			if (more != 0)
2391				sc->jme_morework = 1;
2392		}
2393		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2394			/*
2395			 * Notify hardware availability of new Rx
2396			 * buffers.
2397			 * Reading RXCSR takes very long time under
2398			 * heavy load so cache RXCSR value and writes
2399			 * the ORed value with the kick command to
2400			 * the RXCSR. This saves one register access
2401			 * cycle.
2402			 */
2403			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2404			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2405		}
2406		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2407			jme_start_locked(ifp);
2408	}
2409
2410	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2411		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2412		JME_UNLOCK(sc);
2413		return;
2414	}
2415done:
2416	JME_UNLOCK(sc);
2417
2418	/* Reenable interrupts. */
2419	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2420}
2421
2422static void
2423jme_txeof(struct jme_softc *sc)
2424{
2425	struct ifnet *ifp;
2426	struct jme_txdesc *txd;
2427	uint32_t status;
2428	int cons, nsegs;
2429
2430	JME_LOCK_ASSERT(sc);
2431
2432	ifp = sc->jme_ifp;
2433
2434	cons = sc->jme_cdata.jme_tx_cons;
2435	if (cons == sc->jme_cdata.jme_tx_prod)
2436		return;
2437
2438	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2439	    sc->jme_cdata.jme_tx_ring_map,
2440	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2441
2442	/*
2443	 * Go through our Tx list and free mbufs for those
2444	 * frames which have been transmitted.
2445	 */
2446	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2447		txd = &sc->jme_cdata.jme_txdesc[cons];
2448		status = le32toh(txd->tx_desc->flags);
2449		if ((status & JME_TD_OWN) == JME_TD_OWN)
2450			break;
2451
2452		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2453			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2454		else {
2455			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2456			if ((status & JME_TD_COLLISION) != 0)
2457				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2458				    le32toh(txd->tx_desc->buflen) &
2459				    JME_TD_BUF_LEN_MASK);
2460		}
2461		/*
2462		 * Only the first descriptor of multi-descriptor
2463		 * transmission is updated so driver have to skip entire
2464		 * chained buffers for the transmiited frame. In other
2465		 * words, JME_TD_OWN bit is valid only at the first
2466		 * descriptor of a multi-descriptor transmission.
2467		 */
2468		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2469			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2470			JME_DESC_INC(cons, JME_TX_RING_CNT);
2471		}
2472
2473		/* Reclaim transferred mbufs. */
2474		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2475		    BUS_DMASYNC_POSTWRITE);
2476		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2477
2478		KASSERT(txd->tx_m != NULL,
2479		    ("%s: freeing NULL mbuf!\n", __func__));
2480		m_freem(txd->tx_m);
2481		txd->tx_m = NULL;
2482		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2483		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2484		    ("%s: Active Tx desc counter was garbled\n", __func__));
2485		txd->tx_ndesc = 0;
2486		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2487	}
2488	sc->jme_cdata.jme_tx_cons = cons;
2489	/* Unarm watchog timer when there is no pending descriptors in queue. */
2490	if (sc->jme_cdata.jme_tx_cnt == 0)
2491		sc->jme_watchdog_timer = 0;
2492
2493	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2494	    sc->jme_cdata.jme_tx_ring_map,
2495	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2496}
2497
2498static __inline void
2499jme_discard_rxbuf(struct jme_softc *sc, int cons)
2500{
2501	struct jme_desc *desc;
2502
2503	desc = &sc->jme_rdata.jme_rx_ring[cons];
2504	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2505	desc->buflen = htole32(MCLBYTES);
2506}
2507
2508/* Receive a frame. */
2509static void
2510jme_rxeof(struct jme_softc *sc)
2511{
2512	struct ifnet *ifp;
2513	struct jme_desc *desc;
2514	struct jme_rxdesc *rxd;
2515	struct mbuf *mp, *m;
2516	uint32_t flags, status;
2517	int cons, count, nsegs;
2518
2519	JME_LOCK_ASSERT(sc);
2520
2521	ifp = sc->jme_ifp;
2522
2523	cons = sc->jme_cdata.jme_rx_cons;
2524	desc = &sc->jme_rdata.jme_rx_ring[cons];
2525	flags = le32toh(desc->flags);
2526	status = le32toh(desc->buflen);
2527	nsegs = JME_RX_NSEGS(status);
2528	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2529	if ((status & JME_RX_ERR_STAT) != 0) {
2530		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2531		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2532#ifdef JME_SHOW_ERRORS
2533		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2534		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2535#endif
2536		sc->jme_cdata.jme_rx_cons += nsegs;
2537		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2538		return;
2539	}
2540
2541	for (count = 0; count < nsegs; count++,
2542	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2543		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2544		mp = rxd->rx_m;
2545		/* Add a new receive buffer to the ring. */
2546		if (jme_newbuf(sc, rxd) != 0) {
2547			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2548			/* Reuse buffer. */
2549			for (; count < nsegs; count++) {
2550				jme_discard_rxbuf(sc, cons);
2551				JME_DESC_INC(cons, JME_RX_RING_CNT);
2552			}
2553			if (sc->jme_cdata.jme_rxhead != NULL) {
2554				m_freem(sc->jme_cdata.jme_rxhead);
2555				JME_RXCHAIN_RESET(sc);
2556			}
2557			break;
2558		}
2559
2560		/*
2561		 * Assume we've received a full sized frame.
2562		 * Actual size is fixed when we encounter the end of
2563		 * multi-segmented frame.
2564		 */
2565		mp->m_len = MCLBYTES;
2566
2567		/* Chain received mbufs. */
2568		if (sc->jme_cdata.jme_rxhead == NULL) {
2569			sc->jme_cdata.jme_rxhead = mp;
2570			sc->jme_cdata.jme_rxtail = mp;
2571		} else {
2572			/*
2573			 * Receive processor can receive a maximum frame
2574			 * size of 65535 bytes.
2575			 */
2576			mp->m_flags &= ~M_PKTHDR;
2577			sc->jme_cdata.jme_rxtail->m_next = mp;
2578			sc->jme_cdata.jme_rxtail = mp;
2579		}
2580
2581		if (count == nsegs - 1) {
2582			/* Last desc. for this frame. */
2583			m = sc->jme_cdata.jme_rxhead;
2584			m->m_flags |= M_PKTHDR;
2585			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2586			if (nsegs > 1) {
2587				/* Set first mbuf size. */
2588				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2589				/* Set last mbuf size. */
2590				mp->m_len = sc->jme_cdata.jme_rxlen -
2591				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2592				    (MCLBYTES * (nsegs - 2)));
2593			} else
2594				m->m_len = sc->jme_cdata.jme_rxlen;
2595			m->m_pkthdr.rcvif = ifp;
2596
2597			/*
2598			 * Account for 10bytes auto padding which is used
2599			 * to align IP header on 32bit boundary. Also note,
2600			 * CRC bytes is automatically removed by the
2601			 * hardware.
2602			 */
2603			m->m_data += JME_RX_PAD_BYTES;
2604
2605			/* Set checksum information. */
2606			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2607			    (flags & JME_RD_IPV4) != 0) {
2608				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2609				if ((flags & JME_RD_IPCSUM) != 0)
2610					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2611				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2612				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2613				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2614				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2615				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2616					m->m_pkthdr.csum_flags |=
2617					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2618					m->m_pkthdr.csum_data = 0xffff;
2619				}
2620			}
2621
2622			/* Check for VLAN tagged packets. */
2623			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2624			    (flags & JME_RD_VLAN_TAG) != 0) {
2625				m->m_pkthdr.ether_vtag =
2626				    flags & JME_RD_VLAN_MASK;
2627				m->m_flags |= M_VLANTAG;
2628			}
2629
2630			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2631			/* Pass it on. */
2632			JME_UNLOCK(sc);
2633			(*ifp->if_input)(ifp, m);
2634			JME_LOCK(sc);
2635
2636			/* Reset mbuf chains. */
2637			JME_RXCHAIN_RESET(sc);
2638		}
2639	}
2640
2641	sc->jme_cdata.jme_rx_cons += nsegs;
2642	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2643}
2644
2645static int
2646jme_rxintr(struct jme_softc *sc, int count)
2647{
2648	struct jme_desc *desc;
2649	int nsegs, prog, pktlen;
2650
2651	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2652	    sc->jme_cdata.jme_rx_ring_map,
2653	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2654
2655	for (prog = 0; count > 0; prog++) {
2656		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2657		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2658			break;
2659		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2660			break;
2661		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2662		/*
2663		 * Check number of segments against received bytes.
2664		 * Non-matching value would indicate that hardware
2665		 * is still trying to update Rx descriptors. I'm not
2666		 * sure whether this check is needed.
2667		 */
2668		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2669		if (nsegs != howmany(pktlen, MCLBYTES))
2670			break;
2671		prog++;
2672		/* Received a frame. */
2673		jme_rxeof(sc);
2674		count -= nsegs;
2675	}
2676
2677	if (prog > 0)
2678		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2679		    sc->jme_cdata.jme_rx_ring_map,
2680		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2681
2682	return (count > 0 ? 0 : EAGAIN);
2683}
2684
2685static void
2686jme_tick(void *arg)
2687{
2688	struct jme_softc *sc;
2689	struct mii_data *mii;
2690
2691	sc = (struct jme_softc *)arg;
2692
2693	JME_LOCK_ASSERT(sc);
2694
2695	mii = device_get_softc(sc->jme_miibus);
2696	mii_tick(mii);
2697	/*
2698	 * Reclaim Tx buffers that have been completed. It's not
2699	 * needed here but it would release allocated mbuf chains
2700	 * faster and limit the maximum delay to a hz.
2701	 */
2702	jme_txeof(sc);
2703	jme_stats_update(sc);
2704	jme_watchdog(sc);
2705	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2706}
2707
2708static void
2709jme_reset(struct jme_softc *sc)
2710{
2711	uint32_t ghc, gpreg;
2712
2713	/* Stop receiver, transmitter. */
2714	jme_stop_rx(sc);
2715	jme_stop_tx(sc);
2716
2717	/* Reset controller. */
2718	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2719	CSR_READ_4(sc, JME_GHC);
2720	DELAY(10);
2721	/*
2722	 * Workaround Rx FIFO overruns seen under certain conditions.
2723	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2724	 * enabled only after enabling TX/RX MACs.
2725	 */
2726	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2727		/* Disable TX clock. */
2728		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2729		/* Disable RX clock. */
2730		gpreg = CSR_READ_4(sc, JME_GPREG1);
2731		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2732		gpreg = CSR_READ_4(sc, JME_GPREG1);
2733		/* De-assert RESET but still disable TX clock. */
2734		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2735		ghc = CSR_READ_4(sc, JME_GHC);
2736
2737		/* Enable TX clock. */
2738		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2739		/* Enable RX clock. */
2740		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2741		CSR_READ_4(sc, JME_GPREG1);
2742
2743		/* Disable TX/RX clock again. */
2744		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2745		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2746	} else
2747		CSR_WRITE_4(sc, JME_GHC, 0);
2748	CSR_READ_4(sc, JME_GHC);
2749	DELAY(10);
2750}
2751
2752static void
2753jme_init(void *xsc)
2754{
2755	struct jme_softc *sc;
2756
2757	sc = (struct jme_softc *)xsc;
2758	JME_LOCK(sc);
2759	jme_init_locked(sc);
2760	JME_UNLOCK(sc);
2761}
2762
2763static void
2764jme_init_locked(struct jme_softc *sc)
2765{
2766	struct ifnet *ifp;
2767	struct mii_data *mii;
2768	bus_addr_t paddr;
2769	uint32_t reg;
2770	int error;
2771
2772	JME_LOCK_ASSERT(sc);
2773
2774	ifp = sc->jme_ifp;
2775	mii = device_get_softc(sc->jme_miibus);
2776
2777	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2778		return;
2779	/*
2780	 * Cancel any pending I/O.
2781	 */
2782	jme_stop(sc);
2783
2784	/*
2785	 * Reset the chip to a known state.
2786	 */
2787	jme_reset(sc);
2788
2789	/* Init descriptors. */
2790	error = jme_init_rx_ring(sc);
2791        if (error != 0) {
2792                device_printf(sc->jme_dev,
2793                    "%s: initialization failed: no memory for Rx buffers.\n",
2794		    __func__);
2795                jme_stop(sc);
2796		return;
2797        }
2798	jme_init_tx_ring(sc);
2799	/* Initialize shadow status block. */
2800	jme_init_ssb(sc);
2801
2802	/* Reprogram the station address. */
2803	jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp));
2804
2805	/*
2806	 * Configure Tx queue.
2807	 *  Tx priority queue weight value : 0
2808	 *  Tx FIFO threshold for processing next packet : 16QW
2809	 *  Maximum Tx DMA length : 512
2810	 *  Allow Tx DMA burst.
2811	 */
2812	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2813	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2814	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2815	sc->jme_txcsr |= sc->jme_tx_dma_size;
2816	sc->jme_txcsr |= TXCSR_DMA_BURST;
2817	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2818
2819	/* Set Tx descriptor counter. */
2820	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2821
2822	/* Set Tx ring address to the hardware. */
2823	paddr = JME_TX_RING_ADDR(sc, 0);
2824	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2825	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2826
2827	/* Configure TxMAC parameters. */
2828	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2829	reg |= TXMAC_THRESH_1_PKT;
2830	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2831	CSR_WRITE_4(sc, JME_TXMAC, reg);
2832
2833	/*
2834	 * Configure Rx queue.
2835	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2836	 *  FIFO threshold for processing next packet : 128QW
2837	 *  Rx queue 0 select
2838	 *  Max Rx DMA length : 128
2839	 *  Rx descriptor retry : 32
2840	 *  Rx descriptor retry time gap : 256ns
2841	 *  Don't receive runt/bad frame.
2842	 */
2843	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2844	/*
2845	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2846	 * than 4K bytes will suffer from Rx FIFO overruns. So
2847	 * decrease FIFO threshold to reduce the FIFO overruns for
2848	 * frames larger than 4000 bytes.
2849	 * For best performance of standard MTU sized frames use
2850	 * maximum allowable FIFO threshold, 128QW. Note these do
2851	 * not hold on chip full mask verion >=2. For these
2852	 * controllers 64QW and 128QW are not valid value.
2853	 */
2854	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2855		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2856	else {
2857		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2858		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2859			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2860		else
2861			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2862	}
2863	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2864	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2865	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2866	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2867
2868	/* Set Rx descriptor counter. */
2869	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2870
2871	/* Set Rx ring address to the hardware. */
2872	paddr = JME_RX_RING_ADDR(sc, 0);
2873	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2874	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2875
2876	/* Clear receive filter. */
2877	CSR_WRITE_4(sc, JME_RXMAC, 0);
2878	/* Set up the receive filter. */
2879	jme_set_filter(sc);
2880	jme_set_vlan(sc);
2881
2882	/*
2883	 * Disable all WOL bits as WOL can interfere normal Rx
2884	 * operation. Also clear WOL detection status bits.
2885	 */
2886	reg = CSR_READ_4(sc, JME_PMCS);
2887	reg &= ~PMCS_WOL_ENB_MASK;
2888	CSR_WRITE_4(sc, JME_PMCS, reg);
2889
2890	reg = CSR_READ_4(sc, JME_RXMAC);
2891	/*
2892	 * Pad 10bytes right before received frame. This will greatly
2893	 * help Rx performance on strict-alignment architectures as
2894	 * it does not need to copy the frame to align the payload.
2895	 */
2896	reg |= RXMAC_PAD_10BYTES;
2897	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2898		reg |= RXMAC_CSUM_ENB;
2899	CSR_WRITE_4(sc, JME_RXMAC, reg);
2900
2901	/* Configure general purpose reg0 */
2902	reg = CSR_READ_4(sc, JME_GPREG0);
2903	reg &= ~GPREG0_PCC_UNIT_MASK;
2904	/* Set PCC timer resolution to micro-seconds unit. */
2905	reg |= GPREG0_PCC_UNIT_US;
2906	/*
2907	 * Disable all shadow register posting as we have to read
2908	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2909	 * that it's hard to synchronize interrupt status between
2910	 * hardware and software with shadow posting due to
2911	 * requirements of bus_dmamap_sync(9).
2912	 */
2913	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2914	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2915	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2916	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2917	/* Disable posting of DW0. */
2918	reg &= ~GPREG0_POST_DW0_ENB;
2919	/* Clear PME message. */
2920	reg &= ~GPREG0_PME_ENB;
2921	/* Set PHY address. */
2922	reg &= ~GPREG0_PHY_ADDR_MASK;
2923	reg |= sc->jme_phyaddr;
2924	CSR_WRITE_4(sc, JME_GPREG0, reg);
2925
2926	/* Configure Tx queue 0 packet completion coalescing. */
2927	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2928	    PCCTX_COAL_TO_MASK;
2929	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2930	    PCCTX_COAL_PKT_MASK;
2931	reg |= PCCTX_COAL_TXQ0;
2932	CSR_WRITE_4(sc, JME_PCCTX, reg);
2933
2934	/* Configure Rx queue 0 packet completion coalescing. */
2935	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2936	    PCCRX_COAL_TO_MASK;
2937	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2938	    PCCRX_COAL_PKT_MASK;
2939	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2940
2941	/*
2942	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2943	 * generates an interrupt when the time interval between two
2944	 * back-to-back incoming/outgoing packet is long enough for
2945	 * it to reach its timer value 0. The arrival of new packets
2946	 * after timer has started causes the PCD timer to restart.
2947	 * Unfortunately, it's not clear how PCD is useful at this
2948	 * moment, so just use the same of PCC parameters.
2949	 */
2950	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2951		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2952		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2953			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2954		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2955		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2956			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2957		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2958		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2959		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2960		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2961		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2962		CSR_WRITE_4(sc, JME_PCDTX, reg);
2963	}
2964
2965	/* Configure shadow status block but don't enable posting. */
2966	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2967	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2968	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2969
2970	/* Disable Timer 1 and Timer 2. */
2971	CSR_WRITE_4(sc, JME_TIMER1, 0);
2972	CSR_WRITE_4(sc, JME_TIMER2, 0);
2973
2974	/* Configure retry transmit period, retry limit value. */
2975	CSR_WRITE_4(sc, JME_TXTRHD,
2976	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2977	    TXTRHD_RT_PERIOD_MASK) |
2978	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2979	    TXTRHD_RT_LIMIT_SHIFT));
2980
2981	/* Disable RSS. */
2982	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2983
2984	/* Initialize the interrupt mask. */
2985	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2986	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2987
2988	/*
2989	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2990	 * done after detection of valid link in jme_link_task.
2991	 */
2992
2993	sc->jme_flags &= ~JME_FLAG_LINK;
2994	/* Set the current media. */
2995	mii_mediachg(mii);
2996
2997	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2998
2999	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3000	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3001}
3002
3003static void
3004jme_stop(struct jme_softc *sc)
3005{
3006	struct ifnet *ifp;
3007	struct jme_txdesc *txd;
3008	struct jme_rxdesc *rxd;
3009	int i;
3010
3011	JME_LOCK_ASSERT(sc);
3012	/*
3013	 * Mark the interface down and cancel the watchdog timer.
3014	 */
3015	ifp = sc->jme_ifp;
3016	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3017	sc->jme_flags &= ~JME_FLAG_LINK;
3018	callout_stop(&sc->jme_tick_ch);
3019	sc->jme_watchdog_timer = 0;
3020
3021	/*
3022	 * Disable interrupts.
3023	 */
3024	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3025	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3026
3027	/* Disable updating shadow status block. */
3028	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3029	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3030
3031	/* Stop receiver, transmitter. */
3032	jme_stop_rx(sc);
3033	jme_stop_tx(sc);
3034
3035	 /* Reclaim Rx/Tx buffers that have been completed. */
3036	jme_rxintr(sc, JME_RX_RING_CNT);
3037	if (sc->jme_cdata.jme_rxhead != NULL)
3038		m_freem(sc->jme_cdata.jme_rxhead);
3039	JME_RXCHAIN_RESET(sc);
3040	jme_txeof(sc);
3041	/*
3042	 * Free RX and TX mbufs still in the queues.
3043	 */
3044	for (i = 0; i < JME_RX_RING_CNT; i++) {
3045		rxd = &sc->jme_cdata.jme_rxdesc[i];
3046		if (rxd->rx_m != NULL) {
3047			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3048			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3049			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3050			    rxd->rx_dmamap);
3051			m_freem(rxd->rx_m);
3052			rxd->rx_m = NULL;
3053		}
3054        }
3055	for (i = 0; i < JME_TX_RING_CNT; i++) {
3056		txd = &sc->jme_cdata.jme_txdesc[i];
3057		if (txd->tx_m != NULL) {
3058			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3059			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3060			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3061			    txd->tx_dmamap);
3062			m_freem(txd->tx_m);
3063			txd->tx_m = NULL;
3064			txd->tx_ndesc = 0;
3065		}
3066        }
3067	jme_stats_update(sc);
3068	jme_stats_save(sc);
3069}
3070
3071static void
3072jme_stop_tx(struct jme_softc *sc)
3073{
3074	uint32_t reg;
3075	int i;
3076
3077	reg = CSR_READ_4(sc, JME_TXCSR);
3078	if ((reg & TXCSR_TX_ENB) == 0)
3079		return;
3080	reg &= ~TXCSR_TX_ENB;
3081	CSR_WRITE_4(sc, JME_TXCSR, reg);
3082	for (i = JME_TIMEOUT; i > 0; i--) {
3083		DELAY(1);
3084		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3085			break;
3086	}
3087	if (i == 0)
3088		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3089}
3090
3091static void
3092jme_stop_rx(struct jme_softc *sc)
3093{
3094	uint32_t reg;
3095	int i;
3096
3097	reg = CSR_READ_4(sc, JME_RXCSR);
3098	if ((reg & RXCSR_RX_ENB) == 0)
3099		return;
3100	reg &= ~RXCSR_RX_ENB;
3101	CSR_WRITE_4(sc, JME_RXCSR, reg);
3102	for (i = JME_TIMEOUT; i > 0; i--) {
3103		DELAY(1);
3104		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3105			break;
3106	}
3107	if (i == 0)
3108		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3109}
3110
3111static void
3112jme_init_tx_ring(struct jme_softc *sc)
3113{
3114	struct jme_ring_data *rd;
3115	struct jme_txdesc *txd;
3116	int i;
3117
3118	sc->jme_cdata.jme_tx_prod = 0;
3119	sc->jme_cdata.jme_tx_cons = 0;
3120	sc->jme_cdata.jme_tx_cnt = 0;
3121
3122	rd = &sc->jme_rdata;
3123	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3124	for (i = 0; i < JME_TX_RING_CNT; i++) {
3125		txd = &sc->jme_cdata.jme_txdesc[i];
3126		txd->tx_m = NULL;
3127		txd->tx_desc = &rd->jme_tx_ring[i];
3128		txd->tx_ndesc = 0;
3129	}
3130
3131	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3132	    sc->jme_cdata.jme_tx_ring_map,
3133	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3134}
3135
3136static void
3137jme_init_ssb(struct jme_softc *sc)
3138{
3139	struct jme_ring_data *rd;
3140
3141	rd = &sc->jme_rdata;
3142	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3143	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3144	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3145}
3146
3147static int
3148jme_init_rx_ring(struct jme_softc *sc)
3149{
3150	struct jme_ring_data *rd;
3151	struct jme_rxdesc *rxd;
3152	int i;
3153
3154	sc->jme_cdata.jme_rx_cons = 0;
3155	JME_RXCHAIN_RESET(sc);
3156	sc->jme_morework = 0;
3157
3158	rd = &sc->jme_rdata;
3159	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3160	for (i = 0; i < JME_RX_RING_CNT; i++) {
3161		rxd = &sc->jme_cdata.jme_rxdesc[i];
3162		rxd->rx_m = NULL;
3163		rxd->rx_desc = &rd->jme_rx_ring[i];
3164		if (jme_newbuf(sc, rxd) != 0)
3165			return (ENOBUFS);
3166	}
3167
3168	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3169	    sc->jme_cdata.jme_rx_ring_map,
3170	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3171
3172	return (0);
3173}
3174
3175static int
3176jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3177{
3178	struct jme_desc *desc;
3179	struct mbuf *m;
3180	bus_dma_segment_t segs[1];
3181	bus_dmamap_t map;
3182	int nsegs;
3183
3184	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3185	if (m == NULL)
3186		return (ENOBUFS);
3187	/*
3188	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3189	 * takes advantage of 10 bytes padding feature of hardware
3190	 * in order not to copy entire frame to align IP header on
3191	 * 32bit boundary.
3192	 */
3193	m->m_len = m->m_pkthdr.len = MCLBYTES;
3194
3195	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3196	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3197		m_freem(m);
3198		return (ENOBUFS);
3199	}
3200	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3201
3202	if (rxd->rx_m != NULL) {
3203		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3204		    BUS_DMASYNC_POSTREAD);
3205		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3206	}
3207	map = rxd->rx_dmamap;
3208	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3209	sc->jme_cdata.jme_rx_sparemap = map;
3210	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3211	    BUS_DMASYNC_PREREAD);
3212	rxd->rx_m = m;
3213
3214	desc = rxd->rx_desc;
3215	desc->buflen = htole32(segs[0].ds_len);
3216	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3217	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3218	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3219
3220	return (0);
3221}
3222
3223static void
3224jme_set_vlan(struct jme_softc *sc)
3225{
3226	struct ifnet *ifp;
3227	uint32_t reg;
3228
3229	JME_LOCK_ASSERT(sc);
3230
3231	ifp = sc->jme_ifp;
3232	reg = CSR_READ_4(sc, JME_RXMAC);
3233	reg &= ~RXMAC_VLAN_ENB;
3234	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3235		reg |= RXMAC_VLAN_ENB;
3236	CSR_WRITE_4(sc, JME_RXMAC, reg);
3237}
3238
3239static void
3240jme_set_filter(struct jme_softc *sc)
3241{
3242	struct ifnet *ifp;
3243	struct ifmultiaddr *ifma;
3244	uint32_t crc;
3245	uint32_t mchash[2];
3246	uint32_t rxcfg;
3247
3248	JME_LOCK_ASSERT(sc);
3249
3250	ifp = sc->jme_ifp;
3251
3252	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3253	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3254	    RXMAC_ALLMULTI);
3255	/* Always accept frames destined to our station address. */
3256	rxcfg |= RXMAC_UNICAST;
3257	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3258		rxcfg |= RXMAC_BROADCAST;
3259	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3260		if ((ifp->if_flags & IFF_PROMISC) != 0)
3261			rxcfg |= RXMAC_PROMISC;
3262		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3263			rxcfg |= RXMAC_ALLMULTI;
3264		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3265		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3266		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3267		return;
3268	}
3269
3270	/*
3271	 * Set up the multicast address filter by passing all multicast
3272	 * addresses through a CRC generator, and then using the low-order
3273	 * 6 bits as an index into the 64 bit multicast hash table.  The
3274	 * high order bits select the register, while the rest of the bits
3275	 * select the bit within the register.
3276	 */
3277	rxcfg |= RXMAC_MULTICAST;
3278	bzero(mchash, sizeof(mchash));
3279
3280	if_maddr_rlock(ifp);
3281	TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
3282		if (ifma->ifma_addr->sa_family != AF_LINK)
3283			continue;
3284		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3285		    ifma->ifma_addr), ETHER_ADDR_LEN);
3286
3287		/* Just want the 6 least significant bits. */
3288		crc &= 0x3f;
3289
3290		/* Set the corresponding bit in the hash table. */
3291		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3292	}
3293	if_maddr_runlock(ifp);
3294
3295	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3296	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3297	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3298}
3299
3300static void
3301jme_stats_clear(struct jme_softc *sc)
3302{
3303
3304	JME_LOCK_ASSERT(sc);
3305
3306	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3307		return;
3308
3309	/* Disable and clear counters. */
3310	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3311	/* Activate hw counters. */
3312	CSR_WRITE_4(sc, JME_STATCSR, 0);
3313	CSR_READ_4(sc, JME_STATCSR);
3314	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3315}
3316
3317static void
3318jme_stats_save(struct jme_softc *sc)
3319{
3320
3321	JME_LOCK_ASSERT(sc);
3322
3323	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3324		return;
3325	/* Save current counters. */
3326	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3327	/* Disable and clear counters. */
3328	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3329}
3330
3331static void
3332jme_stats_update(struct jme_softc *sc)
3333{
3334	struct jme_hw_stats *stat, *ostat;
3335	uint32_t reg;
3336
3337	JME_LOCK_ASSERT(sc);
3338
3339	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3340		return;
3341	stat = &sc->jme_stats;
3342	ostat = &sc->jme_ostats;
3343	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3344	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3345	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3346	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3347	    STAT_RX_CRC_ERR_SHIFT;
3348	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3349	    STAT_RX_MII_ERR_SHIFT;
3350	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3351	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3352	    STAT_RXERR_OFLOW_SHIFT;
3353	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3354	    STAT_RXERR_MPTY_SHIFT;
3355	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3356	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3357	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3358
3359	/* Account for previous counters. */
3360	stat->rx_good_frames += ostat->rx_good_frames;
3361	stat->rx_crc_errs += ostat->rx_crc_errs;
3362	stat->rx_mii_errs += ostat->rx_mii_errs;
3363	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3364	stat->rx_desc_empty += ostat->rx_desc_empty;
3365	stat->rx_bad_frames += ostat->rx_bad_frames;
3366	stat->tx_good_frames += ostat->tx_good_frames;
3367	stat->tx_bad_frames += ostat->tx_bad_frames;
3368}
3369
3370static void
3371jme_phy_down(struct jme_softc *sc)
3372{
3373	uint32_t reg;
3374
3375	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3376	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3377		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3378		reg |= 0x0000000F;
3379		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3380		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3381		reg &= ~PE1_GIGA_PDOWN_MASK;
3382		reg |= PE1_GIGA_PDOWN_D3;
3383		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3384	}
3385}
3386
3387static void
3388jme_phy_up(struct jme_softc *sc)
3389{
3390	uint32_t reg;
3391	uint16_t bmcr;
3392
3393	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3394	bmcr &= ~BMCR_PDOWN;
3395	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3396	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3397		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3398		reg &= ~0x0000000F;
3399		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3400		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3401		reg &= ~PE1_GIGA_PDOWN_MASK;
3402		reg |= PE1_GIGA_PDOWN_DIS;
3403		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3404	}
3405}
3406
3407static int
3408sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3409{
3410	int error, value;
3411
3412	if (arg1 == NULL)
3413		return (EINVAL);
3414	value = *(int *)arg1;
3415	error = sysctl_handle_int(oidp, &value, 0, req);
3416	if (error || req->newptr == NULL)
3417		return (error);
3418	if (value < low || value > high)
3419		return (EINVAL);
3420        *(int *)arg1 = value;
3421
3422        return (0);
3423}
3424
3425static int
3426sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3427{
3428	return (sysctl_int_range(oidp, arg1, arg2, req,
3429	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3430}
3431
3432static int
3433sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3434{
3435	return (sysctl_int_range(oidp, arg1, arg2, req,
3436	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3437}
3438
3439static int
3440sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3441{
3442	return (sysctl_int_range(oidp, arg1, arg2, req,
3443	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3444}
3445
3446static int
3447sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3448{
3449	return (sysctl_int_range(oidp, arg1, arg2, req,
3450	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3451}
3452
3453static int
3454sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3455{
3456	return (sysctl_int_range(oidp, arg1, arg2, req,
3457	    JME_PROC_MIN, JME_PROC_MAX));
3458}
3459