1/******************************************************************************
2  SPDX-License-Identifier: BSD-3-Clause
3
4  Copyright (c) 2001-2020, Intel Corporation
5  All rights reserved.
6
7  Redistribution and use in source and binary forms, with or without
8  modification, are permitted provided that the following conditions are met:
9
10   1. Redistributions of source code must retain the above copyright notice,
11      this list of conditions and the following disclaimer.
12
13   2. Redistributions in binary form must reproduce the above copyright
14      notice, this list of conditions and the following disclaimer in the
15      documentation and/or other materials provided with the distribution.
16
17   3. Neither the name of the Intel Corporation nor the names of its
18      contributors may be used to endorse or promote products derived from
19      this software without specific prior written permission.
20
21  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  POSSIBILITY OF SUCH DAMAGE.
32
33******************************************************************************/
34/*$FreeBSD$*/
35
36/* 82562G 10/100 Network Connection
37 * 82562G-2 10/100 Network Connection
38 * 82562GT 10/100 Network Connection
39 * 82562GT-2 10/100 Network Connection
40 * 82562V 10/100 Network Connection
41 * 82562V-2 10/100 Network Connection
42 * 82566DC-2 Gigabit Network Connection
43 * 82566DC Gigabit Network Connection
44 * 82566DM-2 Gigabit Network Connection
45 * 82566DM Gigabit Network Connection
46 * 82566MC Gigabit Network Connection
47 * 82566MM Gigabit Network Connection
48 * 82567LM Gigabit Network Connection
49 * 82567LF Gigabit Network Connection
50 * 82567V Gigabit Network Connection
51 * 82567LM-2 Gigabit Network Connection
52 * 82567LF-2 Gigabit Network Connection
53 * 82567V-2 Gigabit Network Connection
54 * 82567LF-3 Gigabit Network Connection
55 * 82567LM-3 Gigabit Network Connection
56 * 82567LM-4 Gigabit Network Connection
57 * 82577LM Gigabit Network Connection
58 * 82577LC Gigabit Network Connection
59 * 82578DM Gigabit Network Connection
60 * 82578DC Gigabit Network Connection
61 * 82579LM Gigabit Network Connection
62 * 82579V Gigabit Network Connection
63 * Ethernet Connection I217-LM
64 * Ethernet Connection I217-V
65 * Ethernet Connection I218-V
66 * Ethernet Connection I218-LM
67 * Ethernet Connection (2) I218-LM
68 * Ethernet Connection (2) I218-V
69 * Ethernet Connection (3) I218-LM
70 * Ethernet Connection (3) I218-V
71 */
72
73#include "e1000_api.h"
74
75static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
76static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
77static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
78static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
79static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
80static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
81static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
82static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
83static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
84static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
85					      u8 *mc_addr_list,
86					      u32 mc_addr_count);
87static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
88static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
89static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
90static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
91					    bool active);
92static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
93					    bool active);
94static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
95				   u16 words, u16 *data);
96static s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
97			       u16 *data);
98static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
99				    u16 words, u16 *data);
100static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
101static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
102static s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
103static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
104					    u16 *data);
105static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
106static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
107static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
108static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
109static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
110static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
111static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
112static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
113					   u16 *speed, u16 *duplex);
114static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
115static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
116static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
117static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
118static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
119static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
120static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
121static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
122static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
123static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
124static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
125static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
127					  u32 offset, u8 *data);
128static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
129					  u8 size, u16 *data);
130static s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
131					    u32 *data);
132static s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
133					   u32 offset, u32 *data);
134static s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
135					     u32 offset, u32 data);
136static s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
137						  u32 offset, u32 dword);
138static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
139					  u32 offset, u16 *data);
140static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
141						 u32 offset, u8 byte);
142static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
143static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
144static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
145static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
146static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
147static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
148static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
149
150/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
151/* Offset 04h HSFSTS */
152union ich8_hws_flash_status {
153	struct ich8_hsfsts {
154		u16 flcdone:1; /* bit 0 Flash Cycle Done */
155		u16 flcerr:1; /* bit 1 Flash Cycle Error */
156		u16 dael:1; /* bit 2 Direct Access error Log */
157		u16 berasesz:2; /* bit 4:3 Sector Erase Size */
158		u16 flcinprog:1; /* bit 5 flash cycle in Progress */
159		u16 reserved1:2; /* bit 13:6 Reserved */
160		u16 reserved2:6; /* bit 13:6 Reserved */
161		u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
162		u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
163	} hsf_status;
164	u16 regval;
165};
166
167/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
168/* Offset 06h FLCTL */
169union ich8_hws_flash_ctrl {
170	struct ich8_hsflctl {
171		u16 flcgo:1;   /* 0 Flash Cycle Go */
172		u16 flcycle:2;   /* 2:1 Flash Cycle */
173		u16 reserved:5;   /* 7:3 Reserved  */
174		u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
175		u16 flockdn:6;   /* 15:10 Reserved */
176	} hsf_ctrl;
177	u16 regval;
178};
179
180/* ICH Flash Region Access Permissions */
181union ich8_hws_flash_regacc {
182	struct ich8_flracc {
183		u32 grra:8; /* 0:7 GbE region Read Access */
184		u32 grwa:8; /* 8:15 GbE region Write Access */
185		u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
186		u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
187	} hsf_flregacc;
188	u16 regval;
189};
190
191/**
192 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
193 *  @hw: pointer to the HW structure
194 *
195 *  Test access to the PHY registers by reading the PHY ID registers.  If
196 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
197 *  otherwise assume the read PHY ID is correct if it is valid.
198 *
199 *  Assumes the sw/fw/hw semaphore is already acquired.
200 **/
201static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
202{
203	u16 phy_reg = 0;
204	u32 phy_id = 0;
205	s32 ret_val = 0;
206	u16 retry_count;
207	u32 mac_reg = 0;
208
209	for (retry_count = 0; retry_count < 2; retry_count++) {
210		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
211		if (ret_val || (phy_reg == 0xFFFF))
212			continue;
213		phy_id = (u32)(phy_reg << 16);
214
215		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
216		if (ret_val || (phy_reg == 0xFFFF)) {
217			phy_id = 0;
218			continue;
219		}
220		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
221		break;
222	}
223
224	if (hw->phy.id) {
225		if  (hw->phy.id == phy_id)
226			goto out;
227	} else if (phy_id) {
228		hw->phy.id = phy_id;
229		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
230		goto out;
231	}
232
233	/* In case the PHY needs to be in mdio slow mode,
234	 * set slow mode and try to get the PHY id again.
235	 */
236	if (hw->mac.type < e1000_pch_lpt) {
237		hw->phy.ops.release(hw);
238		ret_val = e1000_set_mdio_slow_mode_hv(hw);
239		if (!ret_val)
240			ret_val = e1000_get_phy_id(hw);
241		hw->phy.ops.acquire(hw);
242	}
243
244	if (ret_val)
245		return false;
246out:
247	if (hw->mac.type >= e1000_pch_lpt) {
248		/* Only unforce SMBus if ME is not active */
249		if (!(E1000_READ_REG(hw, E1000_FWSM) &
250		    E1000_ICH_FWSM_FW_VALID)) {
251			/* Unforce SMBus mode in PHY */
252			hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
253			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
254			hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
255
256			/* Unforce SMBus mode in MAC */
257			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
258			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
259			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
260		}
261	}
262
263	return true;
264}
265
266/**
267 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
268 *  @hw: pointer to the HW structure
269 *
270 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
271 *  used to reset the PHY to a quiescent state when necessary.
272 **/
273static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
274{
275	u32 mac_reg;
276
277	DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
278
279	/* Set Phy Config Counter to 50msec */
280	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
281	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
282	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
283	E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
284
285	/* Toggle LANPHYPC Value bit */
286	mac_reg = E1000_READ_REG(hw, E1000_CTRL);
287	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
288	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
289	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
290	E1000_WRITE_FLUSH(hw);
291	msec_delay(1);
292	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
293	E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
294	E1000_WRITE_FLUSH(hw);
295
296	if (hw->mac.type < e1000_pch_lpt) {
297		msec_delay(50);
298	} else {
299		u16 count = 20;
300
301		do {
302			msec_delay(5);
303		} while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
304			   E1000_CTRL_EXT_LPCD) && count--);
305
306		msec_delay(30);
307	}
308}
309
310/**
311 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
312 *  @hw: pointer to the HW structure
313 *
314 *  Workarounds/flow necessary for PHY initialization during driver load
315 *  and resume paths.
316 **/
317static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
318{
319	u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
320	s32 ret_val;
321
322	DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
323
324	/* Gate automatic PHY configuration by hardware on managed and
325	 * non-managed 82579 and newer adapters.
326	 */
327	e1000_gate_hw_phy_config_ich8lan(hw, true);
328
329	/* It is not possible to be certain of the current state of ULP
330	 * so forcibly disable it.
331	 */
332	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
333	e1000_disable_ulp_lpt_lp(hw, TRUE);
334
335	ret_val = hw->phy.ops.acquire(hw);
336	if (ret_val) {
337		DEBUGOUT("Failed to initialize PHY flow\n");
338		goto out;
339	}
340
341	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
342	 * inaccessible and resetting the PHY is not blocked, toggle the
343	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
344	 */
345	switch (hw->mac.type) {
346	case e1000_pch_lpt:
347	case e1000_pch_spt:
348	case e1000_pch_cnp:
349	case e1000_pch_tgp:
350	case e1000_pch_adp:
351	case e1000_pch_mtp:
352		if (e1000_phy_is_accessible_pchlan(hw))
353			break;
354
355		/* Before toggling LANPHYPC, see if PHY is accessible by
356		 * forcing MAC to SMBus mode first.
357		 */
358		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
359		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
360		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
361
362		/* Wait 50 milliseconds for MAC to finish any retries
363		 * that it might be trying to perform from previous
364		 * attempts to acknowledge any phy read requests.
365		 */
366		 msec_delay(50);
367
368		/* FALLTHROUGH */
369	case e1000_pch2lan:
370		if (e1000_phy_is_accessible_pchlan(hw))
371			break;
372
373		/* FALLTHROUGH */
374	case e1000_pchlan:
375		if ((hw->mac.type == e1000_pchlan) &&
376		    (fwsm & E1000_ICH_FWSM_FW_VALID))
377			break;
378
379		if (hw->phy.ops.check_reset_block(hw)) {
380			DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
381			ret_val = -E1000_ERR_PHY;
382			break;
383		}
384
385		/* Toggle LANPHYPC Value bit */
386		e1000_toggle_lanphypc_pch_lpt(hw);
387		if (hw->mac.type >= e1000_pch_lpt) {
388			if (e1000_phy_is_accessible_pchlan(hw))
389				break;
390
391			/* Toggling LANPHYPC brings the PHY out of SMBus mode
392			 * so ensure that the MAC is also out of SMBus mode
393			 */
394			mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
395			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
396			E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
397
398			if (e1000_phy_is_accessible_pchlan(hw))
399				break;
400
401			ret_val = -E1000_ERR_PHY;
402		}
403		break;
404	default:
405		break;
406	}
407
408	hw->phy.ops.release(hw);
409	if (!ret_val) {
410
411		/* Check to see if able to reset PHY.  Print error if not */
412		if (hw->phy.ops.check_reset_block(hw)) {
413			ERROR_REPORT("Reset blocked by ME\n");
414			goto out;
415		}
416
417		/* Reset the PHY before any access to it.  Doing so, ensures
418		 * that the PHY is in a known good state before we read/write
419		 * PHY registers.  The generic reset is sufficient here,
420		 * because we haven't determined the PHY type yet.
421		 */
422		ret_val = e1000_phy_hw_reset_generic(hw);
423		if (ret_val)
424			goto out;
425
426		/* On a successful reset, possibly need to wait for the PHY
427		 * to quiesce to an accessible state before returning control
428		 * to the calling function.  If the PHY does not quiesce, then
429		 * return E1000E_BLK_PHY_RESET, as this is the condition that
430		 *  the PHY is in.
431		 */
432		ret_val = hw->phy.ops.check_reset_block(hw);
433		if (ret_val)
434			ERROR_REPORT("ME blocked access to PHY after reset\n");
435	}
436
437out:
438	/* Ungate automatic PHY configuration on non-managed 82579 */
439	if ((hw->mac.type == e1000_pch2lan) &&
440	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
441		msec_delay(10);
442		e1000_gate_hw_phy_config_ich8lan(hw, false);
443	}
444
445	return ret_val;
446}
447
448/**
449 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
450 *  @hw: pointer to the HW structure
451 *
452 *  Initialize family-specific PHY parameters and function pointers.
453 **/
454static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
455{
456	struct e1000_phy_info *phy = &hw->phy;
457	s32 ret_val;
458
459	DEBUGFUNC("e1000_init_phy_params_pchlan");
460
461	phy->addr		= 1;
462	phy->reset_delay_us	= 100;
463
464	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
465	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
466	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
467	phy->ops.set_page	= e1000_set_page_igp;
468	phy->ops.read_reg	= e1000_read_phy_reg_hv;
469	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
470	phy->ops.read_reg_page	= e1000_read_phy_reg_page_hv;
471	phy->ops.release	= e1000_release_swflag_ich8lan;
472	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
473	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
474	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
475	phy->ops.write_reg	= e1000_write_phy_reg_hv;
476	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
477	phy->ops.write_reg_page	= e1000_write_phy_reg_page_hv;
478	phy->ops.power_up	= e1000_power_up_phy_copper;
479	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
480	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
481
482	phy->id = e1000_phy_unknown;
483
484	ret_val = e1000_init_phy_workarounds_pchlan(hw);
485	if (ret_val)
486		return ret_val;
487
488	if (phy->id == e1000_phy_unknown)
489		switch (hw->mac.type) {
490		default:
491			ret_val = e1000_get_phy_id(hw);
492			if (ret_val)
493				return ret_val;
494			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
495				break;
496			/* FALLTHROUGH */
497		case e1000_pch2lan:
498		case e1000_pch_lpt:
499		case e1000_pch_spt:
500		case e1000_pch_cnp:
501		case e1000_pch_tgp:
502		case e1000_pch_adp:
503		case e1000_pch_mtp:
504			/* In case the PHY needs to be in mdio slow mode,
505			 * set slow mode and try to get the PHY id again.
506			 */
507			ret_val = e1000_set_mdio_slow_mode_hv(hw);
508			if (ret_val)
509				return ret_val;
510			ret_val = e1000_get_phy_id(hw);
511			if (ret_val)
512				return ret_val;
513			break;
514		}
515	phy->type = e1000_get_phy_type_from_id(phy->id);
516
517	switch (phy->type) {
518	case e1000_phy_82577:
519	case e1000_phy_82579:
520	case e1000_phy_i217:
521		phy->ops.check_polarity = e1000_check_polarity_82577;
522		phy->ops.force_speed_duplex =
523			e1000_phy_force_speed_duplex_82577;
524		phy->ops.get_cable_length = e1000_get_cable_length_82577;
525		phy->ops.get_info = e1000_get_phy_info_82577;
526		phy->ops.commit = e1000_phy_sw_reset_generic;
527		break;
528	case e1000_phy_82578:
529		phy->ops.check_polarity = e1000_check_polarity_m88;
530		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
531		phy->ops.get_cable_length = e1000_get_cable_length_m88;
532		phy->ops.get_info = e1000_get_phy_info_m88;
533		break;
534	default:
535		ret_val = -E1000_ERR_PHY;
536		break;
537	}
538
539	return ret_val;
540}
541
542/**
543 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
544 *  @hw: pointer to the HW structure
545 *
546 *  Initialize family-specific PHY parameters and function pointers.
547 **/
548static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
549{
550	struct e1000_phy_info *phy = &hw->phy;
551	s32 ret_val;
552	u16 i = 0;
553
554	DEBUGFUNC("e1000_init_phy_params_ich8lan");
555
556	phy->addr		= 1;
557	phy->reset_delay_us	= 100;
558
559	phy->ops.acquire	= e1000_acquire_swflag_ich8lan;
560	phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
561	phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
562	phy->ops.get_cfg_done	= e1000_get_cfg_done_ich8lan;
563	phy->ops.read_reg	= e1000_read_phy_reg_igp;
564	phy->ops.release	= e1000_release_swflag_ich8lan;
565	phy->ops.reset		= e1000_phy_hw_reset_ich8lan;
566	phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
567	phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
568	phy->ops.write_reg	= e1000_write_phy_reg_igp;
569	phy->ops.power_up	= e1000_power_up_phy_copper;
570	phy->ops.power_down	= e1000_power_down_phy_copper_ich8lan;
571
572	/* We may need to do this twice - once for IGP and if that fails,
573	 * we'll set BM func pointers and try again
574	 */
575	ret_val = e1000_determine_phy_address(hw);
576	if (ret_val) {
577		phy->ops.write_reg = e1000_write_phy_reg_bm;
578		phy->ops.read_reg  = e1000_read_phy_reg_bm;
579		ret_val = e1000_determine_phy_address(hw);
580		if (ret_val) {
581			DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
582			return ret_val;
583		}
584	}
585
586	phy->id = 0;
587	while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
588	       (i++ < 100)) {
589		msec_delay(1);
590		ret_val = e1000_get_phy_id(hw);
591		if (ret_val)
592			return ret_val;
593	}
594
595	/* Verify phy id */
596	switch (phy->id) {
597	case IGP03E1000_E_PHY_ID:
598		phy->type = e1000_phy_igp_3;
599		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
600		phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
601		phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
602		phy->ops.get_info = e1000_get_phy_info_igp;
603		phy->ops.check_polarity = e1000_check_polarity_igp;
604		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
605		break;
606	case IFE_E_PHY_ID:
607	case IFE_PLUS_E_PHY_ID:
608	case IFE_C_E_PHY_ID:
609		phy->type = e1000_phy_ife;
610		phy->autoneg_mask = E1000_ALL_NOT_GIG;
611		phy->ops.get_info = e1000_get_phy_info_ife;
612		phy->ops.check_polarity = e1000_check_polarity_ife;
613		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
614		break;
615	case BME1000_E_PHY_ID:
616		phy->type = e1000_phy_bm;
617		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
618		phy->ops.read_reg = e1000_read_phy_reg_bm;
619		phy->ops.write_reg = e1000_write_phy_reg_bm;
620		phy->ops.commit = e1000_phy_sw_reset_generic;
621		phy->ops.get_info = e1000_get_phy_info_m88;
622		phy->ops.check_polarity = e1000_check_polarity_m88;
623		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
624		break;
625	default:
626		return -E1000_ERR_PHY;
627		break;
628	}
629
630	return E1000_SUCCESS;
631}
632
633/**
634 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
635 *  @hw: pointer to the HW structure
636 *
637 *  Initialize family-specific NVM parameters and function
638 *  pointers.
639 **/
640static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
641{
642	struct e1000_nvm_info *nvm = &hw->nvm;
643	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
644	u32 gfpreg, sector_base_addr, sector_end_addr;
645	u16 i;
646	u32 nvm_size;
647
648	DEBUGFUNC("e1000_init_nvm_params_ich8lan");
649
650	nvm->type = e1000_nvm_flash_sw;
651
652	if (hw->mac.type >= e1000_pch_spt) {
653		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
654		 * STRAP register. This is because in SPT the GbE Flash region
655		 * is no longer accessed through the flash registers. Instead,
656		 * the mechanism has changed, and the Flash region access
657		 * registers are now implemented in GbE memory space.
658		 */
659		nvm->flash_base_addr = 0;
660		nvm_size =
661		    (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
662		    * NVM_SIZE_MULTIPLIER;
663		nvm->flash_bank_size = nvm_size / 2;
664		/* Adjust to word count */
665		nvm->flash_bank_size /= sizeof(u16);
666		/* Set the base address for flash register access */
667		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
668	} else {
669		/* Can't read flash registers if register set isn't mapped. */
670		if (!hw->flash_address) {
671			DEBUGOUT("ERROR: Flash registers not mapped\n");
672			return -E1000_ERR_CONFIG;
673		}
674
675		gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
676
677		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
678		 * Add 1 to sector_end_addr since this sector is included in
679		 * the overall size.
680		 */
681		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
682		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
683
684		/* flash_base_addr is byte-aligned */
685		nvm->flash_base_addr = sector_base_addr
686				       << FLASH_SECTOR_ADDR_SHIFT;
687
688		/* find total size of the NVM, then cut in half since the total
689		 * size represents two separate NVM banks.
690		 */
691		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
692					<< FLASH_SECTOR_ADDR_SHIFT);
693		nvm->flash_bank_size /= 2;
694		/* Adjust to word count */
695		nvm->flash_bank_size /= sizeof(u16);
696	}
697
698	nvm->word_size = E1000_SHADOW_RAM_WORDS;
699
700	/* Clear shadow ram */
701	for (i = 0; i < nvm->word_size; i++) {
702		dev_spec->shadow_ram[i].modified = false;
703		dev_spec->shadow_ram[i].value    = 0xFFFF;
704	}
705
706	/* Function Pointers */
707	nvm->ops.acquire	= e1000_acquire_nvm_ich8lan;
708	nvm->ops.release	= e1000_release_nvm_ich8lan;
709	if (hw->mac.type >= e1000_pch_spt) {
710		nvm->ops.read	= e1000_read_nvm_spt;
711		nvm->ops.update	= e1000_update_nvm_checksum_spt;
712	} else {
713		nvm->ops.read	= e1000_read_nvm_ich8lan;
714		nvm->ops.update	= e1000_update_nvm_checksum_ich8lan;
715	}
716	nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
717	nvm->ops.validate	= e1000_validate_nvm_checksum_ich8lan;
718	nvm->ops.write		= e1000_write_nvm_ich8lan;
719
720	return E1000_SUCCESS;
721}
722
723/**
724 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
725 *  @hw: pointer to the HW structure
726 *
727 *  Initialize family-specific MAC parameters and function
728 *  pointers.
729 **/
730static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
731{
732	struct e1000_mac_info *mac = &hw->mac;
733
734	DEBUGFUNC("e1000_init_mac_params_ich8lan");
735
736	/* Set media type function pointer */
737	hw->phy.media_type = e1000_media_type_copper;
738
739	/* Set mta register count */
740	mac->mta_reg_count = 32;
741	/* Set rar entry count */
742	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
743	if (mac->type == e1000_ich8lan)
744		mac->rar_entry_count--;
745	/* Set if part includes ASF firmware */
746	mac->asf_firmware_present = true;
747	/* FWSM register */
748	mac->has_fwsm = true;
749	/* ARC subsystem not supported */
750	mac->arc_subsystem_valid = false;
751	/* Adaptive IFS supported */
752	mac->adaptive_ifs = true;
753
754	/* Function pointers */
755
756	/* bus type/speed/width */
757	mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
758	/* function id */
759	mac->ops.set_lan_id = e1000_set_lan_id_single_port;
760	/* reset */
761	mac->ops.reset_hw = e1000_reset_hw_ich8lan;
762	/* hw initialization */
763	mac->ops.init_hw = e1000_init_hw_ich8lan;
764	/* link setup */
765	mac->ops.setup_link = e1000_setup_link_ich8lan;
766	/* physical interface setup */
767	mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
768	/* check for link */
769	mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
770	/* link info */
771	mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
772	/* multicast address update */
773	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
774	/* clear hardware counters */
775	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
776
777	/* LED and other operations */
778	switch (mac->type) {
779	case e1000_ich8lan:
780	case e1000_ich9lan:
781	case e1000_ich10lan:
782		/* check management mode */
783		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
784		/* ID LED init */
785		mac->ops.id_led_init = e1000_id_led_init_generic;
786		/* blink LED */
787		mac->ops.blink_led = e1000_blink_led_generic;
788		/* setup LED */
789		mac->ops.setup_led = e1000_setup_led_generic;
790		/* cleanup LED */
791		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
792		/* turn on/off LED */
793		mac->ops.led_on = e1000_led_on_ich8lan;
794		mac->ops.led_off = e1000_led_off_ich8lan;
795		break;
796	case e1000_pch2lan:
797		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
798		mac->ops.rar_set = e1000_rar_set_pch2lan;
799		/* FALLTHROUGH */
800	case e1000_pch_lpt:
801	case e1000_pch_spt:
802	case e1000_pch_cnp:
803	case e1000_pch_tgp:
804	case e1000_pch_adp:
805	case e1000_pch_mtp:
806		/* multicast address update for pch2 */
807		mac->ops.update_mc_addr_list =
808			e1000_update_mc_addr_list_pch2lan;
809		/* FALLTHROUGH */
810	case e1000_pchlan:
811		/* check management mode */
812		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
813		/* ID LED init */
814		mac->ops.id_led_init = e1000_id_led_init_pchlan;
815		/* setup LED */
816		mac->ops.setup_led = e1000_setup_led_pchlan;
817		/* cleanup LED */
818		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
819		/* turn on/off LED */
820		mac->ops.led_on = e1000_led_on_pchlan;
821		mac->ops.led_off = e1000_led_off_pchlan;
822		break;
823	default:
824		break;
825	}
826
827	if (mac->type >= e1000_pch_lpt) {
828		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
829		mac->ops.rar_set = e1000_rar_set_pch_lpt;
830		mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
831		mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
832	}
833
834	/* Enable PCS Lock-loss workaround for ICH8 */
835	if (mac->type == e1000_ich8lan)
836		e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
837
838	return E1000_SUCCESS;
839}
840
841/**
842 *  __e1000_access_emi_reg_locked - Read/write EMI register
843 *  @hw: pointer to the HW structure
844 *  @address: EMI address to program
845 *  @data: pointer to value to read/write from/to the EMI address
846 *  @read: boolean flag to indicate read or write
847 *
848 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
849 **/
850static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
851					 u16 *data, bool read)
852{
853	s32 ret_val;
854
855	DEBUGFUNC("__e1000_access_emi_reg_locked");
856
857	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
858	if (ret_val)
859		return ret_val;
860
861	if (read)
862		ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
863						      data);
864	else
865		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
866						       *data);
867
868	return ret_val;
869}
870
871/**
872 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
873 *  @hw: pointer to the HW structure
874 *  @addr: EMI address to program
875 *  @data: value to be read from the EMI address
876 *
877 *  Assumes the SW/FW/HW Semaphore is already acquired.
878 **/
879s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
880{
881	DEBUGFUNC("e1000_read_emi_reg_locked");
882
883	return __e1000_access_emi_reg_locked(hw, addr, data, true);
884}
885
886/**
887 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
888 *  @hw: pointer to the HW structure
889 *  @addr: EMI address to program
890 *  @data: value to be written to the EMI address
891 *
892 *  Assumes the SW/FW/HW Semaphore is already acquired.
893 **/
894s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
895{
896	DEBUGFUNC("e1000_read_emi_reg_locked");
897
898	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
899}
900
901/**
902 *  e1000_set_eee_pchlan - Enable/disable EEE support
903 *  @hw: pointer to the HW structure
904 *
905 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
906 *  the link and the EEE capabilities of the link partner.  The LPI Control
907 *  register bits will remain set only if/when link is up.
908 *
909 *  EEE LPI must not be asserted earlier than one second after link is up.
910 *  On 82579, EEE LPI should not be enabled until such time otherwise there
911 *  can be link issues with some switches.  Other devices can have EEE LPI
912 *  enabled immediately upon link up since they have a timer in hardware which
913 *  prevents LPI from being asserted too early.
914 **/
915s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
916{
917	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
918	s32 ret_val;
919	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
920
921	DEBUGFUNC("e1000_set_eee_pchlan");
922
923	switch (hw->phy.type) {
924	case e1000_phy_82579:
925		lpa = I82579_EEE_LP_ABILITY;
926		pcs_status = I82579_EEE_PCS_STATUS;
927		adv_addr = I82579_EEE_ADVERTISEMENT;
928		break;
929	case e1000_phy_i217:
930		lpa = I217_EEE_LP_ABILITY;
931		pcs_status = I217_EEE_PCS_STATUS;
932		adv_addr = I217_EEE_ADVERTISEMENT;
933		break;
934	default:
935		return E1000_SUCCESS;
936	}
937
938	ret_val = hw->phy.ops.acquire(hw);
939	if (ret_val)
940		return ret_val;
941
942	ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
943	if (ret_val)
944		goto release;
945
946	/* Clear bits that enable EEE in various speeds */
947	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
948
949	/* Enable EEE if not disabled by user */
950	if (!dev_spec->eee_disable) {
951		/* Save off link partner's EEE ability */
952		ret_val = e1000_read_emi_reg_locked(hw, lpa,
953						    &dev_spec->eee_lp_ability);
954		if (ret_val)
955			goto release;
956
957		/* Read EEE advertisement */
958		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
959		if (ret_val)
960			goto release;
961
962		/* Enable EEE only for speeds in which the link partner is
963		 * EEE capable and for which we advertise EEE.
964		 */
965		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
966			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
967
968		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
969			hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
970			if (data & NWAY_LPAR_100TX_FD_CAPS)
971				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
972			else
973				/* EEE is not supported in 100Half, so ignore
974				 * partner's EEE in 100 ability if full-duplex
975				 * is not advertised.
976				 */
977				dev_spec->eee_lp_ability &=
978				    ~I82579_EEE_100_SUPPORTED;
979		}
980	}
981
982	if (hw->phy.type == e1000_phy_82579) {
983		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
984						    &data);
985		if (ret_val)
986			goto release;
987
988		data &= ~I82579_LPI_100_PLL_SHUT;
989		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
990						     data);
991	}
992
993	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
994	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
995	if (ret_val)
996		goto release;
997
998	ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
999release:
1000	hw->phy.ops.release(hw);
1001
1002	return ret_val;
1003}
1004
1005/**
1006 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
1007 *  @hw:   pointer to the HW structure
1008 *  @link: link up bool flag
1009 *
1010 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
1011 *  preventing further DMA write requests.  Workaround the issue by disabling
1012 *  the de-assertion of the clock request when in 1Gpbs mode.
1013 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1014 *  speeds in order to avoid Tx hangs.
1015 **/
1016static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1017{
1018	u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1019	u32 status = E1000_READ_REG(hw, E1000_STATUS);
1020	s32 ret_val = E1000_SUCCESS;
1021	u16 reg;
1022
1023	if (link && (status & E1000_STATUS_SPEED_1000)) {
1024		ret_val = hw->phy.ops.acquire(hw);
1025		if (ret_val)
1026			return ret_val;
1027
1028		ret_val =
1029		    e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1030					       &reg);
1031		if (ret_val)
1032			goto release;
1033
1034		ret_val =
1035		    e1000_write_kmrn_reg_locked(hw,
1036						E1000_KMRNCTRLSTA_K1_CONFIG,
1037						reg &
1038						~E1000_KMRNCTRLSTA_K1_ENABLE);
1039		if (ret_val)
1040			goto release;
1041
1042		usec_delay(10);
1043
1044		E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1045				fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1046
1047		ret_val =
1048		    e1000_write_kmrn_reg_locked(hw,
1049						E1000_KMRNCTRLSTA_K1_CONFIG,
1050						reg);
1051release:
1052		hw->phy.ops.release(hw);
1053	} else {
1054		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1055		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1056
1057		if ((hw->phy.revision > 5) || !link ||
1058		    ((status & E1000_STATUS_SPEED_100) &&
1059		     (status & E1000_STATUS_FD)))
1060			goto update_fextnvm6;
1061
1062		ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1063		if (ret_val)
1064			return ret_val;
1065
1066		/* Clear link status transmit timeout */
1067		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1068
1069		if (status & E1000_STATUS_SPEED_100) {
1070			/* Set inband Tx timeout to 5x10us for 100Half */
1071			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1072
1073			/* Do not extend the K1 entry latency for 100Half */
1074			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1075		} else {
1076			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1077			reg |= 50 <<
1078			       I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1079
1080			/* Extend the K1 entry latency for 10 Mbps */
1081			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1082		}
1083
1084		ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1085		if (ret_val)
1086			return ret_val;
1087
1088update_fextnvm6:
1089		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1090	}
1091
1092	return ret_val;
1093}
1094
1095static u64 e1000_ltr2ns(u16 ltr)
1096{
1097	u32 value, scale;
1098
1099	/* Determine the latency in nsec based on the LTR value & scale */
1100	value = ltr & E1000_LTRV_VALUE_MASK;
1101	scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1102
1103	return value * (1ULL << (scale * E1000_LTRV_SCALE_FACTOR));
1104}
1105
1106/**
1107 *  e1000_platform_pm_pch_lpt - Set platform power management values
1108 *  @hw: pointer to the HW structure
1109 *  @link: bool indicating link status
1110 *
1111 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1112 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1113 *  when link is up (which must not exceed the maximum latency supported
1114 *  by the platform), otherwise specify there is no LTR requirement.
1115 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1116 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1117 *  Capability register set, on this device LTR is set by writing the
1118 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1119 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1120 *  message to the PMC.
1121 *
1122 *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1123 *  high-water mark.
1124 **/
1125static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1126{
1127	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1128		  link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1129	u16 lat_enc = 0;	/* latency encoded */
1130	s32 obff_hwm = 0;
1131
1132	DEBUGFUNC("e1000_platform_pm_pch_lpt");
1133
1134	if (link) {
1135		u16 speed, duplex, scale = 0;
1136		u16 max_snoop, max_nosnoop;
1137		u16 max_ltr_enc;	/* max LTR latency encoded */
1138		s64 lat_ns;
1139		s64 value;
1140		u32 rxa;
1141
1142		if (!hw->mac.max_frame_size) {
1143			DEBUGOUT("max_frame_size not set.\n");
1144			return -E1000_ERR_CONFIG;
1145		}
1146
1147		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1148		if (!speed) {
1149			DEBUGOUT("Speed not set.\n");
1150			return -E1000_ERR_CONFIG;
1151		}
1152
1153		/* Rx Packet Buffer Allocation size (KB) */
1154		rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1155
1156		/* Determine the maximum latency tolerated by the device.
1157		 *
1158		 * Per the PCIe spec, the tolerated latencies are encoded as
1159		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1160		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1161		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1162		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1163		 */
1164		lat_ns = ((s64)rxa * 1024 -
1165			  (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1166		if (lat_ns < 0)
1167			lat_ns = 0;
1168		else
1169			lat_ns /= speed;
1170		value = lat_ns;
1171
1172		while (value > E1000_LTRV_VALUE_MASK) {
1173			scale++;
1174			value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1175		}
1176		if (scale > E1000_LTRV_SCALE_MAX) {
1177			DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1178			return -E1000_ERR_CONFIG;
1179		}
1180		lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1181
1182		/* Determine the maximum latency tolerated by the platform */
1183		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1184		e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1185		max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1186
1187		if (lat_enc > max_ltr_enc) {
1188			lat_enc = max_ltr_enc;
1189			lat_ns = e1000_ltr2ns(max_ltr_enc);
1190		}
1191
1192		if (lat_ns) {
1193			lat_ns *= speed * 1000;
1194			lat_ns /= 8;
1195			lat_ns /= 1000000000;
1196			obff_hwm = (s32)(rxa - lat_ns);
1197		}
1198		if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1199			DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1200			return -E1000_ERR_CONFIG;
1201		}
1202	}
1203
1204	/* Set Snoop and No-Snoop latencies the same */
1205	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1206	E1000_WRITE_REG(hw, E1000_LTRV, reg);
1207
1208	/* Set OBFF high water mark */
1209	reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1210	reg |= obff_hwm;
1211	E1000_WRITE_REG(hw, E1000_SVT, reg);
1212
1213	/* Enable OBFF */
1214	reg = E1000_READ_REG(hw, E1000_SVCR);
1215	reg |= E1000_SVCR_OFF_EN;
1216	/* Always unblock interrupts to the CPU even when the system is
1217	 * in OBFF mode. This ensures that small round-robin traffic
1218	 * (like ping) does not get dropped or experience long latency.
1219	 */
1220	reg |= E1000_SVCR_OFF_MASKINT;
1221	E1000_WRITE_REG(hw, E1000_SVCR, reg);
1222
1223	return E1000_SUCCESS;
1224}
1225
1226/**
1227 *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1228 *  @hw: pointer to the HW structure
1229 *  @itr: interrupt throttling rate
1230 *
1231 *  Configure OBFF with the updated interrupt rate.
1232 **/
1233static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1234{
1235	u32 svcr;
1236	s32 timer;
1237
1238	DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1239
1240	/* Convert ITR value into microseconds for OBFF timer */
1241	timer = itr & E1000_ITR_MASK;
1242	timer = (timer * E1000_ITR_MULT) / 1000;
1243
1244	if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1245		DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1246		return -E1000_ERR_CONFIG;
1247	}
1248
1249	svcr = E1000_READ_REG(hw, E1000_SVCR);
1250	svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1251	svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1252	E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1253
1254	return E1000_SUCCESS;
1255}
1256
1257/**
1258 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1259 *  @hw: pointer to the HW structure
1260 *  @to_sx: boolean indicating a system power state transition to Sx
1261 *
1262 *  When link is down, configure ULP mode to significantly reduce the power
1263 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1264 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1265 *  system, configure the ULP mode by software.
1266 */
1267s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1268{
1269	u32 mac_reg;
1270	s32 ret_val = E1000_SUCCESS;
1271	u16 phy_reg;
1272	u16 oem_reg = 0;
1273
1274	if ((hw->mac.type < e1000_pch_lpt) ||
1275	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1276	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1277	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1278	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1279	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1280		return 0;
1281
1282	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1283		/* Request ME configure ULP mode in the PHY */
1284		mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1285		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1286		E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1287
1288		goto out;
1289	}
1290
1291	if (!to_sx) {
1292		int i = 0;
1293
1294		/* Poll up to 5 seconds for Cable Disconnected indication */
1295		while (!(E1000_READ_REG(hw, E1000_FEXT) &
1296			 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1297			/* Bail if link is re-acquired */
1298			if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1299				return -E1000_ERR_PHY;
1300
1301			if (i++ == 100)
1302				break;
1303
1304			msec_delay(50);
1305		}
1306		DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1307			 (E1000_READ_REG(hw, E1000_FEXT) &
1308			  E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1309			 i * 50);
1310		if (!(E1000_READ_REG(hw, E1000_FEXT) &
1311		    E1000_FEXT_PHY_CABLE_DISCONNECTED))
1312			return 0;
1313
1314	}
1315
1316	ret_val = hw->phy.ops.acquire(hw);
1317	if (ret_val)
1318		goto out;
1319
1320	/* Force SMBus mode in PHY */
1321	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1322	if (ret_val)
1323		goto release;
1324	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1325	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1326
1327	/* Force SMBus mode in MAC */
1328	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1329	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1330	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1331
1332	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1333	 * LPLU and disable Gig speed when entering ULP
1334	 */
1335	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1336		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1337						       &oem_reg);
1338		if (ret_val)
1339			goto release;
1340
1341		phy_reg = oem_reg;
1342		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1343
1344		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1345							phy_reg);
1346
1347		if (ret_val)
1348			goto release;
1349	}
1350
1351	/* Set Inband ULP Exit, Reset to SMBus mode and
1352	 * Disable SMBus Release on PERST# in PHY
1353	 */
1354	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1355	if (ret_val)
1356		goto release;
1357	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1358		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1359	if (to_sx) {
1360		if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1361			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1362		else
1363			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1364
1365		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1366		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1367	} else {
1368		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1369		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1370		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1371	}
1372	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1373
1374	/* Set Disable SMBus Release on PERST# in MAC */
1375	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1376	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1377	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1378
1379	/* Commit ULP changes in PHY by starting auto ULP configuration */
1380	phy_reg |= I218_ULP_CONFIG1_START;
1381	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1382
1383	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1384	    to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1385		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1386							oem_reg);
1387		if (ret_val)
1388			goto release;
1389	}
1390
1391release:
1392	hw->phy.ops.release(hw);
1393out:
1394	if (ret_val)
1395		DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1396	else
1397		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1398
1399	return ret_val;
1400}
1401
1402/**
1403 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1404 *  @hw: pointer to the HW structure
1405 *  @force: boolean indicating whether or not to force disabling ULP
1406 *
1407 *  Un-configure ULP mode when link is up, the system is transitioned from
1408 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1409 *  system, poll for an indication from ME that ULP has been un-configured.
1410 *  If not on an ME enabled system, un-configure the ULP mode by software.
1411 *
1412 *  During nominal operation, this function is called when link is acquired
1413 *  to disable ULP mode (force=false); otherwise, for example when unloading
1414 *  the driver or during Sx->S0 transitions, this is called with force=true
1415 *  to forcibly disable ULP.
1416 */
1417s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1418{
1419	s32 ret_val = E1000_SUCCESS;
1420	u8 ulp_exit_timeout = 30;
1421	u32 mac_reg;
1422	u16 phy_reg;
1423	int i = 0;
1424
1425	if ((hw->mac.type < e1000_pch_lpt) ||
1426	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1427	    (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1428	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1429	    (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1430	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1431		return 0;
1432
1433	if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1434		if (force) {
1435			/* Request ME un-configure ULP mode in the PHY */
1436			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1437			mac_reg &= ~E1000_H2ME_ULP;
1438			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1439			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1440		}
1441
1442		if (hw->mac.type == e1000_pch_cnp)
1443			ulp_exit_timeout = 100;
1444
1445		while (E1000_READ_REG(hw, E1000_FWSM) &
1446		       E1000_FWSM_ULP_CFG_DONE) {
1447			if (i++ == ulp_exit_timeout) {
1448				ret_val = -E1000_ERR_PHY;
1449				goto out;
1450			}
1451
1452			msec_delay(10);
1453		}
1454		DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1455
1456		if (force) {
1457			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1458			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1459			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1460		} else {
1461			/* Clear H2ME.ULP after ME ULP configuration */
1462			mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1463			mac_reg &= ~E1000_H2ME_ULP;
1464			E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1465		}
1466
1467		goto out;
1468	}
1469
1470	ret_val = hw->phy.ops.acquire(hw);
1471	if (ret_val)
1472		goto out;
1473
1474	if (force)
1475		/* Toggle LANPHYPC Value bit */
1476		e1000_toggle_lanphypc_pch_lpt(hw);
1477
1478	/* Unforce SMBus mode in PHY */
1479	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1480	if (ret_val) {
1481		/* The MAC might be in PCIe mode, so temporarily force to
1482		 * SMBus mode in order to access the PHY.
1483		 */
1484		mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1485		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1486		E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1487
1488		msec_delay(50);
1489
1490		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1491						       &phy_reg);
1492		if (ret_val)
1493			goto release;
1494	}
1495	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1496	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1497
1498	/* Unforce SMBus mode in MAC */
1499	mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1500	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1501	E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1502
1503	/* When ULP mode was previously entered, K1 was disabled by the
1504	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1505	 */
1506	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1507	if (ret_val)
1508		goto release;
1509	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1510	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1511
1512	/* Clear ULP enabled configuration */
1513	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1514	if (ret_val)
1515		goto release;
1516	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1517		     I218_ULP_CONFIG1_STICKY_ULP |
1518		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1519		     I218_ULP_CONFIG1_WOL_HOST |
1520		     I218_ULP_CONFIG1_INBAND_EXIT |
1521		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1522		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1523		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1524	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1525
1526	/* Commit ULP changes by starting auto ULP configuration */
1527	phy_reg |= I218_ULP_CONFIG1_START;
1528	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1529
1530	/* Clear Disable SMBus Release on PERST# in MAC */
1531	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1532	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1533	E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1534
1535release:
1536	hw->phy.ops.release(hw);
1537	if (force) {
1538		hw->phy.ops.reset(hw);
1539		msec_delay(50);
1540	}
1541out:
1542	if (ret_val)
1543		DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1544	else
1545		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1546
1547	return ret_val;
1548}
1549
1550/**
1551 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1552 *  @hw: pointer to the HW structure
1553 *
1554 *  Checks to see of the link status of the hardware has changed.  If a
1555 *  change in link status has been detected, then we read the PHY registers
1556 *  to get the current speed/duplex if link exists.
1557 **/
1558static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1559{
1560	struct e1000_mac_info *mac = &hw->mac;
1561	s32 ret_val, tipg_reg = 0;
1562	u16 emi_addr, emi_val = 0;
1563	bool link;
1564	u16 phy_reg;
1565
1566	DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1567
1568	/* We only want to go out to the PHY registers to see if Auto-Neg
1569	 * has completed and/or if our link status has changed.  The
1570	 * get_link_status flag is set upon receiving a Link Status
1571	 * Change or Rx Sequence Error interrupt.
1572	 */
1573	if (!mac->get_link_status)
1574		return E1000_SUCCESS;
1575
1576	/* First we want to see if the MII Status Register reports
1577	 * link.  If so, then we want to get the current speed/duplex
1578	 * of the PHY.
1579	 */
1580	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1581	if (ret_val)
1582		return ret_val;
1583
1584	if (hw->mac.type == e1000_pchlan) {
1585		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1586		if (ret_val)
1587			return ret_val;
1588	}
1589
1590	/* When connected at 10Mbps half-duplex, some parts are excessively
1591	 * aggressive resulting in many collisions. To avoid this, increase
1592	 * the IPG and reduce Rx latency in the PHY.
1593	 */
1594	if ((hw->mac.type >= e1000_pch2lan) && link) {
1595		u16 speed, duplex;
1596
1597		e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1598		tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1599		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1600
1601		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1602			tipg_reg |= 0xFF;
1603			/* Reduce Rx latency in analog PHY */
1604			emi_val = 0;
1605		} else if (hw->mac.type >= e1000_pch_spt &&
1606			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1607			tipg_reg |= 0xC;
1608			emi_val = 1;
1609		} else {
1610			/* Roll back the default values */
1611			tipg_reg |= 0x08;
1612			emi_val = 1;
1613		}
1614
1615		E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1616
1617		ret_val = hw->phy.ops.acquire(hw);
1618		if (ret_val)
1619			return ret_val;
1620
1621		if (hw->mac.type == e1000_pch2lan)
1622			emi_addr = I82579_RX_CONFIG;
1623		else
1624			emi_addr = I217_RX_CONFIG;
1625		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1626
1627
1628		if (hw->mac.type >= e1000_pch_lpt) {
1629			hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1630						    &phy_reg);
1631			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1632			if (speed == SPEED_100 || speed == SPEED_10)
1633				phy_reg |= 0x3E8;
1634			else
1635				phy_reg |= 0xFA;
1636			hw->phy.ops.write_reg_locked(hw,
1637						     I217_PLL_CLOCK_GATE_REG,
1638						     phy_reg);
1639
1640			if (speed == SPEED_1000) {
1641				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1642							    &phy_reg);
1643
1644				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1645
1646				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1647							     phy_reg);
1648				}
1649		 }
1650		hw->phy.ops.release(hw);
1651
1652		if (ret_val)
1653			return ret_val;
1654
1655		if (hw->mac.type >= e1000_pch_spt) {
1656			u16 data;
1657			u16 ptr_gap;
1658
1659			if (speed == SPEED_1000) {
1660				ret_val = hw->phy.ops.acquire(hw);
1661				if (ret_val)
1662					return ret_val;
1663
1664				ret_val = hw->phy.ops.read_reg_locked(hw,
1665							      PHY_REG(776, 20),
1666							      &data);
1667				if (ret_val) {
1668					hw->phy.ops.release(hw);
1669					return ret_val;
1670				}
1671
1672				ptr_gap = (data & (0x3FF << 2)) >> 2;
1673				if (ptr_gap < 0x18) {
1674					data &= ~(0x3FF << 2);
1675					data |= (0x18 << 2);
1676					ret_val =
1677						hw->phy.ops.write_reg_locked(hw,
1678							PHY_REG(776, 20), data);
1679				}
1680				hw->phy.ops.release(hw);
1681				if (ret_val)
1682					return ret_val;
1683			} else {
1684				ret_val = hw->phy.ops.acquire(hw);
1685				if (ret_val)
1686					return ret_val;
1687
1688				ret_val = hw->phy.ops.write_reg_locked(hw,
1689							     PHY_REG(776, 20),
1690							     0xC023);
1691				hw->phy.ops.release(hw);
1692				if (ret_val)
1693					return ret_val;
1694
1695			}
1696		}
1697	}
1698
1699	/* I217 Packet Loss issue:
1700	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1701	 * on power up.
1702	 * Set the Beacon Duration for I217 to 8 usec
1703	 */
1704	if (hw->mac.type >= e1000_pch_lpt) {
1705		u32 mac_reg;
1706
1707		mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1708		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1709		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1710		E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1711	}
1712
1713	/* Work-around I218 hang issue */
1714	if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1715	    (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1716	    (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1717	    (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1718		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1719		if (ret_val)
1720			return ret_val;
1721	}
1722	if (hw->mac.type >= e1000_pch_lpt) {
1723		/* Set platform power management values for
1724		 * Latency Tolerance Reporting (LTR)
1725		 * Optimized Buffer Flush/Fill (OBFF)
1726		 */
1727		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1728		if (ret_val)
1729			return ret_val;
1730	}
1731	/* Clear link partner's EEE ability */
1732	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1733
1734	if (hw->mac.type >= e1000_pch_lpt) {
1735		u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1736
1737		if (hw->mac.type == e1000_pch_spt) {
1738			/* FEXTNVM6 K1-off workaround - for SPT only */
1739			u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1740
1741			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1742				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1743			else
1744				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1745		}
1746
1747		if (hw->dev_spec.ich8lan.disable_k1_off == true)
1748			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1749
1750		E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1751
1752		/* Configure K0s minimum time */
1753		e1000_configure_k0s_lpt(hw, K1_ENTRY_LATENCY, K1_MIN_TIME);
1754	}
1755
1756	if (!link)
1757		return E1000_SUCCESS; /* No link detected */
1758
1759	mac->get_link_status = false;
1760
1761	switch (hw->mac.type) {
1762	case e1000_pch2lan:
1763		ret_val = e1000_k1_workaround_lv(hw);
1764		if (ret_val)
1765			return ret_val;
1766		/* FALLTHROUGH */
1767	case e1000_pchlan:
1768		if (hw->phy.type == e1000_phy_82578) {
1769			ret_val = e1000_link_stall_workaround_hv(hw);
1770			if (ret_val)
1771				return ret_val;
1772		}
1773
1774		/* Workaround for PCHx parts in half-duplex:
1775		 * Set the number of preambles removed from the packet
1776		 * when it is passed from the PHY to the MAC to prevent
1777		 * the MAC from misinterpreting the packet type.
1778		 */
1779		hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1780		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1781
1782		if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1783		    E1000_STATUS_FD)
1784			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1785
1786		hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1787		break;
1788	default:
1789		break;
1790	}
1791
1792	/* Check if there was DownShift, must be checked
1793	 * immediately after link-up
1794	 */
1795	e1000_check_downshift_generic(hw);
1796
1797	/* Enable/Disable EEE after link up */
1798	if (hw->phy.type > e1000_phy_82579) {
1799		ret_val = e1000_set_eee_pchlan(hw);
1800		if (ret_val)
1801			return ret_val;
1802	}
1803
1804	/* If we are forcing speed/duplex, then we simply return since
1805	 * we have already determined whether we have link or not.
1806	 */
1807	if (!mac->autoneg)
1808		return -E1000_ERR_CONFIG;
1809
1810	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1811	 * of MAC speed/duplex configuration.  So we only need to
1812	 * configure Collision Distance in the MAC.
1813	 */
1814	mac->ops.config_collision_dist(hw);
1815
1816	/* Configure Flow Control now that Auto-Neg has completed.
1817	 * First, we need to restore the desired flow control
1818	 * settings because we may have had to re-autoneg with a
1819	 * different link partner.
1820	 */
1821	ret_val = e1000_config_fc_after_link_up_generic(hw);
1822	if (ret_val)
1823		DEBUGOUT("Error configuring flow control\n");
1824
1825	return ret_val;
1826}
1827
1828/**
1829 *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1830 *  @hw: pointer to the HW structure
1831 *
1832 *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1833 **/
1834void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1835{
1836	DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1837
1838	hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1839	hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1840	switch (hw->mac.type) {
1841	case e1000_ich8lan:
1842	case e1000_ich9lan:
1843	case e1000_ich10lan:
1844		hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1845		break;
1846	case e1000_pchlan:
1847	case e1000_pch2lan:
1848	case e1000_pch_lpt:
1849	case e1000_pch_spt:
1850	case e1000_pch_cnp:
1851	case e1000_pch_tgp:
1852	case e1000_pch_adp:
1853	case e1000_pch_mtp:
1854		hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1855		break;
1856	default:
1857		break;
1858	}
1859}
1860
1861/**
1862 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1863 *  @hw: pointer to the HW structure
1864 *
1865 *  Acquires the mutex for performing NVM operations.
1866 **/
1867static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1868{
1869	DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1870
1871	ASSERT_CTX_LOCK_HELD(hw);
1872
1873	return E1000_SUCCESS;
1874}
1875
1876/**
1877 *  e1000_release_nvm_ich8lan - Release NVM mutex
1878 *  @hw: pointer to the HW structure
1879 *
1880 *  Releases the mutex used while performing NVM operations.
1881 **/
1882static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1883{
1884	DEBUGFUNC("e1000_release_nvm_ich8lan");
1885
1886	ASSERT_CTX_LOCK_HELD(hw);
1887}
1888
1889/**
1890 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1891 *  @hw: pointer to the HW structure
1892 *
1893 *  Acquires the software control flag for performing PHY and select
1894 *  MAC CSR accesses.
1895 **/
1896static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1897{
1898	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1899	s32 ret_val = E1000_SUCCESS;
1900
1901	DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1902
1903	ASSERT_CTX_LOCK_HELD(hw);
1904
1905	while (timeout) {
1906		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1907		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1908			break;
1909
1910		msec_delay_irq(1);
1911		timeout--;
1912	}
1913
1914	if (!timeout) {
1915		DEBUGOUT("SW has already locked the resource.\n");
1916		ret_val = -E1000_ERR_CONFIG;
1917		goto out;
1918	}
1919
1920	timeout = SW_FLAG_TIMEOUT;
1921
1922	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1923	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1924
1925	while (timeout) {
1926		extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1927		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1928			break;
1929
1930		msec_delay_irq(1);
1931		timeout--;
1932	}
1933
1934	if (!timeout) {
1935		DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1936			  E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1937		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1938		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1939		ret_val = -E1000_ERR_CONFIG;
1940		goto out;
1941	}
1942
1943out:
1944	return ret_val;
1945}
1946
1947/**
1948 *  e1000_release_swflag_ich8lan - Release software control flag
1949 *  @hw: pointer to the HW structure
1950 *
1951 *  Releases the software control flag for performing PHY and select
1952 *  MAC CSR accesses.
1953 **/
1954static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1955{
1956	u32 extcnf_ctrl;
1957
1958	DEBUGFUNC("e1000_release_swflag_ich8lan");
1959
1960	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1961
1962	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1963		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1964		E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1965	} else {
1966		DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1967	}
1968}
1969
1970/**
1971 *  e1000_check_mng_mode_ich8lan - Checks management mode
1972 *  @hw: pointer to the HW structure
1973 *
1974 *  This checks if the adapter has any manageability enabled.
1975 *  This is a function pointer entry point only called by read/write
1976 *  routines for the PHY and NVM parts.
1977 **/
1978static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1979{
1980	u32 fwsm;
1981
1982	DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1983
1984	fwsm = E1000_READ_REG(hw, E1000_FWSM);
1985
1986	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1987	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1988		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1989}
1990
1991/**
1992 *  e1000_check_mng_mode_pchlan - Checks management mode
1993 *  @hw: pointer to the HW structure
1994 *
1995 *  This checks if the adapter has iAMT enabled.
1996 *  This is a function pointer entry point only called by read/write
1997 *  routines for the PHY and NVM parts.
1998 **/
1999static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
2000{
2001	u32 fwsm;
2002
2003	DEBUGFUNC("e1000_check_mng_mode_pchlan");
2004
2005	fwsm = E1000_READ_REG(hw, E1000_FWSM);
2006
2007	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
2008	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
2009}
2010
2011/**
2012 *  e1000_rar_set_pch2lan - Set receive address register
2013 *  @hw: pointer to the HW structure
2014 *  @addr: pointer to the receive address
2015 *  @index: receive address array register
2016 *
2017 *  Sets the receive address array register at index to the address passed
2018 *  in by addr.  For 82579, RAR[0] is the base address register that is to
2019 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2020 *  Use SHRA[0-3] in place of those reserved for ME.
2021 **/
2022static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2023{
2024	u32 rar_low, rar_high;
2025
2026	DEBUGFUNC("e1000_rar_set_pch2lan");
2027
2028	/* HW expects these in little endian so we reverse the byte order
2029	 * from network order (big endian) to little endian
2030	 */
2031	rar_low = ((u32) addr[0] |
2032		   ((u32) addr[1] << 8) |
2033		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2034
2035	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2036
2037	/* If MAC address zero, no need to set the AV bit */
2038	if (rar_low || rar_high)
2039		rar_high |= E1000_RAH_AV;
2040
2041	if (index == 0) {
2042		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2043		E1000_WRITE_FLUSH(hw);
2044		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2045		E1000_WRITE_FLUSH(hw);
2046		return E1000_SUCCESS;
2047	}
2048
2049	/* RAR[1-6] are owned by manageability.  Skip those and program the
2050	 * next address into the SHRA register array.
2051	 */
2052	if (index < (u32) (hw->mac.rar_entry_count)) {
2053		s32 ret_val;
2054
2055		ret_val = e1000_acquire_swflag_ich8lan(hw);
2056		if (ret_val)
2057			goto out;
2058
2059		E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
2060		E1000_WRITE_FLUSH(hw);
2061		E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
2062		E1000_WRITE_FLUSH(hw);
2063
2064		e1000_release_swflag_ich8lan(hw);
2065
2066		/* verify the register updates */
2067		if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
2068		    (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
2069			return E1000_SUCCESS;
2070
2071		DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2072			 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
2073	}
2074
2075out:
2076	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2077	return -E1000_ERR_CONFIG;
2078}
2079
2080/**
2081 *  e1000_rar_set_pch_lpt - Set receive address registers
2082 *  @hw: pointer to the HW structure
2083 *  @addr: pointer to the receive address
2084 *  @index: receive address array register
2085 *
2086 *  Sets the receive address register array at index to the address passed
2087 *  in by addr. For LPT, RAR[0] is the base address register that is to
2088 *  contain the MAC address. SHRA[0-10] are the shared receive address
2089 *  registers that are shared between the Host and manageability engine (ME).
2090 **/
2091static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2092{
2093	u32 rar_low, rar_high;
2094	u32 wlock_mac;
2095
2096	DEBUGFUNC("e1000_rar_set_pch_lpt");
2097
2098	/* HW expects these in little endian so we reverse the byte order
2099	 * from network order (big endian) to little endian
2100	 */
2101	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2102		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2103
2104	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2105
2106	/* If MAC address zero, no need to set the AV bit */
2107	if (rar_low || rar_high)
2108		rar_high |= E1000_RAH_AV;
2109
2110	if (index == 0) {
2111		E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2112		E1000_WRITE_FLUSH(hw);
2113		E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2114		E1000_WRITE_FLUSH(hw);
2115		return E1000_SUCCESS;
2116	}
2117
2118	/* The manageability engine (ME) can lock certain SHRAR registers that
2119	 * it is using - those registers are unavailable for use.
2120	 */
2121	if (index < hw->mac.rar_entry_count) {
2122		wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2123			    E1000_FWSM_WLOCK_MAC_MASK;
2124		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2125
2126		/* Check if all SHRAR registers are locked */
2127		if (wlock_mac == 1)
2128			goto out;
2129
2130		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2131			s32 ret_val;
2132
2133			ret_val = e1000_acquire_swflag_ich8lan(hw);
2134
2135			if (ret_val)
2136				goto out;
2137
2138			E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2139					rar_low);
2140			E1000_WRITE_FLUSH(hw);
2141			E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2142					rar_high);
2143			E1000_WRITE_FLUSH(hw);
2144
2145			e1000_release_swflag_ich8lan(hw);
2146
2147			/* verify the register updates */
2148			if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2149			    (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2150				return E1000_SUCCESS;
2151		}
2152	}
2153
2154out:
2155	DEBUGOUT1("Failed to write receive address at index %d\n", index);
2156	return -E1000_ERR_CONFIG;
2157}
2158
2159/**
2160 *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2161 *  @hw: pointer to the HW structure
2162 *  @mc_addr_list: array of multicast addresses to program
2163 *  @mc_addr_count: number of multicast addresses to program
2164 *
2165 *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2166 *  The caller must have a packed mc_addr_list of multicast addresses.
2167 **/
2168static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2169					      u8 *mc_addr_list,
2170					      u32 mc_addr_count)
2171{
2172	u16 phy_reg = 0;
2173	int i;
2174	s32 ret_val;
2175
2176	DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2177
2178	e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2179
2180	ret_val = hw->phy.ops.acquire(hw);
2181	if (ret_val)
2182		return;
2183
2184	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2185	if (ret_val)
2186		goto release;
2187
2188	for (i = 0; i < hw->mac.mta_reg_count; i++) {
2189		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2190					   (u16)(hw->mac.mta_shadow[i] &
2191						 0xFFFF));
2192		hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2193					   (u16)((hw->mac.mta_shadow[i] >> 16) &
2194						 0xFFFF));
2195	}
2196
2197	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2198
2199release:
2200	hw->phy.ops.release(hw);
2201}
2202
2203/**
2204 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2205 *  @hw: pointer to the HW structure
2206 *
2207 *  Checks if firmware is blocking the reset of the PHY.
2208 *  This is a function pointer entry point only called by
2209 *  reset routines.
2210 **/
2211static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2212{
2213	u32 fwsm;
2214	bool blocked = false;
2215	int i = 0;
2216
2217	DEBUGFUNC("e1000_check_reset_block_ich8lan");
2218
2219	do {
2220		fwsm = E1000_READ_REG(hw, E1000_FWSM);
2221		if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2222			blocked = true;
2223			msec_delay(10);
2224			continue;
2225		}
2226		blocked = false;
2227	} while (blocked && (i++ < 30));
2228	return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2229}
2230
2231/**
2232 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2233 *  @hw: pointer to the HW structure
2234 *
2235 *  Assumes semaphore already acquired.
2236 *
2237 **/
2238static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2239{
2240	u16 phy_data;
2241	u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2242	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2243		E1000_STRAP_SMT_FREQ_SHIFT;
2244	s32 ret_val;
2245
2246	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2247
2248	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2249	if (ret_val)
2250		return ret_val;
2251
2252	phy_data &= ~HV_SMB_ADDR_MASK;
2253	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2254	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2255
2256	if (hw->phy.type == e1000_phy_i217) {
2257		/* Restore SMBus frequency */
2258		if (freq--) {
2259			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2260			phy_data |= (freq & (1 << 0)) <<
2261				HV_SMB_ADDR_FREQ_LOW_SHIFT;
2262			phy_data |= (freq & (1 << 1)) <<
2263				(HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2264		} else {
2265			DEBUGOUT("Unsupported SMB frequency in PHY\n");
2266		}
2267	}
2268
2269	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2270}
2271
2272/**
2273 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2274 *  @hw:   pointer to the HW structure
2275 *
2276 *  SW should configure the LCD from the NVM extended configuration region
2277 *  as a workaround for certain parts.
2278 **/
2279static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2280{
2281	struct e1000_phy_info *phy = &hw->phy;
2282	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2283	s32 ret_val = E1000_SUCCESS;
2284	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2285
2286	DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2287
2288	/* Initialize the PHY from the NVM on ICH platforms.  This
2289	 * is needed due to an issue where the NVM configuration is
2290	 * not properly autoloaded after power transitions.
2291	 * Therefore, after each PHY reset, we will load the
2292	 * configuration data out of the NVM manually.
2293	 */
2294	switch (hw->mac.type) {
2295	case e1000_ich8lan:
2296		if (phy->type != e1000_phy_igp_3)
2297			return ret_val;
2298
2299		if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2300		    (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2301			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2302			break;
2303		}
2304		/* FALLTHROUGH */
2305	case e1000_pchlan:
2306	case e1000_pch2lan:
2307	case e1000_pch_lpt:
2308	case e1000_pch_spt:
2309	case e1000_pch_cnp:
2310	case e1000_pch_tgp:
2311	case e1000_pch_adp:
2312	case e1000_pch_mtp:
2313		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2314		break;
2315	default:
2316		return ret_val;
2317	}
2318
2319	ret_val = hw->phy.ops.acquire(hw);
2320	if (ret_val)
2321		return ret_val;
2322
2323	data = E1000_READ_REG(hw, E1000_FEXTNVM);
2324	if (!(data & sw_cfg_mask))
2325		goto release;
2326
2327	/* Make sure HW does not configure LCD from PHY
2328	 * extended configuration before SW configuration
2329	 */
2330	data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2331	if ((hw->mac.type < e1000_pch2lan) &&
2332	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2333			goto release;
2334
2335	cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2336	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2337	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2338	if (!cnf_size)
2339		goto release;
2340
2341	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2342	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2343
2344	if (((hw->mac.type == e1000_pchlan) &&
2345	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2346	    (hw->mac.type > e1000_pchlan)) {
2347		/* HW configures the SMBus address and LEDs when the
2348		 * OEM and LCD Write Enable bits are set in the NVM.
2349		 * When both NVM bits are cleared, SW will configure
2350		 * them instead.
2351		 */
2352		ret_val = e1000_write_smbus_addr(hw);
2353		if (ret_val)
2354			goto release;
2355
2356		data = E1000_READ_REG(hw, E1000_LEDCTL);
2357		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2358							(u16)data);
2359		if (ret_val)
2360			goto release;
2361	}
2362
2363	/* Configure LCD from extended configuration region. */
2364
2365	/* cnf_base_addr is in DWORD */
2366	word_addr = (u16)(cnf_base_addr << 1);
2367
2368	for (i = 0; i < cnf_size; i++) {
2369		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2370					   &reg_data);
2371		if (ret_val)
2372			goto release;
2373
2374		ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2375					   1, &reg_addr);
2376		if (ret_val)
2377			goto release;
2378
2379		/* Save off the PHY page for future writes. */
2380		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2381			phy_page = reg_data;
2382			continue;
2383		}
2384
2385		reg_addr &= PHY_REG_MASK;
2386		reg_addr |= phy_page;
2387
2388		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2389						    reg_data);
2390		if (ret_val)
2391			goto release;
2392	}
2393
2394release:
2395	hw->phy.ops.release(hw);
2396	return ret_val;
2397}
2398
2399/**
2400 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2401 *  @hw:   pointer to the HW structure
2402 *  @link: link up bool flag
2403 *
2404 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2405 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2406 *  If link is down, the function will restore the default K1 setting located
2407 *  in the NVM.
2408 **/
2409static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2410{
2411	s32 ret_val = E1000_SUCCESS;
2412	u16 status_reg = 0;
2413	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2414
2415	DEBUGFUNC("e1000_k1_gig_workaround_hv");
2416
2417	if (hw->mac.type != e1000_pchlan)
2418		return E1000_SUCCESS;
2419
2420	/* Wrap the whole flow with the sw flag */
2421	ret_val = hw->phy.ops.acquire(hw);
2422	if (ret_val)
2423		return ret_val;
2424
2425	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2426	if (link) {
2427		if (hw->phy.type == e1000_phy_82578) {
2428			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2429							      &status_reg);
2430			if (ret_val)
2431				goto release;
2432
2433			status_reg &= (BM_CS_STATUS_LINK_UP |
2434				       BM_CS_STATUS_RESOLVED |
2435				       BM_CS_STATUS_SPEED_MASK);
2436
2437			if (status_reg == (BM_CS_STATUS_LINK_UP |
2438					   BM_CS_STATUS_RESOLVED |
2439					   BM_CS_STATUS_SPEED_1000))
2440				k1_enable = false;
2441		}
2442
2443		if (hw->phy.type == e1000_phy_82577) {
2444			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2445							      &status_reg);
2446			if (ret_val)
2447				goto release;
2448
2449			status_reg &= (HV_M_STATUS_LINK_UP |
2450				       HV_M_STATUS_AUTONEG_COMPLETE |
2451				       HV_M_STATUS_SPEED_MASK);
2452
2453			if (status_reg == (HV_M_STATUS_LINK_UP |
2454					   HV_M_STATUS_AUTONEG_COMPLETE |
2455					   HV_M_STATUS_SPEED_1000))
2456				k1_enable = false;
2457		}
2458
2459		/* Link stall fix for link up */
2460		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2461						       0x0100);
2462		if (ret_val)
2463			goto release;
2464
2465	} else {
2466		/* Link stall fix for link down */
2467		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2468						       0x4100);
2469		if (ret_val)
2470			goto release;
2471	}
2472
2473	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2474
2475release:
2476	hw->phy.ops.release(hw);
2477
2478	return ret_val;
2479}
2480
2481/**
2482 *  e1000_configure_k1_ich8lan - Configure K1 power state
2483 *  @hw: pointer to the HW structure
2484 *  @k1_enable: K1 state to configure
2485 *
2486 *  Configure the K1 power state based on the provided parameter.
2487 *  Assumes semaphore already acquired.
2488 *
2489 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2490 **/
2491s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2492{
2493	s32 ret_val;
2494	u32 ctrl_reg = 0;
2495	u32 ctrl_ext = 0;
2496	u32 reg = 0;
2497	u16 kmrn_reg = 0;
2498
2499	DEBUGFUNC("e1000_configure_k1_ich8lan");
2500
2501	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2502					     &kmrn_reg);
2503	if (ret_val)
2504		return ret_val;
2505
2506	if (k1_enable)
2507		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2508	else
2509		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2510
2511	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2512					      kmrn_reg);
2513	if (ret_val)
2514		return ret_val;
2515
2516	usec_delay(20);
2517	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2518	ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2519
2520	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2521	reg |= E1000_CTRL_FRCSPD;
2522	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2523
2524	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2525	E1000_WRITE_FLUSH(hw);
2526	usec_delay(20);
2527	E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2528	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2529	E1000_WRITE_FLUSH(hw);
2530	usec_delay(20);
2531
2532	return E1000_SUCCESS;
2533}
2534
2535/**
2536 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2537 *  @hw:       pointer to the HW structure
2538 *  @d0_state: boolean if entering d0 or d3 device state
2539 *
2540 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2541 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2542 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2543 **/
2544static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2545{
2546	s32 ret_val = 0;
2547	u32 mac_reg;
2548	u16 oem_reg;
2549
2550	DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2551
2552	if (hw->mac.type < e1000_pchlan)
2553		return ret_val;
2554
2555	ret_val = hw->phy.ops.acquire(hw);
2556	if (ret_val)
2557		return ret_val;
2558
2559	if (hw->mac.type == e1000_pchlan) {
2560		mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2561		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2562			goto release;
2563	}
2564
2565	mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2566	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2567		goto release;
2568
2569	mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2570
2571	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2572	if (ret_val)
2573		goto release;
2574
2575	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2576
2577	if (d0_state) {
2578		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2579			oem_reg |= HV_OEM_BITS_GBE_DIS;
2580
2581		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2582			oem_reg |= HV_OEM_BITS_LPLU;
2583	} else {
2584		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2585		    E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2586			oem_reg |= HV_OEM_BITS_GBE_DIS;
2587
2588		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2589		    E1000_PHY_CTRL_NOND0A_LPLU))
2590			oem_reg |= HV_OEM_BITS_LPLU;
2591	}
2592
2593	/* Set Restart auto-neg to activate the bits */
2594	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2595	    !hw->phy.ops.check_reset_block(hw))
2596		oem_reg |= HV_OEM_BITS_RESTART_AN;
2597
2598	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2599
2600release:
2601	hw->phy.ops.release(hw);
2602
2603	return ret_val;
2604}
2605
2606
2607/**
2608 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2609 *  @hw:   pointer to the HW structure
2610 **/
2611static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2612{
2613	s32 ret_val;
2614	u16 data;
2615
2616	DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2617
2618	ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2619	if (ret_val)
2620		return ret_val;
2621
2622	data |= HV_KMRN_MDIO_SLOW;
2623
2624	ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2625
2626	return ret_val;
2627}
2628
2629/**
2630 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2631 *  done after every PHY reset.
2632 *  @hw: pointer to the HW structure
2633 **/
2634static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2635{
2636	s32 ret_val = E1000_SUCCESS;
2637	u16 phy_data;
2638
2639	DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2640
2641	if (hw->mac.type != e1000_pchlan)
2642		return E1000_SUCCESS;
2643
2644	/* Set MDIO slow mode before any other MDIO access */
2645	if (hw->phy.type == e1000_phy_82577) {
2646		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2647		if (ret_val)
2648			return ret_val;
2649	}
2650
2651	if (((hw->phy.type == e1000_phy_82577) &&
2652	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2653	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2654		/* Disable generation of early preamble */
2655		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2656		if (ret_val)
2657			return ret_val;
2658
2659		/* Preamble tuning for SSC */
2660		ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2661						0xA204);
2662		if (ret_val)
2663			return ret_val;
2664	}
2665
2666	if (hw->phy.type == e1000_phy_82578) {
2667		/* Return registers to default by doing a soft reset then
2668		 * writing 0x3140 to the control register.
2669		 */
2670		if (hw->phy.revision < 2) {
2671			e1000_phy_sw_reset_generic(hw);
2672			ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2673							0x3140);
2674			if (ret_val)
2675				return ret_val;
2676		}
2677	}
2678
2679	/* Select page 0 */
2680	ret_val = hw->phy.ops.acquire(hw);
2681	if (ret_val)
2682		return ret_val;
2683
2684	hw->phy.addr = 1;
2685	ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2686	hw->phy.ops.release(hw);
2687	if (ret_val)
2688		return ret_val;
2689
2690	/* Configure the K1 Si workaround during phy reset assuming there is
2691	 * link so that it disables K1 if link is in 1Gbps.
2692	 */
2693	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2694	if (ret_val)
2695		return ret_val;
2696
2697	/* Workaround for link disconnects on a busy hub in half duplex */
2698	ret_val = hw->phy.ops.acquire(hw);
2699	if (ret_val)
2700		return ret_val;
2701	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2702	if (ret_val)
2703		goto release;
2704	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2705					       phy_data & 0x00FF);
2706	if (ret_val)
2707		goto release;
2708
2709	/* set MSE higher to enable link to stay up when noise is high */
2710	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2711release:
2712	hw->phy.ops.release(hw);
2713
2714	return ret_val;
2715}
2716
2717/**
2718 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2719 *  @hw:   pointer to the HW structure
2720 **/
2721void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2722{
2723	u32 mac_reg;
2724	u16 i, phy_reg = 0;
2725	s32 ret_val;
2726
2727	DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2728
2729	ret_val = hw->phy.ops.acquire(hw);
2730	if (ret_val)
2731		return;
2732	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2733	if (ret_val)
2734		goto release;
2735
2736	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2737	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2738		mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2739		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2740					   (u16)(mac_reg & 0xFFFF));
2741		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2742					   (u16)((mac_reg >> 16) & 0xFFFF));
2743
2744		mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2745		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2746					   (u16)(mac_reg & 0xFFFF));
2747		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2748					   (u16)((mac_reg & E1000_RAH_AV)
2749						 >> 16));
2750	}
2751
2752	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2753
2754release:
2755	hw->phy.ops.release(hw);
2756}
2757
2758static u32 e1000_calc_rx_da_crc(u8 mac[])
2759{
2760	u32 poly = 0xEDB88320;	/* Polynomial for 802.3 CRC calculation */
2761	u32 i, j, mask, crc;
2762
2763	DEBUGFUNC("e1000_calc_rx_da_crc");
2764
2765	crc = 0xffffffff;
2766	for (i = 0; i < 6; i++) {
2767		crc = crc ^ mac[i];
2768		for (j = 8; j > 0; j--) {
2769			mask = (crc & 1) * (-1);
2770			crc = (crc >> 1) ^ (poly & mask);
2771		}
2772	}
2773	return ~crc;
2774}
2775
2776/**
2777 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2778 *  with 82579 PHY
2779 *  @hw: pointer to the HW structure
2780 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2781 **/
2782s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2783{
2784	s32 ret_val = E1000_SUCCESS;
2785	u16 phy_reg, data;
2786	u32 mac_reg;
2787	u16 i;
2788
2789	DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2790
2791	if (hw->mac.type < e1000_pch2lan)
2792		return E1000_SUCCESS;
2793
2794	/* disable Rx path while enabling/disabling workaround */
2795	hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2796	ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2797					phy_reg | (1 << 14));
2798	if (ret_val)
2799		return ret_val;
2800
2801	if (enable) {
2802		/* Write Rx addresses (rar_entry_count for RAL/H, and
2803		 * SHRAL/H) and initial CRC values to the MAC
2804		 */
2805		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2806			u8 mac_addr[ETHER_ADDR_LEN] = {0};
2807			u32 addr_high, addr_low;
2808
2809			addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2810			if (!(addr_high & E1000_RAH_AV))
2811				continue;
2812			addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2813			mac_addr[0] = (addr_low & 0xFF);
2814			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2815			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2816			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2817			mac_addr[4] = (addr_high & 0xFF);
2818			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2819
2820			E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2821					e1000_calc_rx_da_crc(mac_addr));
2822		}
2823
2824		/* Write Rx addresses to the PHY */
2825		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2826
2827		/* Enable jumbo frame workaround in the MAC */
2828		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2829		mac_reg &= ~(1 << 14);
2830		mac_reg |= (7 << 15);
2831		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2832
2833		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2834		mac_reg |= E1000_RCTL_SECRC;
2835		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2836
2837		ret_val = e1000_read_kmrn_reg_generic(hw,
2838						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2839						&data);
2840		if (ret_val)
2841			return ret_val;
2842		ret_val = e1000_write_kmrn_reg_generic(hw,
2843						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2844						data | (1 << 0));
2845		if (ret_val)
2846			return ret_val;
2847		ret_val = e1000_read_kmrn_reg_generic(hw,
2848						E1000_KMRNCTRLSTA_HD_CTRL,
2849						&data);
2850		if (ret_val)
2851			return ret_val;
2852		data &= ~(0xF << 8);
2853		data |= (0xB << 8);
2854		ret_val = e1000_write_kmrn_reg_generic(hw,
2855						E1000_KMRNCTRLSTA_HD_CTRL,
2856						data);
2857		if (ret_val)
2858			return ret_val;
2859
2860		/* Enable jumbo frame workaround in the PHY */
2861		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2862		data &= ~(0x7F << 5);
2863		data |= (0x37 << 5);
2864		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2865		if (ret_val)
2866			return ret_val;
2867		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2868		data &= ~(1 << 13);
2869		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2870		if (ret_val)
2871			return ret_val;
2872		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2873		data &= ~(0x3FF << 2);
2874		data |= (E1000_TX_PTR_GAP << 2);
2875		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2876		if (ret_val)
2877			return ret_val;
2878		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2879		if (ret_val)
2880			return ret_val;
2881		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2882		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2883						(1 << 10));
2884		if (ret_val)
2885			return ret_val;
2886	} else {
2887		/* Write MAC register values back to h/w defaults */
2888		mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2889		mac_reg &= ~(0xF << 14);
2890		E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2891
2892		mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2893		mac_reg &= ~E1000_RCTL_SECRC;
2894		E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2895
2896		ret_val = e1000_read_kmrn_reg_generic(hw,
2897						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2898						&data);
2899		if (ret_val)
2900			return ret_val;
2901		ret_val = e1000_write_kmrn_reg_generic(hw,
2902						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2903						data & ~(1 << 0));
2904		if (ret_val)
2905			return ret_val;
2906		ret_val = e1000_read_kmrn_reg_generic(hw,
2907						E1000_KMRNCTRLSTA_HD_CTRL,
2908						&data);
2909		if (ret_val)
2910			return ret_val;
2911		data &= ~(0xF << 8);
2912		data |= (0xB << 8);
2913		ret_val = e1000_write_kmrn_reg_generic(hw,
2914						E1000_KMRNCTRLSTA_HD_CTRL,
2915						data);
2916		if (ret_val)
2917			return ret_val;
2918
2919		/* Write PHY register values back to h/w defaults */
2920		hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2921		data &= ~(0x7F << 5);
2922		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2923		if (ret_val)
2924			return ret_val;
2925		hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2926		data |= (1 << 13);
2927		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2928		if (ret_val)
2929			return ret_val;
2930		hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2931		data &= ~(0x3FF << 2);
2932		data |= (0x8 << 2);
2933		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2934		if (ret_val)
2935			return ret_val;
2936		ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2937		if (ret_val)
2938			return ret_val;
2939		hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2940		ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2941						~(1 << 10));
2942		if (ret_val)
2943			return ret_val;
2944	}
2945
2946	/* re-enable Rx path after enabling/disabling workaround */
2947	return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2948				     ~(1 << 14));
2949}
2950
2951/**
2952 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2953 *  done after every PHY reset.
2954 *  @hw: pointer to the HW structure
2955 **/
2956static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2957{
2958	s32 ret_val = E1000_SUCCESS;
2959
2960	DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2961
2962	if (hw->mac.type != e1000_pch2lan)
2963		return E1000_SUCCESS;
2964
2965	/* Set MDIO slow mode before any other MDIO access */
2966	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2967	if (ret_val)
2968		return ret_val;
2969
2970	ret_val = hw->phy.ops.acquire(hw);
2971	if (ret_val)
2972		return ret_val;
2973	/* set MSE higher to enable link to stay up when noise is high */
2974	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2975	if (ret_val)
2976		goto release;
2977	/* drop link after 5 times MSE threshold was reached */
2978	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2979release:
2980	hw->phy.ops.release(hw);
2981
2982	return ret_val;
2983}
2984
2985/**
2986 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2987 *  @hw:   pointer to the HW structure
2988 *
2989 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2990 *  Disable K1 for 1000 and 100 speeds
2991 **/
2992static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2993{
2994	s32 ret_val = E1000_SUCCESS;
2995	u16 status_reg = 0;
2996
2997	DEBUGFUNC("e1000_k1_workaround_lv");
2998
2999	if (hw->mac.type != e1000_pch2lan)
3000		return E1000_SUCCESS;
3001
3002	/* Set K1 beacon duration based on 10Mbs speed */
3003	ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
3004	if (ret_val)
3005		return ret_val;
3006
3007	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
3008	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
3009		if (status_reg &
3010		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
3011			u16 pm_phy_reg;
3012
3013			/* LV 1G/100 Packet drop issue wa  */
3014			ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
3015						       &pm_phy_reg);
3016			if (ret_val)
3017				return ret_val;
3018			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
3019			ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
3020							pm_phy_reg);
3021			if (ret_val)
3022				return ret_val;
3023		} else {
3024			u32 mac_reg;
3025			mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
3026			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
3027			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
3028			E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
3029		}
3030	}
3031
3032	return ret_val;
3033}
3034
3035/**
3036 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
3037 *  @hw:   pointer to the HW structure
3038 *  @gate: boolean set to true to gate, false to ungate
3039 *
3040 *  Gate/ungate the automatic PHY configuration via hardware; perform
3041 *  the configuration via software instead.
3042 **/
3043static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
3044{
3045	u32 extcnf_ctrl;
3046
3047	DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
3048
3049	if (hw->mac.type < e1000_pch2lan)
3050		return;
3051
3052	extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
3053
3054	if (gate)
3055		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3056	else
3057		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
3058
3059	E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
3060}
3061
3062/**
3063 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
3064 *  @hw: pointer to the HW structure
3065 *
3066 *  Check the appropriate indication the MAC has finished configuring the
3067 *  PHY after a software reset.
3068 **/
3069static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
3070{
3071	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
3072
3073	DEBUGFUNC("e1000_lan_init_done_ich8lan");
3074
3075	/* Wait for basic configuration completes before proceeding */
3076	do {
3077		data = E1000_READ_REG(hw, E1000_STATUS);
3078		data &= E1000_STATUS_LAN_INIT_DONE;
3079		usec_delay(100);
3080	} while ((!data) && --loop);
3081
3082	/* If basic configuration is incomplete before the above loop
3083	 * count reaches 0, loading the configuration from NVM will
3084	 * leave the PHY in a bad state possibly resulting in no link.
3085	 */
3086	if (loop == 0)
3087		DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
3088
3089	/* Clear the Init Done bit for the next init event */
3090	data = E1000_READ_REG(hw, E1000_STATUS);
3091	data &= ~E1000_STATUS_LAN_INIT_DONE;
3092	E1000_WRITE_REG(hw, E1000_STATUS, data);
3093}
3094
3095/**
3096 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3097 *  @hw: pointer to the HW structure
3098 **/
3099static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3100{
3101	s32 ret_val = E1000_SUCCESS;
3102	u16 reg;
3103
3104	DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3105
3106	if (hw->phy.ops.check_reset_block(hw))
3107		return E1000_SUCCESS;
3108
3109	/* Allow time for h/w to get to quiescent state after reset */
3110	msec_delay(10);
3111
3112	/* Perform any necessary post-reset workarounds */
3113	switch (hw->mac.type) {
3114	case e1000_pchlan:
3115		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3116		if (ret_val)
3117			return ret_val;
3118		break;
3119	case e1000_pch2lan:
3120		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3121		if (ret_val)
3122			return ret_val;
3123		break;
3124	default:
3125		break;
3126	}
3127
3128	/* Clear the host wakeup bit after lcd reset */
3129	if (hw->mac.type >= e1000_pchlan) {
3130		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3131		reg &= ~BM_WUC_HOST_WU_BIT;
3132		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3133	}
3134
3135	/* Configure the LCD with the extended configuration region in NVM */
3136	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3137	if (ret_val)
3138		return ret_val;
3139
3140	/* Configure the LCD with the OEM bits in NVM */
3141	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
3142
3143	if (hw->mac.type == e1000_pch2lan) {
3144		/* Ungate automatic PHY configuration on non-managed 82579 */
3145		if (!(E1000_READ_REG(hw, E1000_FWSM) &
3146		    E1000_ICH_FWSM_FW_VALID)) {
3147			msec_delay(10);
3148			e1000_gate_hw_phy_config_ich8lan(hw, false);
3149		}
3150
3151		/* Set EEE LPI Update Timer to 200usec */
3152		ret_val = hw->phy.ops.acquire(hw);
3153		if (ret_val)
3154			return ret_val;
3155		ret_val = e1000_write_emi_reg_locked(hw,
3156						     I82579_LPI_UPDATE_TIMER,
3157						     0x1387);
3158		hw->phy.ops.release(hw);
3159	}
3160
3161	return ret_val;
3162}
3163
3164/**
3165 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3166 *  @hw: pointer to the HW structure
3167 *
3168 *  Resets the PHY
3169 *  This is a function pointer entry point called by drivers
3170 *  or other shared routines.
3171 **/
3172static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3173{
3174	s32 ret_val = E1000_SUCCESS;
3175
3176	DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3177
3178	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3179	if ((hw->mac.type == e1000_pch2lan) &&
3180	    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3181		e1000_gate_hw_phy_config_ich8lan(hw, true);
3182
3183	ret_val = e1000_phy_hw_reset_generic(hw);
3184	if (ret_val)
3185		return ret_val;
3186
3187	return e1000_post_phy_reset_ich8lan(hw);
3188}
3189
3190/**
3191 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3192 *  @hw: pointer to the HW structure
3193 *  @active: true to enable LPLU, false to disable
3194 *
3195 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3196 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3197 *  the phy speed. This function will manually set the LPLU bit and restart
3198 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3199 *  since it configures the same bit.
3200 **/
3201static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3202{
3203	s32 ret_val;
3204	u16 oem_reg;
3205
3206	DEBUGFUNC("e1000_set_lplu_state_pchlan");
3207	ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3208	if (ret_val)
3209		return ret_val;
3210
3211	if (active)
3212		oem_reg |= HV_OEM_BITS_LPLU;
3213	else
3214		oem_reg &= ~HV_OEM_BITS_LPLU;
3215
3216	if (!hw->phy.ops.check_reset_block(hw))
3217		oem_reg |= HV_OEM_BITS_RESTART_AN;
3218
3219	return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3220}
3221
3222/**
3223 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3224 *  @hw: pointer to the HW structure
3225 *  @active: true to enable LPLU, false to disable
3226 *
3227 *  Sets the LPLU D0 state according to the active flag.  When
3228 *  activating LPLU this function also disables smart speed
3229 *  and vice versa.  LPLU will not be activated unless the
3230 *  device autonegotiation advertisement meets standards of
3231 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3232 *  This is a function pointer entry point only called by
3233 *  PHY setup routines.
3234 **/
3235static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3236{
3237	struct e1000_phy_info *phy = &hw->phy;
3238	u32 phy_ctrl;
3239	s32 ret_val = E1000_SUCCESS;
3240	u16 data;
3241
3242	DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3243
3244	if (phy->type == e1000_phy_ife)
3245		return E1000_SUCCESS;
3246
3247	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3248
3249	if (active) {
3250		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3251		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3252
3253		if (phy->type != e1000_phy_igp_3)
3254			return E1000_SUCCESS;
3255
3256		/* Call gig speed drop workaround on LPLU before accessing
3257		 * any PHY registers
3258		 */
3259		if (hw->mac.type == e1000_ich8lan)
3260			e1000_gig_downshift_workaround_ich8lan(hw);
3261
3262		/* When LPLU is enabled, we should disable SmartSpeed */
3263		ret_val = phy->ops.read_reg(hw,
3264					    IGP01E1000_PHY_PORT_CONFIG,
3265					    &data);
3266		if (ret_val)
3267			return ret_val;
3268		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3269		ret_val = phy->ops.write_reg(hw,
3270					     IGP01E1000_PHY_PORT_CONFIG,
3271					     data);
3272		if (ret_val)
3273			return ret_val;
3274	} else {
3275		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3276		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3277
3278		if (phy->type != e1000_phy_igp_3)
3279			return E1000_SUCCESS;
3280
3281		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3282		 * during Dx states where the power conservation is most
3283		 * important.  During driver activity we should enable
3284		 * SmartSpeed, so performance is maintained.
3285		 */
3286		if (phy->smart_speed == e1000_smart_speed_on) {
3287			ret_val = phy->ops.read_reg(hw,
3288						    IGP01E1000_PHY_PORT_CONFIG,
3289						    &data);
3290			if (ret_val)
3291				return ret_val;
3292
3293			data |= IGP01E1000_PSCFR_SMART_SPEED;
3294			ret_val = phy->ops.write_reg(hw,
3295						     IGP01E1000_PHY_PORT_CONFIG,
3296						     data);
3297			if (ret_val)
3298				return ret_val;
3299		} else if (phy->smart_speed == e1000_smart_speed_off) {
3300			ret_val = phy->ops.read_reg(hw,
3301						    IGP01E1000_PHY_PORT_CONFIG,
3302						    &data);
3303			if (ret_val)
3304				return ret_val;
3305
3306			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3307			ret_val = phy->ops.write_reg(hw,
3308						     IGP01E1000_PHY_PORT_CONFIG,
3309						     data);
3310			if (ret_val)
3311				return ret_val;
3312		}
3313	}
3314
3315	return E1000_SUCCESS;
3316}
3317
3318/**
3319 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3320 *  @hw: pointer to the HW structure
3321 *  @active: true to enable LPLU, false to disable
3322 *
3323 *  Sets the LPLU D3 state according to the active flag.  When
3324 *  activating LPLU this function also disables smart speed
3325 *  and vice versa.  LPLU will not be activated unless the
3326 *  device autonegotiation advertisement meets standards of
3327 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3328 *  This is a function pointer entry point only called by
3329 *  PHY setup routines.
3330 **/
3331static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3332{
3333	struct e1000_phy_info *phy = &hw->phy;
3334	u32 phy_ctrl;
3335	s32 ret_val = E1000_SUCCESS;
3336	u16 data;
3337
3338	DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3339
3340	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3341
3342	if (!active) {
3343		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3344		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3345
3346		if (phy->type != e1000_phy_igp_3)
3347			return E1000_SUCCESS;
3348
3349		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3350		 * during Dx states where the power conservation is most
3351		 * important.  During driver activity we should enable
3352		 * SmartSpeed, so performance is maintained.
3353		 */
3354		if (phy->smart_speed == e1000_smart_speed_on) {
3355			ret_val = phy->ops.read_reg(hw,
3356						    IGP01E1000_PHY_PORT_CONFIG,
3357						    &data);
3358			if (ret_val)
3359				return ret_val;
3360
3361			data |= IGP01E1000_PSCFR_SMART_SPEED;
3362			ret_val = phy->ops.write_reg(hw,
3363						     IGP01E1000_PHY_PORT_CONFIG,
3364						     data);
3365			if (ret_val)
3366				return ret_val;
3367		} else if (phy->smart_speed == e1000_smart_speed_off) {
3368			ret_val = phy->ops.read_reg(hw,
3369						    IGP01E1000_PHY_PORT_CONFIG,
3370						    &data);
3371			if (ret_val)
3372				return ret_val;
3373
3374			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3375			ret_val = phy->ops.write_reg(hw,
3376						     IGP01E1000_PHY_PORT_CONFIG,
3377						     data);
3378			if (ret_val)
3379				return ret_val;
3380		}
3381	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3382		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3383		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3384		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3385		E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3386
3387		if (phy->type != e1000_phy_igp_3)
3388			return E1000_SUCCESS;
3389
3390		/* Call gig speed drop workaround on LPLU before accessing
3391		 * any PHY registers
3392		 */
3393		if (hw->mac.type == e1000_ich8lan)
3394			e1000_gig_downshift_workaround_ich8lan(hw);
3395
3396		/* When LPLU is enabled, we should disable SmartSpeed */
3397		ret_val = phy->ops.read_reg(hw,
3398					    IGP01E1000_PHY_PORT_CONFIG,
3399					    &data);
3400		if (ret_val)
3401			return ret_val;
3402
3403		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3404		ret_val = phy->ops.write_reg(hw,
3405					     IGP01E1000_PHY_PORT_CONFIG,
3406					     data);
3407	}
3408
3409	return ret_val;
3410}
3411
3412/**
3413 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3414 *  @hw: pointer to the HW structure
3415 *  @bank:  pointer to the variable that returns the active bank
3416 *
3417 *  Reads signature byte from the NVM using the flash access registers.
3418 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3419 **/
3420static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3421{
3422	u32 eecd;
3423	struct e1000_nvm_info *nvm = &hw->nvm;
3424	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3425	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3426	u32 nvm_dword = 0;
3427	u8 sig_byte = 0;
3428	s32 ret_val;
3429
3430	DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3431
3432	switch (hw->mac.type) {
3433	case e1000_pch_spt:
3434	case e1000_pch_cnp:
3435	case e1000_pch_tgp:
3436	case e1000_pch_adp:
3437	case e1000_pch_mtp:
3438		bank1_offset = nvm->flash_bank_size;
3439		act_offset = E1000_ICH_NVM_SIG_WORD;
3440
3441		/* set bank to 0 in case flash read fails */
3442		*bank = 0;
3443
3444		/* Check bank 0 */
3445		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3446							 &nvm_dword);
3447		if (ret_val)
3448			return ret_val;
3449		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3450		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3451		    E1000_ICH_NVM_SIG_VALUE) {
3452			*bank = 0;
3453			return E1000_SUCCESS;
3454		}
3455
3456		/* Check bank 1 */
3457		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3458							 bank1_offset,
3459							 &nvm_dword);
3460		if (ret_val)
3461			return ret_val;
3462		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3463		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3464		    E1000_ICH_NVM_SIG_VALUE) {
3465			*bank = 1;
3466			return E1000_SUCCESS;
3467		}
3468
3469		DEBUGOUT("ERROR: No valid NVM bank present\n");
3470		return -E1000_ERR_NVM;
3471	case e1000_ich8lan:
3472	case e1000_ich9lan:
3473		eecd = E1000_READ_REG(hw, E1000_EECD);
3474		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3475		    E1000_EECD_SEC1VAL_VALID_MASK) {
3476			if (eecd & E1000_EECD_SEC1VAL)
3477				*bank = 1;
3478			else
3479				*bank = 0;
3480
3481			return E1000_SUCCESS;
3482		}
3483		DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3484		/* FALLTHROUGH */
3485	default:
3486		/* set bank to 0 in case flash read fails */
3487		*bank = 0;
3488
3489		/* Check bank 0 */
3490		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3491							&sig_byte);
3492		if (ret_val)
3493			return ret_val;
3494		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3495		    E1000_ICH_NVM_SIG_VALUE) {
3496			*bank = 0;
3497			return E1000_SUCCESS;
3498		}
3499
3500		/* Check bank 1 */
3501		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3502							bank1_offset,
3503							&sig_byte);
3504		if (ret_val)
3505			return ret_val;
3506		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3507		    E1000_ICH_NVM_SIG_VALUE) {
3508			*bank = 1;
3509			return E1000_SUCCESS;
3510		}
3511
3512		DEBUGOUT("ERROR: No valid NVM bank present\n");
3513		return -E1000_ERR_NVM;
3514	}
3515}
3516
3517/**
3518 *  e1000_read_nvm_spt - NVM access for SPT
3519 *  @hw: pointer to the HW structure
3520 *  @offset: The offset (in bytes) of the word(s) to read.
3521 *  @words: Size of data to read in words.
3522 *  @data: pointer to the word(s) to read at offset.
3523 *
3524 *  Reads a word(s) from the NVM
3525 **/
3526static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3527			      u16 *data)
3528{
3529	struct e1000_nvm_info *nvm = &hw->nvm;
3530	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3531	u32 act_offset;
3532	s32 ret_val = E1000_SUCCESS;
3533	u32 bank = 0;
3534	u32 dword = 0;
3535	u16 offset_to_read;
3536	u16 i;
3537
3538	DEBUGFUNC("e1000_read_nvm_spt");
3539
3540	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3541	    (words == 0)) {
3542		DEBUGOUT("nvm parameter(s) out of bounds\n");
3543		ret_val = -E1000_ERR_NVM;
3544		goto out;
3545	}
3546
3547	nvm->ops.acquire(hw);
3548
3549	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3550	if (ret_val != E1000_SUCCESS) {
3551		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3552		bank = 0;
3553	}
3554
3555	act_offset = (bank) ? nvm->flash_bank_size : 0;
3556	act_offset += offset;
3557
3558	ret_val = E1000_SUCCESS;
3559
3560	for (i = 0; i < words; i += 2) {
3561		if (words - i == 1) {
3562			if (dev_spec->shadow_ram[offset + i].modified) {
3563				data[i] =
3564				    dev_spec->shadow_ram[offset + i].value;
3565			} else {
3566				offset_to_read = act_offset + i -
3567						 ((act_offset + i) % 2);
3568				ret_val =
3569				   e1000_read_flash_dword_ich8lan(hw,
3570								 offset_to_read,
3571								 &dword);
3572				if (ret_val)
3573					break;
3574				if ((act_offset + i) % 2 == 0)
3575					data[i] = (u16)(dword & 0xFFFF);
3576				else
3577					data[i] = (u16)((dword >> 16) & 0xFFFF);
3578			}
3579		} else {
3580			offset_to_read = act_offset + i;
3581			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3582			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3583				ret_val =
3584				   e1000_read_flash_dword_ich8lan(hw,
3585								 offset_to_read,
3586								 &dword);
3587				if (ret_val)
3588					break;
3589			}
3590			if (dev_spec->shadow_ram[offset + i].modified)
3591				data[i] =
3592				    dev_spec->shadow_ram[offset + i].value;
3593			else
3594				data[i] = (u16)(dword & 0xFFFF);
3595			if (dev_spec->shadow_ram[offset + i + 1].modified)
3596				data[i + 1] =
3597				   dev_spec->shadow_ram[offset + i + 1].value;
3598			else
3599				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3600		}
3601	}
3602
3603	nvm->ops.release(hw);
3604
3605out:
3606	if (ret_val)
3607		DEBUGOUT1("NVM read error: %d\n", ret_val);
3608
3609	return ret_val;
3610}
3611
3612/**
3613 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3614 *  @hw: pointer to the HW structure
3615 *  @offset: The offset (in bytes) of the word(s) to read.
3616 *  @words: Size of data to read in words
3617 *  @data: Pointer to the word(s) to read at offset.
3618 *
3619 *  Reads a word(s) from the NVM using the flash access registers.
3620 **/
3621static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3622				  u16 *data)
3623{
3624	struct e1000_nvm_info *nvm = &hw->nvm;
3625	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3626	u32 act_offset;
3627	s32 ret_val = E1000_SUCCESS;
3628	u32 bank = 0;
3629	u16 i, word;
3630
3631	DEBUGFUNC("e1000_read_nvm_ich8lan");
3632
3633	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3634	    (words == 0)) {
3635		DEBUGOUT("nvm parameter(s) out of bounds\n");
3636		ret_val = -E1000_ERR_NVM;
3637		goto out;
3638	}
3639
3640	nvm->ops.acquire(hw);
3641
3642	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3643	if (ret_val != E1000_SUCCESS) {
3644		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3645		bank = 0;
3646	}
3647
3648	act_offset = (bank) ? nvm->flash_bank_size : 0;
3649	act_offset += offset;
3650
3651	ret_val = E1000_SUCCESS;
3652	for (i = 0; i < words; i++) {
3653		if (dev_spec->shadow_ram[offset + i].modified) {
3654			data[i] = dev_spec->shadow_ram[offset + i].value;
3655		} else {
3656			ret_val = e1000_read_flash_word_ich8lan(hw,
3657								act_offset + i,
3658								&word);
3659			if (ret_val)
3660				break;
3661			data[i] = word;
3662		}
3663	}
3664
3665	nvm->ops.release(hw);
3666
3667out:
3668	if (ret_val)
3669		DEBUGOUT1("NVM read error: %d\n", ret_val);
3670
3671	return ret_val;
3672}
3673
3674/**
3675 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3676 *  @hw: pointer to the HW structure
3677 *
3678 *  This function does initial flash setup so that a new read/write/erase cycle
3679 *  can be started.
3680 **/
3681static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3682{
3683	union ich8_hws_flash_status hsfsts;
3684	s32 ret_val = -E1000_ERR_NVM;
3685
3686	DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3687
3688	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3689
3690	/* Check if the flash descriptor is valid */
3691	if (!hsfsts.hsf_status.fldesvalid) {
3692		DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3693		return -E1000_ERR_NVM;
3694	}
3695
3696	/* Clear FCERR and DAEL in hw status by writing 1 */
3697	hsfsts.hsf_status.flcerr = 1;
3698	hsfsts.hsf_status.dael = 1;
3699	if (hw->mac.type >= e1000_pch_spt)
3700		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3701				      hsfsts.regval & 0xFFFF);
3702	else
3703		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3704
3705	/* Either we should have a hardware SPI cycle in progress
3706	 * bit to check against, in order to start a new cycle or
3707	 * FDONE bit should be changed in the hardware so that it
3708	 * is 1 after hardware reset, which can then be used as an
3709	 * indication whether a cycle is in progress or has been
3710	 * completed.
3711	 */
3712
3713	if (!hsfsts.hsf_status.flcinprog) {
3714		/* There is no cycle running at present,
3715		 * so we can start a cycle.
3716		 * Begin by setting Flash Cycle Done.
3717		 */
3718		hsfsts.hsf_status.flcdone = 1;
3719		if (hw->mac.type >= e1000_pch_spt)
3720			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3721					      hsfsts.regval & 0xFFFF);
3722		else
3723			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3724						hsfsts.regval);
3725		ret_val = E1000_SUCCESS;
3726	} else {
3727		s32 i;
3728
3729		/* Otherwise poll for sometime so the current
3730		 * cycle has a chance to end before giving up.
3731		 */
3732		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3733			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3734							      ICH_FLASH_HSFSTS);
3735			if (!hsfsts.hsf_status.flcinprog) {
3736				ret_val = E1000_SUCCESS;
3737				break;
3738			}
3739			usec_delay(1);
3740		}
3741		if (ret_val == E1000_SUCCESS) {
3742			/* Successful in waiting for previous cycle to timeout,
3743			 * now set the Flash Cycle Done.
3744			 */
3745			hsfsts.hsf_status.flcdone = 1;
3746			if (hw->mac.type >= e1000_pch_spt)
3747				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3748						      hsfsts.regval & 0xFFFF);
3749			else
3750				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3751							hsfsts.regval);
3752		} else {
3753			DEBUGOUT("Flash controller busy, cannot get access\n");
3754		}
3755	}
3756
3757	return ret_val;
3758}
3759
3760/**
3761 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3762 *  @hw: pointer to the HW structure
3763 *  @timeout: maximum time to wait for completion
3764 *
3765 *  This function starts a flash cycle and waits for its completion.
3766 **/
3767static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3768{
3769	union ich8_hws_flash_ctrl hsflctl;
3770	union ich8_hws_flash_status hsfsts;
3771	u32 i = 0;
3772
3773	DEBUGFUNC("e1000_flash_cycle_ich8lan");
3774
3775	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3776	if (hw->mac.type >= e1000_pch_spt)
3777		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3778	else
3779		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3780	hsflctl.hsf_ctrl.flcgo = 1;
3781
3782	if (hw->mac.type >= e1000_pch_spt)
3783		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3784				      hsflctl.regval << 16);
3785	else
3786		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3787
3788	/* wait till FDONE bit is set to 1 */
3789	do {
3790		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3791		if (hsfsts.hsf_status.flcdone)
3792			break;
3793		usec_delay(1);
3794	} while (i++ < timeout);
3795
3796	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3797		return E1000_SUCCESS;
3798
3799	return -E1000_ERR_NVM;
3800}
3801
3802/**
3803 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3804 *  @hw: pointer to the HW structure
3805 *  @offset: offset to data location
3806 *  @data: pointer to the location for storing the data
3807 *
3808 *  Reads the flash dword at offset into data.  Offset is converted
3809 *  to bytes before read.
3810 **/
3811static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3812					  u32 *data)
3813{
3814	DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3815
3816	if (!data)
3817		return -E1000_ERR_NVM;
3818
3819	/* Must convert word offset into bytes. */
3820	offset <<= 1;
3821
3822	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3823}
3824
3825/**
3826 *  e1000_read_flash_word_ich8lan - Read word from flash
3827 *  @hw: pointer to the HW structure
3828 *  @offset: offset to data location
3829 *  @data: pointer to the location for storing the data
3830 *
3831 *  Reads the flash word at offset into data.  Offset is converted
3832 *  to bytes before read.
3833 **/
3834static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3835					 u16 *data)
3836{
3837	DEBUGFUNC("e1000_read_flash_word_ich8lan");
3838
3839	if (!data)
3840		return -E1000_ERR_NVM;
3841
3842	/* Must convert offset into bytes. */
3843	offset <<= 1;
3844
3845	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3846}
3847
3848/**
3849 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3850 *  @hw: pointer to the HW structure
3851 *  @offset: The offset of the byte to read.
3852 *  @data: Pointer to a byte to store the value read.
3853 *
3854 *  Reads a single byte from the NVM using the flash access registers.
3855 **/
3856static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3857					 u8 *data)
3858{
3859	s32 ret_val;
3860	u16 word = 0;
3861
3862	/* In SPT, only 32 bits access is supported,
3863	 * so this function should not be called.
3864	 */
3865	if (hw->mac.type >= e1000_pch_spt)
3866		return -E1000_ERR_NVM;
3867	else
3868		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3869
3870	if (ret_val)
3871		return ret_val;
3872
3873	*data = (u8)word;
3874
3875	return E1000_SUCCESS;
3876}
3877
3878/**
3879 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3880 *  @hw: pointer to the HW structure
3881 *  @offset: The offset (in bytes) of the byte or word to read.
3882 *  @size: Size of data to read, 1=byte 2=word
3883 *  @data: Pointer to the word to store the value read.
3884 *
3885 *  Reads a byte or word from the NVM using the flash access registers.
3886 **/
3887static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3888					 u8 size, u16 *data)
3889{
3890	union ich8_hws_flash_status hsfsts;
3891	union ich8_hws_flash_ctrl hsflctl;
3892	u32 flash_linear_addr;
3893	u32 flash_data = 0;
3894	s32 ret_val = -E1000_ERR_NVM;
3895	u8 count = 0;
3896
3897	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3898
3899	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3900		return -E1000_ERR_NVM;
3901	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3902			     hw->nvm.flash_base_addr);
3903
3904	do {
3905		usec_delay(1);
3906		/* Steps */
3907		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3908		if (ret_val != E1000_SUCCESS)
3909			break;
3910		hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3911
3912		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3913		hsflctl.hsf_ctrl.fldbcount = size - 1;
3914		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3915		E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3916		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3917
3918		ret_val = e1000_flash_cycle_ich8lan(hw,
3919						ICH_FLASH_READ_COMMAND_TIMEOUT);
3920
3921		/* Check if FCERR is set to 1, if set to 1, clear it
3922		 * and try the whole sequence a few more times, else
3923		 * read in (shift in) the Flash Data0, the order is
3924		 * least significant byte first msb to lsb
3925		 */
3926		if (ret_val == E1000_SUCCESS) {
3927			flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3928			if (size == 1)
3929				*data = (u8)(flash_data & 0x000000FF);
3930			else if (size == 2)
3931				*data = (u16)(flash_data & 0x0000FFFF);
3932			break;
3933		} else {
3934			/* If we've gotten here, then things are probably
3935			 * completely hosed, but if the error condition is
3936			 * detected, it won't hurt to give it another try...
3937			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3938			 */
3939			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3940							      ICH_FLASH_HSFSTS);
3941			if (hsfsts.hsf_status.flcerr) {
3942				/* Repeat for some time before giving up. */
3943				continue;
3944			} else if (!hsfsts.hsf_status.flcdone) {
3945				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3946				break;
3947			}
3948		}
3949	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3950
3951	return ret_val;
3952}
3953
3954/**
3955 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3956 *  @hw: pointer to the HW structure
3957 *  @offset: The offset (in bytes) of the dword to read.
3958 *  @data: Pointer to the dword to store the value read.
3959 *
3960 *  Reads a byte or word from the NVM using the flash access registers.
3961 **/
3962static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3963					   u32 *data)
3964{
3965	union ich8_hws_flash_status hsfsts;
3966	union ich8_hws_flash_ctrl hsflctl;
3967	u32 flash_linear_addr;
3968	s32 ret_val = -E1000_ERR_NVM;
3969	u8 count = 0;
3970
3971	DEBUGFUNC("e1000_read_flash_data_ich8lan");
3972
3973		if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3974		    hw->mac.type < e1000_pch_spt)
3975			return -E1000_ERR_NVM;
3976	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3977			     hw->nvm.flash_base_addr);
3978
3979	do {
3980		usec_delay(1);
3981		/* Steps */
3982		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3983		if (ret_val != E1000_SUCCESS)
3984			break;
3985		/* In SPT, This register is in Lan memory space, not flash.
3986		 * Therefore, only 32 bit access is supported
3987		 */
3988		hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3989
3990		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3991		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3992		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3993		/* In SPT, This register is in Lan memory space, not flash.
3994		 * Therefore, only 32 bit access is supported
3995		 */
3996		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3997				      (u32)hsflctl.regval << 16);
3998		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3999
4000		ret_val = e1000_flash_cycle_ich8lan(hw,
4001						ICH_FLASH_READ_COMMAND_TIMEOUT);
4002
4003		/* Check if FCERR is set to 1, if set to 1, clear it
4004		 * and try the whole sequence a few more times, else
4005		 * read in (shift in) the Flash Data0, the order is
4006		 * least significant byte first msb to lsb
4007		 */
4008		if (ret_val == E1000_SUCCESS) {
4009			*data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
4010			break;
4011		} else {
4012			/* If we've gotten here, then things are probably
4013			 * completely hosed, but if the error condition is
4014			 * detected, it won't hurt to give it another try...
4015			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
4016			 */
4017			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4018							      ICH_FLASH_HSFSTS);
4019			if (hsfsts.hsf_status.flcerr) {
4020				/* Repeat for some time before giving up. */
4021				continue;
4022			} else if (!hsfsts.hsf_status.flcdone) {
4023				DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4024				break;
4025			}
4026		}
4027	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4028
4029	return ret_val;
4030}
4031
4032/**
4033 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
4034 *  @hw: pointer to the HW structure
4035 *  @offset: The offset (in bytes) of the word(s) to write.
4036 *  @words: Size of data to write in words
4037 *  @data: Pointer to the word(s) to write at offset.
4038 *
4039 *  Writes a byte or word to the NVM using the flash access registers.
4040 **/
4041static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
4042				   u16 *data)
4043{
4044	struct e1000_nvm_info *nvm = &hw->nvm;
4045	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4046	u16 i;
4047
4048	DEBUGFUNC("e1000_write_nvm_ich8lan");
4049
4050	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
4051	    (words == 0)) {
4052		DEBUGOUT("nvm parameter(s) out of bounds\n");
4053		return -E1000_ERR_NVM;
4054	}
4055
4056	nvm->ops.acquire(hw);
4057
4058	for (i = 0; i < words; i++) {
4059		dev_spec->shadow_ram[offset + i].modified = true;
4060		dev_spec->shadow_ram[offset + i].value = data[i];
4061	}
4062
4063	nvm->ops.release(hw);
4064
4065	return E1000_SUCCESS;
4066}
4067
4068/**
4069 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
4070 *  @hw: pointer to the HW structure
4071 *
4072 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4073 *  which writes the checksum to the shadow ram.  The changes in the shadow
4074 *  ram are then committed to the EEPROM by processing each bank at a time
4075 *  checking for the modified bit and writing only the pending changes.
4076 *  After a successful commit, the shadow ram is cleared and is ready for
4077 *  future writes.
4078 **/
4079static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
4080{
4081	struct e1000_nvm_info *nvm = &hw->nvm;
4082	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4083	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4084	s32 ret_val;
4085	u32 dword = 0;
4086
4087	DEBUGFUNC("e1000_update_nvm_checksum_spt");
4088
4089	ret_val = e1000_update_nvm_checksum_generic(hw);
4090	if (ret_val)
4091		goto out;
4092
4093	if (nvm->type != e1000_nvm_flash_sw)
4094		goto out;
4095
4096	nvm->ops.acquire(hw);
4097
4098	/* We're writing to the opposite bank so if we're on bank 1,
4099	 * write to bank 0 etc.  We also need to erase the segment that
4100	 * is going to be written
4101	 */
4102	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4103	if (ret_val != E1000_SUCCESS) {
4104		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4105		bank = 0;
4106	}
4107
4108	if (bank == 0) {
4109		new_bank_offset = nvm->flash_bank_size;
4110		old_bank_offset = 0;
4111		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4112		if (ret_val)
4113			goto release;
4114	} else {
4115		old_bank_offset = nvm->flash_bank_size;
4116		new_bank_offset = 0;
4117		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4118		if (ret_val)
4119			goto release;
4120	}
4121	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4122		/* Determine whether to write the value stored
4123		 * in the other NVM bank or a modified value stored
4124		 * in the shadow RAM
4125		 */
4126		ret_val = e1000_read_flash_dword_ich8lan(hw,
4127							 i + old_bank_offset,
4128							 &dword);
4129
4130		if (dev_spec->shadow_ram[i].modified) {
4131			dword &= 0xffff0000;
4132			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4133		}
4134		if (dev_spec->shadow_ram[i + 1].modified) {
4135			dword &= 0x0000ffff;
4136			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4137				  << 16);
4138		}
4139		if (ret_val)
4140			break;
4141
4142		/* If the word is 0x13, then make sure the signature bits
4143		 * (15:14) are 11b until the commit has completed.
4144		 * This will allow us to write 10b which indicates the
4145		 * signature is valid.  We want to do this after the write
4146		 * has completed so that we don't mark the segment valid
4147		 * while the write is still in progress
4148		 */
4149		if (i == E1000_ICH_NVM_SIG_WORD - 1)
4150			dword |= E1000_ICH_NVM_SIG_MASK << 16;
4151
4152		/* Convert offset to bytes. */
4153		act_offset = (i + new_bank_offset) << 1;
4154
4155		usec_delay(100);
4156
4157		/* Write the data to the new bank. Offset in words*/
4158		act_offset = i + new_bank_offset;
4159		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4160								dword);
4161		if (ret_val)
4162			break;
4163	 }
4164
4165	/* Don't bother writing the segment valid bits if sector
4166	 * programming failed.
4167	 */
4168	if (ret_val) {
4169		DEBUGOUT("Flash commit failed.\n");
4170		goto release;
4171	}
4172
4173	/* Finally validate the new segment by setting bit 15:14
4174	 * to 10b in word 0x13 , this can be done without an
4175	 * erase as well since these bits are 11 to start with
4176	 * and we need to change bit 14 to 0b
4177	 */
4178	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4179
4180	/*offset in words but we read dword*/
4181	--act_offset;
4182	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4183
4184	if (ret_val)
4185		goto release;
4186
4187	dword &= 0xBFFFFFFF;
4188	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4189
4190	if (ret_val)
4191		goto release;
4192
4193	/* offset in words but we read dword*/
4194	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4195	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4196
4197	if (ret_val)
4198		goto release;
4199
4200	dword &= 0x00FFFFFF;
4201	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4202
4203	if (ret_val)
4204		goto release;
4205
4206	/* Great!  Everything worked, we can now clear the cached entries. */
4207	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4208		dev_spec->shadow_ram[i].modified = false;
4209		dev_spec->shadow_ram[i].value = 0xFFFF;
4210	}
4211
4212release:
4213	nvm->ops.release(hw);
4214
4215	/* Reload the EEPROM, or else modifications will not appear
4216	 * until after the next adapter reset.
4217	 */
4218	if (!ret_val) {
4219		nvm->ops.reload(hw);
4220		msec_delay(10);
4221	}
4222
4223out:
4224	if (ret_val)
4225		DEBUGOUT1("NVM update error: %d\n", ret_val);
4226
4227	return ret_val;
4228}
4229
4230/**
4231 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4232 *  @hw: pointer to the HW structure
4233 *
4234 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4235 *  which writes the checksum to the shadow ram.  The changes in the shadow
4236 *  ram are then committed to the EEPROM by processing each bank at a time
4237 *  checking for the modified bit and writing only the pending changes.
4238 *  After a successful commit, the shadow ram is cleared and is ready for
4239 *  future writes.
4240 **/
4241static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4242{
4243	struct e1000_nvm_info *nvm = &hw->nvm;
4244	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4245	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4246	s32 ret_val;
4247	u16 data = 0;
4248
4249	DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4250
4251	ret_val = e1000_update_nvm_checksum_generic(hw);
4252	if (ret_val)
4253		goto out;
4254
4255	if (nvm->type != e1000_nvm_flash_sw)
4256		goto out;
4257
4258	nvm->ops.acquire(hw);
4259
4260	/* We're writing to the opposite bank so if we're on bank 1,
4261	 * write to bank 0 etc.  We also need to erase the segment that
4262	 * is going to be written
4263	 */
4264	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4265	if (ret_val != E1000_SUCCESS) {
4266		DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4267		bank = 0;
4268	}
4269
4270	if (bank == 0) {
4271		new_bank_offset = nvm->flash_bank_size;
4272		old_bank_offset = 0;
4273		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4274		if (ret_val)
4275			goto release;
4276	} else {
4277		old_bank_offset = nvm->flash_bank_size;
4278		new_bank_offset = 0;
4279		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4280		if (ret_val)
4281			goto release;
4282	}
4283	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4284		if (dev_spec->shadow_ram[i].modified) {
4285			data = dev_spec->shadow_ram[i].value;
4286		} else {
4287			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4288								old_bank_offset,
4289								&data);
4290			if (ret_val)
4291				break;
4292		}
4293		/* If the word is 0x13, then make sure the signature bits
4294		 * (15:14) are 11b until the commit has completed.
4295		 * This will allow us to write 10b which indicates the
4296		 * signature is valid.  We want to do this after the write
4297		 * has completed so that we don't mark the segment valid
4298		 * while the write is still in progress
4299		 */
4300		if (i == E1000_ICH_NVM_SIG_WORD)
4301			data |= E1000_ICH_NVM_SIG_MASK;
4302
4303		/* Convert offset to bytes. */
4304		act_offset = (i + new_bank_offset) << 1;
4305
4306		usec_delay(100);
4307
4308		/* Write the bytes to the new bank. */
4309		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4310							       act_offset,
4311							       (u8)data);
4312		if (ret_val)
4313			break;
4314
4315		usec_delay(100);
4316		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4317							  act_offset + 1,
4318							  (u8)(data >> 8));
4319		if (ret_val)
4320			break;
4321	 }
4322
4323	/* Don't bother writing the segment valid bits if sector
4324	 * programming failed.
4325	 */
4326	if (ret_val) {
4327		DEBUGOUT("Flash commit failed.\n");
4328		goto release;
4329	}
4330
4331	/* Finally validate the new segment by setting bit 15:14
4332	 * to 10b in word 0x13 , this can be done without an
4333	 * erase as well since these bits are 11 to start with
4334	 * and we need to change bit 14 to 0b
4335	 */
4336	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4337	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4338	if (ret_val)
4339		goto release;
4340
4341	data &= 0xBFFF;
4342	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4343						       (u8)(data >> 8));
4344	if (ret_val)
4345		goto release;
4346
4347	/* And invalidate the previously valid segment by setting
4348	 * its signature word (0x13) high_byte to 0b. This can be
4349	 * done without an erase because flash erase sets all bits
4350	 * to 1's. We can write 1's to 0's without an erase
4351	 */
4352	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4353
4354	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4355
4356	if (ret_val)
4357		goto release;
4358
4359	/* Great!  Everything worked, we can now clear the cached entries. */
4360	for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4361		dev_spec->shadow_ram[i].modified = false;
4362		dev_spec->shadow_ram[i].value = 0xFFFF;
4363	}
4364
4365release:
4366	nvm->ops.release(hw);
4367
4368	/* Reload the EEPROM, or else modifications will not appear
4369	 * until after the next adapter reset.
4370	 */
4371	if (!ret_val) {
4372		nvm->ops.reload(hw);
4373		msec_delay(10);
4374	}
4375
4376out:
4377	if (ret_val)
4378		DEBUGOUT1("NVM update error: %d\n", ret_val);
4379
4380	return ret_val;
4381}
4382
4383/**
4384 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4385 *  @hw: pointer to the HW structure
4386 *
4387 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4388 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4389 *  calculated, in which case we need to calculate the checksum and set bit 6.
4390 **/
4391static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4392{
4393	s32 ret_val;
4394	u16 data;
4395	u16 word;
4396	u16 valid_csum_mask;
4397
4398	DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4399
4400	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4401	 * the checksum needs to be fixed.  This bit is an indication that
4402	 * the NVM was prepared by OEM software and did not calculate
4403	 * the checksum...a likely scenario.
4404	 */
4405	switch (hw->mac.type) {
4406	case e1000_pch_lpt:
4407	case e1000_pch_spt:
4408	case e1000_pch_cnp:
4409	case e1000_pch_tgp:
4410	case e1000_pch_adp:
4411	case e1000_pch_mtp:
4412		word = NVM_COMPAT;
4413		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4414		break;
4415	default:
4416		word = NVM_FUTURE_INIT_WORD1;
4417		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4418		break;
4419	}
4420
4421	ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4422	if (ret_val)
4423		return ret_val;
4424
4425	if (!(data & valid_csum_mask)) {
4426		data |= valid_csum_mask;
4427		ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4428		if (ret_val)
4429			return ret_val;
4430		ret_val = hw->nvm.ops.update(hw);
4431		if (ret_val)
4432			return ret_val;
4433	}
4434
4435	return e1000_validate_nvm_checksum_generic(hw);
4436}
4437
4438/**
4439 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4440 *  @hw: pointer to the HW structure
4441 *  @offset: The offset (in bytes) of the byte/word to read.
4442 *  @size: Size of data to read, 1=byte 2=word
4443 *  @data: The byte(s) to write to the NVM.
4444 *
4445 *  Writes one/two bytes to the NVM using the flash access registers.
4446 **/
4447static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4448					  u8 size, u16 data)
4449{
4450	union ich8_hws_flash_status hsfsts;
4451	union ich8_hws_flash_ctrl hsflctl;
4452	u32 flash_linear_addr;
4453	u32 flash_data = 0;
4454	s32 ret_val;
4455	u8 count = 0;
4456
4457	DEBUGFUNC("e1000_write_ich8_data");
4458
4459	if (hw->mac.type >= e1000_pch_spt) {
4460		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4461			return -E1000_ERR_NVM;
4462	} else {
4463		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4464			return -E1000_ERR_NVM;
4465	}
4466
4467	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4468			     hw->nvm.flash_base_addr);
4469
4470	do {
4471		usec_delay(1);
4472		/* Steps */
4473		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4474		if (ret_val != E1000_SUCCESS)
4475			break;
4476		/* In SPT, This register is in Lan memory space, not
4477		 * flash.  Therefore, only 32 bit access is supported
4478		 */
4479		if (hw->mac.type >= e1000_pch_spt)
4480			hsflctl.regval =
4481			    E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4482		else
4483			hsflctl.regval =
4484			    E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4485
4486		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4487		hsflctl.hsf_ctrl.fldbcount = size - 1;
4488		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4489		/* In SPT, This register is in Lan memory space,
4490		 * not flash.  Therefore, only 32 bit access is
4491		 * supported
4492		 */
4493		if (hw->mac.type >= e1000_pch_spt)
4494			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4495					      hsflctl.regval << 16);
4496		else
4497			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4498						hsflctl.regval);
4499
4500		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4501
4502		if (size == 1)
4503			flash_data = (u32)data & 0x00FF;
4504		else
4505			flash_data = (u32)data;
4506
4507		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4508
4509		/* check if FCERR is set to 1 , if set to 1, clear it
4510		 * and try the whole sequence a few more times else done
4511		 */
4512		ret_val =
4513		    e1000_flash_cycle_ich8lan(hw,
4514					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4515		if (ret_val == E1000_SUCCESS)
4516			break;
4517
4518		/* If we're here, then things are most likely
4519		 * completely hosed, but if the error condition
4520		 * is detected, it won't hurt to give it another
4521		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4522		 */
4523		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4524		if (hsfsts.hsf_status.flcerr)
4525			/* Repeat for some time before giving up. */
4526			continue;
4527		if (!hsfsts.hsf_status.flcdone) {
4528			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4529			break;
4530		}
4531	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4532
4533	return ret_val;
4534}
4535
4536/**
4537*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4538*  @hw: pointer to the HW structure
4539*  @offset: The offset (in bytes) of the dwords to read.
4540*  @data: The 4 bytes to write to the NVM.
4541*
4542*  Writes one/two/four bytes to the NVM using the flash access registers.
4543**/
4544static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4545					    u32 data)
4546{
4547	union ich8_hws_flash_status hsfsts;
4548	union ich8_hws_flash_ctrl hsflctl;
4549	u32 flash_linear_addr;
4550	s32 ret_val;
4551	u8 count = 0;
4552
4553	DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4554
4555	if (hw->mac.type >= e1000_pch_spt) {
4556		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4557			return -E1000_ERR_NVM;
4558	}
4559	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4560			     hw->nvm.flash_base_addr);
4561	do {
4562		usec_delay(1);
4563		/* Steps */
4564		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4565		if (ret_val != E1000_SUCCESS)
4566			break;
4567
4568		/* In SPT, This register is in Lan memory space, not
4569		 * flash.  Therefore, only 32 bit access is supported
4570		 */
4571		if (hw->mac.type >= e1000_pch_spt)
4572			hsflctl.regval = E1000_READ_FLASH_REG(hw,
4573							      ICH_FLASH_HSFSTS)
4574					 >> 16;
4575		else
4576			hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4577							      ICH_FLASH_HSFCTL);
4578
4579		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4580		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4581
4582		/* In SPT, This register is in Lan memory space,
4583		 * not flash.  Therefore, only 32 bit access is
4584		 * supported
4585		 */
4586		if (hw->mac.type >= e1000_pch_spt)
4587			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4588					      hsflctl.regval << 16);
4589		else
4590			E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4591						hsflctl.regval);
4592
4593		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4594
4595		E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4596
4597		/* check if FCERR is set to 1 , if set to 1, clear it
4598		 * and try the whole sequence a few more times else done
4599		 */
4600		ret_val = e1000_flash_cycle_ich8lan(hw,
4601					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4602
4603		if (ret_val == E1000_SUCCESS)
4604			break;
4605
4606		/* If we're here, then things are most likely
4607		 * completely hosed, but if the error condition
4608		 * is detected, it won't hurt to give it another
4609		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4610		 */
4611		hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4612
4613		if (hsfsts.hsf_status.flcerr)
4614			/* Repeat for some time before giving up. */
4615			continue;
4616		if (!hsfsts.hsf_status.flcdone) {
4617			DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4618			break;
4619		}
4620	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4621
4622	return ret_val;
4623}
4624
4625/**
4626 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4627 *  @hw: pointer to the HW structure
4628 *  @offset: The index of the byte to read.
4629 *  @data: The byte to write to the NVM.
4630 *
4631 *  Writes a single byte to the NVM using the flash access registers.
4632 **/
4633static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4634					  u8 data)
4635{
4636	u16 word = (u16)data;
4637
4638	DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4639
4640	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4641}
4642
4643/**
4644*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4645*  @hw: pointer to the HW structure
4646*  @offset: The offset of the word to write.
4647*  @dword: The dword to write to the NVM.
4648*
4649*  Writes a single dword to the NVM using the flash access registers.
4650*  Goes through a retry algorithm before giving up.
4651**/
4652static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4653						 u32 offset, u32 dword)
4654{
4655	s32 ret_val;
4656	u16 program_retries;
4657
4658	DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4659
4660	/* Must convert word offset into bytes. */
4661	offset <<= 1;
4662
4663	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4664
4665	if (!ret_val)
4666		return ret_val;
4667	for (program_retries = 0; program_retries < 100; program_retries++) {
4668		DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4669		usec_delay(100);
4670		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4671		if (ret_val == E1000_SUCCESS)
4672			break;
4673	}
4674	if (program_retries == 100)
4675		return -E1000_ERR_NVM;
4676
4677	return E1000_SUCCESS;
4678}
4679
4680/**
4681 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4682 *  @hw: pointer to the HW structure
4683 *  @offset: The offset of the byte to write.
4684 *  @byte: The byte to write to the NVM.
4685 *
4686 *  Writes a single byte to the NVM using the flash access registers.
4687 *  Goes through a retry algorithm before giving up.
4688 **/
4689static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4690						u32 offset, u8 byte)
4691{
4692	s32 ret_val;
4693	u16 program_retries;
4694
4695	DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4696
4697	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4698	if (!ret_val)
4699		return ret_val;
4700
4701	for (program_retries = 0; program_retries < 100; program_retries++) {
4702		DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4703		usec_delay(100);
4704		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4705		if (ret_val == E1000_SUCCESS)
4706			break;
4707	}
4708	if (program_retries == 100)
4709		return -E1000_ERR_NVM;
4710
4711	return E1000_SUCCESS;
4712}
4713
4714/**
4715 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4716 *  @hw: pointer to the HW structure
4717 *  @bank: 0 for first bank, 1 for second bank, etc.
4718 *
4719 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4720 *  bank N is 4096 * N + flash_reg_addr.
4721 **/
4722static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4723{
4724	struct e1000_nvm_info *nvm = &hw->nvm;
4725	union ich8_hws_flash_status hsfsts;
4726	union ich8_hws_flash_ctrl hsflctl;
4727	u32 flash_linear_addr;
4728	/* bank size is in 16bit words - adjust to bytes */
4729	u32 flash_bank_size = nvm->flash_bank_size * 2;
4730	s32 ret_val;
4731	s32 count = 0;
4732	s32 j, iteration, sector_size;
4733
4734	DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4735
4736	hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4737
4738	/* Determine HW Sector size: Read BERASE bits of hw flash status
4739	 * register
4740	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4741	 *     consecutive sectors.  The start index for the nth Hw sector
4742	 *     can be calculated as = bank * 4096 + n * 256
4743	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4744	 *     The start index for the nth Hw sector can be calculated
4745	 *     as = bank * 4096
4746	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4747	 *     (ich9 only, otherwise error condition)
4748	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4749	 */
4750	switch (hsfsts.hsf_status.berasesz) {
4751	case 0:
4752		/* Hw sector size 256 */
4753		sector_size = ICH_FLASH_SEG_SIZE_256;
4754		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4755		break;
4756	case 1:
4757		sector_size = ICH_FLASH_SEG_SIZE_4K;
4758		iteration = 1;
4759		break;
4760	case 2:
4761		sector_size = ICH_FLASH_SEG_SIZE_8K;
4762		iteration = 1;
4763		break;
4764	case 3:
4765		sector_size = ICH_FLASH_SEG_SIZE_64K;
4766		iteration = 1;
4767		break;
4768	default:
4769		return -E1000_ERR_NVM;
4770	}
4771
4772	/* Start with the base address, then add the sector offset. */
4773	flash_linear_addr = hw->nvm.flash_base_addr;
4774	flash_linear_addr += (bank) ? flash_bank_size : 0;
4775
4776	for (j = 0; j < iteration; j++) {
4777		do {
4778			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4779
4780			/* Steps */
4781			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4782			if (ret_val)
4783				return ret_val;
4784
4785			/* Write a value 11 (block Erase) in Flash
4786			 * Cycle field in hw flash control
4787			 */
4788			if (hw->mac.type >= e1000_pch_spt)
4789				hsflctl.regval =
4790				    E1000_READ_FLASH_REG(hw,
4791							 ICH_FLASH_HSFSTS)>>16;
4792			else
4793				hsflctl.regval =
4794				    E1000_READ_FLASH_REG16(hw,
4795							   ICH_FLASH_HSFCTL);
4796
4797			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4798			if (hw->mac.type >= e1000_pch_spt)
4799				E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4800						      hsflctl.regval << 16);
4801			else
4802				E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4803							hsflctl.regval);
4804
4805			/* Write the last 24 bits of an index within the
4806			 * block into Flash Linear address field in Flash
4807			 * Address.
4808			 */
4809			flash_linear_addr += (j * sector_size);
4810			E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4811					      flash_linear_addr);
4812
4813			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4814			if (ret_val == E1000_SUCCESS)
4815				break;
4816
4817			/* Check if FCERR is set to 1.  If 1,
4818			 * clear it and try the whole sequence
4819			 * a few more times else Done
4820			 */
4821			hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4822						      ICH_FLASH_HSFSTS);
4823			if (hsfsts.hsf_status.flcerr)
4824				/* repeat for some time before giving up */
4825				continue;
4826			else if (!hsfsts.hsf_status.flcdone)
4827				return ret_val;
4828		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4829	}
4830
4831	return E1000_SUCCESS;
4832}
4833
4834/**
4835 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4836 *  @hw: pointer to the HW structure
4837 *  @data: Pointer to the LED settings
4838 *
4839 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4840 *  settings is all 0's or F's, set the LED default to a valid LED default
4841 *  setting.
4842 **/
4843static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4844{
4845	s32 ret_val;
4846
4847	DEBUGFUNC("e1000_valid_led_default_ich8lan");
4848
4849	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4850	if (ret_val) {
4851		DEBUGOUT("NVM Read Error\n");
4852		return ret_val;
4853	}
4854
4855	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4856		*data = ID_LED_DEFAULT_ICH8LAN;
4857
4858	return E1000_SUCCESS;
4859}
4860
4861/**
4862 *  e1000_id_led_init_pchlan - store LED configurations
4863 *  @hw: pointer to the HW structure
4864 *
4865 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4866 *  the PHY LED configuration register.
4867 *
4868 *  PCH also does not have an "always on" or "always off" mode which
4869 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4870 *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4871 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4872 *  link based on logic in e1000_led_[on|off]_pchlan().
4873 **/
4874static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4875{
4876	struct e1000_mac_info *mac = &hw->mac;
4877	s32 ret_val;
4878	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4879	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4880	u16 data, i, temp, shift;
4881
4882	DEBUGFUNC("e1000_id_led_init_pchlan");
4883
4884	/* Get default ID LED modes */
4885	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4886	if (ret_val)
4887		return ret_val;
4888
4889	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4890	mac->ledctl_mode1 = mac->ledctl_default;
4891	mac->ledctl_mode2 = mac->ledctl_default;
4892
4893	for (i = 0; i < 4; i++) {
4894		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4895		shift = (i * 5);
4896		switch (temp) {
4897		case ID_LED_ON1_DEF2:
4898		case ID_LED_ON1_ON2:
4899		case ID_LED_ON1_OFF2:
4900			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4901			mac->ledctl_mode1 |= (ledctl_on << shift);
4902			break;
4903		case ID_LED_OFF1_DEF2:
4904		case ID_LED_OFF1_ON2:
4905		case ID_LED_OFF1_OFF2:
4906			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4907			mac->ledctl_mode1 |= (ledctl_off << shift);
4908			break;
4909		default:
4910			/* Do nothing */
4911			break;
4912		}
4913		switch (temp) {
4914		case ID_LED_DEF1_ON2:
4915		case ID_LED_ON1_ON2:
4916		case ID_LED_OFF1_ON2:
4917			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4918			mac->ledctl_mode2 |= (ledctl_on << shift);
4919			break;
4920		case ID_LED_DEF1_OFF2:
4921		case ID_LED_ON1_OFF2:
4922		case ID_LED_OFF1_OFF2:
4923			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4924			mac->ledctl_mode2 |= (ledctl_off << shift);
4925			break;
4926		default:
4927			/* Do nothing */
4928			break;
4929		}
4930	}
4931
4932	return E1000_SUCCESS;
4933}
4934
4935/**
4936 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4937 *  @hw: pointer to the HW structure
4938 *
4939 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4940 *  register, so the bus width is hard coded.
4941 **/
4942static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4943{
4944	struct e1000_bus_info *bus = &hw->bus;
4945	s32 ret_val;
4946
4947	DEBUGFUNC("e1000_get_bus_info_ich8lan");
4948
4949	ret_val = e1000_get_bus_info_pcie_generic(hw);
4950
4951	/* ICH devices are "PCI Express"-ish.  They have
4952	 * a configuration space, but do not contain
4953	 * PCI Express Capability registers, so bus width
4954	 * must be hardcoded.
4955	 */
4956	if (bus->width == e1000_bus_width_unknown)
4957		bus->width = e1000_bus_width_pcie_x1;
4958
4959	return ret_val;
4960}
4961
4962/**
4963 *  e1000_reset_hw_ich8lan - Reset the hardware
4964 *  @hw: pointer to the HW structure
4965 *
4966 *  Does a full reset of the hardware which includes a reset of the PHY and
4967 *  MAC.
4968 **/
4969static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4970{
4971	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4972	u16 kum_cfg;
4973	u32 ctrl, reg;
4974	s32 ret_val;
4975	u16 pci_cfg;
4976
4977	DEBUGFUNC("e1000_reset_hw_ich8lan");
4978
4979	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4980	 * on the last TLP read/write transaction when MAC is reset.
4981	 */
4982	ret_val = e1000_disable_pcie_master_generic(hw);
4983	if (ret_val)
4984		DEBUGOUT("PCI-E Master disable polling has failed.\n");
4985
4986	DEBUGOUT("Masking off all interrupts\n");
4987	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4988
4989	/* Disable the Transmit and Receive units.  Then delay to allow
4990	 * any pending transactions to complete before we hit the MAC
4991	 * with the global reset.
4992	 */
4993	E1000_WRITE_REG(hw, E1000_RCTL, 0);
4994	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4995	E1000_WRITE_FLUSH(hw);
4996
4997	msec_delay(10);
4998
4999	/* Workaround for ICH8 bit corruption issue in FIFO memory */
5000	if (hw->mac.type == e1000_ich8lan) {
5001		/* Set Tx and Rx buffer allocation to 8k apiece. */
5002		E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
5003		/* Set Packet Buffer Size to 16k. */
5004		E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
5005	}
5006
5007	if (hw->mac.type == e1000_pchlan) {
5008		/* Save the NVM K1 bit setting*/
5009		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
5010		if (ret_val)
5011			return ret_val;
5012
5013		if (kum_cfg & E1000_NVM_K1_ENABLE)
5014			dev_spec->nvm_k1_enabled = true;
5015		else
5016			dev_spec->nvm_k1_enabled = false;
5017	}
5018
5019	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5020
5021	if (!hw->phy.ops.check_reset_block(hw)) {
5022		/* Full-chip reset requires MAC and PHY reset at the same
5023		 * time to make sure the interface between MAC and the
5024		 * external PHY is reset.
5025		 */
5026		ctrl |= E1000_CTRL_PHY_RST;
5027
5028		/* Gate automatic PHY configuration by hardware on
5029		 * non-managed 82579
5030		 */
5031		if ((hw->mac.type == e1000_pch2lan) &&
5032		    !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
5033			e1000_gate_hw_phy_config_ich8lan(hw, true);
5034	}
5035	ret_val = e1000_acquire_swflag_ich8lan(hw);
5036
5037	/* Read from EXTCNF_CTRL in e1000_acquire_swflag_ich8lan function
5038	 * may occur during global reset and cause system hang.
5039	 * Configuration space access creates the needed delay.
5040	 * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER value
5041	 * insures configuration space read is done before global reset.
5042	 */
5043	e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
5044	E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
5045	DEBUGOUT("Issuing a global reset to ich8lan\n");
5046	E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
5047	/* cannot issue a flush here because it hangs the hardware */
5048	msec_delay(20);
5049
5050	/* Configuration space access improve HW level time sync mechanism.
5051	 * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER
5052	 * value to insure configuration space read is done
5053	 * before any access to mac register.
5054	 */
5055	e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
5056	E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
5057
5058	/* Set Phy Config Counter to 50msec */
5059	if (hw->mac.type == e1000_pch2lan) {
5060		reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
5061		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
5062		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
5063		E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
5064	}
5065
5066
5067	if (ctrl & E1000_CTRL_PHY_RST) {
5068		ret_val = hw->phy.ops.get_cfg_done(hw);
5069		if (ret_val)
5070			return ret_val;
5071
5072		ret_val = e1000_post_phy_reset_ich8lan(hw);
5073		if (ret_val)
5074			return ret_val;
5075	}
5076
5077	/* For PCH, this write will make sure that any noise
5078	 * will be detected as a CRC error and be dropped rather than show up
5079	 * as a bad packet to the DMA engine.
5080	 */
5081	if (hw->mac.type == e1000_pchlan)
5082		E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
5083
5084	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
5085	E1000_READ_REG(hw, E1000_ICR);
5086
5087	reg = E1000_READ_REG(hw, E1000_KABGTXD);
5088	reg |= E1000_KABGTXD_BGSQLBIAS;
5089	E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
5090
5091	return E1000_SUCCESS;
5092}
5093
5094/**
5095 *  e1000_init_hw_ich8lan - Initialize the hardware
5096 *  @hw: pointer to the HW structure
5097 *
5098 *  Prepares the hardware for transmit and receive by doing the following:
5099 *   - initialize hardware bits
5100 *   - initialize LED identification
5101 *   - setup receive address registers
5102 *   - setup flow control
5103 *   - setup transmit descriptors
5104 *   - clear statistics
5105 **/
5106static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5107{
5108	struct e1000_mac_info *mac = &hw->mac;
5109	u32 ctrl_ext, txdctl, snoop;
5110	s32 ret_val;
5111	u16 i;
5112
5113	DEBUGFUNC("e1000_init_hw_ich8lan");
5114
5115	e1000_initialize_hw_bits_ich8lan(hw);
5116
5117	/* Initialize identification LED */
5118	ret_val = mac->ops.id_led_init(hw);
5119	/* An error is not fatal and we should not stop init due to this */
5120	if (ret_val)
5121		DEBUGOUT("Error initializing identification LED\n");
5122
5123	/* Setup the receive address. */
5124	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5125
5126	/* Zero out the Multicast HASH table */
5127	DEBUGOUT("Zeroing the MTA\n");
5128	for (i = 0; i < mac->mta_reg_count; i++)
5129		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5130
5131	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
5132	 * the ME.  Disable wakeup by clearing the host wakeup bit.
5133	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
5134	 */
5135	if (hw->phy.type == e1000_phy_82578) {
5136		hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5137		i &= ~BM_WUC_HOST_WU_BIT;
5138		hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5139		ret_val = e1000_phy_hw_reset_ich8lan(hw);
5140		if (ret_val)
5141			return ret_val;
5142	}
5143
5144	/* Setup link and flow control */
5145	ret_val = mac->ops.setup_link(hw);
5146
5147	/* Set the transmit descriptor write-back policy for both queues */
5148	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5149	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5150		  E1000_TXDCTL_FULL_TX_DESC_WB);
5151	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5152		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5153	E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5154	txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5155	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5156		  E1000_TXDCTL_FULL_TX_DESC_WB);
5157	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5158		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5159	E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5160
5161	/* ICH8 has opposite polarity of no_snoop bits.
5162	 * By default, we should use snoop behavior.
5163	 */
5164	if (mac->type == e1000_ich8lan)
5165		snoop = PCIE_ICH8_SNOOP_ALL;
5166	else
5167		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5168	e1000_set_pcie_no_snoop_generic(hw, snoop);
5169
5170	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5171	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5172	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5173
5174	/* Clear all of the statistics registers (clear on read).  It is
5175	 * important that we do this after we have tried to establish link
5176	 * because the symbol error count will increment wildly if there
5177	 * is no link.
5178	 */
5179	e1000_clear_hw_cntrs_ich8lan(hw);
5180
5181	return ret_val;
5182}
5183
5184/**
5185 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5186 *  @hw: pointer to the HW structure
5187 *
5188 *  Sets/Clears required hardware bits necessary for correctly setting up the
5189 *  hardware for transmit and receive.
5190 **/
5191static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5192{
5193	u32 reg;
5194
5195	DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5196
5197	/* Extended Device Control */
5198	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5199	reg |= (1 << 22);
5200	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5201	if (hw->mac.type >= e1000_pchlan)
5202		reg |= E1000_CTRL_EXT_PHYPDEN;
5203	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5204
5205	/* Transmit Descriptor Control 0 */
5206	reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5207	reg |= (1 << 22);
5208	E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5209
5210	/* Transmit Descriptor Control 1 */
5211	reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5212	reg |= (1 << 22);
5213	E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5214
5215	/* Transmit Arbitration Control 0 */
5216	reg = E1000_READ_REG(hw, E1000_TARC(0));
5217	if (hw->mac.type == e1000_ich8lan)
5218		reg |= (1 << 28) | (1 << 29);
5219	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5220	E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5221
5222	/* Transmit Arbitration Control 1 */
5223	reg = E1000_READ_REG(hw, E1000_TARC(1));
5224	if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5225		reg &= ~(1 << 28);
5226	else
5227		reg |= (1 << 28);
5228	reg |= (1 << 24) | (1 << 26) | (1 << 30);
5229	E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5230
5231	/* Device Status */
5232	if (hw->mac.type == e1000_ich8lan) {
5233		reg = E1000_READ_REG(hw, E1000_STATUS);
5234		reg &= ~(1U << 31);
5235		E1000_WRITE_REG(hw, E1000_STATUS, reg);
5236	}
5237
5238	/* work-around descriptor data corruption issue during nfs v2 udp
5239	 * traffic, just disable the nfs filtering capability
5240	 */
5241	reg = E1000_READ_REG(hw, E1000_RFCTL);
5242	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5243
5244	/* Disable IPv6 extension header parsing because some malformed
5245	 * IPv6 headers can hang the Rx.
5246	 */
5247	if (hw->mac.type == e1000_ich8lan)
5248		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5249	E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5250
5251	/* Enable ECC on Lynxpoint */
5252	if (hw->mac.type >= e1000_pch_lpt) {
5253		reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5254		reg |= E1000_PBECCSTS_ECC_ENABLE;
5255		E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5256
5257		reg = E1000_READ_REG(hw, E1000_CTRL);
5258		reg |= E1000_CTRL_MEHE;
5259		E1000_WRITE_REG(hw, E1000_CTRL, reg);
5260	}
5261
5262	return;
5263}
5264
5265/**
5266 *  e1000_setup_link_ich8lan - Setup flow control and link settings
5267 *  @hw: pointer to the HW structure
5268 *
5269 *  Determines which flow control settings to use, then configures flow
5270 *  control.  Calls the appropriate media-specific link configuration
5271 *  function.  Assuming the adapter has a valid link partner, a valid link
5272 *  should be established.  Assumes the hardware has previously been reset
5273 *  and the transmitter and receiver are not enabled.
5274 **/
5275static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5276{
5277	s32 ret_val;
5278
5279	DEBUGFUNC("e1000_setup_link_ich8lan");
5280
5281	/* ICH parts do not have a word in the NVM to determine
5282	 * the default flow control setting, so we explicitly
5283	 * set it to full.
5284	 */
5285	if (hw->fc.requested_mode == e1000_fc_default)
5286		hw->fc.requested_mode = e1000_fc_full;
5287
5288	/* Save off the requested flow control mode for use later.  Depending
5289	 * on the link partner's capabilities, we may or may not use this mode.
5290	 */
5291	hw->fc.current_mode = hw->fc.requested_mode;
5292
5293	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5294		hw->fc.current_mode);
5295
5296	if (!hw->phy.ops.check_reset_block(hw)) {
5297		/* Continue to configure the copper link. */
5298		ret_val = hw->mac.ops.setup_physical_interface(hw);
5299		if (ret_val)
5300			return ret_val;
5301	}
5302
5303	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5304	if ((hw->phy.type == e1000_phy_82578) ||
5305	    (hw->phy.type == e1000_phy_82579) ||
5306	    (hw->phy.type == e1000_phy_i217) ||
5307	    (hw->phy.type == e1000_phy_82577)) {
5308		E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5309
5310		ret_val = hw->phy.ops.write_reg(hw,
5311					     PHY_REG(BM_PORT_CTRL_PAGE, 27),
5312					     hw->fc.pause_time);
5313		if (ret_val)
5314			return ret_val;
5315	}
5316
5317	return e1000_set_fc_watermarks_generic(hw);
5318}
5319
5320/**
5321 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5322 *  @hw: pointer to the HW structure
5323 *
5324 *  Configures the kumeran interface to the PHY to wait the appropriate time
5325 *  when polling the PHY, then call the generic setup_copper_link to finish
5326 *  configuring the copper link.
5327 **/
5328static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5329{
5330	u32 ctrl;
5331	s32 ret_val;
5332	u16 reg_data;
5333
5334	DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5335
5336	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5337	ctrl |= E1000_CTRL_SLU;
5338	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5339	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5340
5341	/* Set the mac to wait the maximum time between each iteration
5342	 * and increase the max iterations when polling the phy;
5343	 * this fixes erroneous timeouts at 10Mbps.
5344	 */
5345	ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5346					       0xFFFF);
5347	if (ret_val)
5348		return ret_val;
5349	ret_val = e1000_read_kmrn_reg_generic(hw,
5350					      E1000_KMRNCTRLSTA_INBAND_PARAM,
5351					      &reg_data);
5352	if (ret_val)
5353		return ret_val;
5354	reg_data |= 0x3F;
5355	ret_val = e1000_write_kmrn_reg_generic(hw,
5356					       E1000_KMRNCTRLSTA_INBAND_PARAM,
5357					       reg_data);
5358	if (ret_val)
5359		return ret_val;
5360
5361	switch (hw->phy.type) {
5362	case e1000_phy_igp_3:
5363		ret_val = e1000_copper_link_setup_igp(hw);
5364		if (ret_val)
5365			return ret_val;
5366		break;
5367	case e1000_phy_bm:
5368	case e1000_phy_82578:
5369		ret_val = e1000_copper_link_setup_m88(hw);
5370		if (ret_val)
5371			return ret_val;
5372		break;
5373	case e1000_phy_82577:
5374	case e1000_phy_82579:
5375		ret_val = e1000_copper_link_setup_82577(hw);
5376		if (ret_val)
5377			return ret_val;
5378		break;
5379	case e1000_phy_ife:
5380		ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5381					       &reg_data);
5382		if (ret_val)
5383			return ret_val;
5384
5385		reg_data &= ~IFE_PMC_AUTO_MDIX;
5386
5387		switch (hw->phy.mdix) {
5388		case 1:
5389			reg_data &= ~IFE_PMC_FORCE_MDIX;
5390			break;
5391		case 2:
5392			reg_data |= IFE_PMC_FORCE_MDIX;
5393			break;
5394		case 0:
5395		default:
5396			reg_data |= IFE_PMC_AUTO_MDIX;
5397			break;
5398		}
5399		ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5400						reg_data);
5401		if (ret_val)
5402			return ret_val;
5403		break;
5404	default:
5405		break;
5406	}
5407
5408	return e1000_setup_copper_link_generic(hw);
5409}
5410
5411/**
5412 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5413 *  @hw: pointer to the HW structure
5414 *
5415 *  Calls the PHY specific link setup function and then calls the
5416 *  generic setup_copper_link to finish configuring the link for
5417 *  Lynxpoint PCH devices
5418 **/
5419static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5420{
5421	u32 ctrl;
5422	s32 ret_val;
5423
5424	DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5425
5426	ctrl = E1000_READ_REG(hw, E1000_CTRL);
5427	ctrl |= E1000_CTRL_SLU;
5428	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5429	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5430
5431	ret_val = e1000_copper_link_setup_82577(hw);
5432	if (ret_val)
5433		return ret_val;
5434
5435	return e1000_setup_copper_link_generic(hw);
5436}
5437
5438/**
5439 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5440 *  @hw: pointer to the HW structure
5441 *  @speed: pointer to store current link speed
5442 *  @duplex: pointer to store the current link duplex
5443 *
5444 *  Calls the generic get_speed_and_duplex to retrieve the current link
5445 *  information and then calls the Kumeran lock loss workaround for links at
5446 *  gigabit speeds.
5447 **/
5448static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5449					  u16 *duplex)
5450{
5451	s32 ret_val;
5452
5453	DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5454
5455	ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5456	if (ret_val)
5457		return ret_val;
5458
5459	if ((hw->mac.type == e1000_ich8lan) &&
5460	    (hw->phy.type == e1000_phy_igp_3) &&
5461	    (*speed == SPEED_1000)) {
5462		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5463	}
5464
5465	return ret_val;
5466}
5467
5468/**
5469 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5470 *  @hw: pointer to the HW structure
5471 *
5472 *  Work-around for 82566 Kumeran PCS lock loss:
5473 *  On link status change (i.e. PCI reset, speed change) and link is up and
5474 *  speed is gigabit-
5475 *    0) if workaround is optionally disabled do nothing
5476 *    1) wait 1ms for Kumeran link to come up
5477 *    2) check Kumeran Diagnostic register PCS lock loss bit
5478 *    3) if not set the link is locked (all is good), otherwise...
5479 *    4) reset the PHY
5480 *    5) repeat up to 10 times
5481 *  Note: this is only called for IGP3 copper when speed is 1gb.
5482 **/
5483static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5484{
5485	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5486	u32 phy_ctrl;
5487	s32 ret_val;
5488	u16 i, data;
5489	bool link;
5490
5491	DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5492
5493	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5494		return E1000_SUCCESS;
5495
5496	/* Make sure link is up before proceeding.  If not just return.
5497	 * Attempting this while link is negotiating fouled up link
5498	 * stability
5499	 */
5500	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5501	if (!link)
5502		return E1000_SUCCESS;
5503
5504	for (i = 0; i < 10; i++) {
5505		/* read once to clear */
5506		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5507		if (ret_val)
5508			return ret_val;
5509		/* and again to get new status */
5510		ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5511		if (ret_val)
5512			return ret_val;
5513
5514		/* check for PCS lock */
5515		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5516			return E1000_SUCCESS;
5517
5518		/* Issue PHY reset */
5519		hw->phy.ops.reset(hw);
5520		msec_delay_irq(5);
5521	}
5522	/* Disable GigE link negotiation */
5523	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5524	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5525		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5526	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5527
5528	/* Call gig speed drop workaround on Gig disable before accessing
5529	 * any PHY registers
5530	 */
5531	e1000_gig_downshift_workaround_ich8lan(hw);
5532
5533	/* unable to acquire PCS lock */
5534	return -E1000_ERR_PHY;
5535}
5536
5537/**
5538 *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5539 *  @hw: pointer to the HW structure
5540 *  @state: boolean value used to set the current Kumeran workaround state
5541 *
5542 *  If ICH8, set the current Kumeran workaround state (enabled - true
5543 *  /disabled - false).
5544 **/
5545void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5546						 bool state)
5547{
5548	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5549
5550	DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5551
5552	if (hw->mac.type != e1000_ich8lan) {
5553		DEBUGOUT("Workaround applies to ICH8 only.\n");
5554		return;
5555	}
5556
5557	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5558
5559	return;
5560}
5561
5562/**
5563 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5564 *  @hw: pointer to the HW structure
5565 *
5566 *  Workaround for 82566 power-down on D3 entry:
5567 *    1) disable gigabit link
5568 *    2) write VR power-down enable
5569 *    3) read it back
5570 *  Continue if successful, else issue LCD reset and repeat
5571 **/
5572void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5573{
5574	u32 reg;
5575	u16 data;
5576	u8  retry = 0;
5577
5578	DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5579
5580	if (hw->phy.type != e1000_phy_igp_3)
5581		return;
5582
5583	/* Try the workaround twice (if needed) */
5584	do {
5585		/* Disable link */
5586		reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5587		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5588			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5589		E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5590
5591		/* Call gig speed drop workaround on Gig disable before
5592		 * accessing any PHY registers
5593		 */
5594		if (hw->mac.type == e1000_ich8lan)
5595			e1000_gig_downshift_workaround_ich8lan(hw);
5596
5597		/* Write VR power-down enable */
5598		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5599		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5600		hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5601				      data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5602
5603		/* Read it back and test */
5604		hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5605		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5606		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5607			break;
5608
5609		/* Issue PHY reset and repeat at most one more time */
5610		reg = E1000_READ_REG(hw, E1000_CTRL);
5611		E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5612		retry++;
5613	} while (retry);
5614}
5615
5616/**
5617 *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5618 *  @hw: pointer to the HW structure
5619 *
5620 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5621 *  LPLU, Gig disable, MDIC PHY reset):
5622 *    1) Set Kumeran Near-end loopback
5623 *    2) Clear Kumeran Near-end loopback
5624 *  Should only be called for ICH8[m] devices with any 1G Phy.
5625 **/
5626void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5627{
5628	s32 ret_val;
5629	u16 reg_data = 0;
5630
5631	DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5632
5633	if ((hw->mac.type != e1000_ich8lan) ||
5634	    (hw->phy.type == e1000_phy_ife))
5635		return;
5636
5637	ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5638					      &reg_data);
5639	if (ret_val)
5640		return;
5641	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5642	ret_val = e1000_write_kmrn_reg_generic(hw,
5643					       E1000_KMRNCTRLSTA_DIAG_OFFSET,
5644					       reg_data);
5645	if (ret_val)
5646		return;
5647	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5648	e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5649				     reg_data);
5650}
5651
5652/**
5653 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5654 *  @hw: pointer to the HW structure
5655 *
5656 *  During S0 to Sx transition, it is possible the link remains at gig
5657 *  instead of negotiating to a lower speed.  Before going to Sx, set
5658 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5659 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5660 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5661 *  needs to be written.
5662 *  Parts that support (and are linked to a partner which support) EEE in
5663 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5664 *  than 10Mbps w/o EEE.
5665 **/
5666void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5667{
5668	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5669	u32 phy_ctrl;
5670	s32 ret_val;
5671
5672	DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5673
5674	phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5675	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5676
5677	if (hw->phy.type == e1000_phy_i217) {
5678		u16 phy_reg, device_id = hw->device_id;
5679
5680		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5681		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5682		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5683		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5684		    (hw->mac.type >= e1000_pch_spt)) {
5685			u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5686
5687			E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5688					fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5689		}
5690
5691		ret_val = hw->phy.ops.acquire(hw);
5692		if (ret_val)
5693			goto out;
5694
5695		if (!dev_spec->eee_disable) {
5696			u16 eee_advert;
5697
5698			ret_val =
5699			    e1000_read_emi_reg_locked(hw,
5700						      I217_EEE_ADVERTISEMENT,
5701						      &eee_advert);
5702			if (ret_val)
5703				goto release;
5704
5705			/* Disable LPLU if both link partners support 100BaseT
5706			 * EEE and 100Full is advertised on both ends of the
5707			 * link, and enable Auto Enable LPI since there will
5708			 * be no driver to enable LPI while in Sx.
5709			 */
5710			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5711			    (dev_spec->eee_lp_ability &
5712			     I82579_EEE_100_SUPPORTED) &&
5713			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5714				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5715					      E1000_PHY_CTRL_NOND0A_LPLU);
5716
5717				/* Set Auto Enable LPI after link up */
5718				hw->phy.ops.read_reg_locked(hw,
5719							    I217_LPI_GPIO_CTRL,
5720							    &phy_reg);
5721				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5722				hw->phy.ops.write_reg_locked(hw,
5723							     I217_LPI_GPIO_CTRL,
5724							     phy_reg);
5725			}
5726		}
5727
5728		/* For i217 Intel Rapid Start Technology support,
5729		 * when the system is going into Sx and no manageability engine
5730		 * is present, the driver must configure proxy to reset only on
5731		 * power good.  LPI (Low Power Idle) state must also reset only
5732		 * on power good, as well as the MTA (Multicast table array).
5733		 * The SMBus release must also be disabled on LCD reset.
5734		 */
5735		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5736		      E1000_ICH_FWSM_FW_VALID)) {
5737			/* Enable proxy to reset only on power good. */
5738			hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5739						    &phy_reg);
5740			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5741			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5742						     phy_reg);
5743
5744			/* Set bit enable LPI (EEE) to reset only on
5745			 * power good.
5746			*/
5747			hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5748			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5749			hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5750
5751			/* Disable the SMB release on LCD reset. */
5752			hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5753			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5754			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5755		}
5756
5757		/* Enable MTA to reset for Intel Rapid Start Technology
5758		 * Support
5759		 */
5760		hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5761		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5762		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5763
5764release:
5765		hw->phy.ops.release(hw);
5766	}
5767out:
5768	E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5769
5770	if (hw->mac.type == e1000_ich8lan)
5771		e1000_gig_downshift_workaround_ich8lan(hw);
5772
5773	if (hw->mac.type >= e1000_pchlan) {
5774		e1000_oem_bits_config_ich8lan(hw, false);
5775
5776		/* Reset PHY to activate OEM bits on 82577/8 */
5777		if (hw->mac.type == e1000_pchlan)
5778			e1000_phy_hw_reset_generic(hw);
5779
5780		ret_val = hw->phy.ops.acquire(hw);
5781		if (ret_val)
5782			return;
5783		e1000_write_smbus_addr(hw);
5784		hw->phy.ops.release(hw);
5785	}
5786
5787	return;
5788}
5789
5790/**
5791 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5792 *  @hw: pointer to the HW structure
5793 *
5794 *  During Sx to S0 transitions on non-managed devices or managed devices
5795 *  on which PHY resets are not blocked, if the PHY registers cannot be
5796 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5797 *  the PHY.
5798 *  On i217, setup Intel Rapid Start Technology.
5799 **/
5800u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5801{
5802	s32 ret_val;
5803
5804	DEBUGFUNC("e1000_resume_workarounds_pchlan");
5805	if (hw->mac.type < e1000_pch2lan)
5806		return E1000_SUCCESS;
5807
5808	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5809	if (ret_val) {
5810		DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5811		return ret_val;
5812	}
5813
5814	/* For i217 Intel Rapid Start Technology support when the system
5815	 * is transitioning from Sx and no manageability engine is present
5816	 * configure SMBus to restore on reset, disable proxy, and enable
5817	 * the reset on MTA (Multicast table array).
5818	 */
5819	if (hw->phy.type == e1000_phy_i217) {
5820		u16 phy_reg;
5821
5822		ret_val = hw->phy.ops.acquire(hw);
5823		if (ret_val) {
5824			DEBUGOUT("Failed to setup iRST\n");
5825			return ret_val;
5826		}
5827
5828		/* Clear Auto Enable LPI after link up */
5829		hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5830		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5831		hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5832
5833		if (!(E1000_READ_REG(hw, E1000_FWSM) &
5834		    E1000_ICH_FWSM_FW_VALID)) {
5835			/* Restore clear on SMB if no manageability engine
5836			 * is present
5837			 */
5838			ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5839							      &phy_reg);
5840			if (ret_val)
5841				goto release;
5842			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5843			hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5844
5845			/* Disable Proxy */
5846			hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5847		}
5848		/* Enable reset on MTA */
5849		ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5850						      &phy_reg);
5851		if (ret_val)
5852			goto release;
5853		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5854		hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5855release:
5856		if (ret_val)
5857			DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5858		hw->phy.ops.release(hw);
5859		return ret_val;
5860	}
5861	return E1000_SUCCESS;
5862}
5863
5864/**
5865 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5866 *  @hw: pointer to the HW structure
5867 *
5868 *  Return the LED back to the default configuration.
5869 **/
5870static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5871{
5872	DEBUGFUNC("e1000_cleanup_led_ich8lan");
5873
5874	if (hw->phy.type == e1000_phy_ife)
5875		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5876					     0);
5877
5878	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5879	return E1000_SUCCESS;
5880}
5881
5882/**
5883 *  e1000_led_on_ich8lan - Turn LEDs on
5884 *  @hw: pointer to the HW structure
5885 *
5886 *  Turn on the LEDs.
5887 **/
5888static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5889{
5890	DEBUGFUNC("e1000_led_on_ich8lan");
5891
5892	if (hw->phy.type == e1000_phy_ife)
5893		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5894				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5895
5896	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5897	return E1000_SUCCESS;
5898}
5899
5900/**
5901 *  e1000_led_off_ich8lan - Turn LEDs off
5902 *  @hw: pointer to the HW structure
5903 *
5904 *  Turn off the LEDs.
5905 **/
5906static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5907{
5908	DEBUGFUNC("e1000_led_off_ich8lan");
5909
5910	if (hw->phy.type == e1000_phy_ife)
5911		return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5912			       (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5913
5914	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5915	return E1000_SUCCESS;
5916}
5917
5918/**
5919 *  e1000_setup_led_pchlan - Configures SW controllable LED
5920 *  @hw: pointer to the HW structure
5921 *
5922 *  This prepares the SW controllable LED for use.
5923 **/
5924static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5925{
5926	DEBUGFUNC("e1000_setup_led_pchlan");
5927
5928	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5929				     (u16)hw->mac.ledctl_mode1);
5930}
5931
5932/**
5933 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5934 *  @hw: pointer to the HW structure
5935 *
5936 *  Return the LED back to the default configuration.
5937 **/
5938static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5939{
5940	DEBUGFUNC("e1000_cleanup_led_pchlan");
5941
5942	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5943				     (u16)hw->mac.ledctl_default);
5944}
5945
5946/**
5947 *  e1000_led_on_pchlan - Turn LEDs on
5948 *  @hw: pointer to the HW structure
5949 *
5950 *  Turn on the LEDs.
5951 **/
5952static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5953{
5954	u16 data = (u16)hw->mac.ledctl_mode2;
5955	u32 i, led;
5956
5957	DEBUGFUNC("e1000_led_on_pchlan");
5958
5959	/* If no link, then turn LED on by setting the invert bit
5960	 * for each LED that's mode is "link_up" in ledctl_mode2.
5961	 */
5962	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5963		for (i = 0; i < 3; i++) {
5964			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5965			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5966			    E1000_LEDCTL_MODE_LINK_UP)
5967				continue;
5968			if (led & E1000_PHY_LED0_IVRT)
5969				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5970			else
5971				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5972		}
5973	}
5974
5975	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5976}
5977
5978/**
5979 *  e1000_led_off_pchlan - Turn LEDs off
5980 *  @hw: pointer to the HW structure
5981 *
5982 *  Turn off the LEDs.
5983 **/
5984static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5985{
5986	u16 data = (u16)hw->mac.ledctl_mode1;
5987	u32 i, led;
5988
5989	DEBUGFUNC("e1000_led_off_pchlan");
5990
5991	/* If no link, then turn LED off by clearing the invert bit
5992	 * for each LED that's mode is "link_up" in ledctl_mode1.
5993	 */
5994	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5995		for (i = 0; i < 3; i++) {
5996			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5997			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5998			    E1000_LEDCTL_MODE_LINK_UP)
5999				continue;
6000			if (led & E1000_PHY_LED0_IVRT)
6001				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
6002			else
6003				data |= (E1000_PHY_LED0_IVRT << (i * 5));
6004		}
6005	}
6006
6007	return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
6008}
6009
6010/**
6011 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
6012 *  @hw: pointer to the HW structure
6013 *
6014 *  Read appropriate register for the config done bit for completion status
6015 *  and configure the PHY through s/w for EEPROM-less parts.
6016 *
6017 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
6018 *  config done bit, so only an error is logged and continues.  If we were
6019 *  to return with error, EEPROM-less silicon would not be able to be reset
6020 *  or change link.
6021 **/
6022static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
6023{
6024	s32 ret_val = E1000_SUCCESS;
6025	u32 bank = 0;
6026	u32 status;
6027
6028	DEBUGFUNC("e1000_get_cfg_done_ich8lan");
6029
6030	e1000_get_cfg_done_generic(hw);
6031
6032	/* Wait for indication from h/w that it has completed basic config */
6033	if (hw->mac.type >= e1000_ich10lan) {
6034		e1000_lan_init_done_ich8lan(hw);
6035	} else {
6036		ret_val = e1000_get_auto_rd_done_generic(hw);
6037		if (ret_val) {
6038			/* When auto config read does not complete, do not
6039			 * return with an error. This can happen in situations
6040			 * where there is no eeprom and prevents getting link.
6041			 */
6042			DEBUGOUT("Auto Read Done did not complete\n");
6043			ret_val = E1000_SUCCESS;
6044		}
6045	}
6046
6047	/* Clear PHY Reset Asserted bit */
6048	status = E1000_READ_REG(hw, E1000_STATUS);
6049	if (status & E1000_STATUS_PHYRA)
6050		E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
6051	else
6052		DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
6053
6054	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
6055	if (hw->mac.type <= e1000_ich9lan) {
6056		if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
6057		    (hw->phy.type == e1000_phy_igp_3)) {
6058			e1000_phy_init_script_igp3(hw);
6059		}
6060	} else {
6061		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
6062			/* Maybe we should do a basic PHY config */
6063			DEBUGOUT("EEPROM not present\n");
6064			ret_val = -E1000_ERR_CONFIG;
6065		}
6066	}
6067
6068	return ret_val;
6069}
6070
6071/**
6072 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
6073 * @hw: pointer to the HW structure
6074 *
6075 * In the case of a PHY power down to save power, or to turn off link during a
6076 * driver unload, or wake on lan is not enabled, remove the link.
6077 **/
6078static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
6079{
6080	/* If the management interface is not enabled, then power down */
6081	if (!(hw->mac.ops.check_mng_mode(hw) ||
6082	      hw->phy.ops.check_reset_block(hw)))
6083		e1000_power_down_phy_copper(hw);
6084
6085	return;
6086}
6087
6088/**
6089 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
6090 *  @hw: pointer to the HW structure
6091 *
6092 *  Clears hardware counters specific to the silicon family and calls
6093 *  clear_hw_cntrs_generic to clear all general purpose counters.
6094 **/
6095static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6096{
6097	u16 phy_data;
6098	s32 ret_val;
6099
6100	DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6101
6102	e1000_clear_hw_cntrs_base_generic(hw);
6103
6104	E1000_READ_REG(hw, E1000_ALGNERRC);
6105	E1000_READ_REG(hw, E1000_RXERRC);
6106	E1000_READ_REG(hw, E1000_TNCRS);
6107	E1000_READ_REG(hw, E1000_CEXTERR);
6108	E1000_READ_REG(hw, E1000_TSCTC);
6109	E1000_READ_REG(hw, E1000_TSCTFC);
6110
6111	E1000_READ_REG(hw, E1000_MGTPRC);
6112	E1000_READ_REG(hw, E1000_MGTPDC);
6113	E1000_READ_REG(hw, E1000_MGTPTC);
6114
6115	E1000_READ_REG(hw, E1000_IAC);
6116	E1000_READ_REG(hw, E1000_ICRXOC);
6117
6118	/* Clear PHY statistics registers */
6119	if ((hw->phy.type == e1000_phy_82578) ||
6120	    (hw->phy.type == e1000_phy_82579) ||
6121	    (hw->phy.type == e1000_phy_i217) ||
6122	    (hw->phy.type == e1000_phy_82577)) {
6123		ret_val = hw->phy.ops.acquire(hw);
6124		if (ret_val)
6125			return;
6126		ret_val = hw->phy.ops.set_page(hw,
6127					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
6128		if (ret_val)
6129			goto release;
6130		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6131		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6132		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6133		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6134		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6135		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6136		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6137		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6138		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6139		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6140		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6141		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6142		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6143		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6144release:
6145		hw->phy.ops.release(hw);
6146	}
6147}
6148
6149/**
6150 *  e1000_configure_k0s_lpt - Configure K0s power state
6151 *  @hw: pointer to the HW structure
6152 *  @entry_latency: Tx idle period for entering K0s - valid values are 0 to 3.
6153 *	0 corresponds to 128ns, each value over 0 doubles the duration.
6154 *  @min_time: Minimum Tx idle period allowed  - valid values are 0 to 4.
6155 *	0 corresponds to 128ns, each value over 0 doubles the duration.
6156 *
6157 *  Configure the K1 power state based on the provided parameter.
6158 *  Assumes semaphore already acquired.
6159 *
6160 *  Success returns 0, Failure returns:
6161 *	-E1000_ERR_PHY (-2) in case of access error
6162 *	-E1000_ERR_PARAM (-4) in case of parameters error
6163 **/
6164s32 e1000_configure_k0s_lpt(struct e1000_hw *hw, u8 entry_latency, u8 min_time)
6165{
6166	s32 ret_val;
6167	u16 kmrn_reg = 0;
6168
6169	DEBUGFUNC("e1000_configure_k0s_lpt");
6170
6171	if (entry_latency > 3 || min_time > 4)
6172		return -E1000_ERR_PARAM;
6173
6174	ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6175					     &kmrn_reg);
6176	if (ret_val)
6177		return ret_val;
6178
6179	/* for now don't touch the latency */
6180	kmrn_reg &= ~(E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_MASK);
6181	kmrn_reg |= ((min_time << E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT));
6182
6183	ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6184					      kmrn_reg);
6185	if (ret_val)
6186		return ret_val;
6187
6188	return E1000_SUCCESS;
6189}
6190