1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2016 Matthew Macy <mmacy@mattmacy.io>
5 * All rights reserved.
6 * Copyright (c) 2021 Rubicon Communications, LLC (Netgate)
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33#include "if_igc.h"
34
35#ifdef RSS
36#include <net/rss_config.h>
37#include <netinet/in_rss.h>
38#endif
39
40#ifdef VERBOSE_DEBUG
41#define DPRINTF device_printf
42#else
43#define DPRINTF(...)
44#endif
45
46/*********************************************************************
47 *  Local Function prototypes
48 *********************************************************************/
49static int igc_isc_txd_encap(void *arg, if_pkt_info_t pi);
50static void igc_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
51static int igc_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
52
53static void igc_isc_rxd_refill(void *arg, if_rxd_update_t iru);
54
55static void igc_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused,
56    qidx_t pidx);
57static int igc_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx,
58    qidx_t budget);
59
60static int igc_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
61
62static int igc_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi,
63    uint32_t *cmd_type_len, uint32_t *olinfo_status);
64static int igc_tso_setup(struct tx_ring *txr, if_pkt_info_t pi,
65    uint32_t *cmd_type_len, uint32_t *olinfo_status);
66
67static void igc_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype);
68static int igc_determine_rsstype(uint16_t pkt_info);
69
70extern void igc_if_enable_intr(if_ctx_t ctx);
71extern int igc_intr(void *arg);
72
73struct if_txrx igc_txrx = {
74	.ift_txd_encap = igc_isc_txd_encap,
75	.ift_txd_flush = igc_isc_txd_flush,
76	.ift_txd_credits_update = igc_isc_txd_credits_update,
77	.ift_rxd_available = igc_isc_rxd_available,
78	.ift_rxd_pkt_get = igc_isc_rxd_pkt_get,
79	.ift_rxd_refill = igc_isc_rxd_refill,
80	.ift_rxd_flush = igc_isc_rxd_flush,
81	.ift_legacy_intr = igc_intr
82};
83
84void
85igc_dump_rs(struct igc_adapter *adapter)
86{
87	if_softc_ctx_t scctx = adapter->shared;
88	struct igc_tx_queue *que;
89	struct tx_ring *txr;
90	qidx_t i, ntxd, qid, cur;
91	int16_t rs_cidx;
92	uint8_t status;
93
94	printf("\n");
95	ntxd = scctx->isc_ntxd[0];
96	for (qid = 0; qid < adapter->tx_num_queues; qid++) {
97		que = &adapter->tx_queues[qid];
98		txr =  &que->txr;
99		rs_cidx = txr->tx_rs_cidx;
100		if (rs_cidx != txr->tx_rs_pidx) {
101			cur = txr->tx_rsq[rs_cidx];
102			status = txr->tx_base[cur].upper.fields.status;
103			if (!(status & IGC_TXD_STAT_DD))
104				printf("qid[%d]->tx_rsq[%d]: %d clear ", qid, rs_cidx, cur);
105		} else {
106			rs_cidx = (rs_cidx-1)&(ntxd-1);
107			cur = txr->tx_rsq[rs_cidx];
108			printf("qid[%d]->tx_rsq[rs_cidx-1=%d]: %d  ", qid, rs_cidx, cur);
109		}
110		printf("cidx_prev=%d rs_pidx=%d ",txr->tx_cidx_processed, txr->tx_rs_pidx);
111		for (i = 0; i < ntxd; i++) {
112			if (txr->tx_base[i].upper.fields.status & IGC_TXD_STAT_DD)
113				printf("%d set ", i);
114		}
115		printf("\n");
116	}
117}
118
119/**********************************************************************
120 *
121 *  Setup work for hardware segmentation offload (TSO) on
122 *  adapters using advanced tx descriptors
123 *
124 **********************************************************************/
125static int
126igc_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
127    uint32_t *olinfo_status)
128{
129	struct igc_adv_tx_context_desc *TXD;
130	uint32_t type_tucmd_mlhl = 0, vlan_macip_lens = 0;
131	uint32_t mss_l4len_idx = 0;
132	uint32_t paylen;
133
134	switch(pi->ipi_etype) {
135	case ETHERTYPE_IPV6:
136		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
137		break;
138	case ETHERTYPE_IP:
139		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
140		/* Tell transmit desc to also do IPv4 checksum. */
141		*olinfo_status |= IGC_TXD_POPTS_IXSM << 8;
142		break;
143	default:
144		panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
145		      __func__, ntohs(pi->ipi_etype));
146		break;
147	}
148
149	TXD = (struct igc_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
150
151	/* This is used in the transmit desc in encap */
152	paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen - pi->ipi_tcp_hlen;
153
154	/* VLAN MACLEN IPLEN */
155	if (pi->ipi_mflags & M_VLANTAG) {
156		vlan_macip_lens |= (pi->ipi_vtag << IGC_ADVTXD_VLAN_SHIFT);
157	}
158
159	vlan_macip_lens |= pi->ipi_ehdrlen << IGC_ADVTXD_MACLEN_SHIFT;
160	vlan_macip_lens |= pi->ipi_ip_hlen;
161	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
162
163	/* ADV DTYPE TUCMD */
164	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
165	type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
166	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
167
168	/* MSS L4LEN IDX */
169	mss_l4len_idx |= (pi->ipi_tso_segsz << IGC_ADVTXD_MSS_SHIFT);
170	mss_l4len_idx |= (pi->ipi_tcp_hlen << IGC_ADVTXD_L4LEN_SHIFT);
171	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
172
173	TXD->seqnum_seed = htole32(0);
174	*cmd_type_len |= IGC_ADVTXD_DCMD_TSE;
175	*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
176	*olinfo_status |= paylen << IGC_ADVTXD_PAYLEN_SHIFT;
177
178	return (1);
179}
180
181/*********************************************************************
182 *
183 *  Advanced Context Descriptor setup for VLAN, CSUM or TSO
184 *
185 **********************************************************************/
186static int
187igc_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
188    uint32_t *olinfo_status)
189{
190	struct igc_adv_tx_context_desc *TXD;
191	uint32_t vlan_macip_lens, type_tucmd_mlhl;
192	uint32_t mss_l4len_idx;
193	mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
194
195	/* First check if TSO is to be used */
196	if (pi->ipi_csum_flags & CSUM_TSO)
197		return (igc_tso_setup(txr, pi, cmd_type_len, olinfo_status));
198
199	/* Indicate the whole packet as payload when not doing TSO */
200	*olinfo_status |= pi->ipi_len << IGC_ADVTXD_PAYLEN_SHIFT;
201
202	/* Now ready a context descriptor */
203	TXD = (struct igc_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
204
205	/*
206	** In advanced descriptors the vlan tag must
207	** be placed into the context descriptor. Hence
208	** we need to make one even if not doing offloads.
209	*/
210	if (pi->ipi_mflags & M_VLANTAG) {
211		vlan_macip_lens |= (pi->ipi_vtag << IGC_ADVTXD_VLAN_SHIFT);
212	} else if ((pi->ipi_csum_flags & IGC_CSUM_OFFLOAD) == 0) {
213		return (0);
214	}
215
216	/* Set the ether header length */
217	vlan_macip_lens |= pi->ipi_ehdrlen << IGC_ADVTXD_MACLEN_SHIFT;
218
219	switch(pi->ipi_etype) {
220	case ETHERTYPE_IP:
221		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV4;
222		break;
223	case ETHERTYPE_IPV6:
224		type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_IPV6;
225		break;
226	default:
227		break;
228	}
229
230	vlan_macip_lens |= pi->ipi_ip_hlen;
231	type_tucmd_mlhl |= IGC_ADVTXD_DCMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
232
233	switch (pi->ipi_ipproto) {
234	case IPPROTO_TCP:
235		if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) {
236			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_TCP;
237			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
238		}
239		break;
240	case IPPROTO_UDP:
241		if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) {
242			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_UDP;
243			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
244		}
245		break;
246#ifndef __HAIKU__
247	case IPPROTO_SCTP:
248		if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) {
249			type_tucmd_mlhl |= IGC_ADVTXD_TUCMD_L4T_SCTP;
250			*olinfo_status |= IGC_TXD_POPTS_TXSM << 8;
251		}
252		break;
253#endif
254	default:
255		break;
256	}
257
258	/* Now copy bits into descriptor */
259	TXD->vlan_macip_lens = htole32(vlan_macip_lens);
260	TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
261	TXD->seqnum_seed = htole32(0);
262	TXD->mss_l4len_idx = htole32(mss_l4len_idx);
263
264	return (1);
265}
266
267static int
268igc_isc_txd_encap(void *arg, if_pkt_info_t pi)
269{
270	struct igc_adapter *sc = arg;
271	if_softc_ctx_t scctx = sc->shared;
272	struct igc_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
273	struct tx_ring *txr = &que->txr;
274	int nsegs = pi->ipi_nsegs;
275	bus_dma_segment_t *segs = pi->ipi_segs;
276	union igc_adv_tx_desc *txd = NULL;
277	int i, j, pidx_last;
278	uint32_t olinfo_status, cmd_type_len, txd_flags;
279	qidx_t ntxd;
280
281	pidx_last = olinfo_status = 0;
282	/* Basic descriptor defines */
283	cmd_type_len = (IGC_ADVTXD_DTYP_DATA |
284			IGC_ADVTXD_DCMD_IFCS | IGC_ADVTXD_DCMD_DEXT);
285
286	if (pi->ipi_mflags & M_VLANTAG)
287		cmd_type_len |= IGC_ADVTXD_DCMD_VLE;
288
289	i = pi->ipi_pidx;
290	ntxd = scctx->isc_ntxd[0];
291	txd_flags = pi->ipi_flags & IPI_TX_INTR ? IGC_ADVTXD_DCMD_RS : 0;
292	/* Consume the first descriptor */
293	i += igc_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
294	if (i == scctx->isc_ntxd[0])
295		i = 0;
296
297	for (j = 0; j < nsegs; j++) {
298		bus_size_t seglen;
299		bus_addr_t segaddr;
300
301		txd = (union igc_adv_tx_desc *)&txr->tx_base[i];
302		seglen = segs[j].ds_len;
303		segaddr = htole64(segs[j].ds_addr);
304
305		txd->read.buffer_addr = segaddr;
306		txd->read.cmd_type_len = htole32(IGC_ADVTXD_DCMD_IFCS |
307		    cmd_type_len | seglen);
308		txd->read.olinfo_status = htole32(olinfo_status);
309		pidx_last = i;
310		if (++i == scctx->isc_ntxd[0]) {
311			i = 0;
312		}
313	}
314	if (txd_flags) {
315		txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
316		txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
317		MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
318	}
319
320	txd->read.cmd_type_len |= htole32(IGC_ADVTXD_DCMD_EOP | txd_flags);
321	pi->ipi_new_pidx = i;
322
323	return (0);
324}
325
326static void
327igc_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
328{
329	struct igc_adapter *adapter	= arg;
330	struct igc_tx_queue *que	= &adapter->tx_queues[txqid];
331	struct tx_ring *txr	= &que->txr;
332
333	IGC_WRITE_REG(&adapter->hw, IGC_TDT(txr->me), pidx);
334}
335
336static int
337igc_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
338{
339	struct igc_adapter *adapter = arg;
340	if_softc_ctx_t scctx = adapter->shared;
341	struct igc_tx_queue *que = &adapter->tx_queues[txqid];
342	struct tx_ring *txr = &que->txr;
343
344	qidx_t processed = 0;
345	int updated;
346	qidx_t cur, prev, ntxd, rs_cidx;
347	int32_t delta;
348	uint8_t status;
349
350	rs_cidx = txr->tx_rs_cidx;
351	if (rs_cidx == txr->tx_rs_pidx)
352		return (0);
353	cur = txr->tx_rsq[rs_cidx];
354	status = ((union igc_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
355	updated = !!(status & IGC_TXD_STAT_DD);
356
357	if (!updated)
358		return (0);
359
360	/* If clear is false just let caller know that there
361	 * are descriptors to reclaim */
362	if (!clear)
363		return (1);
364
365	prev = txr->tx_cidx_processed;
366	ntxd = scctx->isc_ntxd[0];
367	do {
368		MPASS(prev != cur);
369		delta = (int32_t)cur - (int32_t)prev;
370		if (delta < 0)
371			delta += ntxd;
372		MPASS(delta > 0);
373
374		processed += delta;
375		prev  = cur;
376		rs_cidx = (rs_cidx + 1) & (ntxd-1);
377		if (rs_cidx  == txr->tx_rs_pidx)
378			break;
379		cur = txr->tx_rsq[rs_cidx];
380		status = ((union igc_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
381	} while ((status & IGC_TXD_STAT_DD));
382
383	txr->tx_rs_cidx = rs_cidx;
384	txr->tx_cidx_processed = prev;
385	return (processed);
386}
387
388static void
389igc_isc_rxd_refill(void *arg, if_rxd_update_t iru)
390{
391	struct igc_adapter *sc = arg;
392	if_softc_ctx_t scctx = sc->shared;
393	uint16_t rxqid = iru->iru_qsidx;
394	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
395	union igc_adv_rx_desc *rxd;
396	struct rx_ring *rxr = &que->rxr;
397	uint64_t *paddrs;
398	uint32_t next_pidx, pidx;
399	uint16_t count;
400	int i;
401
402	paddrs = iru->iru_paddrs;
403	pidx = iru->iru_pidx;
404	count = iru->iru_count;
405
406	for (i = 0, next_pidx = pidx; i < count; i++) {
407		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[next_pidx];
408
409		rxd->read.pkt_addr = htole64(paddrs[i]);
410		if (++next_pidx == scctx->isc_nrxd[0])
411			next_pidx = 0;
412	}
413}
414
415static void
416igc_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx)
417{
418	struct igc_adapter *sc = arg;
419	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
420	struct rx_ring *rxr = &que->rxr;
421
422	IGC_WRITE_REG(&sc->hw, IGC_RDT(rxr->me), pidx);
423}
424
425static int
426igc_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
427{
428	struct igc_adapter *sc = arg;
429	if_softc_ctx_t scctx = sc->shared;
430	struct igc_rx_queue *que = &sc->rx_queues[rxqid];
431	struct rx_ring *rxr = &que->rxr;
432	union igc_adv_rx_desc *rxd;
433	uint32_t staterr = 0;
434	int cnt, i;
435
436	for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
437		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[i];
438		staterr = le32toh(rxd->wb.upper.status_error);
439
440		if ((staterr & IGC_RXD_STAT_DD) == 0)
441			break;
442		if (++i == scctx->isc_nrxd[0])
443			i = 0;
444		if (staterr & IGC_RXD_STAT_EOP)
445			cnt++;
446	}
447	return (cnt);
448}
449
450/****************************************************************
451 * Routine sends data which has been dma'ed into host memory
452 * to upper layer. Initialize ri structure.
453 *
454 * Returns 0 upon success, errno on failure
455 ***************************************************************/
456
457static int
458igc_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
459{
460	struct igc_adapter *adapter = arg;
461	if_softc_ctx_t scctx = adapter->shared;
462	struct igc_rx_queue *que = &adapter->rx_queues[ri->iri_qsidx];
463	struct rx_ring *rxr = &que->rxr;
464	union igc_adv_rx_desc *rxd;
465
466	uint16_t pkt_info, len;
467	uint32_t ptype, staterr;
468	int i, cidx;
469	bool eop;
470
471	staterr = i = 0;
472	cidx = ri->iri_cidx;
473
474	do {
475		rxd = (union igc_adv_rx_desc *)&rxr->rx_base[cidx];
476		staterr = le32toh(rxd->wb.upper.status_error);
477		pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
478
479		MPASS ((staterr & IGC_RXD_STAT_DD) != 0);
480
481		len = le16toh(rxd->wb.upper.length);
482		ptype = le32toh(rxd->wb.lower.lo_dword.data) &  IGC_PKTTYPE_MASK;
483
484		ri->iri_len += len;
485		rxr->rx_bytes += ri->iri_len;
486
487		rxd->wb.upper.status_error = 0;
488		eop = ((staterr & IGC_RXD_STAT_EOP) == IGC_RXD_STAT_EOP);
489
490		/* Make sure bad packets are discarded */
491		if (eop && ((staterr & IGC_RXDEXT_STATERR_RXE) != 0)) {
492			adapter->dropped_pkts++;
493			++rxr->rx_discarded;
494			return (EBADMSG);
495		}
496		ri->iri_frags[i].irf_flid = 0;
497		ri->iri_frags[i].irf_idx = cidx;
498		ri->iri_frags[i].irf_len = len;
499
500		if (++cidx == scctx->isc_nrxd[0])
501			cidx = 0;
502#ifdef notyet
503		if (rxr->hdr_split == true) {
504			ri->iri_frags[i].irf_flid = 1;
505			ri->iri_frags[i].irf_idx = cidx;
506			if (++cidx == scctx->isc_nrxd[0])
507				cidx = 0;
508		}
509#endif
510		i++;
511	} while (!eop);
512
513	rxr->rx_packets++;
514
515	if ((scctx->isc_capenable & IFCAP_RXCSUM) != 0)
516		igc_rx_checksum(staterr, ri, ptype);
517
518	if (staterr & IGC_RXD_STAT_VP) {
519		ri->iri_vtag = le16toh(rxd->wb.upper.vlan);
520		ri->iri_flags |= M_VLANTAG;
521	}
522
523	ri->iri_flowid =
524		le32toh(rxd->wb.lower.hi_dword.rss);
525	ri->iri_rsstype = igc_determine_rsstype(pkt_info);
526	ri->iri_nfrags = i;
527
528	return (0);
529}
530
531/*********************************************************************
532 *
533 *  Verify that the hardware indicated that the checksum is valid.
534 *  Inform the stack about the status of checksum so that stack
535 *  doesn't spend time verifying the checksum.
536 *
537 *********************************************************************/
538static void
539igc_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype)
540{
541	uint16_t status = (uint16_t)staterr;
542	uint8_t errors = (uint8_t)(staterr >> 24);
543
544	if (__predict_false(status & IGC_RXD_STAT_IXSM))
545		return;
546
547	/* If there is a layer 3 or 4 error we are done */
548	if (__predict_false(errors & (IGC_RXD_ERR_IPE | IGC_RXD_ERR_TCPE)))
549		return;
550
551	/* IP Checksum Good */
552	if (status & IGC_RXD_STAT_IPCS)
553		ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
554
555	/* Valid L4E checksum */
556	if (__predict_true(status &
557	    (IGC_RXD_STAT_TCPCS | IGC_RXD_STAT_UDPCS))) {
558		/* SCTP header present */
559		if (__predict_false((ptype & IGC_RXDADV_PKTTYPE_ETQF) == 0 &&
560		    (ptype & IGC_RXDADV_PKTTYPE_SCTP) != 0)) {
561			ri->iri_csum_flags |= CSUM_SCTP_VALID;
562		} else {
563			ri->iri_csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
564			ri->iri_csum_data = htons(0xffff);
565		}
566	}
567}
568
569/********************************************************************
570 *
571 *  Parse the packet type to determine the appropriate hash
572 *
573 ******************************************************************/
574static int
575igc_determine_rsstype(uint16_t pkt_info)
576{
577	switch (pkt_info & IGC_RXDADV_RSSTYPE_MASK) {
578	case IGC_RXDADV_RSSTYPE_IPV4_TCP:
579		return M_HASHTYPE_RSS_TCP_IPV4;
580	case IGC_RXDADV_RSSTYPE_IPV4:
581		return M_HASHTYPE_RSS_IPV4;
582	case IGC_RXDADV_RSSTYPE_IPV6_TCP:
583		return M_HASHTYPE_RSS_TCP_IPV6;
584	case IGC_RXDADV_RSSTYPE_IPV6_EX:
585		return M_HASHTYPE_RSS_IPV6_EX;
586	case IGC_RXDADV_RSSTYPE_IPV6:
587		return M_HASHTYPE_RSS_IPV6;
588	case IGC_RXDADV_RSSTYPE_IPV6_TCP_EX:
589		return M_HASHTYPE_RSS_TCP_IPV6_EX;
590	default:
591		return M_HASHTYPE_OPAQUE;
592	}
593}
594