1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: releng/12.0/sys/dev/age/if_age.c 338948 2018-09-26 17:12:14Z imp $");
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/bus.h>
38#include <sys/endian.h>
39#include <sys/kernel.h>
40#include <sys/malloc.h>
41#include <sys/mbuf.h>
42#include <sys/rman.h>
43#include <sys/module.h>
44#include <sys/queue.h>
45#include <sys/socket.h>
46#include <sys/sockio.h>
47#include <sys/sysctl.h>
48#include <sys/taskqueue.h>
49
50#include <net/bpf.h>
51#include <net/if.h>
52#include <net/if_var.h>
53#include <net/if_arp.h>
54#include <net/ethernet.h>
55#include <net/if_dl.h>
56#include <net/if_media.h>
57#include <net/if_types.h>
58#include <net/if_vlan_var.h>
59
60#include <netinet/in.h>
61#include <netinet/in_systm.h>
62#include <netinet/ip.h>
63#include <netinet/tcp.h>
64
65#include <dev/mii/mii.h>
66#include <dev/mii/miivar.h>
67
68#include <dev/pci/pcireg.h>
69#include <dev/pci/pcivar.h>
70
71#include <machine/bus.h>
72#include <machine/in_cksum.h>
73
74#include <dev/age/if_agereg.h>
75#include <dev/age/if_agevar.h>
76
77/* "device miibus" required.  See GENERIC if you get errors here. */
78#include "miibus_if.h"
79
80#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81
82MODULE_DEPEND(age, pci, 1, 1, 1);
83MODULE_DEPEND(age, ether, 1, 1, 1);
84MODULE_DEPEND(age, miibus, 1, 1, 1);
85
86/* Tunables. */
87static int msi_disable = 0;
88static int msix_disable = 0;
89TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91
92/*
93 * Devices supported by this driver.
94 */
95static struct age_dev {
96	uint16_t	age_vendorid;
97	uint16_t	age_deviceid;
98	const char	*age_name;
99} age_devs[] = {
100	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
102};
103
104static int age_miibus_readreg(device_t, int, int);
105static int age_miibus_writereg(device_t, int, int, int);
106static void age_miibus_statchg(device_t);
107static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108static int age_mediachange(struct ifnet *);
109static int age_probe(device_t);
110static void age_get_macaddr(struct age_softc *);
111static void age_phy_reset(struct age_softc *);
112static int age_attach(device_t);
113static int age_detach(device_t);
114static void age_sysctl_node(struct age_softc *);
115static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
116static int age_check_boundary(struct age_softc *);
117static int age_dma_alloc(struct age_softc *);
118static void age_dma_free(struct age_softc *);
119static int age_shutdown(device_t);
120static void age_setwol(struct age_softc *);
121static int age_suspend(device_t);
122static int age_resume(device_t);
123static int age_encap(struct age_softc *, struct mbuf **);
124static void age_start(struct ifnet *);
125static void age_start_locked(struct ifnet *);
126static void age_watchdog(struct age_softc *);
127static int age_ioctl(struct ifnet *, u_long, caddr_t);
128static void age_mac_config(struct age_softc *);
129static void age_link_task(void *, int);
130static void age_stats_update(struct age_softc *);
131static int age_intr(void *);
132static void age_int_task(void *, int);
133static void age_txintr(struct age_softc *, int);
134static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
135static int age_rxintr(struct age_softc *, int, int);
136static void age_tick(void *);
137static void age_reset(struct age_softc *);
138static void age_init(void *);
139static void age_init_locked(struct age_softc *);
140static void age_stop(struct age_softc *);
141static void age_stop_txmac(struct age_softc *);
142static void age_stop_rxmac(struct age_softc *);
143static void age_init_tx_ring(struct age_softc *);
144static int age_init_rx_ring(struct age_softc *);
145static void age_init_rr_ring(struct age_softc *);
146static void age_init_cmb_block(struct age_softc *);
147static void age_init_smb_block(struct age_softc *);
148#ifndef __NO_STRICT_ALIGNMENT
149static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
150#endif
151static int age_newbuf(struct age_softc *, struct age_rxdesc *);
152static void age_rxvlan(struct age_softc *);
153static void age_rxfilter(struct age_softc *);
154static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
155static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
156static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
157static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
158
159
160static device_method_t age_methods[] = {
161	/* Device interface. */
162	DEVMETHOD(device_probe,		age_probe),
163	DEVMETHOD(device_attach,	age_attach),
164	DEVMETHOD(device_detach,	age_detach),
165	DEVMETHOD(device_shutdown,	age_shutdown),
166	DEVMETHOD(device_suspend,	age_suspend),
167	DEVMETHOD(device_resume,	age_resume),
168
169	/* MII interface. */
170	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
171	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
172	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
173
174	{ NULL, NULL }
175};
176
177static driver_t age_driver = {
178	"age",
179	age_methods,
180	sizeof(struct age_softc)
181};
182
183static devclass_t age_devclass;
184
185DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
186MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
187    nitems(age_devs));
188DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
189
190static struct resource_spec age_res_spec_mem[] = {
191	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
192	{ -1,			0,		0 }
193};
194
195static struct resource_spec age_irq_spec_legacy[] = {
196	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
197	{ -1,			0,		0 }
198};
199
200static struct resource_spec age_irq_spec_msi[] = {
201	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202	{ -1,			0,		0 }
203};
204
205static struct resource_spec age_irq_spec_msix[] = {
206	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
207	{ -1,			0,		0 }
208};
209
210/*
211 *	Read a PHY register on the MII of the L1.
212 */
213static int
214age_miibus_readreg(device_t dev, int phy, int reg)
215{
216	struct age_softc *sc;
217	uint32_t v;
218	int i;
219
220	sc = device_get_softc(dev);
221
222	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
223	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
224	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
225		DELAY(1);
226		v = CSR_READ_4(sc, AGE_MDIO);
227		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
228			break;
229	}
230
231	if (i == 0) {
232		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
233		return (0);
234	}
235
236	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
237}
238
239/*
240 *	Write a PHY register on the MII of the L1.
241 */
242static int
243age_miibus_writereg(device_t dev, int phy, int reg, int val)
244{
245	struct age_softc *sc;
246	uint32_t v;
247	int i;
248
249	sc = device_get_softc(dev);
250
251	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
252	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
253	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
254	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
255		DELAY(1);
256		v = CSR_READ_4(sc, AGE_MDIO);
257		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
258			break;
259	}
260
261	if (i == 0)
262		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
263
264	return (0);
265}
266
267/*
268 *	Callback from MII layer when media changes.
269 */
270static void
271age_miibus_statchg(device_t dev)
272{
273	struct age_softc *sc;
274
275	sc = device_get_softc(dev);
276	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
277}
278
279/*
280 *	Get the current interface media status.
281 */
282static void
283age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
284{
285	struct age_softc *sc;
286	struct mii_data *mii;
287
288	sc = ifp->if_softc;
289	AGE_LOCK(sc);
290	mii = device_get_softc(sc->age_miibus);
291
292	mii_pollstat(mii);
293	ifmr->ifm_status = mii->mii_media_status;
294	ifmr->ifm_active = mii->mii_media_active;
295	AGE_UNLOCK(sc);
296}
297
298/*
299 *	Set hardware to newly-selected media.
300 */
301static int
302age_mediachange(struct ifnet *ifp)
303{
304	struct age_softc *sc;
305	struct mii_data *mii;
306	struct mii_softc *miisc;
307	int error;
308
309	sc = ifp->if_softc;
310	AGE_LOCK(sc);
311	mii = device_get_softc(sc->age_miibus);
312	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
313		PHY_RESET(miisc);
314	error = mii_mediachg(mii);
315	AGE_UNLOCK(sc);
316
317	return (error);
318}
319
320static int
321age_probe(device_t dev)
322{
323	struct age_dev *sp;
324	int i;
325	uint16_t vendor, devid;
326
327	vendor = pci_get_vendor(dev);
328	devid = pci_get_device(dev);
329	sp = age_devs;
330	for (i = 0; i < nitems(age_devs); i++, sp++) {
331		if (vendor == sp->age_vendorid &&
332		    devid == sp->age_deviceid) {
333			device_set_desc(dev, sp->age_name);
334			return (BUS_PROBE_DEFAULT);
335		}
336	}
337
338	return (ENXIO);
339}
340
341static void
342age_get_macaddr(struct age_softc *sc)
343{
344	uint32_t ea[2], reg;
345	int i, vpdc;
346
347	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
348	if ((reg & SPI_VPD_ENB) != 0) {
349		/* Get VPD stored in TWSI EEPROM. */
350		reg &= ~SPI_VPD_ENB;
351		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
352	}
353
354	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
355		/*
356		 * PCI VPD capability found, let TWSI reload EEPROM.
357		 * This will set ethernet address of controller.
358		 */
359		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
360		    TWSI_CTRL_SW_LD_START);
361		for (i = 100; i > 0; i--) {
362			DELAY(1000);
363			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
364			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
365				break;
366		}
367		if (i == 0)
368			device_printf(sc->age_dev,
369			    "reloading EEPROM timeout!\n");
370	} else {
371		if (bootverbose)
372			device_printf(sc->age_dev,
373			    "PCI VPD capability not found!\n");
374	}
375
376	ea[0] = CSR_READ_4(sc, AGE_PAR0);
377	ea[1] = CSR_READ_4(sc, AGE_PAR1);
378	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
379	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
380	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
381	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
382	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
383	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
384}
385
386static void
387age_phy_reset(struct age_softc *sc)
388{
389	uint16_t reg, pn;
390	int i, linkup;
391
392	/* Reset PHY. */
393	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
394	DELAY(2000);
395	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
396	DELAY(2000);
397
398#define	ATPHY_DBG_ADDR		0x1D
399#define	ATPHY_DBG_DATA		0x1E
400#define	ATPHY_CDTC		0x16
401#define	PHY_CDTC_ENB		0x0001
402#define	PHY_CDTC_POFF		8
403#define	ATPHY_CDTS		0x1C
404#define	PHY_CDTS_STAT_OK	0x0000
405#define	PHY_CDTS_STAT_SHORT	0x0100
406#define	PHY_CDTS_STAT_OPEN	0x0200
407#define	PHY_CDTS_STAT_INVAL	0x0300
408#define	PHY_CDTS_STAT_MASK	0x0300
409
410	/* Check power saving mode. Magic from Linux. */
411	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
412	for (linkup = 0, pn = 0; pn < 4; pn++) {
413		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
414		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
415		for (i = 200; i > 0; i--) {
416			DELAY(1000);
417			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
418			    ATPHY_CDTC);
419			if ((reg & PHY_CDTC_ENB) == 0)
420				break;
421		}
422		DELAY(1000);
423		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
424		    ATPHY_CDTS);
425		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
426			linkup++;
427			break;
428		}
429	}
430	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
431	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
432	if (linkup == 0) {
433		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434		    ATPHY_DBG_ADDR, 0);
435		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
436		    ATPHY_DBG_DATA, 0x124E);
437		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438		    ATPHY_DBG_ADDR, 1);
439		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
440		    ATPHY_DBG_DATA);
441		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442		    ATPHY_DBG_DATA, reg | 0x03);
443		/* XXX */
444		DELAY(1500 * 1000);
445		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
446		    ATPHY_DBG_ADDR, 0);
447		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
448		    ATPHY_DBG_DATA, 0x024E);
449    }
450
451#undef	ATPHY_DBG_ADDR
452#undef	ATPHY_DBG_DATA
453#undef	ATPHY_CDTC
454#undef	PHY_CDTC_ENB
455#undef	PHY_CDTC_POFF
456#undef	ATPHY_CDTS
457#undef	PHY_CDTS_STAT_OK
458#undef	PHY_CDTS_STAT_SHORT
459#undef	PHY_CDTS_STAT_OPEN
460#undef	PHY_CDTS_STAT_INVAL
461#undef	PHY_CDTS_STAT_MASK
462}
463
464static int
465age_attach(device_t dev)
466{
467	struct age_softc *sc;
468	struct ifnet *ifp;
469	uint16_t burst;
470	int error, i, msic, msixc, pmc;
471
472	error = 0;
473	sc = device_get_softc(dev);
474	sc->age_dev = dev;
475
476	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
477	    MTX_DEF);
478	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
479	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
480	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
481
482	/* Map the device. */
483	pci_enable_busmaster(dev);
484	sc->age_res_spec = age_res_spec_mem;
485	sc->age_irq_spec = age_irq_spec_legacy;
486	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
487	if (error != 0) {
488		device_printf(dev, "cannot allocate memory resources.\n");
489		goto fail;
490	}
491
492	/* Set PHY address. */
493	sc->age_phyaddr = AGE_PHY_ADDR;
494
495	/* Reset PHY. */
496	age_phy_reset(sc);
497
498	/* Reset the ethernet controller. */
499	age_reset(sc);
500
501	/* Get PCI and chip id/revision. */
502	sc->age_rev = pci_get_revid(dev);
503	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
504	    MASTER_CHIP_REV_SHIFT;
505	if (bootverbose) {
506		device_printf(dev, "PCI device revision : 0x%04x\n",
507		    sc->age_rev);
508		device_printf(dev, "Chip id/revision : 0x%04x\n",
509		    sc->age_chip_rev);
510	}
511
512	/*
513	 * XXX
514	 * Unintialized hardware returns an invalid chip id/revision
515	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
516	 * unplugged cable results in putting hardware into automatic
517	 * power down mode which in turn returns invalld chip revision.
518	 */
519	if (sc->age_chip_rev == 0xFFFF) {
520		device_printf(dev,"invalid chip revision : 0x%04x -- "
521		    "not initialized?\n", sc->age_chip_rev);
522		error = ENXIO;
523		goto fail;
524	}
525
526	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
527	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
528	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
529
530	/* Allocate IRQ resources. */
531	msixc = pci_msix_count(dev);
532	msic = pci_msi_count(dev);
533	if (bootverbose) {
534		device_printf(dev, "MSIX count : %d\n", msixc);
535		device_printf(dev, "MSI count : %d\n", msic);
536	}
537
538	/* Prefer MSIX over MSI. */
539	if (msix_disable == 0 || msi_disable == 0) {
540		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
541		    pci_alloc_msix(dev, &msixc) == 0) {
542			if (msic == AGE_MSIX_MESSAGES) {
543				device_printf(dev, "Using %d MSIX messages.\n",
544				    msixc);
545				sc->age_flags |= AGE_FLAG_MSIX;
546				sc->age_irq_spec = age_irq_spec_msix;
547			} else
548				pci_release_msi(dev);
549		}
550		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
551		    msic == AGE_MSI_MESSAGES &&
552		    pci_alloc_msi(dev, &msic) == 0) {
553			if (msic == AGE_MSI_MESSAGES) {
554				device_printf(dev, "Using %d MSI messages.\n",
555				    msic);
556				sc->age_flags |= AGE_FLAG_MSI;
557				sc->age_irq_spec = age_irq_spec_msi;
558			} else
559				pci_release_msi(dev);
560		}
561	}
562
563	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
564	if (error != 0) {
565		device_printf(dev, "cannot allocate IRQ resources.\n");
566		goto fail;
567	}
568
569
570	/* Get DMA parameters from PCIe device control register. */
571	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
572		sc->age_flags |= AGE_FLAG_PCIE;
573		burst = pci_read_config(dev, i + 0x08, 2);
574		/* Max read request size. */
575		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
576		    DMA_CFG_RD_BURST_SHIFT;
577		/* Max payload size. */
578		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
579		    DMA_CFG_WR_BURST_SHIFT;
580		if (bootverbose) {
581			device_printf(dev, "Read request size : %d bytes.\n",
582			    128 << ((burst >> 12) & 0x07));
583			device_printf(dev, "TLP payload size : %d bytes.\n",
584			    128 << ((burst >> 5) & 0x07));
585		}
586	} else {
587		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
588		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
589	}
590
591	/* Create device sysctl node. */
592	age_sysctl_node(sc);
593
594	if ((error = age_dma_alloc(sc)) != 0)
595		goto fail;
596
597	/* Load station address. */
598	age_get_macaddr(sc);
599
600	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
601	if (ifp == NULL) {
602		device_printf(dev, "cannot allocate ifnet structure.\n");
603		error = ENXIO;
604		goto fail;
605	}
606
607	ifp->if_softc = sc;
608	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
609	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
610	ifp->if_ioctl = age_ioctl;
611	ifp->if_start = age_start;
612	ifp->if_init = age_init;
613	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
614	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
615	IFQ_SET_READY(&ifp->if_snd);
616	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
617	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
618	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
619		sc->age_flags |= AGE_FLAG_PMCAP;
620		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
621	}
622	ifp->if_capenable = ifp->if_capabilities;
623
624	/* Set up MII bus. */
625	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
626	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
627	    0);
628	if (error != 0) {
629		device_printf(dev, "attaching PHYs failed\n");
630		goto fail;
631	}
632
633	ether_ifattach(ifp, sc->age_eaddr);
634
635	/* VLAN capability setup. */
636	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
637	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
638	ifp->if_capenable = ifp->if_capabilities;
639
640	/* Tell the upper layer(s) we support long frames. */
641	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
642
643	/* Create local taskq. */
644	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
645	    taskqueue_thread_enqueue, &sc->age_tq);
646	if (sc->age_tq == NULL) {
647		device_printf(dev, "could not create taskqueue.\n");
648		ether_ifdetach(ifp);
649		error = ENXIO;
650		goto fail;
651	}
652	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
653	    device_get_nameunit(sc->age_dev));
654
655	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
656		msic = AGE_MSIX_MESSAGES;
657	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
658		msic = AGE_MSI_MESSAGES;
659	else
660		msic = 1;
661	for (i = 0; i < msic; i++) {
662		error = bus_setup_intr(dev, sc->age_irq[i],
663		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
664		    &sc->age_intrhand[i]);
665		if (error != 0)
666			break;
667	}
668	if (error != 0) {
669		device_printf(dev, "could not set up interrupt handler.\n");
670		taskqueue_free(sc->age_tq);
671		sc->age_tq = NULL;
672		ether_ifdetach(ifp);
673		goto fail;
674	}
675
676fail:
677	if (error != 0)
678		age_detach(dev);
679
680	return (error);
681}
682
683static int
684age_detach(device_t dev)
685{
686	struct age_softc *sc;
687	struct ifnet *ifp;
688	int i, msic;
689
690	sc = device_get_softc(dev);
691
692	ifp = sc->age_ifp;
693	if (device_is_attached(dev)) {
694		AGE_LOCK(sc);
695		sc->age_flags |= AGE_FLAG_DETACH;
696		age_stop(sc);
697		AGE_UNLOCK(sc);
698		callout_drain(&sc->age_tick_ch);
699		taskqueue_drain(sc->age_tq, &sc->age_int_task);
700		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
701		ether_ifdetach(ifp);
702	}
703
704	if (sc->age_tq != NULL) {
705		taskqueue_drain(sc->age_tq, &sc->age_int_task);
706		taskqueue_free(sc->age_tq);
707		sc->age_tq = NULL;
708	}
709
710	if (sc->age_miibus != NULL) {
711		device_delete_child(dev, sc->age_miibus);
712		sc->age_miibus = NULL;
713	}
714	bus_generic_detach(dev);
715	age_dma_free(sc);
716
717	if (ifp != NULL) {
718		if_free(ifp);
719		sc->age_ifp = NULL;
720	}
721
722	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
723		msic = AGE_MSIX_MESSAGES;
724	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
725		msic = AGE_MSI_MESSAGES;
726	else
727		msic = 1;
728	for (i = 0; i < msic; i++) {
729		if (sc->age_intrhand[i] != NULL) {
730			bus_teardown_intr(dev, sc->age_irq[i],
731			    sc->age_intrhand[i]);
732			sc->age_intrhand[i] = NULL;
733		}
734	}
735
736	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
737	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
738		pci_release_msi(dev);
739	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
740	mtx_destroy(&sc->age_mtx);
741
742	return (0);
743}
744
745static void
746age_sysctl_node(struct age_softc *sc)
747{
748	int error;
749
750	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
751	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
752	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
753	    "I", "Statistics");
754
755	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
756	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
757	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
758	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
759
760	/* Pull in device tunables. */
761	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
762	error = resource_int_value(device_get_name(sc->age_dev),
763	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
764	if (error == 0) {
765		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
766		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
767			device_printf(sc->age_dev,
768			    "int_mod value out of range; using default: %d\n",
769			    AGE_IM_TIMER_DEFAULT);
770			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
771		}
772	}
773
774	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
775	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
776	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
777	    0, sysctl_hw_age_proc_limit, "I",
778	    "max number of Rx events to process");
779
780	/* Pull in device tunables. */
781	sc->age_process_limit = AGE_PROC_DEFAULT;
782	error = resource_int_value(device_get_name(sc->age_dev),
783	    device_get_unit(sc->age_dev), "process_limit",
784	    &sc->age_process_limit);
785	if (error == 0) {
786		if (sc->age_process_limit < AGE_PROC_MIN ||
787		    sc->age_process_limit > AGE_PROC_MAX) {
788			device_printf(sc->age_dev,
789			    "process_limit value out of range; "
790			    "using default: %d\n", AGE_PROC_DEFAULT);
791			sc->age_process_limit = AGE_PROC_DEFAULT;
792		}
793	}
794}
795
796struct age_dmamap_arg {
797	bus_addr_t	age_busaddr;
798};
799
800static void
801age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
802{
803	struct age_dmamap_arg *ctx;
804
805	if (error != 0)
806		return;
807
808	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
809
810	ctx = (struct age_dmamap_arg *)arg;
811	ctx->age_busaddr = segs[0].ds_addr;
812}
813
814/*
815 * Attansic L1 controller have single register to specify high
816 * address part of DMA blocks. So all descriptor structures and
817 * DMA memory blocks should have the same high address of given
818 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
819 */
820static int
821age_check_boundary(struct age_softc *sc)
822{
823	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
824	bus_addr_t cmb_block_end, smb_block_end;
825
826	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
827	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
828	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
829	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
830	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
831	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
832
833	if ((AGE_ADDR_HI(tx_ring_end) !=
834	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
835	    (AGE_ADDR_HI(rx_ring_end) !=
836	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
837	    (AGE_ADDR_HI(rr_ring_end) !=
838	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
839	    (AGE_ADDR_HI(cmb_block_end) !=
840	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
841	    (AGE_ADDR_HI(smb_block_end) !=
842	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
843		return (EFBIG);
844
845	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
846	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
847	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
848	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
849		return (EFBIG);
850
851	return (0);
852}
853
854static int
855age_dma_alloc(struct age_softc *sc)
856{
857	struct age_txdesc *txd;
858	struct age_rxdesc *rxd;
859	bus_addr_t lowaddr;
860	struct age_dmamap_arg ctx;
861	int error, i;
862
863	lowaddr = BUS_SPACE_MAXADDR;
864
865again:
866	/* Create parent ring/DMA block tag. */
867	error = bus_dma_tag_create(
868	    bus_get_dma_tag(sc->age_dev), /* parent */
869	    1, 0,			/* alignment, boundary */
870	    lowaddr,			/* lowaddr */
871	    BUS_SPACE_MAXADDR,		/* highaddr */
872	    NULL, NULL,			/* filter, filterarg */
873	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
874	    0,				/* nsegments */
875	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
876	    0,				/* flags */
877	    NULL, NULL,			/* lockfunc, lockarg */
878	    &sc->age_cdata.age_parent_tag);
879	if (error != 0) {
880		device_printf(sc->age_dev,
881		    "could not create parent DMA tag.\n");
882		goto fail;
883	}
884
885	/* Create tag for Tx ring. */
886	error = bus_dma_tag_create(
887	    sc->age_cdata.age_parent_tag, /* parent */
888	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
889	    BUS_SPACE_MAXADDR,		/* lowaddr */
890	    BUS_SPACE_MAXADDR,		/* highaddr */
891	    NULL, NULL,			/* filter, filterarg */
892	    AGE_TX_RING_SZ,		/* maxsize */
893	    1,				/* nsegments */
894	    AGE_TX_RING_SZ,		/* maxsegsize */
895	    0,				/* flags */
896	    NULL, NULL,			/* lockfunc, lockarg */
897	    &sc->age_cdata.age_tx_ring_tag);
898	if (error != 0) {
899		device_printf(sc->age_dev,
900		    "could not create Tx ring DMA tag.\n");
901		goto fail;
902	}
903
904	/* Create tag for Rx ring. */
905	error = bus_dma_tag_create(
906	    sc->age_cdata.age_parent_tag, /* parent */
907	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
908	    BUS_SPACE_MAXADDR,		/* lowaddr */
909	    BUS_SPACE_MAXADDR,		/* highaddr */
910	    NULL, NULL,			/* filter, filterarg */
911	    AGE_RX_RING_SZ,		/* maxsize */
912	    1,				/* nsegments */
913	    AGE_RX_RING_SZ,		/* maxsegsize */
914	    0,				/* flags */
915	    NULL, NULL,			/* lockfunc, lockarg */
916	    &sc->age_cdata.age_rx_ring_tag);
917	if (error != 0) {
918		device_printf(sc->age_dev,
919		    "could not create Rx ring DMA tag.\n");
920		goto fail;
921	}
922
923	/* Create tag for Rx return ring. */
924	error = bus_dma_tag_create(
925	    sc->age_cdata.age_parent_tag, /* parent */
926	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
927	    BUS_SPACE_MAXADDR,		/* lowaddr */
928	    BUS_SPACE_MAXADDR,		/* highaddr */
929	    NULL, NULL,			/* filter, filterarg */
930	    AGE_RR_RING_SZ,		/* maxsize */
931	    1,				/* nsegments */
932	    AGE_RR_RING_SZ,		/* maxsegsize */
933	    0,				/* flags */
934	    NULL, NULL,			/* lockfunc, lockarg */
935	    &sc->age_cdata.age_rr_ring_tag);
936	if (error != 0) {
937		device_printf(sc->age_dev,
938		    "could not create Rx return ring DMA tag.\n");
939		goto fail;
940	}
941
942	/* Create tag for coalesing message block. */
943	error = bus_dma_tag_create(
944	    sc->age_cdata.age_parent_tag, /* parent */
945	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
946	    BUS_SPACE_MAXADDR,		/* lowaddr */
947	    BUS_SPACE_MAXADDR,		/* highaddr */
948	    NULL, NULL,			/* filter, filterarg */
949	    AGE_CMB_BLOCK_SZ,		/* maxsize */
950	    1,				/* nsegments */
951	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
952	    0,				/* flags */
953	    NULL, NULL,			/* lockfunc, lockarg */
954	    &sc->age_cdata.age_cmb_block_tag);
955	if (error != 0) {
956		device_printf(sc->age_dev,
957		    "could not create CMB DMA tag.\n");
958		goto fail;
959	}
960
961	/* Create tag for statistics message block. */
962	error = bus_dma_tag_create(
963	    sc->age_cdata.age_parent_tag, /* parent */
964	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
965	    BUS_SPACE_MAXADDR,		/* lowaddr */
966	    BUS_SPACE_MAXADDR,		/* highaddr */
967	    NULL, NULL,			/* filter, filterarg */
968	    AGE_SMB_BLOCK_SZ,		/* maxsize */
969	    1,				/* nsegments */
970	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
971	    0,				/* flags */
972	    NULL, NULL,			/* lockfunc, lockarg */
973	    &sc->age_cdata.age_smb_block_tag);
974	if (error != 0) {
975		device_printf(sc->age_dev,
976		    "could not create SMB DMA tag.\n");
977		goto fail;
978	}
979
980	/* Allocate DMA'able memory and load the DMA map. */
981	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
982	    (void **)&sc->age_rdata.age_tx_ring,
983	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
984	    &sc->age_cdata.age_tx_ring_map);
985	if (error != 0) {
986		device_printf(sc->age_dev,
987		    "could not allocate DMA'able memory for Tx ring.\n");
988		goto fail;
989	}
990	ctx.age_busaddr = 0;
991	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
992	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
993	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
994	if (error != 0 || ctx.age_busaddr == 0) {
995		device_printf(sc->age_dev,
996		    "could not load DMA'able memory for Tx ring.\n");
997		goto fail;
998	}
999	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
1000	/* Rx ring */
1001	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1002	    (void **)&sc->age_rdata.age_rx_ring,
1003	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1004	    &sc->age_cdata.age_rx_ring_map);
1005	if (error != 0) {
1006		device_printf(sc->age_dev,
1007		    "could not allocate DMA'able memory for Rx ring.\n");
1008		goto fail;
1009	}
1010	ctx.age_busaddr = 0;
1011	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1012	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1013	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1014	if (error != 0 || ctx.age_busaddr == 0) {
1015		device_printf(sc->age_dev,
1016		    "could not load DMA'able memory for Rx ring.\n");
1017		goto fail;
1018	}
1019	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1020	/* Rx return ring */
1021	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1022	    (void **)&sc->age_rdata.age_rr_ring,
1023	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1024	    &sc->age_cdata.age_rr_ring_map);
1025	if (error != 0) {
1026		device_printf(sc->age_dev,
1027		    "could not allocate DMA'able memory for Rx return ring.\n");
1028		goto fail;
1029	}
1030	ctx.age_busaddr = 0;
1031	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1032	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1033	    AGE_RR_RING_SZ, age_dmamap_cb,
1034	    &ctx, 0);
1035	if (error != 0 || ctx.age_busaddr == 0) {
1036		device_printf(sc->age_dev,
1037		    "could not load DMA'able memory for Rx return ring.\n");
1038		goto fail;
1039	}
1040	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1041	/* CMB block */
1042	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1043	    (void **)&sc->age_rdata.age_cmb_block,
1044	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1045	    &sc->age_cdata.age_cmb_block_map);
1046	if (error != 0) {
1047		device_printf(sc->age_dev,
1048		    "could not allocate DMA'able memory for CMB block.\n");
1049		goto fail;
1050	}
1051	ctx.age_busaddr = 0;
1052	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1053	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1054	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1055	if (error != 0 || ctx.age_busaddr == 0) {
1056		device_printf(sc->age_dev,
1057		    "could not load DMA'able memory for CMB block.\n");
1058		goto fail;
1059	}
1060	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1061	/* SMB block */
1062	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1063	    (void **)&sc->age_rdata.age_smb_block,
1064	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1065	    &sc->age_cdata.age_smb_block_map);
1066	if (error != 0) {
1067		device_printf(sc->age_dev,
1068		    "could not allocate DMA'able memory for SMB block.\n");
1069		goto fail;
1070	}
1071	ctx.age_busaddr = 0;
1072	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1073	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1074	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1075	if (error != 0 || ctx.age_busaddr == 0) {
1076		device_printf(sc->age_dev,
1077		    "could not load DMA'able memory for SMB block.\n");
1078		goto fail;
1079	}
1080	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1081
1082	/*
1083	 * All ring buffer and DMA blocks should have the same
1084	 * high address part of 64bit DMA address space.
1085	 */
1086	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1087	    (error = age_check_boundary(sc)) != 0) {
1088		device_printf(sc->age_dev, "4GB boundary crossed, "
1089		    "switching to 32bit DMA addressing mode.\n");
1090		age_dma_free(sc);
1091		/* Limit DMA address space to 32bit and try again. */
1092		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1093		goto again;
1094	}
1095
1096	/*
1097	 * Create Tx/Rx buffer parent tag.
1098	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1099	 * so it needs separate parent DMA tag.
1100	 * XXX
1101	 * It seems enabling 64bit DMA causes data corruption. Limit
1102	 * DMA address space to 32bit.
1103	 */
1104	error = bus_dma_tag_create(
1105	    bus_get_dma_tag(sc->age_dev), /* parent */
1106	    1, 0,			/* alignment, boundary */
1107	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1108	    BUS_SPACE_MAXADDR,		/* highaddr */
1109	    NULL, NULL,			/* filter, filterarg */
1110	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1111	    0,				/* nsegments */
1112	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1113	    0,				/* flags */
1114	    NULL, NULL,			/* lockfunc, lockarg */
1115	    &sc->age_cdata.age_buffer_tag);
1116	if (error != 0) {
1117		device_printf(sc->age_dev,
1118		    "could not create parent buffer DMA tag.\n");
1119		goto fail;
1120	}
1121
1122	/* Create tag for Tx buffers. */
1123	error = bus_dma_tag_create(
1124	    sc->age_cdata.age_buffer_tag, /* parent */
1125	    1, 0,			/* alignment, boundary */
1126	    BUS_SPACE_MAXADDR,		/* lowaddr */
1127	    BUS_SPACE_MAXADDR,		/* highaddr */
1128	    NULL, NULL,			/* filter, filterarg */
1129	    AGE_TSO_MAXSIZE,		/* maxsize */
1130	    AGE_MAXTXSEGS,		/* nsegments */
1131	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1132	    0,				/* flags */
1133	    NULL, NULL,			/* lockfunc, lockarg */
1134	    &sc->age_cdata.age_tx_tag);
1135	if (error != 0) {
1136		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1137		goto fail;
1138	}
1139
1140	/* Create tag for Rx buffers. */
1141	error = bus_dma_tag_create(
1142	    sc->age_cdata.age_buffer_tag, /* parent */
1143	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1144	    BUS_SPACE_MAXADDR,		/* lowaddr */
1145	    BUS_SPACE_MAXADDR,		/* highaddr */
1146	    NULL, NULL,			/* filter, filterarg */
1147	    MCLBYTES,			/* maxsize */
1148	    1,				/* nsegments */
1149	    MCLBYTES,			/* maxsegsize */
1150	    0,				/* flags */
1151	    NULL, NULL,			/* lockfunc, lockarg */
1152	    &sc->age_cdata.age_rx_tag);
1153	if (error != 0) {
1154		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1155		goto fail;
1156	}
1157
1158	/* Create DMA maps for Tx buffers. */
1159	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1160		txd = &sc->age_cdata.age_txdesc[i];
1161		txd->tx_m = NULL;
1162		txd->tx_dmamap = NULL;
1163		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1164		    &txd->tx_dmamap);
1165		if (error != 0) {
1166			device_printf(sc->age_dev,
1167			    "could not create Tx dmamap.\n");
1168			goto fail;
1169		}
1170	}
1171	/* Create DMA maps for Rx buffers. */
1172	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1173	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1174		device_printf(sc->age_dev,
1175		    "could not create spare Rx dmamap.\n");
1176		goto fail;
1177	}
1178	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1179		rxd = &sc->age_cdata.age_rxdesc[i];
1180		rxd->rx_m = NULL;
1181		rxd->rx_dmamap = NULL;
1182		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1183		    &rxd->rx_dmamap);
1184		if (error != 0) {
1185			device_printf(sc->age_dev,
1186			    "could not create Rx dmamap.\n");
1187			goto fail;
1188		}
1189	}
1190
1191fail:
1192	return (error);
1193}
1194
1195static void
1196age_dma_free(struct age_softc *sc)
1197{
1198	struct age_txdesc *txd;
1199	struct age_rxdesc *rxd;
1200	int i;
1201
1202	/* Tx buffers */
1203	if (sc->age_cdata.age_tx_tag != NULL) {
1204		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1205			txd = &sc->age_cdata.age_txdesc[i];
1206			if (txd->tx_dmamap != NULL) {
1207				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1208				    txd->tx_dmamap);
1209				txd->tx_dmamap = NULL;
1210			}
1211		}
1212		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1213		sc->age_cdata.age_tx_tag = NULL;
1214	}
1215	/* Rx buffers */
1216	if (sc->age_cdata.age_rx_tag != NULL) {
1217		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1218			rxd = &sc->age_cdata.age_rxdesc[i];
1219			if (rxd->rx_dmamap != NULL) {
1220				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1221				    rxd->rx_dmamap);
1222				rxd->rx_dmamap = NULL;
1223			}
1224		}
1225		if (sc->age_cdata.age_rx_sparemap != NULL) {
1226			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1227			    sc->age_cdata.age_rx_sparemap);
1228			sc->age_cdata.age_rx_sparemap = NULL;
1229		}
1230		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1231		sc->age_cdata.age_rx_tag = NULL;
1232	}
1233	/* Tx ring. */
1234	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1235		if (sc->age_rdata.age_tx_ring_paddr != 0)
1236			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1237			    sc->age_cdata.age_tx_ring_map);
1238		if (sc->age_rdata.age_tx_ring != NULL)
1239			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1240			    sc->age_rdata.age_tx_ring,
1241			    sc->age_cdata.age_tx_ring_map);
1242		sc->age_rdata.age_tx_ring_paddr = 0;
1243		sc->age_rdata.age_tx_ring = NULL;
1244		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1245		sc->age_cdata.age_tx_ring_tag = NULL;
1246	}
1247	/* Rx ring. */
1248	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1249		if (sc->age_rdata.age_rx_ring_paddr != 0)
1250			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1251			    sc->age_cdata.age_rx_ring_map);
1252		if (sc->age_rdata.age_rx_ring != NULL)
1253			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1254			    sc->age_rdata.age_rx_ring,
1255			    sc->age_cdata.age_rx_ring_map);
1256		sc->age_rdata.age_rx_ring_paddr = 0;
1257		sc->age_rdata.age_rx_ring = NULL;
1258		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1259		sc->age_cdata.age_rx_ring_tag = NULL;
1260	}
1261	/* Rx return ring. */
1262	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1263		if (sc->age_rdata.age_rr_ring_paddr != 0)
1264			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1265			    sc->age_cdata.age_rr_ring_map);
1266		if (sc->age_rdata.age_rr_ring != NULL)
1267			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1268			    sc->age_rdata.age_rr_ring,
1269			    sc->age_cdata.age_rr_ring_map);
1270		sc->age_rdata.age_rr_ring_paddr = 0;
1271		sc->age_rdata.age_rr_ring = NULL;
1272		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1273		sc->age_cdata.age_rr_ring_tag = NULL;
1274	}
1275	/* CMB block */
1276	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1277		if (sc->age_rdata.age_cmb_block_paddr != 0)
1278			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1279			    sc->age_cdata.age_cmb_block_map);
1280		if (sc->age_rdata.age_cmb_block != NULL)
1281			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1282			    sc->age_rdata.age_cmb_block,
1283			    sc->age_cdata.age_cmb_block_map);
1284		sc->age_rdata.age_cmb_block_paddr = 0;
1285		sc->age_rdata.age_cmb_block = NULL;
1286		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1287		sc->age_cdata.age_cmb_block_tag = NULL;
1288	}
1289	/* SMB block */
1290	if (sc->age_cdata.age_smb_block_tag != NULL) {
1291		if (sc->age_rdata.age_smb_block_paddr != 0)
1292			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1293			    sc->age_cdata.age_smb_block_map);
1294		if (sc->age_rdata.age_smb_block != NULL)
1295			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1296			    sc->age_rdata.age_smb_block,
1297			    sc->age_cdata.age_smb_block_map);
1298		sc->age_rdata.age_smb_block_paddr = 0;
1299		sc->age_rdata.age_smb_block = NULL;
1300		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1301		sc->age_cdata.age_smb_block_tag = NULL;
1302	}
1303
1304	if (sc->age_cdata.age_buffer_tag != NULL) {
1305		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1306		sc->age_cdata.age_buffer_tag = NULL;
1307	}
1308	if (sc->age_cdata.age_parent_tag != NULL) {
1309		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1310		sc->age_cdata.age_parent_tag = NULL;
1311	}
1312}
1313
1314/*
1315 *	Make sure the interface is stopped at reboot time.
1316 */
1317static int
1318age_shutdown(device_t dev)
1319{
1320
1321	return (age_suspend(dev));
1322}
1323
1324static void
1325age_setwol(struct age_softc *sc)
1326{
1327	struct ifnet *ifp;
1328	struct mii_data *mii;
1329	uint32_t reg, pmcs;
1330	uint16_t pmstat;
1331	int aneg, i, pmc;
1332
1333	AGE_LOCK_ASSERT(sc);
1334
1335	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1336		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1337		/*
1338		 * No PME capability, PHY power down.
1339		 * XXX
1340		 * Due to an unknown reason powering down PHY resulted
1341		 * in unexpected results such as inaccessbility of
1342		 * hardware of freshly rebooted system. Disable
1343		 * powering down PHY until I got more information for
1344		 * Attansic/Atheros PHY hardwares.
1345		 */
1346#ifdef notyet
1347		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1348		    MII_BMCR, BMCR_PDOWN);
1349#endif
1350		return;
1351	}
1352
1353	ifp = sc->age_ifp;
1354	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1355		/*
1356		 * Note, this driver resets the link speed to 10/100Mbps with
1357		 * auto-negotiation but we don't know whether that operation
1358		 * would succeed or not as it have no control after powering
1359		 * off. If the renegotiation fail WOL may not work. Running
1360		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1361		 * specified in PCI specification and that would result in
1362		 * complete shutdowning power to ethernet controller.
1363		 *
1364		 * TODO
1365		 *  Save current negotiated media speed/duplex/flow-control
1366		 *  to softc and restore the same link again after resuming.
1367		 *  PHY handling such as power down/resetting to 100Mbps
1368		 *  may be better handled in suspend method in phy driver.
1369		 */
1370		mii = device_get_softc(sc->age_miibus);
1371		mii_pollstat(mii);
1372		aneg = 0;
1373		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1374			switch IFM_SUBTYPE(mii->mii_media_active) {
1375			case IFM_10_T:
1376			case IFM_100_TX:
1377				goto got_link;
1378			case IFM_1000_T:
1379				aneg++;
1380			default:
1381				break;
1382			}
1383		}
1384		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385		    MII_100T2CR, 0);
1386		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1387		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1388		    ANAR_10 | ANAR_CSMA);
1389		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1390		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1391		DELAY(1000);
1392		if (aneg != 0) {
1393			/* Poll link state until age(4) get a 10/100 link. */
1394			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1395				mii_pollstat(mii);
1396				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1397					switch (IFM_SUBTYPE(
1398					    mii->mii_media_active)) {
1399					case IFM_10_T:
1400					case IFM_100_TX:
1401						age_mac_config(sc);
1402						goto got_link;
1403					default:
1404						break;
1405					}
1406				}
1407				AGE_UNLOCK(sc);
1408				pause("agelnk", hz);
1409				AGE_LOCK(sc);
1410			}
1411			if (i == MII_ANEGTICKS_GIGE)
1412				device_printf(sc->age_dev,
1413				    "establishing link failed, "
1414				    "WOL may not work!");
1415		}
1416		/*
1417		 * No link, force MAC to have 100Mbps, full-duplex link.
1418		 * This is the last resort and may/may not work.
1419		 */
1420		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1421		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1422		age_mac_config(sc);
1423	}
1424
1425got_link:
1426	pmcs = 0;
1427	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1428		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1429	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1430	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1431	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1432	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1433	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1434		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1435	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1436		reg |= MAC_CFG_RX_ENB;
1437		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1438	}
1439
1440	/* Request PME. */
1441	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1442	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1443	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1444		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1445	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1446#ifdef notyet
1447	/* See above for powering down PHY issues. */
1448	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1449		/* No WOL, PHY power down. */
1450		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1451		    MII_BMCR, BMCR_PDOWN);
1452	}
1453#endif
1454}
1455
1456static int
1457age_suspend(device_t dev)
1458{
1459	struct age_softc *sc;
1460
1461	sc = device_get_softc(dev);
1462
1463	AGE_LOCK(sc);
1464	age_stop(sc);
1465	age_setwol(sc);
1466	AGE_UNLOCK(sc);
1467
1468	return (0);
1469}
1470
1471static int
1472age_resume(device_t dev)
1473{
1474	struct age_softc *sc;
1475	struct ifnet *ifp;
1476
1477	sc = device_get_softc(dev);
1478
1479	AGE_LOCK(sc);
1480	age_phy_reset(sc);
1481	ifp = sc->age_ifp;
1482	if ((ifp->if_flags & IFF_UP) != 0)
1483		age_init_locked(sc);
1484
1485	AGE_UNLOCK(sc);
1486
1487	return (0);
1488}
1489
1490static int
1491age_encap(struct age_softc *sc, struct mbuf **m_head)
1492{
1493	struct age_txdesc *txd, *txd_last;
1494	struct tx_desc *desc;
1495	struct mbuf *m;
1496	struct ip *ip;
1497	struct tcphdr *tcp;
1498	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1499	bus_dmamap_t map;
1500	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1501	int error, i, nsegs, prod, si;
1502
1503	AGE_LOCK_ASSERT(sc);
1504
1505	M_ASSERTPKTHDR((*m_head));
1506
1507	m = *m_head;
1508	ip = NULL;
1509	tcp = NULL;
1510	cflags = vtag = 0;
1511	ip_off = poff = 0;
1512	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1513		/*
1514		 * L1 requires offset of TCP/UDP payload in its Tx
1515		 * descriptor to perform hardware Tx checksum offload.
1516		 * Additionally, TSO requires IP/TCP header size and
1517		 * modification of IP/TCP header in order to make TSO
1518		 * engine work. This kind of operation takes many CPU
1519		 * cycles on FreeBSD so fast host CPU is needed to get
1520		 * smooth TSO performance.
1521		 */
1522		struct ether_header *eh;
1523
1524		if (M_WRITABLE(m) == 0) {
1525			/* Get a writable copy. */
1526			m = m_dup(*m_head, M_NOWAIT);
1527			/* Release original mbufs. */
1528			m_freem(*m_head);
1529			if (m == NULL) {
1530				*m_head = NULL;
1531				return (ENOBUFS);
1532			}
1533			*m_head = m;
1534		}
1535		ip_off = sizeof(struct ether_header);
1536		m = m_pullup(m, ip_off);
1537		if (m == NULL) {
1538			*m_head = NULL;
1539			return (ENOBUFS);
1540		}
1541		eh = mtod(m, struct ether_header *);
1542		/*
1543		 * Check if hardware VLAN insertion is off.
1544		 * Additional check for LLC/SNAP frame?
1545		 */
1546		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1547			ip_off = sizeof(struct ether_vlan_header);
1548			m = m_pullup(m, ip_off);
1549			if (m == NULL) {
1550				*m_head = NULL;
1551				return (ENOBUFS);
1552			}
1553		}
1554		m = m_pullup(m, ip_off + sizeof(struct ip));
1555		if (m == NULL) {
1556			*m_head = NULL;
1557			return (ENOBUFS);
1558		}
1559		ip = (struct ip *)(mtod(m, char *) + ip_off);
1560		poff = ip_off + (ip->ip_hl << 2);
1561		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1562			m = m_pullup(m, poff + sizeof(struct tcphdr));
1563			if (m == NULL) {
1564				*m_head = NULL;
1565				return (ENOBUFS);
1566			}
1567			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1568			m = m_pullup(m, poff + (tcp->th_off << 2));
1569			if (m == NULL) {
1570				*m_head = NULL;
1571				return (ENOBUFS);
1572			}
1573			/*
1574			 * L1 requires IP/TCP header size and offset as
1575			 * well as TCP pseudo checksum which complicates
1576			 * TSO configuration. I guess this comes from the
1577			 * adherence to Microsoft NDIS Large Send
1578			 * specification which requires insertion of
1579			 * pseudo checksum by upper stack. The pseudo
1580			 * checksum that NDIS refers to doesn't include
1581			 * TCP payload length so age(4) should recompute
1582			 * the pseudo checksum here. Hopefully this wouldn't
1583			 * be much burden on modern CPUs.
1584			 * Reset IP checksum and recompute TCP pseudo
1585			 * checksum as NDIS specification said.
1586			 */
1587			ip = (struct ip *)(mtod(m, char *) + ip_off);
1588			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1589			ip->ip_sum = 0;
1590			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1591			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1592		}
1593		*m_head = m;
1594	}
1595
1596	si = prod = sc->age_cdata.age_tx_prod;
1597	txd = &sc->age_cdata.age_txdesc[prod];
1598	txd_last = txd;
1599	map = txd->tx_dmamap;
1600
1601	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1602	    *m_head, txsegs, &nsegs, 0);
1603	if (error == EFBIG) {
1604		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1605		if (m == NULL) {
1606			m_freem(*m_head);
1607			*m_head = NULL;
1608			return (ENOMEM);
1609		}
1610		*m_head = m;
1611		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1612		    *m_head, txsegs, &nsegs, 0);
1613		if (error != 0) {
1614			m_freem(*m_head);
1615			*m_head = NULL;
1616			return (error);
1617		}
1618	} else if (error != 0)
1619		return (error);
1620	if (nsegs == 0) {
1621		m_freem(*m_head);
1622		*m_head = NULL;
1623		return (EIO);
1624	}
1625
1626	/* Check descriptor overrun. */
1627	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1628		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1629		return (ENOBUFS);
1630	}
1631
1632	m = *m_head;
1633	/* Configure VLAN hardware tag insertion. */
1634	if ((m->m_flags & M_VLANTAG) != 0) {
1635		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1636		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1637		cflags |= AGE_TD_INSERT_VLAN_TAG;
1638	}
1639
1640	desc = NULL;
1641	i = 0;
1642	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1643		/* Request TSO and set MSS. */
1644		cflags |= AGE_TD_TSO_IPV4;
1645		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1646		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1647		    AGE_TD_TSO_MSS_SHIFT);
1648		/* Set IP/TCP header size. */
1649		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1650		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1651		/*
1652		 * L1 requires the first buffer should only hold IP/TCP
1653		 * header data. TCP payload should be handled in other
1654		 * descriptors.
1655		 */
1656		hdrlen = poff + (tcp->th_off << 2);
1657		desc = &sc->age_rdata.age_tx_ring[prod];
1658		desc->addr = htole64(txsegs[0].ds_addr);
1659		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1660		desc->flags = htole32(cflags);
1661		sc->age_cdata.age_tx_cnt++;
1662		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1663		if (m->m_len - hdrlen > 0) {
1664			/* Handle remaining payload of the 1st fragment. */
1665			desc = &sc->age_rdata.age_tx_ring[prod];
1666			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1667			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1668			    vtag);
1669			desc->flags = htole32(cflags);
1670			sc->age_cdata.age_tx_cnt++;
1671			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1672		}
1673		/* Handle remaining fragments. */
1674		i = 1;
1675	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1676		/* Configure Tx IP/TCP/UDP checksum offload. */
1677		cflags |= AGE_TD_CSUM;
1678		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1679			cflags |= AGE_TD_TCPCSUM;
1680		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1681			cflags |= AGE_TD_UDPCSUM;
1682		/* Set checksum start offset. */
1683		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1684		/* Set checksum insertion position of TCP/UDP. */
1685		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1686		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1687	}
1688	for (; i < nsegs; i++) {
1689		desc = &sc->age_rdata.age_tx_ring[prod];
1690		desc->addr = htole64(txsegs[i].ds_addr);
1691		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1692		desc->flags = htole32(cflags);
1693		sc->age_cdata.age_tx_cnt++;
1694		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1695	}
1696	/* Update producer index. */
1697	sc->age_cdata.age_tx_prod = prod;
1698
1699	/* Set EOP on the last descriptor. */
1700	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1701	desc = &sc->age_rdata.age_tx_ring[prod];
1702	desc->flags |= htole32(AGE_TD_EOP);
1703
1704	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1705	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1706		desc = &sc->age_rdata.age_tx_ring[si];
1707		desc->flags |= htole32(AGE_TD_TSO_HDR);
1708	}
1709
1710	/* Swap dmamap of the first and the last. */
1711	txd = &sc->age_cdata.age_txdesc[prod];
1712	map = txd_last->tx_dmamap;
1713	txd_last->tx_dmamap = txd->tx_dmamap;
1714	txd->tx_dmamap = map;
1715	txd->tx_m = m;
1716
1717	/* Sync descriptors. */
1718	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1719	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1720	    sc->age_cdata.age_tx_ring_map,
1721	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1722
1723	return (0);
1724}
1725
1726static void
1727age_start(struct ifnet *ifp)
1728{
1729        struct age_softc *sc;
1730
1731	sc = ifp->if_softc;
1732	AGE_LOCK(sc);
1733	age_start_locked(ifp);
1734	AGE_UNLOCK(sc);
1735}
1736
1737static void
1738age_start_locked(struct ifnet *ifp)
1739{
1740        struct age_softc *sc;
1741        struct mbuf *m_head;
1742	int enq;
1743
1744	sc = ifp->if_softc;
1745
1746	AGE_LOCK_ASSERT(sc);
1747
1748	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1749	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1750		return;
1751
1752	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1753		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1754		if (m_head == NULL)
1755			break;
1756		/*
1757		 * Pack the data into the transmit ring. If we
1758		 * don't have room, set the OACTIVE flag and wait
1759		 * for the NIC to drain the ring.
1760		 */
1761		if (age_encap(sc, &m_head)) {
1762			if (m_head == NULL)
1763				break;
1764			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1765			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1766			break;
1767		}
1768
1769		enq++;
1770		/*
1771		 * If there's a BPF listener, bounce a copy of this frame
1772		 * to him.
1773		 */
1774		ETHER_BPF_MTAP(ifp, m_head);
1775	}
1776
1777	if (enq > 0) {
1778		/* Update mbox. */
1779		AGE_COMMIT_MBOX(sc);
1780		/* Set a timeout in case the chip goes out to lunch. */
1781		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1782	}
1783}
1784
1785static void
1786age_watchdog(struct age_softc *sc)
1787{
1788	struct ifnet *ifp;
1789
1790	AGE_LOCK_ASSERT(sc);
1791
1792	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1793		return;
1794
1795	ifp = sc->age_ifp;
1796	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1797		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1798		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1799		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1800		age_init_locked(sc);
1801		return;
1802	}
1803	if (sc->age_cdata.age_tx_cnt == 0) {
1804		if_printf(sc->age_ifp,
1805		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1806		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1807			age_start_locked(ifp);
1808		return;
1809	}
1810	if_printf(sc->age_ifp, "watchdog timeout\n");
1811	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1812	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1813	age_init_locked(sc);
1814	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1815		age_start_locked(ifp);
1816}
1817
1818static int
1819age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1820{
1821	struct age_softc *sc;
1822	struct ifreq *ifr;
1823	struct mii_data *mii;
1824	uint32_t reg;
1825	int error, mask;
1826
1827	sc = ifp->if_softc;
1828	ifr = (struct ifreq *)data;
1829	error = 0;
1830	switch (cmd) {
1831	case SIOCSIFMTU:
1832		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1833			error = EINVAL;
1834		else if (ifp->if_mtu != ifr->ifr_mtu) {
1835			AGE_LOCK(sc);
1836			ifp->if_mtu = ifr->ifr_mtu;
1837			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1838				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1839				age_init_locked(sc);
1840			}
1841			AGE_UNLOCK(sc);
1842		}
1843		break;
1844	case SIOCSIFFLAGS:
1845		AGE_LOCK(sc);
1846		if ((ifp->if_flags & IFF_UP) != 0) {
1847			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1848				if (((ifp->if_flags ^ sc->age_if_flags)
1849				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1850					age_rxfilter(sc);
1851			} else {
1852				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1853					age_init_locked(sc);
1854			}
1855		} else {
1856			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1857				age_stop(sc);
1858		}
1859		sc->age_if_flags = ifp->if_flags;
1860		AGE_UNLOCK(sc);
1861		break;
1862	case SIOCADDMULTI:
1863	case SIOCDELMULTI:
1864		AGE_LOCK(sc);
1865		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1866			age_rxfilter(sc);
1867		AGE_UNLOCK(sc);
1868		break;
1869	case SIOCSIFMEDIA:
1870	case SIOCGIFMEDIA:
1871		mii = device_get_softc(sc->age_miibus);
1872		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1873		break;
1874	case SIOCSIFCAP:
1875		AGE_LOCK(sc);
1876		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1877		if ((mask & IFCAP_TXCSUM) != 0 &&
1878		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1879			ifp->if_capenable ^= IFCAP_TXCSUM;
1880			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1881				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1882			else
1883				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1884		}
1885		if ((mask & IFCAP_RXCSUM) != 0 &&
1886		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1887			ifp->if_capenable ^= IFCAP_RXCSUM;
1888			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1889			reg &= ~MAC_CFG_RXCSUM_ENB;
1890			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1891				reg |= MAC_CFG_RXCSUM_ENB;
1892			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1893		}
1894		if ((mask & IFCAP_TSO4) != 0 &&
1895		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1896			ifp->if_capenable ^= IFCAP_TSO4;
1897			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1898				ifp->if_hwassist |= CSUM_TSO;
1899			else
1900				ifp->if_hwassist &= ~CSUM_TSO;
1901		}
1902
1903		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1904		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1905			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1906		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1907		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1908			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1909		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1910		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1911			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1912		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1913		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1914			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1915		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1916		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1917			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1918			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1919				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1920			age_rxvlan(sc);
1921		}
1922		AGE_UNLOCK(sc);
1923		VLAN_CAPABILITIES(ifp);
1924		break;
1925	default:
1926		error = ether_ioctl(ifp, cmd, data);
1927		break;
1928	}
1929
1930	return (error);
1931}
1932
1933static void
1934age_mac_config(struct age_softc *sc)
1935{
1936	struct mii_data *mii;
1937	uint32_t reg;
1938
1939	AGE_LOCK_ASSERT(sc);
1940
1941	mii = device_get_softc(sc->age_miibus);
1942	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1943	reg &= ~MAC_CFG_FULL_DUPLEX;
1944	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1945	reg &= ~MAC_CFG_SPEED_MASK;
1946	/* Reprogram MAC with resolved speed/duplex. */
1947	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1948	case IFM_10_T:
1949	case IFM_100_TX:
1950		reg |= MAC_CFG_SPEED_10_100;
1951		break;
1952	case IFM_1000_T:
1953		reg |= MAC_CFG_SPEED_1000;
1954		break;
1955	}
1956	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1957		reg |= MAC_CFG_FULL_DUPLEX;
1958#ifdef notyet
1959		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1960			reg |= MAC_CFG_TX_FC;
1961		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1962			reg |= MAC_CFG_RX_FC;
1963#endif
1964	}
1965
1966	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1967}
1968
1969static void
1970age_link_task(void *arg, int pending)
1971{
1972	struct age_softc *sc;
1973	struct mii_data *mii;
1974	struct ifnet *ifp;
1975	uint32_t reg;
1976
1977	sc = (struct age_softc *)arg;
1978
1979	AGE_LOCK(sc);
1980	mii = device_get_softc(sc->age_miibus);
1981	ifp = sc->age_ifp;
1982	if (mii == NULL || ifp == NULL ||
1983	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1984		AGE_UNLOCK(sc);
1985		return;
1986	}
1987
1988	sc->age_flags &= ~AGE_FLAG_LINK;
1989	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1990		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1991		case IFM_10_T:
1992		case IFM_100_TX:
1993		case IFM_1000_T:
1994			sc->age_flags |= AGE_FLAG_LINK;
1995			break;
1996		default:
1997			break;
1998		}
1999	}
2000
2001	/* Stop Rx/Tx MACs. */
2002	age_stop_rxmac(sc);
2003	age_stop_txmac(sc);
2004
2005	/* Program MACs with resolved speed/duplex/flow-control. */
2006	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2007		age_mac_config(sc);
2008		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2009		/* Restart DMA engine and Tx/Rx MAC. */
2010		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2011		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2012		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2013		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2014	}
2015
2016	AGE_UNLOCK(sc);
2017}
2018
2019static void
2020age_stats_update(struct age_softc *sc)
2021{
2022	struct age_stats *stat;
2023	struct smb *smb;
2024	struct ifnet *ifp;
2025
2026	AGE_LOCK_ASSERT(sc);
2027
2028	stat = &sc->age_stat;
2029
2030	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2031	    sc->age_cdata.age_smb_block_map,
2032	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2033
2034	smb = sc->age_rdata.age_smb_block;
2035	if (smb->updated == 0)
2036		return;
2037
2038	ifp = sc->age_ifp;
2039	/* Rx stats. */
2040	stat->rx_frames += smb->rx_frames;
2041	stat->rx_bcast_frames += smb->rx_bcast_frames;
2042	stat->rx_mcast_frames += smb->rx_mcast_frames;
2043	stat->rx_pause_frames += smb->rx_pause_frames;
2044	stat->rx_control_frames += smb->rx_control_frames;
2045	stat->rx_crcerrs += smb->rx_crcerrs;
2046	stat->rx_lenerrs += smb->rx_lenerrs;
2047	stat->rx_bytes += smb->rx_bytes;
2048	stat->rx_runts += smb->rx_runts;
2049	stat->rx_fragments += smb->rx_fragments;
2050	stat->rx_pkts_64 += smb->rx_pkts_64;
2051	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2052	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2053	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2054	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2055	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2056	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2057	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2058	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2059	stat->rx_desc_oflows += smb->rx_desc_oflows;
2060	stat->rx_alignerrs += smb->rx_alignerrs;
2061	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2062	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2063	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2064
2065	/* Tx stats. */
2066	stat->tx_frames += smb->tx_frames;
2067	stat->tx_bcast_frames += smb->tx_bcast_frames;
2068	stat->tx_mcast_frames += smb->tx_mcast_frames;
2069	stat->tx_pause_frames += smb->tx_pause_frames;
2070	stat->tx_excess_defer += smb->tx_excess_defer;
2071	stat->tx_control_frames += smb->tx_control_frames;
2072	stat->tx_deferred += smb->tx_deferred;
2073	stat->tx_bytes += smb->tx_bytes;
2074	stat->tx_pkts_64 += smb->tx_pkts_64;
2075	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2076	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2077	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2078	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2079	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2080	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2081	stat->tx_single_colls += smb->tx_single_colls;
2082	stat->tx_multi_colls += smb->tx_multi_colls;
2083	stat->tx_late_colls += smb->tx_late_colls;
2084	stat->tx_excess_colls += smb->tx_excess_colls;
2085	stat->tx_underrun += smb->tx_underrun;
2086	stat->tx_desc_underrun += smb->tx_desc_underrun;
2087	stat->tx_lenerrs += smb->tx_lenerrs;
2088	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2089	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2090	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2091
2092	/* Update counters in ifnet. */
2093	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2094
2095	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2096	    smb->tx_multi_colls + smb->tx_late_colls +
2097	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2098
2099	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2100	    smb->tx_late_colls + smb->tx_underrun +
2101	    smb->tx_pkts_truncated);
2102
2103	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2104
2105	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2106	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2107	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2108	    smb->rx_alignerrs);
2109
2110	/* Update done, clear. */
2111	smb->updated = 0;
2112
2113	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2114	    sc->age_cdata.age_smb_block_map,
2115	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2116}
2117
2118static int
2119age_intr(void *arg)
2120{
2121	struct age_softc *sc;
2122	uint32_t status;
2123
2124	sc = (struct age_softc *)arg;
2125
2126	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2127	if (status == 0 || (status & AGE_INTRS) == 0)
2128		return (FILTER_STRAY);
2129	/* Disable interrupts. */
2130	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2131	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2132
2133	return (FILTER_HANDLED);
2134}
2135
2136static void
2137age_int_task(void *arg, int pending)
2138{
2139	struct age_softc *sc;
2140	struct ifnet *ifp;
2141	struct cmb *cmb;
2142	uint32_t status;
2143
2144	sc = (struct age_softc *)arg;
2145
2146	AGE_LOCK(sc);
2147
2148	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2149	    sc->age_cdata.age_cmb_block_map,
2150	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2151	cmb = sc->age_rdata.age_cmb_block;
2152	status = le32toh(cmb->intr_status);
2153	if (sc->age_morework != 0)
2154		status |= INTR_CMB_RX;
2155	if ((status & AGE_INTRS) == 0)
2156		goto done;
2157
2158	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2159	    TPD_CONS_SHIFT;
2160	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2161	    RRD_PROD_SHIFT;
2162	/* Let hardware know CMB was served. */
2163	cmb->intr_status = 0;
2164	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2165	    sc->age_cdata.age_cmb_block_map,
2166	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2167
2168	ifp = sc->age_ifp;
2169	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2170		if ((status & INTR_CMB_RX) != 0)
2171			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2172			    sc->age_process_limit);
2173		if ((status & INTR_CMB_TX) != 0)
2174			age_txintr(sc, sc->age_tpd_cons);
2175		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2176			if ((status & INTR_DMA_RD_TO_RST) != 0)
2177				device_printf(sc->age_dev,
2178				    "DMA read error! -- resetting\n");
2179			if ((status & INTR_DMA_WR_TO_RST) != 0)
2180				device_printf(sc->age_dev,
2181				    "DMA write error! -- resetting\n");
2182			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2183			age_init_locked(sc);
2184		}
2185		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2186			age_start_locked(ifp);
2187		if ((status & INTR_SMB) != 0)
2188			age_stats_update(sc);
2189	}
2190
2191	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2192	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2193	    sc->age_cdata.age_cmb_block_map,
2194	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2195	status = le32toh(cmb->intr_status);
2196	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2197		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2198		AGE_UNLOCK(sc);
2199		return;
2200	}
2201
2202done:
2203	/* Re-enable interrupts. */
2204	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2205	AGE_UNLOCK(sc);
2206}
2207
2208static void
2209age_txintr(struct age_softc *sc, int tpd_cons)
2210{
2211	struct ifnet *ifp;
2212	struct age_txdesc *txd;
2213	int cons, prog;
2214
2215	AGE_LOCK_ASSERT(sc);
2216
2217	ifp = sc->age_ifp;
2218
2219	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2220	    sc->age_cdata.age_tx_ring_map,
2221	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2222
2223	/*
2224	 * Go through our Tx list and free mbufs for those
2225	 * frames which have been transmitted.
2226	 */
2227	cons = sc->age_cdata.age_tx_cons;
2228	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2229		if (sc->age_cdata.age_tx_cnt <= 0)
2230			break;
2231		prog++;
2232		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2233		sc->age_cdata.age_tx_cnt--;
2234		txd = &sc->age_cdata.age_txdesc[cons];
2235		/*
2236		 * Clear Tx descriptors, it's not required but would
2237		 * help debugging in case of Tx issues.
2238		 */
2239		txd->tx_desc->addr = 0;
2240		txd->tx_desc->len = 0;
2241		txd->tx_desc->flags = 0;
2242
2243		if (txd->tx_m == NULL)
2244			continue;
2245		/* Reclaim transmitted mbufs. */
2246		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2247		    BUS_DMASYNC_POSTWRITE);
2248		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2249		m_freem(txd->tx_m);
2250		txd->tx_m = NULL;
2251	}
2252
2253	if (prog > 0) {
2254		sc->age_cdata.age_tx_cons = cons;
2255
2256		/*
2257		 * Unarm watchdog timer only when there are no pending
2258		 * Tx descriptors in queue.
2259		 */
2260		if (sc->age_cdata.age_tx_cnt == 0)
2261			sc->age_watchdog_timer = 0;
2262		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2263		    sc->age_cdata.age_tx_ring_map,
2264		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2265	}
2266}
2267
2268#ifndef __NO_STRICT_ALIGNMENT
2269static struct mbuf *
2270age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2271{
2272	struct mbuf *n;
2273        int i;
2274        uint16_t *src, *dst;
2275
2276	src = mtod(m, uint16_t *);
2277	dst = src - 3;
2278
2279	if (m->m_next == NULL) {
2280		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2281			*dst++ = *src++;
2282		m->m_data -= 6;
2283		return (m);
2284	}
2285	/*
2286	 * Append a new mbuf to received mbuf chain and copy ethernet
2287	 * header from the mbuf chain. This can save lots of CPU
2288	 * cycles for jumbo frame.
2289	 */
2290	MGETHDR(n, M_NOWAIT, MT_DATA);
2291	if (n == NULL) {
2292		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2293		m_freem(m);
2294		return (NULL);
2295	}
2296	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2297	m->m_data += ETHER_HDR_LEN;
2298	m->m_len -= ETHER_HDR_LEN;
2299	n->m_len = ETHER_HDR_LEN;
2300	M_MOVE_PKTHDR(n, m);
2301	n->m_next = m;
2302	return (n);
2303}
2304#endif
2305
2306/* Receive a frame. */
2307static void
2308age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2309{
2310	struct age_rxdesc *rxd;
2311	struct ifnet *ifp;
2312	struct mbuf *mp, *m;
2313	uint32_t status, index, vtag;
2314	int count, nsegs;
2315	int rx_cons;
2316
2317	AGE_LOCK_ASSERT(sc);
2318
2319	ifp = sc->age_ifp;
2320	status = le32toh(rxrd->flags);
2321	index = le32toh(rxrd->index);
2322	rx_cons = AGE_RX_CONS(index);
2323	nsegs = AGE_RX_NSEGS(index);
2324
2325	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2326	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2327		/*
2328		 * We want to pass the following frames to upper
2329		 * layer regardless of error status of Rx return
2330		 * ring.
2331		 *
2332		 *  o IP/TCP/UDP checksum is bad.
2333		 *  o frame length and protocol specific length
2334		 *     does not match.
2335		 */
2336		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2337		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2338		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2339			return;
2340	}
2341
2342	for (count = 0; count < nsegs; count++,
2343	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2344		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2345		mp = rxd->rx_m;
2346		/* Add a new receive buffer to the ring. */
2347		if (age_newbuf(sc, rxd) != 0) {
2348			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2349			/* Reuse Rx buffers. */
2350			if (sc->age_cdata.age_rxhead != NULL)
2351				m_freem(sc->age_cdata.age_rxhead);
2352			break;
2353		}
2354
2355		/*
2356		 * Assume we've received a full sized frame.
2357		 * Actual size is fixed when we encounter the end of
2358		 * multi-segmented frame.
2359		 */
2360		mp->m_len = AGE_RX_BUF_SIZE;
2361
2362		/* Chain received mbufs. */
2363		if (sc->age_cdata.age_rxhead == NULL) {
2364			sc->age_cdata.age_rxhead = mp;
2365			sc->age_cdata.age_rxtail = mp;
2366		} else {
2367			mp->m_flags &= ~M_PKTHDR;
2368			sc->age_cdata.age_rxprev_tail =
2369			    sc->age_cdata.age_rxtail;
2370			sc->age_cdata.age_rxtail->m_next = mp;
2371			sc->age_cdata.age_rxtail = mp;
2372		}
2373
2374		if (count == nsegs - 1) {
2375			/* Last desc. for this frame. */
2376			m = sc->age_cdata.age_rxhead;
2377			m->m_flags |= M_PKTHDR;
2378			/*
2379			 * It seems that L1 controller has no way
2380			 * to tell hardware to strip CRC bytes.
2381			 */
2382			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2383			    ETHER_CRC_LEN;
2384			if (nsegs > 1) {
2385				/* Set last mbuf size. */
2386				mp->m_len = sc->age_cdata.age_rxlen -
2387				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2388				/* Remove the CRC bytes in chained mbufs. */
2389				if (mp->m_len <= ETHER_CRC_LEN) {
2390					sc->age_cdata.age_rxtail =
2391					    sc->age_cdata.age_rxprev_tail;
2392					sc->age_cdata.age_rxtail->m_len -=
2393					    (ETHER_CRC_LEN - mp->m_len);
2394					sc->age_cdata.age_rxtail->m_next = NULL;
2395					m_freem(mp);
2396				} else {
2397					mp->m_len -= ETHER_CRC_LEN;
2398				}
2399			} else
2400				m->m_len = m->m_pkthdr.len;
2401			m->m_pkthdr.rcvif = ifp;
2402			/*
2403			 * Set checksum information.
2404			 * It seems that L1 controller can compute partial
2405			 * checksum. The partial checksum value can be used
2406			 * to accelerate checksum computation for fragmented
2407			 * TCP/UDP packets. Upper network stack already
2408			 * takes advantage of the partial checksum value in
2409			 * IP reassembly stage. But I'm not sure the
2410			 * correctness of the partial hardware checksum
2411			 * assistance due to lack of data sheet. If it is
2412			 * proven to work on L1 I'll enable it.
2413			 */
2414			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2415			    (status & AGE_RRD_IPV4) != 0) {
2416				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2417					m->m_pkthdr.csum_flags |=
2418					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2419				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2420				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2421					m->m_pkthdr.csum_flags |=
2422					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2423					m->m_pkthdr.csum_data = 0xffff;
2424				}
2425				/*
2426				 * Don't mark bad checksum for TCP/UDP frames
2427				 * as fragmented frames may always have set
2428				 * bad checksummed bit of descriptor status.
2429				 */
2430			}
2431
2432			/* Check for VLAN tagged frames. */
2433			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2434			    (status & AGE_RRD_VLAN) != 0) {
2435				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2436				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2437				m->m_flags |= M_VLANTAG;
2438			}
2439#ifndef __NO_STRICT_ALIGNMENT
2440			m = age_fixup_rx(ifp, m);
2441			if (m != NULL)
2442#endif
2443			{
2444			/* Pass it on. */
2445			AGE_UNLOCK(sc);
2446			(*ifp->if_input)(ifp, m);
2447			AGE_LOCK(sc);
2448			}
2449		}
2450	}
2451
2452	/* Reset mbuf chains. */
2453	AGE_RXCHAIN_RESET(sc);
2454}
2455
2456static int
2457age_rxintr(struct age_softc *sc, int rr_prod, int count)
2458{
2459	struct rx_rdesc *rxrd;
2460	int rr_cons, nsegs, pktlen, prog;
2461
2462	AGE_LOCK_ASSERT(sc);
2463
2464	rr_cons = sc->age_cdata.age_rr_cons;
2465	if (rr_cons == rr_prod)
2466		return (0);
2467
2468	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2469	    sc->age_cdata.age_rr_ring_map,
2470	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2471	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2472	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2473
2474	for (prog = 0; rr_cons != rr_prod; prog++) {
2475		if (count-- <= 0)
2476			break;
2477		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2478		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2479		if (nsegs == 0)
2480			break;
2481		/*
2482		 * Check number of segments against received bytes.
2483		 * Non-matching value would indicate that hardware
2484		 * is still trying to update Rx return descriptors.
2485		 * I'm not sure whether this check is really needed.
2486		 */
2487		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2488		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2489			break;
2490
2491		/* Received a frame. */
2492		age_rxeof(sc, rxrd);
2493		/* Clear return ring. */
2494		rxrd->index = 0;
2495		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2496		sc->age_cdata.age_rx_cons += nsegs;
2497		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2498	}
2499
2500	if (prog > 0) {
2501		/* Update the consumer index. */
2502		sc->age_cdata.age_rr_cons = rr_cons;
2503
2504		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2505		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2506		/* Sync descriptors. */
2507		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2508		    sc->age_cdata.age_rr_ring_map,
2509		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2510
2511		/* Notify hardware availability of new Rx buffers. */
2512		AGE_COMMIT_MBOX(sc);
2513	}
2514
2515	return (count > 0 ? 0 : EAGAIN);
2516}
2517
2518static void
2519age_tick(void *arg)
2520{
2521	struct age_softc *sc;
2522	struct mii_data *mii;
2523
2524	sc = (struct age_softc *)arg;
2525
2526	AGE_LOCK_ASSERT(sc);
2527
2528	mii = device_get_softc(sc->age_miibus);
2529	mii_tick(mii);
2530	age_watchdog(sc);
2531	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2532}
2533
2534static void
2535age_reset(struct age_softc *sc)
2536{
2537	uint32_t reg;
2538	int i;
2539
2540	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2541	CSR_READ_4(sc, AGE_MASTER_CFG);
2542	DELAY(1000);
2543	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2544		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2545			break;
2546		DELAY(10);
2547	}
2548
2549	if (i == 0)
2550		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2551	/* Initialize PCIe module. From Linux. */
2552	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2553	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2554}
2555
2556static void
2557age_init(void *xsc)
2558{
2559	struct age_softc *sc;
2560
2561	sc = (struct age_softc *)xsc;
2562	AGE_LOCK(sc);
2563	age_init_locked(sc);
2564	AGE_UNLOCK(sc);
2565}
2566
2567static void
2568age_init_locked(struct age_softc *sc)
2569{
2570	struct ifnet *ifp;
2571	struct mii_data *mii;
2572	uint8_t eaddr[ETHER_ADDR_LEN];
2573	bus_addr_t paddr;
2574	uint32_t reg, fsize;
2575	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2576	int error;
2577
2578	AGE_LOCK_ASSERT(sc);
2579
2580	ifp = sc->age_ifp;
2581	mii = device_get_softc(sc->age_miibus);
2582
2583	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2584		return;
2585
2586	/*
2587	 * Cancel any pending I/O.
2588	 */
2589	age_stop(sc);
2590
2591	/*
2592	 * Reset the chip to a known state.
2593	 */
2594	age_reset(sc);
2595
2596	/* Initialize descriptors. */
2597	error = age_init_rx_ring(sc);
2598        if (error != 0) {
2599                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2600                age_stop(sc);
2601		return;
2602        }
2603	age_init_rr_ring(sc);
2604	age_init_tx_ring(sc);
2605	age_init_cmb_block(sc);
2606	age_init_smb_block(sc);
2607
2608	/* Reprogram the station address. */
2609	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2610	CSR_WRITE_4(sc, AGE_PAR0,
2611	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2612	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2613
2614	/* Set descriptor base addresses. */
2615	paddr = sc->age_rdata.age_tx_ring_paddr;
2616	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2617	paddr = sc->age_rdata.age_rx_ring_paddr;
2618	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2619	paddr = sc->age_rdata.age_rr_ring_paddr;
2620	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2621	paddr = sc->age_rdata.age_tx_ring_paddr;
2622	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2623	paddr = sc->age_rdata.age_cmb_block_paddr;
2624	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2625	paddr = sc->age_rdata.age_smb_block_paddr;
2626	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2627	/* Set Rx/Rx return descriptor counter. */
2628	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2629	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2630	    DESC_RRD_CNT_MASK) |
2631	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2632	/* Set Tx descriptor counter. */
2633	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2634	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2635
2636	/* Tell hardware that we're ready to load descriptors. */
2637	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2638
2639	/*
2640	 * Initialize mailbox register.
2641	 * Updated producer/consumer index information is exchanged
2642	 * through this mailbox register. However Tx producer and
2643	 * Rx return consumer/Rx producer are all shared such that
2644	 * it's hard to separate code path between Tx and Rx without
2645	 * locking. If L1 hardware have a separate mail box register
2646	 * for Tx and Rx consumer/producer management we could have
2647	 * indepent Tx/Rx handler which in turn Rx handler could have
2648	 * been run without any locking.
2649	 */
2650	AGE_COMMIT_MBOX(sc);
2651
2652	/* Configure IPG/IFG parameters. */
2653	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2654	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2655	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2656	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2657	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2658
2659	/* Set parameters for half-duplex media. */
2660	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2661	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2662	    HDPX_CFG_LCOL_MASK) |
2663	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2664	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2665	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2666	    HDPX_CFG_ABEBT_MASK) |
2667	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2668	    HDPX_CFG_JAMIPG_MASK));
2669
2670	/* Configure interrupt moderation timer. */
2671	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2672	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2673	reg &= ~MASTER_MTIMER_ENB;
2674	if (AGE_USECS(sc->age_int_mod) == 0)
2675		reg &= ~MASTER_ITIMER_ENB;
2676	else
2677		reg |= MASTER_ITIMER_ENB;
2678	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2679	if (bootverbose)
2680		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2681		    sc->age_int_mod);
2682	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2683
2684	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2685	if (ifp->if_mtu < ETHERMTU)
2686		sc->age_max_frame_size = ETHERMTU;
2687	else
2688		sc->age_max_frame_size = ifp->if_mtu;
2689	sc->age_max_frame_size += ETHER_HDR_LEN +
2690	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2691	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2692	/* Configure jumbo frame. */
2693	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2694	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2695	    (((fsize / sizeof(uint64_t)) <<
2696	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2697	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2698	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2699	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2700	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2701
2702	/* Configure flow-control parameters. From Linux. */
2703	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2704		/*
2705		 * Magic workaround for old-L1.
2706		 * Don't know which hw revision requires this magic.
2707		 */
2708		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2709		/*
2710		 * Another magic workaround for flow-control mode
2711		 * change. From Linux.
2712		 */
2713		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2714	}
2715	/*
2716	 * TODO
2717	 *  Should understand pause parameter relationships between FIFO
2718	 *  size and number of Rx descriptors and Rx return descriptors.
2719	 *
2720	 *  Magic parameters came from Linux.
2721	 */
2722	switch (sc->age_chip_rev) {
2723	case 0x8001:
2724	case 0x9001:
2725	case 0x9002:
2726	case 0x9003:
2727		rxf_hi = AGE_RX_RING_CNT / 16;
2728		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2729		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2730		rrd_lo = AGE_RR_RING_CNT / 16;
2731		break;
2732	default:
2733		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2734		rxf_lo = reg / 16;
2735		if (rxf_lo < 192)
2736			rxf_lo = 192;
2737		rxf_hi = (reg * 7) / 8;
2738		if (rxf_hi < rxf_lo)
2739			rxf_hi = rxf_lo + 16;
2740		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2741		rrd_lo = reg / 8;
2742		rrd_hi = (reg * 7) / 8;
2743		if (rrd_lo < 2)
2744			rrd_lo = 2;
2745		if (rrd_hi < rrd_lo)
2746			rrd_hi = rrd_lo + 3;
2747		break;
2748	}
2749	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2750	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2751	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2752	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2753	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2754	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2755	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2756	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2757	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2758	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2759
2760	/* Configure RxQ. */
2761	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2762	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2763	    RXQ_CFG_RD_BURST_MASK) |
2764	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2765	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2766	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2767	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2768	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2769
2770	/* Configure TxQ. */
2771	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2772	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2773	    TXQ_CFG_TPD_BURST_MASK) |
2774	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2775	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2776	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2777	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2778	    TXQ_CFG_ENB);
2779
2780	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2781	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2782	    TX_JUMBO_TPD_TH_MASK) |
2783	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2784	    TX_JUMBO_TPD_IPG_MASK));
2785	/* Configure DMA parameters. */
2786	CSR_WRITE_4(sc, AGE_DMA_CFG,
2787	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2788	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2789	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2790
2791	/* Configure CMB DMA write threshold. */
2792	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2793	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2794	    CMB_WR_THRESH_RRD_MASK) |
2795	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2796	    CMB_WR_THRESH_TPD_MASK));
2797
2798	/* Set CMB/SMB timer and enable them. */
2799	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2800	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2801	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2802	/* Request SMB updates for every seconds. */
2803	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2804	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2805
2806	/*
2807	 * Disable all WOL bits as WOL can interfere normal Rx
2808	 * operation.
2809	 */
2810	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2811
2812	/*
2813	 * Configure Tx/Rx MACs.
2814	 *  - Auto-padding for short frames.
2815	 *  - Enable CRC generation.
2816	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2817	 *  of MAC is followed after link establishment.
2818	 */
2819	CSR_WRITE_4(sc, AGE_MAC_CFG,
2820	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2821	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2822	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2823	    MAC_CFG_PREAMBLE_MASK));
2824	/* Set up the receive filter. */
2825	age_rxfilter(sc);
2826	age_rxvlan(sc);
2827
2828	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2829	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2830		reg |= MAC_CFG_RXCSUM_ENB;
2831
2832	/* Ack all pending interrupts and clear it. */
2833	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2834	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2835
2836	/* Finally enable Tx/Rx MAC. */
2837	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2838
2839	sc->age_flags &= ~AGE_FLAG_LINK;
2840	/* Switch to the current media. */
2841	mii_mediachg(mii);
2842
2843	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2844
2845	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2846	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2847}
2848
2849static void
2850age_stop(struct age_softc *sc)
2851{
2852	struct ifnet *ifp;
2853	struct age_txdesc *txd;
2854	struct age_rxdesc *rxd;
2855	uint32_t reg;
2856	int i;
2857
2858	AGE_LOCK_ASSERT(sc);
2859	/*
2860	 * Mark the interface down and cancel the watchdog timer.
2861	 */
2862	ifp = sc->age_ifp;
2863	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2864	sc->age_flags &= ~AGE_FLAG_LINK;
2865	callout_stop(&sc->age_tick_ch);
2866	sc->age_watchdog_timer = 0;
2867
2868	/*
2869	 * Disable interrupts.
2870	 */
2871	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2872	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2873	/* Stop CMB/SMB updates. */
2874	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2875	/* Stop Rx/Tx MAC. */
2876	age_stop_rxmac(sc);
2877	age_stop_txmac(sc);
2878	/* Stop DMA. */
2879	CSR_WRITE_4(sc, AGE_DMA_CFG,
2880	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2881	/* Stop TxQ/RxQ. */
2882	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2883	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2884	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2885	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2886	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2887		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2888			break;
2889		DELAY(10);
2890	}
2891	if (i == 0)
2892		device_printf(sc->age_dev,
2893		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2894
2895	 /* Reclaim Rx buffers that have been processed. */
2896	if (sc->age_cdata.age_rxhead != NULL)
2897		m_freem(sc->age_cdata.age_rxhead);
2898	AGE_RXCHAIN_RESET(sc);
2899	/*
2900	 * Free RX and TX mbufs still in the queues.
2901	 */
2902	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2903		rxd = &sc->age_cdata.age_rxdesc[i];
2904		if (rxd->rx_m != NULL) {
2905			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2906			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2907			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2908			    rxd->rx_dmamap);
2909			m_freem(rxd->rx_m);
2910			rxd->rx_m = NULL;
2911		}
2912        }
2913	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2914		txd = &sc->age_cdata.age_txdesc[i];
2915		if (txd->tx_m != NULL) {
2916			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2917			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2918			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2919			    txd->tx_dmamap);
2920			m_freem(txd->tx_m);
2921			txd->tx_m = NULL;
2922		}
2923        }
2924}
2925
2926static void
2927age_stop_txmac(struct age_softc *sc)
2928{
2929	uint32_t reg;
2930	int i;
2931
2932	AGE_LOCK_ASSERT(sc);
2933
2934	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2935	if ((reg & MAC_CFG_TX_ENB) != 0) {
2936		reg &= ~MAC_CFG_TX_ENB;
2937		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2938	}
2939	/* Stop Tx DMA engine. */
2940	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2941	if ((reg & DMA_CFG_RD_ENB) != 0) {
2942		reg &= ~DMA_CFG_RD_ENB;
2943		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2944	}
2945	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2946		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2947		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2948			break;
2949		DELAY(10);
2950	}
2951	if (i == 0)
2952		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2953}
2954
2955static void
2956age_stop_rxmac(struct age_softc *sc)
2957{
2958	uint32_t reg;
2959	int i;
2960
2961	AGE_LOCK_ASSERT(sc);
2962
2963	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2964	if ((reg & MAC_CFG_RX_ENB) != 0) {
2965		reg &= ~MAC_CFG_RX_ENB;
2966		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2967	}
2968	/* Stop Rx DMA engine. */
2969	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2970	if ((reg & DMA_CFG_WR_ENB) != 0) {
2971		reg &= ~DMA_CFG_WR_ENB;
2972		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2973	}
2974	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2975		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2976		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2977			break;
2978		DELAY(10);
2979	}
2980	if (i == 0)
2981		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2982}
2983
2984static void
2985age_init_tx_ring(struct age_softc *sc)
2986{
2987	struct age_ring_data *rd;
2988	struct age_txdesc *txd;
2989	int i;
2990
2991	AGE_LOCK_ASSERT(sc);
2992
2993	sc->age_cdata.age_tx_prod = 0;
2994	sc->age_cdata.age_tx_cons = 0;
2995	sc->age_cdata.age_tx_cnt = 0;
2996
2997	rd = &sc->age_rdata;
2998	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2999	for (i = 0; i < AGE_TX_RING_CNT; i++) {
3000		txd = &sc->age_cdata.age_txdesc[i];
3001		txd->tx_desc = &rd->age_tx_ring[i];
3002		txd->tx_m = NULL;
3003	}
3004
3005	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3006	    sc->age_cdata.age_tx_ring_map,
3007	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3008}
3009
3010static int
3011age_init_rx_ring(struct age_softc *sc)
3012{
3013	struct age_ring_data *rd;
3014	struct age_rxdesc *rxd;
3015	int i;
3016
3017	AGE_LOCK_ASSERT(sc);
3018
3019	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3020	sc->age_morework = 0;
3021	rd = &sc->age_rdata;
3022	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3023	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3024		rxd = &sc->age_cdata.age_rxdesc[i];
3025		rxd->rx_m = NULL;
3026		rxd->rx_desc = &rd->age_rx_ring[i];
3027		if (age_newbuf(sc, rxd) != 0)
3028			return (ENOBUFS);
3029	}
3030
3031	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3032	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3033
3034	return (0);
3035}
3036
3037static void
3038age_init_rr_ring(struct age_softc *sc)
3039{
3040	struct age_ring_data *rd;
3041
3042	AGE_LOCK_ASSERT(sc);
3043
3044	sc->age_cdata.age_rr_cons = 0;
3045	AGE_RXCHAIN_RESET(sc);
3046
3047	rd = &sc->age_rdata;
3048	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3049	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3050	    sc->age_cdata.age_rr_ring_map,
3051	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3052}
3053
3054static void
3055age_init_cmb_block(struct age_softc *sc)
3056{
3057	struct age_ring_data *rd;
3058
3059	AGE_LOCK_ASSERT(sc);
3060
3061	rd = &sc->age_rdata;
3062	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3063	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3064	    sc->age_cdata.age_cmb_block_map,
3065	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3066}
3067
3068static void
3069age_init_smb_block(struct age_softc *sc)
3070{
3071	struct age_ring_data *rd;
3072
3073	AGE_LOCK_ASSERT(sc);
3074
3075	rd = &sc->age_rdata;
3076	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3077	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3078	    sc->age_cdata.age_smb_block_map,
3079	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3080}
3081
3082static int
3083age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3084{
3085	struct rx_desc *desc;
3086	struct mbuf *m;
3087	bus_dma_segment_t segs[1];
3088	bus_dmamap_t map;
3089	int nsegs;
3090
3091	AGE_LOCK_ASSERT(sc);
3092
3093	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3094	if (m == NULL)
3095		return (ENOBUFS);
3096	m->m_len = m->m_pkthdr.len = MCLBYTES;
3097#ifndef __NO_STRICT_ALIGNMENT
3098	m_adj(m, AGE_RX_BUF_ALIGN);
3099#endif
3100
3101	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3102	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3103		m_freem(m);
3104		return (ENOBUFS);
3105	}
3106	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3107
3108	if (rxd->rx_m != NULL) {
3109		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3110		    BUS_DMASYNC_POSTREAD);
3111		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3112	}
3113	map = rxd->rx_dmamap;
3114	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3115	sc->age_cdata.age_rx_sparemap = map;
3116	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3117	    BUS_DMASYNC_PREREAD);
3118	rxd->rx_m = m;
3119
3120	desc = rxd->rx_desc;
3121	desc->addr = htole64(segs[0].ds_addr);
3122	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3123	    AGE_RD_LEN_SHIFT);
3124	return (0);
3125}
3126
3127static void
3128age_rxvlan(struct age_softc *sc)
3129{
3130	struct ifnet *ifp;
3131	uint32_t reg;
3132
3133	AGE_LOCK_ASSERT(sc);
3134
3135	ifp = sc->age_ifp;
3136	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3137	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3138	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3139		reg |= MAC_CFG_VLAN_TAG_STRIP;
3140	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3141}
3142
3143static void
3144age_rxfilter(struct age_softc *sc)
3145{
3146	struct ifnet *ifp;
3147	struct ifmultiaddr *ifma;
3148	uint32_t crc;
3149	uint32_t mchash[2];
3150	uint32_t rxcfg;
3151
3152	AGE_LOCK_ASSERT(sc);
3153
3154	ifp = sc->age_ifp;
3155
3156	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3157	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3158	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3159		rxcfg |= MAC_CFG_BCAST;
3160	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3161		if ((ifp->if_flags & IFF_PROMISC) != 0)
3162			rxcfg |= MAC_CFG_PROMISC;
3163		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3164			rxcfg |= MAC_CFG_ALLMULTI;
3165		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3166		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3167		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3168		return;
3169	}
3170
3171	/* Program new filter. */
3172	bzero(mchash, sizeof(mchash));
3173
3174	if_maddr_rlock(ifp);
3175	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3176		if (ifma->ifma_addr->sa_family != AF_LINK)
3177			continue;
3178		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3179		    ifma->ifma_addr), ETHER_ADDR_LEN);
3180		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3181	}
3182	if_maddr_runlock(ifp);
3183
3184	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3185	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3186	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3187}
3188
3189static int
3190sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3191{
3192	struct age_softc *sc;
3193	struct age_stats *stats;
3194	int error, result;
3195
3196	result = -1;
3197	error = sysctl_handle_int(oidp, &result, 0, req);
3198
3199	if (error != 0 || req->newptr == NULL)
3200		return (error);
3201
3202	if (result != 1)
3203		return (error);
3204
3205	sc = (struct age_softc *)arg1;
3206	stats = &sc->age_stat;
3207	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3208	printf("Transmit good frames : %ju\n",
3209	    (uintmax_t)stats->tx_frames);
3210	printf("Transmit good broadcast frames : %ju\n",
3211	    (uintmax_t)stats->tx_bcast_frames);
3212	printf("Transmit good multicast frames : %ju\n",
3213	    (uintmax_t)stats->tx_mcast_frames);
3214	printf("Transmit pause control frames : %u\n",
3215	    stats->tx_pause_frames);
3216	printf("Transmit control frames : %u\n",
3217	    stats->tx_control_frames);
3218	printf("Transmit frames with excessive deferrals : %u\n",
3219	    stats->tx_excess_defer);
3220	printf("Transmit deferrals : %u\n",
3221	    stats->tx_deferred);
3222	printf("Transmit good octets : %ju\n",
3223	    (uintmax_t)stats->tx_bytes);
3224	printf("Transmit good broadcast octets : %ju\n",
3225	    (uintmax_t)stats->tx_bcast_bytes);
3226	printf("Transmit good multicast octets : %ju\n",
3227	    (uintmax_t)stats->tx_mcast_bytes);
3228	printf("Transmit frames 64 bytes : %ju\n",
3229	    (uintmax_t)stats->tx_pkts_64);
3230	printf("Transmit frames 65 to 127 bytes : %ju\n",
3231	    (uintmax_t)stats->tx_pkts_65_127);
3232	printf("Transmit frames 128 to 255 bytes : %ju\n",
3233	    (uintmax_t)stats->tx_pkts_128_255);
3234	printf("Transmit frames 256 to 511 bytes : %ju\n",
3235	    (uintmax_t)stats->tx_pkts_256_511);
3236	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3237	    (uintmax_t)stats->tx_pkts_512_1023);
3238	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3239	    (uintmax_t)stats->tx_pkts_1024_1518);
3240	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3241	    (uintmax_t)stats->tx_pkts_1519_max);
3242	printf("Transmit single collisions : %u\n",
3243	    stats->tx_single_colls);
3244	printf("Transmit multiple collisions : %u\n",
3245	    stats->tx_multi_colls);
3246	printf("Transmit late collisions : %u\n",
3247	    stats->tx_late_colls);
3248	printf("Transmit abort due to excessive collisions : %u\n",
3249	    stats->tx_excess_colls);
3250	printf("Transmit underruns due to FIFO underruns : %u\n",
3251	    stats->tx_underrun);
3252	printf("Transmit descriptor write-back errors : %u\n",
3253	    stats->tx_desc_underrun);
3254	printf("Transmit frames with length mismatched frame size : %u\n",
3255	    stats->tx_lenerrs);
3256	printf("Transmit frames with truncated due to MTU size : %u\n",
3257	    stats->tx_lenerrs);
3258
3259	printf("Receive good frames : %ju\n",
3260	    (uintmax_t)stats->rx_frames);
3261	printf("Receive good broadcast frames : %ju\n",
3262	    (uintmax_t)stats->rx_bcast_frames);
3263	printf("Receive good multicast frames : %ju\n",
3264	    (uintmax_t)stats->rx_mcast_frames);
3265	printf("Receive pause control frames : %u\n",
3266	    stats->rx_pause_frames);
3267	printf("Receive control frames : %u\n",
3268	    stats->rx_control_frames);
3269	printf("Receive CRC errors : %u\n",
3270	    stats->rx_crcerrs);
3271	printf("Receive frames with length errors : %u\n",
3272	    stats->rx_lenerrs);
3273	printf("Receive good octets : %ju\n",
3274	    (uintmax_t)stats->rx_bytes);
3275	printf("Receive good broadcast octets : %ju\n",
3276	    (uintmax_t)stats->rx_bcast_bytes);
3277	printf("Receive good multicast octets : %ju\n",
3278	    (uintmax_t)stats->rx_mcast_bytes);
3279	printf("Receive frames too short : %u\n",
3280	    stats->rx_runts);
3281	printf("Receive fragmented frames : %ju\n",
3282	    (uintmax_t)stats->rx_fragments);
3283	printf("Receive frames 64 bytes : %ju\n",
3284	    (uintmax_t)stats->rx_pkts_64);
3285	printf("Receive frames 65 to 127 bytes : %ju\n",
3286	    (uintmax_t)stats->rx_pkts_65_127);
3287	printf("Receive frames 128 to 255 bytes : %ju\n",
3288	    (uintmax_t)stats->rx_pkts_128_255);
3289	printf("Receive frames 256 to 511 bytes : %ju\n",
3290	    (uintmax_t)stats->rx_pkts_256_511);
3291	printf("Receive frames 512 to 1024 bytes : %ju\n",
3292	    (uintmax_t)stats->rx_pkts_512_1023);
3293	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3294	    (uintmax_t)stats->rx_pkts_1024_1518);
3295	printf("Receive frames 1519 to MTU bytes : %ju\n",
3296	    (uintmax_t)stats->rx_pkts_1519_max);
3297	printf("Receive frames too long : %ju\n",
3298	    (uint64_t)stats->rx_pkts_truncated);
3299	printf("Receive frames with FIFO overflow : %u\n",
3300	    stats->rx_fifo_oflows);
3301	printf("Receive frames with return descriptor overflow : %u\n",
3302	    stats->rx_desc_oflows);
3303	printf("Receive frames with alignment errors : %u\n",
3304	    stats->rx_alignerrs);
3305	printf("Receive frames dropped due to address filtering : %ju\n",
3306	    (uint64_t)stats->rx_pkts_filtered);
3307
3308	return (error);
3309}
3310
3311static int
3312sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3313{
3314	int error, value;
3315
3316	if (arg1 == NULL)
3317		return (EINVAL);
3318	value = *(int *)arg1;
3319	error = sysctl_handle_int(oidp, &value, 0, req);
3320	if (error || req->newptr == NULL)
3321		return (error);
3322	if (value < low || value > high)
3323		return (EINVAL);
3324        *(int *)arg1 = value;
3325
3326        return (0);
3327}
3328
3329static int
3330sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3331{
3332	return (sysctl_int_range(oidp, arg1, arg2, req,
3333	    AGE_PROC_MIN, AGE_PROC_MAX));
3334}
3335
3336static int
3337sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3338{
3339
3340	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3341	    AGE_IM_TIMER_MAX));
3342}
3343