1/* ========================================================================== **
2 *                              ubi_SplayTree.c
3 *
4 *  Copyright (C) 1993-1998 by Christopher R. Hertel
5 *
6 *  Email: crh@ubiqx.mn.org
7 * -------------------------------------------------------------------------- **
8 *
9 *  This module implements "splay" trees.  Splay trees are binary trees
10 *  that are rearranged (splayed) whenever a node is accessed.  The
11 *  splaying process *tends* to make the tree bushier (improves balance),
12 *  and the nodes that are accessed most frequently *tend* to be closer to
13 *  the top.
14 *
15 *  References: "Self-Adjusting Binary Search Trees", by Daniel Sleator and
16 *              Robert Tarjan.  Journal of the Association for Computing
17 *              Machinery Vol 32, No. 3, July 1985 pp. 652-686
18 *
19 *    See also: http://www.cs.cmu.edu/~sleator/
20 *
21 * -------------------------------------------------------------------------- **
22 *
23 *  This library is free software; you can redistribute it and/or
24 *  modify it under the terms of the GNU Library General Public
25 *  License as published by the Free Software Foundation; either
26 *  version 2 of the License, or (at your option) any later version.
27 *
28 *  This library is distributed in the hope that it will be useful,
29 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
30 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
31 *  Library General Public License for more details.
32 *
33 *  You should have received a copy of the GNU Library General Public
34 *  License along with this library; if not, write to the Free
35 *  Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
36 *
37 * -------------------------------------------------------------------------- **
38 *
39 * $Log: ubi_SplayTree.c,v $
40 * Revision 4.5  2000/01/08 23:26:49  crh
41 * Added ubi_trSplay() macro, which does a type cast for us.
42 *
43 * Revision 4.4  1998/06/04 21:29:27  crh
44 * Upper-cased defined constants (eg UBI_BINTREE_H) in some header files.
45 * This is more "standard", and is what people expect.  Weird, eh?
46 *
47 * Revision 4.3  1998/06/03 17:45:05  crh
48 * Further fiddling with sys_include.h.  It's now in ubi_BinTree.h which is
49 * included by all of the binary tree files.
50 *
51 * Also fixed some warnings produced by lint on Irix 6.2, which doesn't seem
52 * to like syntax like this:
53 *
54 *   if( (a = b) )
55 *
56 * The fix was to change lines like the above to:
57 *
58 *   if( 0 != (a=b) )
59 *
60 * Which means the same thing.
61 *
62 * Reminder: Some of the ubi_tr* macros in ubi_BinTree.h are redefined in
63 *           ubi_AVLtree.h and ubi_SplayTree.h.  This allows easy swapping
64 *           of tree types by simply changing a header.  Unfortunately, the
65 *           macro redefinitions in ubi_AVLtree.h and ubi_SplayTree.h will
66 *           conflict if used together.  You must either choose a single tree
67 *           type, or use the underlying function calls directly.  Compare
68 *           the two header files for more information.
69 *
70 * Revision 4.2  1998/06/02 01:29:14  crh
71 * Changed ubi_null.h to sys_include.h to make it more generic.
72 *
73 * Revision 4.1  1998/05/20 04:37:54  crh
74 * The C file now includes ubi_null.h.  See ubi_null.h for more info.
75 *
76 * Revision 4.0  1998/03/10 03:41:33  crh
77 * Minor comment changes.  The revision number is now 4.0 to match the
78 * BinTree and AVLtree modules.
79 *
80 * Revision 2.7  1998/01/24 06:37:08  crh
81 * Added a URL for more information.
82 *
83 * Revision 2.6  1997/12/23 04:01:12  crh
84 * In this version, all constants & macros defined in the header file have
85 * the ubi_tr prefix.  Also cleaned up anything that gcc complained about
86 * when run with '-pedantic -fsyntax-only -Wall'.
87 *
88 * Revision 2.5  1997/07/26 04:15:42  crh
89 * + Cleaned up a few minor syntax annoyances that gcc discovered for me.
90 * + Changed ubi_TRUE and ubi_FALSE to ubi_trTRUE and ubi_trFALSE.
91 *
92 * Revision 2.4  1997/06/03 04:42:21  crh
93 * Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid causing
94 * problems.
95 *
96 * Revision 2.3  1995/10/03 22:19:07  CRH
97 * Ubisized!
98 * Also, added the function ubi_sptSplay().
99 *
100 * Revision 2.1  95/03/09  23:54:42  CRH
101 * Added the ModuleID static string and function.  These modules are now
102 * self-identifying.
103 *
104 * Revision 2.0  95/02/27  22:34:46  CRH
105 * This module was updated to match the interface changes made to the
106 * ubi_BinTree module.  In particular, the interface to the Locate() function
107 * has changed.  See ubi_BinTree for more information on changes and new
108 * functions.
109 *
110 * The revision number was also upped to match ubi_BinTree.
111 *
112 * Revision 1.1  93/10/18  20:35:16  CRH
113 * I removed the hard-coded logical device names from the include file
114 * specifications.  CRH
115 *
116 * Revision 1.0  93/10/15  23:00:15  CRH
117 * With this revision, I have added a set of #define's that provide a single,
118 * standard API to all existing tree modules.  Until now, each of the three
119 * existing modules had a different function and typedef prefix, as follows:
120 *
121 *       Module        Prefix
122 *     ubi_BinTree     ubi_bt
123 *     ubi_AVLtree     ubi_avl
124 *     ubi_SplayTree   ubi_spt
125 *
126 * To further complicate matters, only those portions of the base module
127 * (ubi_BinTree) that were superceeded in the new module had the new names.
128 * For example, if you were using ubi_SplayTree, the locate function was
129 * called "ubi_sptLocate", but the next and previous functions remained
130 * "ubi_btNext" and "ubi_btPrev".
131 *
132 * This was not too terrible if you were familiar with the modules and knew
133 * exactly which tree model you wanted to use.  If you wanted to be able to
134 * change modules (for speed comparisons, etc), things could get messy very
135 * quickly.
136 *
137 * So, I have added a set of defined names that get redefined in any of the
138 * descendant modules.  To use this standardized interface in your code,
139 * simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with
140 * "ubi_tr".  The "ubi_tr" names will resolve to the correct function or
141 * datatype names for the module that you are using.  Just remember to
142 * include the header for that module in your program file.  Because these
143 * names are handled by the preprocessor, there is no added run-time
144 * overhead.
145 *
146 * Note that the original names do still exist, and can be used if you wish
147 * to write code directly to a specific module.  This should probably only be
148 * done if you are planning to implement a new descendant type, such as
149 * red/black trees.  CRH
150 *
151 * Revision 0.1  93/04/25  22:03:32  CRH
152 * Simply changed the <exec/types.h> #include reference the .c file to
153 * use <stdlib.h> instead.  The latter is portable, the former is not.
154 *
155 * Revision 0.0  93/04/21  23:05:52  CRH
156 * Initial version, written by Christopher R. Hertel.
157 * This module implements Splay Trees using the ubi_BinTree module as a basis.
158 *
159 * ========================================================================== **
160 */
161
162#include "stdafx.h"
163
164#include "ubi_SplayTree.h"  /* Header for THIS module.   */
165
166/* ========================================================================== **
167 * Static data.
168 */
169
170static char ModuleID[] = "ubi_SplayTree\n\
171\t$Revision: 4.5 $\n\
172\t$Date: 2000/01/08 23:26:49 $\n\
173\t$Author: crh $\n";
174
175
176/* ========================================================================== **
177 * Private functions...
178 */
179
180static void Rotate( ubi_btNodePtr p )
181  /* ------------------------------------------------------------------------ **
182   * This function performs a single rotation, moving node *p up one level
183   * in the tree.
184   *
185   *  Input:    p - a pointer to an ubi_btNode in a tree.
186   *
187   *  Output:   None.
188   *
189   *  Notes:    This implements a single rotation in either direction (left
190   *            or right).  This is the basic building block of all splay
191   *            tree rotations.
192   * ------------------------------------------------------------------------ **
193   */
194  {
195  ubi_btNodePtr parentp;
196  ubi_btNodePtr tmp;
197  char          way;
198  char          revway;
199
200  parentp = p->Link[ubi_trPARENT];    /* Find parent. */
201
202  if( parentp )                 /* If no parent, then we're already the root. */
203    {
204    way    = p->gender;
205    revway = ubi_trRevWay(way);
206    tmp    = p->Link[(int)revway];
207
208    parentp->Link[(int)way] = tmp;
209    if( tmp )
210      {
211      tmp->Link[ubi_trPARENT] = parentp;
212      tmp->gender             = way;
213      }
214
215    tmp                   = parentp->Link[ubi_trPARENT];
216    p->Link[ubi_trPARENT] = tmp;
217    p->gender             = parentp->gender;
218    if( tmp )
219      tmp->Link[(int)(p->gender)] = p;
220
221    parentp->Link[ubi_trPARENT] = p;
222    parentp->gender             = revway;
223    p->Link[(int)revway]        = parentp;
224    }
225  } /* Rotate */
226
227static ubi_btNodePtr Splay( ubi_btNodePtr SplayWithMe )
228  /* ------------------------------------------------------------------------ **
229   * Move the node indicated by SplayWithMe to the root of the tree by
230   * splaying the tree.
231   *
232   *  Input:  SplayWithMe - A pointer to an ubi_btNode within a tree.
233   *
234   *  Output: A pointer to the root of the splay tree (i.e., the same as
235   *          SplayWithMe).
236   * ------------------------------------------------------------------------ **
237   */
238  {
239  ubi_btNodePtr parent;
240
241  while( NULL != (parent = SplayWithMe->Link[ubi_trPARENT]) )
242    {
243    if( parent->gender == SplayWithMe->gender )       /* Zig-Zig */
244      Rotate( parent );
245    else
246      {
247      if( ubi_trEQUAL != parent->gender )             /* Zig-Zag */
248        Rotate( SplayWithMe );
249      }
250    Rotate( SplayWithMe );                            /* Zig */
251    } /* while */
252  return( SplayWithMe );
253  } /* Splay */
254
255/* ========================================================================== **
256 * Exported utilities.
257 */
258
259ubi_trBool ubi_sptInsert( ubi_btRootPtr  RootPtr,
260                          ubi_btNodePtr  NewNode,
261                          ubi_btItemPtr  ItemPtr,
262                          ubi_btNodePtr *OldNode )
263  /* ------------------------------------------------------------------------ **
264   * This function uses a non-recursive algorithm to add a new element to the
265   * splay tree.
266   *
267   *  Input:   RootPtr  -  a pointer to the ubi_btRoot structure that indicates
268   *                       the root of the tree to which NewNode is to be added.
269   *           NewNode  -  a pointer to an ubi_btNode structure that is NOT
270   *                       part of any tree.
271   *           ItemPtr  -  A pointer to the sort key that is stored within
272   *                       *NewNode.  ItemPtr MUST point to information stored
273   *                       in *NewNode or an EXACT DUPLICATE.  The key data
274   *                       indicated by ItemPtr is used to place the new node
275   *                       into the tree.
276   *           OldNode  -  a pointer to an ubi_btNodePtr.  When searching
277   *                       the tree, a duplicate node may be found.  If
278   *                       duplicates are allowed, then the new node will
279   *                       be simply placed into the tree.  If duplicates
280   *                       are not allowed, however, then one of two things
281   *                       may happen.
282   *                       1) if overwritting *is not* allowed, this
283   *                          function will return FALSE (indicating that
284   *                          the new node could not be inserted), and
285   *                          *OldNode will point to the duplicate that is
286   *                          still in the tree.
287   *                       2) if overwritting *is* allowed, then this
288   *                          function will swap **OldNode for *NewNode.
289   *                          In this case, *OldNode will point to the node
290   *                          that was removed (thus allowing you to free
291   *                          the node).
292   *                          **  If you are using overwrite mode, ALWAYS  **
293   *                          ** check the return value of this parameter! **
294   *                 Note: You may pass NULL in this parameter, the
295   *                       function knows how to cope.  If you do this,
296   *                       however, there will be no way to return a
297   *                       pointer to an old (ie. replaced) node (which is
298   *                       a problem if you are using overwrite mode).
299   *
300   *  Output:  a boolean value indicating success or failure.  The function
301   *           will return FALSE if the node could not be added to the tree.
302   *           Such failure will only occur if duplicates are not allowed,
303   *           nodes cannot be overwritten, AND a duplicate key was found
304   *           within the tree.
305   * ------------------------------------------------------------------------ **
306   */
307  {
308  ubi_btNodePtr OtherP;
309
310  if( !(OldNode) )
311    OldNode = &OtherP;
312
313  if( ubi_btInsert( RootPtr, NewNode, ItemPtr, OldNode ) )
314    {
315    RootPtr->root = Splay( NewNode );
316    return( ubi_trTRUE );
317    }
318
319  /* Splay the unreplacable, duplicate keyed, unique, old node. */
320  RootPtr->root = Splay( (*OldNode) );
321  return( ubi_trFALSE );
322  } /* ubi_sptInsert */
323
324ubi_btNodePtr ubi_sptRemove( ubi_btRootPtr RootPtr, ubi_btNodePtr DeadNode )
325  /* ------------------------------------------------------------------------ **
326   * This function removes the indicated node from the tree.
327   *
328   *  Input:   RootPtr  -  A pointer to the header of the tree that contains
329   *                       the node to be removed.
330   *           DeadNode -  A pointer to the node that will be removed.
331   *
332   *  Output:  This function returns a pointer to the node that was removed
333   *           from the tree (ie. the same as DeadNode).
334   *
335   *  Note:    The node MUST be in the tree indicated by RootPtr.  If not,
336   *           strange and evil things will happen to your trees.
337   * ------------------------------------------------------------------------ **
338   */
339  {
340  ubi_btNodePtr p;
341
342  (void)Splay( DeadNode );                  /* Move dead node to root.        */
343  if( NULL != (p = DeadNode->Link[ubi_trLEFT]) )
344    {                                       /* If left subtree exists...      */
345    ubi_btNodePtr q = DeadNode->Link[ubi_trRIGHT];
346
347    p->Link[ubi_trPARENT] = NULL;           /* Left subtree node becomes root.*/
348    p->gender             = ubi_trPARENT;
349    p                     = ubi_btLast( p );  /* Find rightmost left node...  */
350    p->Link[ubi_trRIGHT]  = q;                /* ...attach right tree.        */
351    if( q )
352      q->Link[ubi_trPARENT] = p;
353    RootPtr->root   = Splay( p );           /* Resplay at p.                  */
354    }
355  else
356    {
357    if( NULL != (p = DeadNode->Link[ubi_trRIGHT]) )
358      {                               /* No left, but right subtree exists... */
359      p->Link[ubi_trPARENT] = NULL;         /* Right subtree root becomes...  */
360      p->gender       = ubi_trPARENT;       /* ...overall tree root.          */
361      RootPtr->root   = p;
362      }
363    else
364      RootPtr->root = NULL;                 /* No subtrees => empty tree.     */
365    }
366
367  (RootPtr->count)--;                       /* Decrement node count.          */
368  return( DeadNode );                       /* Return pointer to pruned node. */
369  } /* ubi_sptRemove */
370
371ubi_btNodePtr ubi_sptLocate( ubi_btRootPtr RootPtr,
372                             ubi_btItemPtr FindMe,
373                             ubi_trCompOps CompOp )
374  /* ------------------------------------------------------------------------ **
375   * The purpose of ubi_btLocate() is to find a node or set of nodes given
376   * a target value and a "comparison operator".  The Locate() function is
377   * more flexible and (in the case of trees that may contain dupicate keys)
378   * more precise than the ubi_btFind() function.  The latter is faster,
379   * but it only searches for exact matches and, if the tree contains
380   * duplicates, Find() may return a pointer to any one of the duplicate-
381   * keyed records.
382   *
383   *  Input:
384   *     RootPtr  -  A pointer to the header of the tree to be searched.
385   *     FindMe   -  An ubi_btItemPtr that indicates the key for which to
386   *                 search.
387   *     CompOp   -  One of the following:
388   *                    CompOp     Return a pointer to the node with
389   *                    ------     ---------------------------------
390   *                   ubi_trLT - the last key value that is less
391   *                              than FindMe.
392   *                   ubi_trLE - the first key matching FindMe, or
393   *                              the last key that is less than
394   *                              FindMe.
395   *                   ubi_trEQ - the first key matching FindMe.
396   *                   ubi_trGE - the first key matching FindMe, or the
397   *                              first key greater than FindMe.
398   *                   ubi_trGT - the first key greater than FindMe.
399   *  Output:
400   *     A pointer to the node matching the criteria listed above under
401   *     CompOp, or NULL if no node matched the criteria.
402   *
403   *  Notes:
404   *     In the case of trees with duplicate keys, Locate() will behave as
405   *     follows:
406   *
407   *     Find:  3                       Find: 3
408   *     Keys:  1 2 2 2 3 3 3 3 3 4 4   Keys: 1 1 2 2 2 4 4 5 5 5 6
409   *                  ^ ^         ^                   ^ ^
410   *                 LT EQ        GT                 LE GE
411   *
412   *     That is, when returning a pointer to a node with a key that is LESS
413   *     THAN the target key (FindMe), Locate() will return a pointer to the
414   *     LAST matching node.
415   *     When returning a pointer to a node with a key that is GREATER
416   *     THAN the target key (FindMe), Locate() will return a pointer to the
417   *     FIRST matching node.
418   *
419   *  See Also: ubi_btFind(), ubi_btFirstOf(), ubi_btLastOf().
420   * ------------------------------------------------------------------------ **
421   */
422  {
423  ubi_btNodePtr p;
424
425  p = ubi_btLocate( RootPtr, FindMe, CompOp );
426  if( p )
427    RootPtr->root = Splay( p );
428  return( p );
429  } /* ubi_sptLocate */
430
431ubi_btNodePtr ubi_sptFind( ubi_btRootPtr RootPtr,
432                           ubi_btItemPtr FindMe )
433  /* ------------------------------------------------------------------------ **
434   * This function performs a non-recursive search of a tree for any node
435   * matching a specific key.
436   *
437   *  Input:
438   *     RootPtr  -  a pointer to the header of the tree to be searched.
439   *     FindMe   -  a pointer to the key value for which to search.
440   *
441   *  Output:
442   *     A pointer to a node with a key that matches the key indicated by
443   *     FindMe, or NULL if no such node was found.
444   *
445   *  Note:   In a tree that allows duplicates, the pointer returned *might
446   *          not* point to the (sequentially) first occurance of the
447   *          desired key.  In such a tree, it may be more useful to use
448   *          ubi_sptLocate().
449   * ------------------------------------------------------------------------ **
450   */
451  {
452  ubi_btNodePtr p;
453
454  p = ubi_btFind( RootPtr, FindMe );
455  if( p )
456    RootPtr->root = Splay( p );
457  return( p );
458  } /* ubi_sptFind */
459
460void ubi_sptSplay( ubi_btRootPtr RootPtr,
461                   ubi_btNodePtr SplayMe )
462  /* ------------------------------------------------------------------------ **
463   *  This function allows you to splay the tree at a given node, thus moving
464   *  the node to the top of the tree.
465   *
466   *  Input:
467   *     RootPtr  -  a pointer to the header of the tree to be splayed.
468   *     SplayMe  -  a pointer to a node within the tree.  This will become
469   *                 the new root node.
470   *  Output: None.
471   *
472   *  Notes:  This is an uncharacteristic function for this group of modules
473   *          in that it provides access to the internal balancing routines,
474   *          which would normally be hidden.
475   *          Splaying the tree will not damage it (assuming that I've done
476   *          *my* job), but there is overhead involved.  I don't recommend
477   *          that you use this function unless you understand the underlying
478   *          Splay Tree principles involved.
479   * ------------------------------------------------------------------------ **
480   */
481  {
482  RootPtr->root = Splay( SplayMe );
483  } /* ubi_sptSplay */
484
485int ubi_sptModuleID( int size, char *list[] )
486  /* ------------------------------------------------------------------------ **
487   * Returns a set of strings that identify the module.
488   *
489   *  Input:  size  - The number of elements in the array <list>.
490   *          list  - An array of pointers of type (char *).  This array
491   *                  should, initially, be empty.  This function will fill
492   *                  in the array with pointers to strings.
493   *  Output: The number of elements of <list> that were used.  If this value
494   *          is less than <size>, the values of the remaining elements are
495   *          not guaranteed.
496   *
497   *  Notes:  Please keep in mind that the pointers returned indicate strings
498   *          stored in static memory.  Don't free() them, don't write over
499   *          them, etc.  Just read them.
500   * ------------------------------------------------------------------------ **
501   */
502  {
503  if( size > 0 )
504    {
505    list[0] = ModuleID;
506    if( size > 1 )
507      return( 1 + ubi_btModuleID( --size, &(list[1]) ) );
508    return( 1 );
509    }
510  return( 0 );
511  } /* ubi_sptModuleID */
512
513/* ================================ The End ================================= */
514