1/*
2 * IBM Accurate Mathematical Library
3 * written by International Business Machines Corp.
4 * Copyright (C) 2001 Free Software Foundation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20/************************************************************************/
21/*  MODULE_NAME: atnat2.c                                               */
22/*                                                                      */
23/*  FUNCTIONS: uatan2                                                   */
24/*             atan2Mp                                                  */
25/*             signArctan2                                              */
26/*             normalized                                               */
27/*                                                                      */
28/*  FILES NEEDED: dla.h endian.h mpa.h mydefs.h atnat2.h                */
29/*                mpatan.c mpatan2.c mpsqrt.c                           */
30/*                uatan.tbl                                             */
31/*                                                                      */
32/* An ultimate atan2() routine. Given two IEEE double machine numbers y,*/
33/* x it computes the correctly rounded (to nearest) value of atan2(y,x).*/
34/*                                                                      */
35/* Assumption: Machine arithmetic operations are performed in           */
36/* round to nearest mode of IEEE 754 standard.                          */
37/*                                                                      */
38/************************************************************************/
39
40#include "dla.h"
41#include "mpa.h"
42#include "MathLib.h"
43#include "uatan.tbl"
44#include "atnat2.h"
45#include "math_private.h"
46
47/************************************************************************/
48/* An ultimate atan2 routine. Given two IEEE double machine numbers y,x */
49/* it computes the correctly rounded (to nearest) value of atan2(y,x).  */
50/* Assumption: Machine arithmetic operations are performed in           */
51/* round to nearest mode of IEEE 754 standard.                          */
52/************************************************************************/
53static double atan2Mp(double ,double ,const int[]);
54static double signArctan2(double ,double);
55static double normalized(double ,double,double ,double);
56void __mpatan2(mp_no *,mp_no *,mp_no *,int);
57
58double __ieee754_atan2(double y,double x) {
59
60  int i,de,ux,dx,uy,dy;
61#if 0
62  int p;
63#endif
64  static const int pr[MM]={6,8,10,20,32};
65  double ax,ay,u,du,u9,ua,v,vv,dv,t1,t2,t3,t4,t5,t6,t7,t8,
66         z,zz,cor,s1,ss1,s2,ss2;
67#if 0
68  double z1,z2;
69#endif
70  number num;
71#if 0
72  mp_no mperr,mpt1,mpx,mpy,mpz,mpz1,mpz2;
73#endif
74
75  static const int ep= 59768832,   /*  57*16**5   */
76                   em=-59768832;   /* -57*16**5   */
77
78  /* x=NaN or y=NaN */
79  num.d = x;  ux = num.i[HIGH_HALF];  dx = num.i[LOW_HALF];
80  if   ((ux&0x7ff00000)    ==0x7ff00000) {
81    if (((ux&0x000fffff)|dx)!=0x00000000) return x+x; }
82  num.d = y;  uy = num.i[HIGH_HALF];  dy = num.i[LOW_HALF];
83  if   ((uy&0x7ff00000)    ==0x7ff00000) {
84    if (((uy&0x000fffff)|dy)!=0x00000000) return y+y; }
85
86  /* y=+-0 */
87  if      (uy==0x00000000) {
88    if    (dy==0x00000000) {
89      if  ((ux&0x80000000)==0x00000000)  return ZERO;
90      else                               return opi.d; } }
91  else if (uy==0x80000000) {
92    if    (dy==0x00000000) {
93      if  ((ux&0x80000000)==0x00000000)  return MZERO;
94      else                               return mopi.d;} }
95
96  /* x=+-0 */
97  if (x==ZERO) {
98    if ((uy&0x80000000)==0x00000000)     return hpi.d;
99    else                                 return mhpi.d; }
100
101  /* x=+-INF */
102  if          (ux==0x7ff00000) {
103    if        (dx==0x00000000) {
104      if      (uy==0x7ff00000) {
105        if    (dy==0x00000000)  return qpi.d; }
106      else if (uy==0xfff00000) {
107        if    (dy==0x00000000)  return mqpi.d; }
108      else {
109        if    ((uy&0x80000000)==0x00000000)  return ZERO;
110        else                                 return MZERO; }
111    }
112  }
113  else if     (ux==0xfff00000) {
114    if        (dx==0x00000000) {
115      if      (uy==0x7ff00000) {
116        if    (dy==0x00000000)  return tqpi.d; }
117      else if (uy==0xfff00000) {
118        if    (dy==0x00000000)  return mtqpi.d; }
119      else                     {
120        if    ((uy&0x80000000)==0x00000000)  return opi.d;
121        else                                 return mopi.d; }
122    }
123  }
124
125  /* y=+-INF */
126  if      (uy==0x7ff00000) {
127    if    (dy==0x00000000)  return hpi.d; }
128  else if (uy==0xfff00000) {
129    if    (dy==0x00000000)  return mhpi.d; }
130
131  /* either x/y or y/x is very close to zero */
132  ax = (x<ZERO) ? -x : x;    ay = (y<ZERO) ? -y : y;
133  de = (uy & 0x7ff00000) - (ux & 0x7ff00000);
134  if      (de>=ep)  { return ((y>ZERO) ? hpi.d : mhpi.d); }
135  else if (de<=em)  {
136    if    (x>ZERO)  {
137      if  ((z=ay/ax)<TWOM1022)  return normalized(ax,ay,y,z);
138      else                      return signArctan2(y,z); }
139    else            { return ((y>ZERO) ? opi.d : mopi.d); } }
140
141  /* if either x or y is extremely close to zero, scale abs(x), abs(y). */
142  if (ax<twom500.d || ay<twom500.d) { ax*=two500.d;  ay*=two500.d; }
143
144  /* x,y which are neither special nor extreme */
145  if (ay<ax) {
146    u=ay/ax;
147    EMULV(ax,u,v,vv,t1,t2,t3,t4,t5)
148    du=((ay-v)-vv)/ax; }
149  else {
150    u=ax/ay;
151    EMULV(ay,u,v,vv,t1,t2,t3,t4,t5)
152    du=((ax-v)-vv)/ay; }
153
154  if (x>ZERO) {
155
156    /* (i)   x>0, abs(y)< abs(x):  atan(ay/ax) */
157    if (ay<ax) {
158      if (u<inv16.d) {
159        v=u*u;  zz=du+u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
160        if ((z=u+(zz-u1.d*u)) == u+(zz+u1.d*u))  return signArctan2(y,z);
161
162        MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
163        s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
164        ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
165        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
166        ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
167        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
168        ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
169        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
170        ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
171        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
172        MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
173        ADD2(u,du,s2,ss2,s1,ss1,t1,t2)
174        if ((z=s1+(ss1-u5.d*s1)) == s1+(ss1+u5.d*s1))  return signArctan2(y,z);
175        return atan2Mp(x,y,pr);
176      }
177      else {
178        i=(TWO52+TWO8*u)-TWO52;  i-=16;
179        t3=u-cij[i][0].d;
180        EADD(t3,du,v,dv)
181        t1=cij[i][1].d;  t2=cij[i][2].d;
182        zz=v*t2+(dv*t2+v*v*(cij[i][3].d+v*(cij[i][4].d+
183                         v*(cij[i][5].d+v* cij[i][6].d))));
184        if (i<112) {
185          if (i<48)  u9=u91.d;    /* u < 1/4        */
186          else       u9=u92.d; }  /* 1/4 <= u < 1/2 */
187        else {
188          if (i<176) u9=u93.d;    /* 1/2 <= u < 3/4 */
189          else       u9=u94.d; }  /* 3/4 <= u <= 1  */
190        if ((z=t1+(zz-u9*t1)) == t1+(zz+u9*t1))  return signArctan2(y,z);
191
192        t1=u-hij[i][0].d;
193        EADD(t1,du,v,vv)
194        s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+
195           v*(hij[i][14].d+v* hij[i][15].d))));
196        ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
197        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
198        ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
199        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
200        ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
201        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
202        ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
203        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
204        ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
205        if ((z=s2+(ss2-ub.d*s2)) == s2+(ss2+ub.d*s2))  return signArctan2(y,z);
206        return atan2Mp(x,y,pr);
207      }
208    }
209
210    /* (ii)  x>0, abs(x)<=abs(y):  pi/2-atan(ax/ay) */
211    else {
212      if (u<inv16.d) {
213        v=u*u;
214        zz=u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
215        ESUB(hpi.d,u,t2,cor)
216        t3=((hpi1.d+cor)-du)-zz;
217        if ((z=t2+(t3-u2.d)) == t2+(t3+u2.d))  return signArctan2(y,z);
218
219        MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
220        s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
221        ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
222        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
223        ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
224        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
225        ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
226        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
227        ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
228        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
229        MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
230        ADD2(u,du,s2,ss2,s1,ss1,t1,t2)
231        SUB2(hpi.d,hpi1.d,s1,ss1,s2,ss2,t1,t2)
232        if ((z=s2+(ss2-u6.d)) == s2+(ss2+u6.d))  return signArctan2(y,z);
233        return atan2Mp(x,y,pr);
234      }
235      else {
236        i=(TWO52+TWO8*u)-TWO52;  i-=16;
237        v=(u-cij[i][0].d)+du;
238        zz=hpi1.d-v*(cij[i][2].d+v*(cij[i][3].d+v*(cij[i][4].d+
239                                 v*(cij[i][5].d+v* cij[i][6].d))));
240        t1=hpi.d-cij[i][1].d;
241        if (i<112)  ua=ua1.d;  /* w <  1/2 */
242        else        ua=ua2.d;  /* w >= 1/2 */
243        if ((z=t1+(zz-ua)) == t1+(zz+ua))  return signArctan2(y,z);
244
245        t1=u-hij[i][0].d;
246        EADD(t1,du,v,vv)
247        s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+
248           v*(hij[i][14].d+v* hij[i][15].d))));
249        ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
250        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
251        ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
252        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
253        ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
254        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
255        ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
256        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
257        ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
258        SUB2(hpi.d,hpi1.d,s2,ss2,s1,ss1,t1,t2)
259        if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d))  return signArctan2(y,z);
260        return atan2Mp(x,y,pr);
261      }
262    }
263  }
264  else {
265
266    /* (iii) x<0, abs(x)< abs(y):  pi/2+atan(ax/ay) */
267    if (ax<ay) {
268      if (u<inv16.d) {
269        v=u*u;
270        zz=u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
271        EADD(hpi.d,u,t2,cor)
272        t3=((hpi1.d+cor)+du)+zz;
273        if ((z=t2+(t3-u3.d)) == t2+(t3+u3.d))  return signArctan2(y,z);
274
275        MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
276        s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
277        ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
278        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
279        ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
280        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
281        ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
282        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
283        ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
284        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
285        MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
286        ADD2(u,du,s2,ss2,s1,ss1,t1,t2)
287        ADD2(hpi.d,hpi1.d,s1,ss1,s2,ss2,t1,t2)
288        if ((z=s2+(ss2-u7.d)) == s2+(ss2+u7.d))  return signArctan2(y,z);
289        return atan2Mp(x,y,pr);
290      }
291      else {
292        i=(TWO52+TWO8*u)-TWO52;  i-=16;
293        v=(u-cij[i][0].d)+du;
294        zz=hpi1.d+v*(cij[i][2].d+v*(cij[i][3].d+v*(cij[i][4].d+
295                                 v*(cij[i][5].d+v* cij[i][6].d))));
296        t1=hpi.d+cij[i][1].d;
297        if (i<112)  ua=ua1.d;  /* w <  1/2 */
298        else        ua=ua2.d;  /* w >= 1/2 */
299        if ((z=t1+(zz-ua)) == t1+(zz+ua))  return signArctan2(y,z);
300
301        t1=u-hij[i][0].d;
302        EADD(t1,du,v,vv)
303        s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+
304           v*(hij[i][14].d+v* hij[i][15].d))));
305        ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
306        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
307        ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
308        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
309        ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
310        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
311        ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
312        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
313        ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
314        ADD2(hpi.d,hpi1.d,s2,ss2,s1,ss1,t1,t2)
315        if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d))  return signArctan2(y,z);
316        return atan2Mp(x,y,pr);
317      }
318    }
319
320    /* (iv)  x<0, abs(y)<=abs(x):  pi-atan(ax/ay) */
321    else {
322      if (u<inv16.d) {
323        v=u*u;
324        zz=u*v*(d3.d+v*(d5.d+v*(d7.d+v*(d9.d+v*(d11.d+v*d13.d)))));
325        ESUB(opi.d,u,t2,cor)
326        t3=((opi1.d+cor)-du)-zz;
327        if ((z=t2+(t3-u4.d)) == t2+(t3+u4.d))  return signArctan2(y,z);
328
329        MUL2(u,du,u,du,v,vv,t1,t2,t3,t4,t5,t6,t7,t8)
330        s1=v*(f11.d+v*(f13.d+v*(f15.d+v*(f17.d+v*f19.d))));
331        ADD2(f9.d,ff9.d,s1,ZERO,s2,ss2,t1,t2)
332        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
333        ADD2(f7.d,ff7.d,s1,ss1,s2,ss2,t1,t2)
334        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
335        ADD2(f5.d,ff5.d,s1,ss1,s2,ss2,t1,t2)
336        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
337        ADD2(f3.d,ff3.d,s1,ss1,s2,ss2,t1,t2)
338        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
339        MUL2(u,du,s1,ss1,s2,ss2,t1,t2,t3,t4,t5,t6,t7,t8)
340        ADD2(u,du,s2,ss2,s1,ss1,t1,t2)
341        SUB2(opi.d,opi1.d,s1,ss1,s2,ss2,t1,t2)
342        if ((z=s2+(ss2-u8.d)) == s2+(ss2+u8.d))  return signArctan2(y,z);
343        return atan2Mp(x,y,pr);
344      }
345      else {
346        i=(TWO52+TWO8*u)-TWO52;  i-=16;
347        v=(u-cij[i][0].d)+du;
348        zz=opi1.d-v*(cij[i][2].d+v*(cij[i][3].d+v*(cij[i][4].d+
349                                 v*(cij[i][5].d+v* cij[i][6].d))));
350        t1=opi.d-cij[i][1].d;
351        if (i<112)  ua=ua1.d;  /* w <  1/2 */
352        else        ua=ua2.d;  /* w >= 1/2 */
353        if ((z=t1+(zz-ua)) == t1+(zz+ua))  return signArctan2(y,z);
354
355        t1=u-hij[i][0].d;
356        EADD(t1,du,v,vv)
357        s1=v*(hij[i][11].d+v*(hij[i][12].d+v*(hij[i][13].d+
358           v*(hij[i][14].d+v* hij[i][15].d))));
359        ADD2(hij[i][9].d,hij[i][10].d,s1,ZERO,s2,ss2,t1,t2)
360        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
361        ADD2(hij[i][7].d,hij[i][8].d,s1,ss1,s2,ss2,t1,t2)
362        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
363        ADD2(hij[i][5].d,hij[i][6].d,s1,ss1,s2,ss2,t1,t2)
364        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
365        ADD2(hij[i][3].d,hij[i][4].d,s1,ss1,s2,ss2,t1,t2)
366        MUL2(v,vv,s2,ss2,s1,ss1,t1,t2,t3,t4,t5,t6,t7,t8)
367        ADD2(hij[i][1].d,hij[i][2].d,s1,ss1,s2,ss2,t1,t2)
368        SUB2(opi.d,opi1.d,s2,ss2,s1,ss1,t1,t2)
369        if ((z=s1+(ss1-uc.d)) == s1+(ss1+uc.d))  return signArctan2(y,z);
370        return atan2Mp(x,y,pr);
371      }
372    }
373  }
374}
375  /* Treat the Denormalized case */
376static double  normalized(double ax,double ay,double y, double z)
377    { int p;
378      mp_no mpx,mpy,mpz,mperr,mpz2,mpt1;
379  p=6;
380  __dbl_mp(ax,&mpx,p);  __dbl_mp(ay,&mpy,p);  __dvd(&mpy,&mpx,&mpz,p);
381  __dbl_mp(ue.d,&mpt1,p);   __mul(&mpz,&mpt1,&mperr,p);
382  __sub(&mpz,&mperr,&mpz2,p);  __mp_dbl(&mpz2,&z,p);
383  return signArctan2(y,z);
384}
385  /* Fix the sign and return after stage 1 or stage 2 */
386static double signArctan2(double y,double z)
387{
388  return ((y<ZERO) ? -z : z);
389}
390  /* Stage 3: Perform a multi-Precision computation */
391static double  atan2Mp(double x,double y,const int pr[])
392{
393  double z1,z2;
394  int i,p;
395  mp_no mpx,mpy,mpz,mpz1,mpz2,mperr,mpt1;
396  for (i=0; i<MM; i++) {
397    p = pr[i];
398    __dbl_mp(x,&mpx,p);  __dbl_mp(y,&mpy,p);
399    __mpatan2(&mpy,&mpx,&mpz,p);
400    __dbl_mp(ud[i].d,&mpt1,p);   __mul(&mpz,&mpt1,&mperr,p);
401    __add(&mpz,&mperr,&mpz1,p);  __sub(&mpz,&mperr,&mpz2,p);
402    __mp_dbl(&mpz1,&z1,p);       __mp_dbl(&mpz2,&z2,p);
403    if (z1==z2)   return z1;
404  }
405  return z1; /*if unpossible to do exact computing */
406}
407