1/* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1992-1993 Jean-loup Gailly
3 * This is free software; you can redistribute it and/or modify it under the
4 * terms of the GNU General Public License, see the file COPYING.
5 */
6
7/*
8 *  PURPOSE
9 *
10 *      Encode various sets of source values using variable-length
11 *      binary code trees.
12 *
13 *  DISCUSSION
14 *
15 *      The PKZIP "deflation" process uses several Huffman trees. The more
16 *      common source values are represented by shorter bit sequences.
17 *
18 *      Each code tree is stored in the ZIP file in a compressed form
19 *      which is itself a Huffman encoding of the lengths of
20 *      all the code strings (in ascending order by source values).
21 *      The actual code strings are reconstructed from the lengths in
22 *      the UNZIP process, as described in the "application note"
23 *      (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
24 *
25 *  REFERENCES
26 *
27 *      Lynch, Thomas J.
28 *          Data Compression:  Techniques and Applications, pp. 53-55.
29 *          Lifetime Learning Publications, 1985.  ISBN 0-534-03418-7.
30 *
31 *      Storer, James A.
32 *          Data Compression:  Methods and Theory, pp. 49-50.
33 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
34 *
35 *      Sedgewick, R.
36 *          Algorithms, p290.
37 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
38 *
39 *  INTERFACE
40 *
41 *      void ct_init (ush *attr, int *methodp)
42 *          Allocate the match buffer, initialize the various tables and save
43 *          the location of the internal file attribute (ascii/binary) and
44 *          method (DEFLATE/STORE)
45 *
46 *      void ct_tally (int dist, int lc);
47 *          Save the match info and tally the frequency counts.
48 *
49 *      long flush_block (char *buf, ulg stored_len, int eof)
50 *          Determine the best encoding for the current block: dynamic trees,
51 *          static trees or store, and output the encoded block to the zip
52 *          file. Returns the total compressed length for the file so far.
53 *
54 */
55
56#include <ctype.h>
57
58#include "tailor.h"
59#include "gzip.h"
60
61#ifdef RCSID
62static char rcsid[] = "$Id: trees.c 3476 2003-06-11 15:56:10Z darkwyrm $";
63#endif
64
65/* ===========================================================================
66 * Constants
67 */
68
69#define MAX_BITS 15
70/* All codes must not exceed MAX_BITS bits */
71
72#define MAX_BL_BITS 7
73/* Bit length codes must not exceed MAX_BL_BITS bits */
74
75#define LENGTH_CODES 29
76/* number of length codes, not counting the special END_BLOCK code */
77
78#define LITERALS  256
79/* number of literal bytes 0..255 */
80
81#define END_BLOCK 256
82/* end of block literal code */
83
84#define L_CODES (LITERALS+1+LENGTH_CODES)
85/* number of Literal or Length codes, including the END_BLOCK code */
86
87#define D_CODES   30
88/* number of distance codes */
89
90#define BL_CODES  19
91/* number of codes used to transfer the bit lengths */
92
93
94local int near extra_lbits[LENGTH_CODES] /* extra bits for each length code */
95   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
96
97local int near extra_dbits[D_CODES] /* extra bits for each distance code */
98   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
99
100local int near extra_blbits[BL_CODES]/* extra bits for each bit length code */
101   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
102
103#define STORED_BLOCK 0
104#define STATIC_TREES 1
105#define DYN_TREES    2
106/* The three kinds of block type */
107
108#ifndef LIT_BUFSIZE
109#  ifdef SMALL_MEM
110#    define LIT_BUFSIZE  0x2000
111#  else
112#  ifdef MEDIUM_MEM
113#    define LIT_BUFSIZE  0x4000
114#  else
115#    define LIT_BUFSIZE  0x8000
116#  endif
117#  endif
118#endif
119#ifndef DIST_BUFSIZE
120#  define DIST_BUFSIZE  LIT_BUFSIZE
121#endif
122/* Sizes of match buffers for literals/lengths and distances.  There are
123 * 4 reasons for limiting LIT_BUFSIZE to 64K:
124 *   - frequencies can be kept in 16 bit counters
125 *   - if compression is not successful for the first block, all input data is
126 *     still in the window so we can still emit a stored block even when input
127 *     comes from standard input.  (This can also be done for all blocks if
128 *     LIT_BUFSIZE is not greater than 32K.)
129 *   - if compression is not successful for a file smaller than 64K, we can
130 *     even emit a stored file instead of a stored block (saving 5 bytes).
131 *   - creating new Huffman trees less frequently may not provide fast
132 *     adaptation to changes in the input data statistics. (Take for
133 *     example a binary file with poorly compressible code followed by
134 *     a highly compressible string table.) Smaller buffer sizes give
135 *     fast adaptation but have of course the overhead of transmitting trees
136 *     more frequently.
137 *   - I can't count above 4
138 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
139 * memory at the expense of compression). Some optimizations would be possible
140 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
141 */
142#if LIT_BUFSIZE > INBUFSIZ
143    error cannot overlay l_buf and inbuf
144#endif
145
146#define REP_3_6      16
147/* repeat previous bit length 3-6 times (2 bits of repeat count) */
148
149#define REPZ_3_10    17
150/* repeat a zero length 3-10 times  (3 bits of repeat count) */
151
152#define REPZ_11_138  18
153/* repeat a zero length 11-138 times  (7 bits of repeat count) */
154
155/* ===========================================================================
156 * Local data
157 */
158
159/* Data structure describing a single value and its code string. */
160typedef struct ct_data {
161    union {
162        ush  freq;       /* frequency count */
163        ush  code;       /* bit string */
164    } fc;
165    union {
166        ush  dad;        /* father node in Huffman tree */
167        ush  len;        /* length of bit string */
168    } dl;
169} ct_data;
170
171#define Freq fc.freq
172#define Code fc.code
173#define Dad  dl.dad
174#define Len  dl.len
175
176#define HEAP_SIZE (2*L_CODES+1)
177/* maximum heap size */
178
179local ct_data near dyn_ltree[HEAP_SIZE];   /* literal and length tree */
180local ct_data near dyn_dtree[2*D_CODES+1]; /* distance tree */
181
182local ct_data near static_ltree[L_CODES+2];
183/* The static literal tree. Since the bit lengths are imposed, there is no
184 * need for the L_CODES extra codes used during heap construction. However
185 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
186 * below).
187 */
188
189local ct_data near static_dtree[D_CODES];
190/* The static distance tree. (Actually a trivial tree since all codes use
191 * 5 bits.)
192 */
193
194local ct_data near bl_tree[2*BL_CODES+1];
195/* Huffman tree for the bit lengths */
196
197typedef struct tree_desc {
198    ct_data near *dyn_tree;      /* the dynamic tree */
199    ct_data near *static_tree;   /* corresponding static tree or NULL */
200    int     near *extra_bits;    /* extra bits for each code or NULL */
201    int     extra_base;          /* base index for extra_bits */
202    int     elems;               /* max number of elements in the tree */
203    int     max_length;          /* max bit length for the codes */
204    int     max_code;            /* largest code with non zero frequency */
205} tree_desc;
206
207local tree_desc near l_desc =
208{dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};
209
210local tree_desc near d_desc =
211{dyn_dtree, static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS, 0};
212
213local tree_desc near bl_desc =
214{bl_tree, (ct_data near *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS, 0};
215
216
217local ush near bl_count[MAX_BITS+1];
218/* number of codes at each bit length for an optimal tree */
219
220local uch near bl_order[BL_CODES]
221   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
222/* The lengths of the bit length codes are sent in order of decreasing
223 * probability, to avoid transmitting the lengths for unused bit length codes.
224 */
225
226local int near heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
227local int heap_len;               /* number of elements in the heap */
228local int heap_max;               /* element of largest frequency */
229/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
230 * The same heap array is used to build all trees.
231 */
232
233local uch near depth[2*L_CODES+1];
234/* Depth of each subtree used as tie breaker for trees of equal frequency */
235
236local uch length_code[MAX_MATCH-MIN_MATCH+1];
237/* length code for each normalized match length (0 == MIN_MATCH) */
238
239local uch dist_code[512];
240/* distance codes. The first 256 values correspond to the distances
241 * 3 .. 258, the last 256 values correspond to the top 8 bits of
242 * the 15 bit distances.
243 */
244
245local int near base_length[LENGTH_CODES];
246/* First normalized length for each code (0 = MIN_MATCH) */
247
248local int near base_dist[D_CODES];
249/* First normalized distance for each code (0 = distance of 1) */
250
251#define l_buf inbuf
252/* DECLARE(uch, l_buf, LIT_BUFSIZE);  buffer for literals or lengths */
253
254/* DECLARE(ush, d_buf, DIST_BUFSIZE); buffer for distances */
255
256local uch near flag_buf[(LIT_BUFSIZE/8)];
257/* flag_buf is a bit array distinguishing literals from lengths in
258 * l_buf, thus indicating the presence or absence of a distance.
259 */
260
261local unsigned last_lit;    /* running index in l_buf */
262local unsigned last_dist;   /* running index in d_buf */
263local unsigned last_flags;  /* running index in flag_buf */
264local uch flags;            /* current flags not yet saved in flag_buf */
265local uch flag_bit;         /* current bit used in flags */
266/* bits are filled in flags starting at bit 0 (least significant).
267 * Note: these flags are overkill in the current code since we don't
268 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
269 */
270
271local ulg opt_len;        /* bit length of current block with optimal trees */
272local ulg static_len;     /* bit length of current block with static trees */
273
274local ulg compressed_len; /* total bit length of compressed file */
275
276local ulg input_len;      /* total byte length of input file */
277/* input_len is for debugging only since we can get it by other means. */
278
279ush *file_type;        /* pointer to UNKNOWN, BINARY or ASCII */
280int *file_method;      /* pointer to DEFLATE or STORE */
281
282#ifdef DEBUG
283extern ulg bits_sent;  /* bit length of the compressed data */
284extern long isize;     /* byte length of input file */
285#endif
286
287extern long block_start;       /* window offset of current block */
288extern unsigned near strstart; /* window offset of current string */
289
290/* ===========================================================================
291 * Local (static) routines in this file.
292 */
293
294local void init_block     OF((void));
295local void pqdownheap     OF((ct_data near *tree, int k));
296local void gen_bitlen     OF((tree_desc near *desc));
297local void gen_codes      OF((ct_data near *tree, int max_code));
298local void build_tree     OF((tree_desc near *desc));
299local void scan_tree      OF((ct_data near *tree, int max_code));
300local void send_tree      OF((ct_data near *tree, int max_code));
301local int  build_bl_tree  OF((void));
302local void send_all_trees OF((int lcodes, int dcodes, int blcodes));
303local void compress_block OF((ct_data near *ltree, ct_data near *dtree));
304local void set_file_type  OF((void));
305
306
307#ifndef DEBUG
308#  define send_code(c, tree) send_bits(tree[c].Code, tree[c].Len)
309   /* Send a code of the given tree. c and tree must not have side effects */
310
311#else /* DEBUG */
312#  define send_code(c, tree) \
313     { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
314       send_bits(tree[c].Code, tree[c].Len); }
315#endif
316
317#define d_code(dist) \
318   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
319/* Mapping from a distance to a distance code. dist is the distance - 1 and
320 * must not have side effects. dist_code[256] and dist_code[257] are never
321 * used.
322 */
323
324#define MAX(a,b) (a >= b ? a : b)
325/* the arguments must not have side effects */
326
327/* ===========================================================================
328 * Allocate the match buffer, initialize the various tables and save the
329 * location of the internal file attribute (ascii/binary) and method
330 * (DEFLATE/STORE).
331 */
332void ct_init(attr, methodp)
333    ush  *attr;   /* pointer to internal file attribute */
334    int  *methodp; /* pointer to compression method */
335{
336    int n;        /* iterates over tree elements */
337    int bits;     /* bit counter */
338    int length;   /* length value */
339    int code;     /* code value */
340    int dist;     /* distance index */
341
342    file_type = attr;
343    file_method = methodp;
344    compressed_len = input_len = 0L;
345
346    if (static_dtree[0].Len != 0) return; /* ct_init already called */
347
348    /* Initialize the mapping length (0..255) -> length code (0..28) */
349    length = 0;
350    for (code = 0; code < LENGTH_CODES-1; code++) {
351        base_length[code] = length;
352        for (n = 0; n < (1<<extra_lbits[code]); n++) {
353            length_code[length++] = (uch)code;
354        }
355    }
356    Assert (length == 256, "ct_init: length != 256");
357    /* Note that the length 255 (match length 258) can be represented
358     * in two different ways: code 284 + 5 bits or code 285, so we
359     * overwrite length_code[255] to use the best encoding:
360     */
361    length_code[length-1] = (uch)code;
362
363    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
364    dist = 0;
365    for (code = 0 ; code < 16; code++) {
366        base_dist[code] = dist;
367        for (n = 0; n < (1<<extra_dbits[code]); n++) {
368            dist_code[dist++] = (uch)code;
369        }
370    }
371    Assert (dist == 256, "ct_init: dist != 256");
372    dist >>= 7; /* from now on, all distances are divided by 128 */
373    for ( ; code < D_CODES; code++) {
374        base_dist[code] = dist << 7;
375        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
376            dist_code[256 + dist++] = (uch)code;
377        }
378    }
379    Assert (dist == 256, "ct_init: 256+dist != 512");
380
381    /* Construct the codes of the static literal tree */
382    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
383    n = 0;
384    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
385    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
386    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
387    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
388    /* Codes 286 and 287 do not exist, but we must include them in the
389     * tree construction to get a canonical Huffman tree (longest code
390     * all ones)
391     */
392    gen_codes((ct_data near *)static_ltree, L_CODES+1);
393
394    /* The static distance tree is trivial: */
395    for (n = 0; n < D_CODES; n++) {
396        static_dtree[n].Len = 5;
397        static_dtree[n].Code = bi_reverse(n, 5);
398    }
399
400    /* Initialize the first block of the first file: */
401    init_block();
402}
403
404/* ===========================================================================
405 * Initialize a new block.
406 */
407local void init_block()
408{
409    int n; /* iterates over tree elements */
410
411    /* Initialize the trees. */
412    for (n = 0; n < L_CODES;  n++) dyn_ltree[n].Freq = 0;
413    for (n = 0; n < D_CODES;  n++) dyn_dtree[n].Freq = 0;
414    for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;
415
416    dyn_ltree[END_BLOCK].Freq = 1;
417    opt_len = static_len = 0L;
418    last_lit = last_dist = last_flags = 0;
419    flags = 0; flag_bit = 1;
420}
421
422#define SMALLEST 1
423/* Index within the heap array of least frequent node in the Huffman tree */
424
425
426/* ===========================================================================
427 * Remove the smallest element from the heap and recreate the heap with
428 * one less element. Updates heap and heap_len.
429 */
430#define pqremove(tree, top) \
431{\
432    top = heap[SMALLEST]; \
433    heap[SMALLEST] = heap[heap_len--]; \
434    pqdownheap(tree, SMALLEST); \
435}
436
437/* ===========================================================================
438 * Compares to subtrees, using the tree depth as tie breaker when
439 * the subtrees have equal frequency. This minimizes the worst case length.
440 */
441#define smaller(tree, n, m) \
442   (tree[n].Freq < tree[m].Freq || \
443   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
444
445/* ===========================================================================
446 * Restore the heap property by moving down the tree starting at node k,
447 * exchanging a node with the smallest of its two sons if necessary, stopping
448 * when the heap property is re-established (each father smaller than its
449 * two sons).
450 */
451local void pqdownheap(tree, k)
452    ct_data near *tree;  /* the tree to restore */
453    int k;               /* node to move down */
454{
455    int v = heap[k];
456    int j = k << 1;  /* left son of k */
457    while (j <= heap_len) {
458        /* Set j to the smallest of the two sons: */
459        if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;
460
461        /* Exit if v is smaller than both sons */
462        if (smaller(tree, v, heap[j])) break;
463
464        /* Exchange v with the smallest son */
465        heap[k] = heap[j];  k = j;
466
467        /* And continue down the tree, setting j to the left son of k */
468        j <<= 1;
469    }
470    heap[k] = v;
471}
472
473/* ===========================================================================
474 * Compute the optimal bit lengths for a tree and update the total bit length
475 * for the current block.
476 * IN assertion: the fields freq and dad are set, heap[heap_max] and
477 *    above are the tree nodes sorted by increasing frequency.
478 * OUT assertions: the field len is set to the optimal bit length, the
479 *     array bl_count contains the frequencies for each bit length.
480 *     The length opt_len is updated; static_len is also updated if stree is
481 *     not null.
482 */
483local void gen_bitlen(desc)
484    tree_desc near *desc; /* the tree descriptor */
485{
486    ct_data near *tree  = desc->dyn_tree;
487    int near *extra     = desc->extra_bits;
488    int base            = desc->extra_base;
489    int max_code        = desc->max_code;
490    int max_length      = desc->max_length;
491    ct_data near *stree = desc->static_tree;
492    int h;              /* heap index */
493    int n, m;           /* iterate over the tree elements */
494    int bits;           /* bit length */
495    int xbits;          /* extra bits */
496    ush f;              /* frequency */
497    int overflow = 0;   /* number of elements with bit length too large */
498
499    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
500
501    /* In a first pass, compute the optimal bit lengths (which may
502     * overflow in the case of the bit length tree).
503     */
504    tree[heap[heap_max]].Len = 0; /* root of the heap */
505
506    for (h = heap_max+1; h < HEAP_SIZE; h++) {
507        n = heap[h];
508        bits = tree[tree[n].Dad].Len + 1;
509        if (bits > max_length) bits = max_length, overflow++;
510        tree[n].Len = (ush)bits;
511        /* We overwrite tree[n].Dad which is no longer needed */
512
513        if (n > max_code) continue; /* not a leaf node */
514
515        bl_count[bits]++;
516        xbits = 0;
517        if (n >= base) xbits = extra[n-base];
518        f = tree[n].Freq;
519        opt_len += (ulg)f * (bits + xbits);
520        if (stree) static_len += (ulg)f * (stree[n].Len + xbits);
521    }
522    if (overflow == 0) return;
523
524    Trace((stderr,"\nbit length overflow\n"));
525    /* This happens for example on obj2 and pic of the Calgary corpus */
526
527    /* Find the first bit length which could increase: */
528    do {
529        bits = max_length-1;
530        while (bl_count[bits] == 0) bits--;
531        bl_count[bits]--;      /* move one leaf down the tree */
532        bl_count[bits+1] += 2; /* move one overflow item as its brother */
533        bl_count[max_length]--;
534        /* The brother of the overflow item also moves one step up,
535         * but this does not affect bl_count[max_length]
536         */
537        overflow -= 2;
538    } while (overflow > 0);
539
540    /* Now recompute all bit lengths, scanning in increasing frequency.
541     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
542     * lengths instead of fixing only the wrong ones. This idea is taken
543     * from 'ar' written by Haruhiko Okumura.)
544     */
545    for (bits = max_length; bits != 0; bits--) {
546        n = bl_count[bits];
547        while (n != 0) {
548            m = heap[--h];
549            if (m > max_code) continue;
550            if (tree[m].Len != (unsigned) bits) {
551                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
552                opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;
553                tree[m].Len = (ush)bits;
554            }
555            n--;
556        }
557    }
558}
559
560/* ===========================================================================
561 * Generate the codes for a given tree and bit counts (which need not be
562 * optimal).
563 * IN assertion: the array bl_count contains the bit length statistics for
564 * the given tree and the field len is set for all tree elements.
565 * OUT assertion: the field code is set for all tree elements of non
566 *     zero code length.
567 */
568local void gen_codes (tree, max_code)
569    ct_data near *tree;        /* the tree to decorate */
570    int max_code;              /* largest code with non zero frequency */
571{
572    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
573    ush code = 0;              /* running code value */
574    int bits;                  /* bit index */
575    int n;                     /* code index */
576
577    /* The distribution counts are first used to generate the code values
578     * without bit reversal.
579     */
580    for (bits = 1; bits <= MAX_BITS; bits++) {
581        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
582    }
583    /* Check that the bit counts in bl_count are consistent. The last code
584     * must be all ones.
585     */
586    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
587            "inconsistent bit counts");
588    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
589
590    for (n = 0;  n <= max_code; n++) {
591        int len = tree[n].Len;
592        if (len == 0) continue;
593        /* Now reverse the bits */
594        tree[n].Code = bi_reverse(next_code[len]++, len);
595
596        Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
597             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
598    }
599}
600
601/* ===========================================================================
602 * Construct one Huffman tree and assigns the code bit strings and lengths.
603 * Update the total bit length for the current block.
604 * IN assertion: the field freq is set for all tree elements.
605 * OUT assertions: the fields len and code are set to the optimal bit length
606 *     and corresponding code. The length opt_len is updated; static_len is
607 *     also updated if stree is not null. The field max_code is set.
608 */
609local void build_tree(desc)
610    tree_desc near *desc; /* the tree descriptor */
611{
612    ct_data near *tree   = desc->dyn_tree;
613    ct_data near *stree  = desc->static_tree;
614    int elems            = desc->elems;
615    int n, m;          /* iterate over heap elements */
616    int max_code = -1; /* largest code with non zero frequency */
617    int node = elems;  /* next internal node of the tree */
618
619    /* Construct the initial heap, with least frequent element in
620     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
621     * heap[0] is not used.
622     */
623    heap_len = 0, heap_max = HEAP_SIZE;
624
625    for (n = 0; n < elems; n++) {
626        if (tree[n].Freq != 0) {
627            heap[++heap_len] = max_code = n;
628            depth[n] = 0;
629        } else {
630            tree[n].Len = 0;
631        }
632    }
633
634    /* The pkzip format requires that at least one distance code exists,
635     * and that at least one bit should be sent even if there is only one
636     * possible code. So to avoid special checks later on we force at least
637     * two codes of non zero frequency.
638     */
639    while (heap_len < 2) {
640        int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
641        tree[new].Freq = 1;
642        depth[new] = 0;
643        opt_len--; if (stree) static_len -= stree[new].Len;
644        /* new is 0 or 1 so it does not have extra bits */
645    }
646    desc->max_code = max_code;
647
648    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
649     * establish sub-heaps of increasing lengths:
650     */
651    for (n = heap_len/2; n >= 1; n--) pqdownheap(tree, n);
652
653    /* Construct the Huffman tree by repeatedly combining the least two
654     * frequent nodes.
655     */
656    do {
657        pqremove(tree, n);   /* n = node of least frequency */
658        m = heap[SMALLEST];  /* m = node of next least frequency */
659
660        heap[--heap_max] = n; /* keep the nodes sorted by frequency */
661        heap[--heap_max] = m;
662
663        /* Create a new node father of n and m */
664        tree[node].Freq = tree[n].Freq + tree[m].Freq;
665        depth[node] = (uch) (MAX(depth[n], depth[m]) + 1);
666        tree[n].Dad = tree[m].Dad = (ush)node;
667#ifdef DUMP_BL_TREE
668        if (tree == bl_tree) {
669            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
670                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
671        }
672#endif
673        /* and insert the new node in the heap */
674        heap[SMALLEST] = node++;
675        pqdownheap(tree, SMALLEST);
676
677    } while (heap_len >= 2);
678
679    heap[--heap_max] = heap[SMALLEST];
680
681    /* At this point, the fields freq and dad are set. We can now
682     * generate the bit lengths.
683     */
684    gen_bitlen((tree_desc near *)desc);
685
686    /* The field len is now set, we can generate the bit codes */
687    gen_codes ((ct_data near *)tree, max_code);
688}
689
690/* ===========================================================================
691 * Scan a literal or distance tree to determine the frequencies of the codes
692 * in the bit length tree. Updates opt_len to take into account the repeat
693 * counts. (The contribution of the bit length codes will be added later
694 * during the construction of bl_tree.)
695 */
696local void scan_tree (tree, max_code)
697    ct_data near *tree; /* the tree to be scanned */
698    int max_code;       /* and its largest code of non zero frequency */
699{
700    int n;                     /* iterates over all tree elements */
701    int prevlen = -1;          /* last emitted length */
702    int curlen;                /* length of current code */
703    int nextlen = tree[0].Len; /* length of next code */
704    int count = 0;             /* repeat count of the current code */
705    int max_count = 7;         /* max repeat count */
706    int min_count = 4;         /* min repeat count */
707
708    if (nextlen == 0) max_count = 138, min_count = 3;
709    tree[max_code+1].Len = (ush)0xffff; /* guard */
710
711    for (n = 0; n <= max_code; n++) {
712        curlen = nextlen; nextlen = tree[n+1].Len;
713        if (++count < max_count && curlen == nextlen) {
714            continue;
715        } else if (count < min_count) {
716            bl_tree[curlen].Freq += count;
717        } else if (curlen != 0) {
718            if (curlen != prevlen) bl_tree[curlen].Freq++;
719            bl_tree[REP_3_6].Freq++;
720        } else if (count <= 10) {
721            bl_tree[REPZ_3_10].Freq++;
722        } else {
723            bl_tree[REPZ_11_138].Freq++;
724        }
725        count = 0; prevlen = curlen;
726        if (nextlen == 0) {
727            max_count = 138, min_count = 3;
728        } else if (curlen == nextlen) {
729            max_count = 6, min_count = 3;
730        } else {
731            max_count = 7, min_count = 4;
732        }
733    }
734}
735
736/* ===========================================================================
737 * Send a literal or distance tree in compressed form, using the codes in
738 * bl_tree.
739 */
740local void send_tree (tree, max_code)
741    ct_data near *tree; /* the tree to be scanned */
742    int max_code;       /* and its largest code of non zero frequency */
743{
744    int n;                     /* iterates over all tree elements */
745    int prevlen = -1;          /* last emitted length */
746    int curlen;                /* length of current code */
747    int nextlen = tree[0].Len; /* length of next code */
748    int count = 0;             /* repeat count of the current code */
749    int max_count = 7;         /* max repeat count */
750    int min_count = 4;         /* min repeat count */
751
752    /* tree[max_code+1].Len = -1; */  /* guard already set */
753    if (nextlen == 0) max_count = 138, min_count = 3;
754
755    for (n = 0; n <= max_code; n++) {
756        curlen = nextlen; nextlen = tree[n+1].Len;
757        if (++count < max_count && curlen == nextlen) {
758            continue;
759        } else if (count < min_count) {
760            do { send_code(curlen, bl_tree); } while (--count != 0);
761
762        } else if (curlen != 0) {
763            if (curlen != prevlen) {
764                send_code(curlen, bl_tree); count--;
765            }
766            Assert(count >= 3 && count <= 6, " 3_6?");
767            send_code(REP_3_6, bl_tree); send_bits(count-3, 2);
768
769        } else if (count <= 10) {
770            send_code(REPZ_3_10, bl_tree); send_bits(count-3, 3);
771
772        } else {
773            send_code(REPZ_11_138, bl_tree); send_bits(count-11, 7);
774        }
775        count = 0; prevlen = curlen;
776        if (nextlen == 0) {
777            max_count = 138, min_count = 3;
778        } else if (curlen == nextlen) {
779            max_count = 6, min_count = 3;
780        } else {
781            max_count = 7, min_count = 4;
782        }
783    }
784}
785
786/* ===========================================================================
787 * Construct the Huffman tree for the bit lengths and return the index in
788 * bl_order of the last bit length code to send.
789 */
790local int build_bl_tree()
791{
792    int max_blindex;  /* index of last bit length code of non zero freq */
793
794    /* Determine the bit length frequencies for literal and distance trees */
795    scan_tree((ct_data near *)dyn_ltree, l_desc.max_code);
796    scan_tree((ct_data near *)dyn_dtree, d_desc.max_code);
797
798    /* Build the bit length tree: */
799    build_tree((tree_desc near *)(&bl_desc));
800    /* opt_len now includes the length of the tree representations, except
801     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
802     */
803
804    /* Determine the number of bit length codes to send. The pkzip format
805     * requires that at least 4 bit length codes be sent. (appnote.txt says
806     * 3 but the actual value used is 4.)
807     */
808    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
809        if (bl_tree[bl_order[max_blindex]].Len != 0) break;
810    }
811    /* Update opt_len to include the bit length tree and counts */
812    opt_len += 3*(max_blindex+1) + 5+5+4;
813    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", opt_len, static_len));
814
815    return max_blindex;
816}
817
818/* ===========================================================================
819 * Send the header for a block using dynamic Huffman trees: the counts, the
820 * lengths of the bit length codes, the literal tree and the distance tree.
821 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
822 */
823local void send_all_trees(lcodes, dcodes, blcodes)
824    int lcodes, dcodes, blcodes; /* number of codes for each tree */
825{
826    int rank;                    /* index in bl_order */
827
828    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
829    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
830            "too many codes");
831    Tracev((stderr, "\nbl counts: "));
832    send_bits(lcodes-257, 5); /* not +255 as stated in appnote.txt */
833    send_bits(dcodes-1,   5);
834    send_bits(blcodes-4,  4); /* not -3 as stated in appnote.txt */
835    for (rank = 0; rank < blcodes; rank++) {
836        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
837        send_bits(bl_tree[bl_order[rank]].Len, 3);
838    }
839    Tracev((stderr, "\nbl tree: sent %ld", bits_sent));
840
841    send_tree((ct_data near *)dyn_ltree, lcodes-1); /* send the literal tree */
842    Tracev((stderr, "\nlit tree: sent %ld", bits_sent));
843
844    send_tree((ct_data near *)dyn_dtree, dcodes-1); /* send the distance tree */
845    Tracev((stderr, "\ndist tree: sent %ld", bits_sent));
846}
847
848/* ===========================================================================
849 * Determine the best encoding for the current block: dynamic trees, static
850 * trees or store, and output the encoded block to the zip file. This function
851 * returns the total compressed length for the file so far.
852 */
853ulg flush_block(buf, stored_len, eof)
854    char *buf;        /* input block, or NULL if too old */
855    ulg stored_len;   /* length of input block */
856    int eof;          /* true if this is the last block for a file */
857{
858    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
859    int max_blindex;  /* index of last bit length code of non zero freq */
860
861    flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
862
863     /* Check if the file is ascii or binary */
864    if (*file_type == (ush)UNKNOWN) set_file_type();
865
866    /* Construct the literal and distance trees */
867    build_tree((tree_desc near *)(&l_desc));
868    Tracev((stderr, "\nlit data: dyn %ld, stat %ld", opt_len, static_len));
869
870    build_tree((tree_desc near *)(&d_desc));
871    Tracev((stderr, "\ndist data: dyn %ld, stat %ld", opt_len, static_len));
872    /* At this point, opt_len and static_len are the total bit lengths of
873     * the compressed block data, excluding the tree representations.
874     */
875
876    /* Build the bit length tree for the above two trees, and get the index
877     * in bl_order of the last bit length code to send.
878     */
879    max_blindex = build_bl_tree();
880
881    /* Determine the best encoding. Compute first the block length in bytes */
882    opt_lenb = (opt_len+3+7)>>3;
883    static_lenb = (static_len+3+7)>>3;
884    input_len += stored_len; /* for debugging only */
885
886    Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
887            opt_lenb, opt_len, static_lenb, static_len, stored_len,
888            last_lit, last_dist));
889
890    if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
891
892    /* If compression failed and this is the first and last block,
893     * and if the zip file can be seeked (to rewrite the local header),
894     * the whole file is transformed into a stored file:
895     */
896#ifdef FORCE_METHOD
897    if (level == 1 && eof && compressed_len == 0L) { /* force stored file */
898#else
899    if (stored_len <= opt_lenb && eof && compressed_len == 0L && seekable()) {
900#endif
901        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
902        if (buf == (char*)0) error ("block vanished");
903
904        copy_block(buf, (unsigned)stored_len, 0); /* without header */
905        compressed_len = stored_len << 3;
906        *file_method = STORED;
907
908#ifdef FORCE_METHOD
909    } else if (level == 2 && buf != (char*)0) { /* force stored block */
910#else
911    } else if (stored_len+4 <= opt_lenb && buf != (char*)0) {
912                       /* 4: two words for the lengths */
913#endif
914        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
915         * Otherwise we can't have processed more than WSIZE input bytes since
916         * the last block flush, because compression would have been
917         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
918         * transform a block into a stored block.
919         */
920        send_bits((STORED_BLOCK<<1)+eof, 3);  /* send block type */
921        compressed_len = (compressed_len + 3 + 7) & ~7L;
922        compressed_len += (stored_len + 4) << 3;
923
924        copy_block(buf, (unsigned)stored_len, 1); /* with header */
925
926#ifdef FORCE_METHOD
927    } else if (level == 3) { /* force static trees */
928#else
929    } else if (static_lenb == opt_lenb) {
930#endif
931        send_bits((STATIC_TREES<<1)+eof, 3);
932        compress_block((ct_data near *)static_ltree, (ct_data near *)static_dtree);
933        compressed_len += 3 + static_len;
934    } else {
935        send_bits((DYN_TREES<<1)+eof, 3);
936        send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
937        compress_block((ct_data near *)dyn_ltree, (ct_data near *)dyn_dtree);
938        compressed_len += 3 + opt_len;
939    }
940    Assert (compressed_len == bits_sent, "bad compressed size");
941    init_block();
942
943    if (eof) {
944        Assert (input_len == isize, "bad input size");
945        bi_windup();
946        compressed_len += 7;  /* align on byte boundary */
947    }
948    Tracev((stderr,"\ncomprlen %lu(%lu) ", compressed_len>>3,
949           compressed_len-7*eof));
950
951    return compressed_len >> 3;
952}
953
954/* ===========================================================================
955 * Save the match info and tally the frequency counts. Return true if
956 * the current block must be flushed.
957 */
958int ct_tally (dist, lc)
959    int dist;  /* distance of matched string */
960    int lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
961{
962    l_buf[last_lit++] = (uch)lc;
963    if (dist == 0) {
964        /* lc is the unmatched char */
965        dyn_ltree[lc].Freq++;
966    } else {
967        /* Here, lc is the match length - MIN_MATCH */
968        dist--;             /* dist = match distance - 1 */
969        Assert((ush)dist < (ush)MAX_DIST &&
970               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
971               (ush)d_code(dist) < (ush)D_CODES,  "ct_tally: bad match");
972
973        dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
974        dyn_dtree[d_code(dist)].Freq++;
975
976        d_buf[last_dist++] = (ush)dist;
977        flags |= flag_bit;
978    }
979    flag_bit <<= 1;
980
981    /* Output the flags if they fill a byte: */
982    if ((last_lit & 7) == 0) {
983        flag_buf[last_flags++] = flags;
984        flags = 0, flag_bit = 1;
985    }
986    /* Try to guess if it is profitable to stop the current block here */
987    if (level > 2 && (last_lit & 0xfff) == 0) {
988        /* Compute an upper bound for the compressed length */
989        ulg out_length = (ulg)last_lit*8L;
990        ulg in_length = (ulg)strstart-block_start;
991        int dcode;
992        for (dcode = 0; dcode < D_CODES; dcode++) {
993            out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
994        }
995        out_length >>= 3;
996        Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
997               last_lit, last_dist, in_length, out_length,
998               100L - out_length*100L/in_length));
999        if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
1000    }
1001    return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
1002    /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1003     * on 16 bit machines and because stored blocks are restricted to
1004     * 64K-1 bytes.
1005     */
1006}
1007
1008/* ===========================================================================
1009 * Send the block data compressed using the given Huffman trees
1010 */
1011local void compress_block(ltree, dtree)
1012    ct_data near *ltree; /* literal tree */
1013    ct_data near *dtree; /* distance tree */
1014{
1015    unsigned dist;      /* distance of matched string */
1016    int lc;             /* match length or unmatched char (if dist == 0) */
1017    unsigned lx = 0;    /* running index in l_buf */
1018    unsigned dx = 0;    /* running index in d_buf */
1019    unsigned fx = 0;    /* running index in flag_buf */
1020    uch flag = 0;       /* current flags */
1021    unsigned code;      /* the code to send */
1022    int extra;          /* number of extra bits to send */
1023
1024    if (last_lit != 0) do {
1025        if ((lx & 7) == 0) flag = flag_buf[fx++];
1026        lc = l_buf[lx++];
1027        if ((flag & 1) == 0) {
1028            send_code(lc, ltree); /* send a literal byte */
1029            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1030        } else {
1031            /* Here, lc is the match length - MIN_MATCH */
1032            code = length_code[lc];
1033            send_code(code+LITERALS+1, ltree); /* send the length code */
1034            extra = extra_lbits[code];
1035            if (extra != 0) {
1036                lc -= base_length[code];
1037                send_bits(lc, extra);        /* send the extra length bits */
1038            }
1039            dist = d_buf[dx++];
1040            /* Here, dist is the match distance - 1 */
1041            code = d_code(dist);
1042            Assert (code < D_CODES, "bad d_code");
1043
1044            send_code(code, dtree);       /* send the distance code */
1045            extra = extra_dbits[code];
1046            if (extra != 0) {
1047                dist -= base_dist[code];
1048                send_bits(dist, extra);   /* send the extra distance bits */
1049            }
1050        } /* literal or match pair ? */
1051        flag >>= 1;
1052    } while (lx < last_lit);
1053
1054    send_code(END_BLOCK, ltree);
1055}
1056
1057/* ===========================================================================
1058 * Set the file type to ASCII or BINARY, using a crude approximation:
1059 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1060 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1061 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1062 */
1063local void set_file_type()
1064{
1065    int n = 0;
1066    unsigned ascii_freq = 0;
1067    unsigned bin_freq = 0;
1068    while (n < 7)        bin_freq += dyn_ltree[n++].Freq;
1069    while (n < 128)    ascii_freq += dyn_ltree[n++].Freq;
1070    while (n < LITERALS) bin_freq += dyn_ltree[n++].Freq;
1071    *file_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII;
1072    if (*file_type == BINARY && translate_eol) {
1073        warn("-l used on binary file", "");
1074    }
1075}
1076