1/* Extended regular expression matching and search library,
2   version 0.12.
3   (Implements POSIX draft P1003.2/D11.2, except for some of the
4   internationalization features.)
5   Copyright (C) 1993-1999, 2000, 2001, 2002 Free Software Foundation, Inc.
6   This file is part of the GNU C Library.
7
8   The GNU C Library is free software; you can redistribute it and/or
9   modify it under the terms of the GNU Lesser General Public
10   License as published by the Free Software Foundation; either
11   version 2.1 of the License, or (at your option) any later version.
12
13   The GNU C Library is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16   Lesser General Public License for more details.
17
18   You should have received a copy of the GNU Lesser General Public
19   License along with the GNU C Library; if not, write to the Free
20   Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
21   02111-1307 USA.  */
22
23/* This file has been modified for usage in libiberty.  It includes "xregex.h"
24   instead of <regex.h>.  The "xregex.h" header file renames all external
25   routines with an "x" prefix so they do not collide with the native regex
26   routines or with other components regex routines. */
27/* AIX requires this to be the first thing in the file. */
28#if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
29  #pragma alloca
30#endif
31
32#undef	_GNU_SOURCE
33#define _GNU_SOURCE
34
35#ifdef HAVE_CONFIG_H
36# include <config.h>
37#endif
38
39#include <ansidecl.h>
40
41#ifndef PARAMS
42# if defined __GNUC__ || (defined __STDC__ && __STDC__)
43#  define PARAMS(args) args
44# else
45#  define PARAMS(args) ()
46# endif  /* GCC.  */
47#endif  /* Not PARAMS.  */
48
49#ifndef INSIDE_RECURSION
50
51# if defined STDC_HEADERS && !defined emacs
52#  include <stddef.h>
53# else
54/* We need this for `regex.h', and perhaps for the Emacs include files.  */
55#  include <sys/types.h>
56# endif
57
58# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
59
60/* For platform which support the ISO C amendement 1 functionality we
61   support user defined character classes.  */
62# if defined _LIBC || WIDE_CHAR_SUPPORT
63/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
64#  include <wchar.h>
65#  include <wctype.h>
66# endif
67
68# ifdef _LIBC
69/* We have to keep the namespace clean.  */
70#  define regfree(preg) __regfree (preg)
71#  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
72#  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
73#  define regerror(errcode, preg, errbuf, errbuf_size) \
74	__regerror(errcode, preg, errbuf, errbuf_size)
75#  define re_set_registers(bu, re, nu, st, en) \
76	__re_set_registers (bu, re, nu, st, en)
77#  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
78	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
79#  define re_match(bufp, string, size, pos, regs) \
80	__re_match (bufp, string, size, pos, regs)
81#  define re_search(bufp, string, size, startpos, range, regs) \
82	__re_search (bufp, string, size, startpos, range, regs)
83#  define re_compile_pattern(pattern, length, bufp) \
84	__re_compile_pattern (pattern, length, bufp)
85#  define re_set_syntax(syntax) __re_set_syntax (syntax)
86#  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
87	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
88#  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
89
90#  define btowc __btowc
91
92/* We are also using some library internals.  */
93#  include <locale/localeinfo.h>
94#  include <locale/elem-hash.h>
95#  include <langinfo.h>
96#  include <locale/coll-lookup.h>
97# endif
98
99/* This is for other GNU distributions with internationalized messages.  */
100# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
101#  include <libintl.h>
102#  ifdef _LIBC
103#   undef gettext
104#   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
105#  endif
106# else
107#  define gettext(msgid) (msgid)
108# endif
109
110# ifndef gettext_noop
111/* This define is so xgettext can find the internationalizable
112   strings.  */
113#  define gettext_noop(String) String
114# endif
115
116/* The `emacs' switch turns on certain matching commands
117   that make sense only in Emacs. */
118# ifdef emacs
119
120#  include "lisp.h"
121#  include "buffer.h"
122#  include "syntax.h"
123
124# else  /* not emacs */
125
126/* If we are not linking with Emacs proper,
127   we can't use the relocating allocator
128   even if config.h says that we can.  */
129#  undef REL_ALLOC
130
131#  if defined STDC_HEADERS || defined _LIBC
132#   include <stdlib.h>
133#  else
134char *malloc ();
135char *realloc ();
136#  endif
137
138/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
139   If nothing else has been done, use the method below.  */
140#  ifdef INHIBIT_STRING_HEADER
141#   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
142#    if !defined bzero && !defined bcopy
143#     undef INHIBIT_STRING_HEADER
144#    endif
145#   endif
146#  endif
147
148/* This is the normal way of making sure we have a bcopy and a bzero.
149   This is used in most programs--a few other programs avoid this
150   by defining INHIBIT_STRING_HEADER.  */
151#  ifndef INHIBIT_STRING_HEADER
152#   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
153#    include <string.h>
154#    ifndef bzero
155#     ifndef _LIBC
156#      define bzero(s, n)	(memset (s, '\0', n), (s))
157#     else
158#      define bzero(s, n)	__bzero (s, n)
159#     endif
160#    endif
161#   else
162#    include <strings.h>
163#    ifndef memcmp
164#     define memcmp(s1, s2, n)	bcmp (s1, s2, n)
165#    endif
166#    ifndef memcpy
167#     define memcpy(d, s, n)	(bcopy (s, d, n), (d))
168#    endif
169#   endif
170#  endif
171
172/* Define the syntax stuff for \<, \>, etc.  */
173
174/* This must be nonzero for the wordchar and notwordchar pattern
175   commands in re_match_2.  */
176#  ifndef Sword
177#   define Sword 1
178#  endif
179
180#  ifdef SWITCH_ENUM_BUG
181#   define SWITCH_ENUM_CAST(x) ((int)(x))
182#  else
183#   define SWITCH_ENUM_CAST(x) (x)
184#  endif
185
186# endif /* not emacs */
187
188# if defined _LIBC || HAVE_LIMITS_H
189#  include <limits.h>
190# endif
191
192# ifndef MB_LEN_MAX
193#  define MB_LEN_MAX 1
194# endif
195
196/* Get the interface, including the syntax bits.  */
197# include "xregex.h"  /* change for libiberty */
198
199/* isalpha etc. are used for the character classes.  */
200# include <ctype.h>
201
202/* Jim Meyering writes:
203
204   "... Some ctype macros are valid only for character codes that
205   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
206   using /bin/cc or gcc but without giving an ansi option).  So, all
207   ctype uses should be through macros like ISPRINT...  If
208   STDC_HEADERS is defined, then autoconf has verified that the ctype
209   macros don't need to be guarded with references to isascii. ...
210   Defining isascii to 1 should let any compiler worth its salt
211   eliminate the && through constant folding."
212   Solaris defines some of these symbols so we must undefine them first.  */
213
214# undef ISASCII
215# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
216#  define ISASCII(c) 1
217# else
218#  define ISASCII(c) isascii(c)
219# endif
220
221# ifdef isblank
222#  define ISBLANK(c) (ISASCII (c) && isblank (c))
223# else
224#  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
225# endif
226# ifdef isgraph
227#  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
228# else
229#  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
230# endif
231
232# undef ISPRINT
233# define ISPRINT(c) (ISASCII (c) && isprint (c))
234# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
235# define ISALNUM(c) (ISASCII (c) && isalnum (c))
236# define ISALPHA(c) (ISASCII (c) && isalpha (c))
237# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
238# define ISLOWER(c) (ISASCII (c) && islower (c))
239# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
240# define ISSPACE(c) (ISASCII (c) && isspace (c))
241# define ISUPPER(c) (ISASCII (c) && isupper (c))
242# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
243
244# ifdef _tolower
245#  define TOLOWER(c) _tolower(c)
246# else
247#  define TOLOWER(c) tolower(c)
248# endif
249
250# ifndef NULL
251#  define NULL (void *)0
252# endif
253
254/* We remove any previous definition of `SIGN_EXTEND_CHAR',
255   since ours (we hope) works properly with all combinations of
256   machines, compilers, `char' and `unsigned char' argument types.
257   (Per Bothner suggested the basic approach.)  */
258# undef SIGN_EXTEND_CHAR
259# if __STDC__
260#  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
261# else  /* not __STDC__ */
262/* As in Harbison and Steele.  */
263#  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
264# endif
265
266# ifndef emacs
267/* How many characters in the character set.  */
268#  define CHAR_SET_SIZE 256
269
270#  ifdef SYNTAX_TABLE
271
272extern char *re_syntax_table;
273
274#  else /* not SYNTAX_TABLE */
275
276static char re_syntax_table[CHAR_SET_SIZE];
277
278static void init_syntax_once PARAMS ((void));
279
280static void
281init_syntax_once ()
282{
283   register int c;
284   static int done = 0;
285
286   if (done)
287     return;
288   bzero (re_syntax_table, sizeof re_syntax_table);
289
290   for (c = 0; c < CHAR_SET_SIZE; ++c)
291     if (ISALNUM (c))
292	re_syntax_table[c] = Sword;
293
294   re_syntax_table['_'] = Sword;
295
296   done = 1;
297}
298
299#  endif /* not SYNTAX_TABLE */
300
301#  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
302
303# endif /* emacs */
304
305/* Integer type for pointers.  */
306# if !defined _LIBC && !defined HAVE_UINTPTR_T
307typedef unsigned long int uintptr_t;
308# endif
309
310/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
311   use `alloca' instead of `malloc'.  This is because using malloc in
312   re_search* or re_match* could cause memory leaks when C-g is used in
313   Emacs; also, malloc is slower and causes storage fragmentation.  On
314   the other hand, malloc is more portable, and easier to debug.
315
316   Because we sometimes use alloca, some routines have to be macros,
317   not functions -- `alloca'-allocated space disappears at the end of the
318   function it is called in.  */
319
320# ifdef REGEX_MALLOC
321
322#  define REGEX_ALLOCATE malloc
323#  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
324#  define REGEX_FREE free
325
326# else /* not REGEX_MALLOC  */
327
328/* Emacs already defines alloca, sometimes.  */
329#  ifndef alloca
330
331/* Make alloca work the best possible way.  */
332#   ifdef __GNUC__
333#    define alloca __builtin_alloca
334#   else /* not __GNUC__ */
335#    if HAVE_ALLOCA_H
336#     include <alloca.h>
337#    endif /* HAVE_ALLOCA_H */
338#   endif /* not __GNUC__ */
339
340#  endif /* not alloca */
341
342#  define REGEX_ALLOCATE alloca
343
344/* Assumes a `char *destination' variable.  */
345#  define REGEX_REALLOCATE(source, osize, nsize)			\
346  (destination = (char *) alloca (nsize),				\
347   memcpy (destination, source, osize))
348
349/* No need to do anything to free, after alloca.  */
350#  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
351
352# endif /* not REGEX_MALLOC */
353
354/* Define how to allocate the failure stack.  */
355
356# if defined REL_ALLOC && defined REGEX_MALLOC
357
358#  define REGEX_ALLOCATE_STACK(size)				\
359  r_alloc (&failure_stack_ptr, (size))
360#  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
361  r_re_alloc (&failure_stack_ptr, (nsize))
362#  define REGEX_FREE_STACK(ptr)					\
363  r_alloc_free (&failure_stack_ptr)
364
365# else /* not using relocating allocator */
366
367#  ifdef REGEX_MALLOC
368
369#   define REGEX_ALLOCATE_STACK malloc
370#   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
371#   define REGEX_FREE_STACK free
372
373#  else /* not REGEX_MALLOC */
374
375#   define REGEX_ALLOCATE_STACK alloca
376
377#   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
378   REGEX_REALLOCATE (source, osize, nsize)
379/* No need to explicitly free anything.  */
380#   define REGEX_FREE_STACK(arg)
381
382#  endif /* not REGEX_MALLOC */
383# endif /* not using relocating allocator */
384
385
386/* True if `size1' is non-NULL and PTR is pointing anywhere inside
387   `string1' or just past its end.  This works if PTR is NULL, which is
388   a good thing.  */
389# define FIRST_STRING_P(ptr) 					\
390  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
391
392/* (Re)Allocate N items of type T using malloc, or fail.  */
393# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
394# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
395# define RETALLOC_IF(addr, n, t) \
396  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
397# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
398
399# define BYTEWIDTH 8 /* In bits.  */
400
401# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
402
403# undef MAX
404# undef MIN
405# define MAX(a, b) ((a) > (b) ? (a) : (b))
406# define MIN(a, b) ((a) < (b) ? (a) : (b))
407
408typedef char boolean;
409# define false 0
410# define true 1
411
412static reg_errcode_t byte_regex_compile _RE_ARGS ((const char *pattern, size_t size,
413                                                   reg_syntax_t syntax,
414                                                   struct re_pattern_buffer *bufp));
415
416static int byte_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
417					     const char *string1, int size1,
418					     const char *string2, int size2,
419					     int pos,
420					     struct re_registers *regs,
421					     int stop));
422static int byte_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
423				     const char *string1, int size1,
424				     const char *string2, int size2,
425				     int startpos, int range,
426				     struct re_registers *regs, int stop));
427static int byte_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
428
429#ifdef MBS_SUPPORT
430static reg_errcode_t wcs_regex_compile _RE_ARGS ((const char *pattern, size_t size,
431                                                   reg_syntax_t syntax,
432                                                   struct re_pattern_buffer *bufp));
433
434
435static int wcs_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
436					    const char *cstring1, int csize1,
437					    const char *cstring2, int csize2,
438					    int pos,
439					    struct re_registers *regs,
440					    int stop,
441					    wchar_t *string1, int size1,
442					    wchar_t *string2, int size2,
443					    int *mbs_offset1, int *mbs_offset2));
444static int wcs_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
445				    const char *string1, int size1,
446				    const char *string2, int size2,
447				    int startpos, int range,
448				    struct re_registers *regs, int stop));
449static int wcs_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
450#endif
451
452/* These are the command codes that appear in compiled regular
453   expressions.  Some opcodes are followed by argument bytes.  A
454   command code can specify any interpretation whatsoever for its
455   arguments.  Zero bytes may appear in the compiled regular expression.  */
456
457typedef enum
458{
459  no_op = 0,
460
461  /* Succeed right away--no more backtracking.  */
462  succeed,
463
464        /* Followed by one byte giving n, then by n literal bytes.  */
465  exactn,
466
467# ifdef MBS_SUPPORT
468	/* Same as exactn, but contains binary data.  */
469  exactn_bin,
470# endif
471
472        /* Matches any (more or less) character.  */
473  anychar,
474
475        /* Matches any one char belonging to specified set.  First
476           following byte is number of bitmap bytes.  Then come bytes
477           for a bitmap saying which chars are in.  Bits in each byte
478           are ordered low-bit-first.  A character is in the set if its
479           bit is 1.  A character too large to have a bit in the map is
480           automatically not in the set.  */
481        /* ifdef MBS_SUPPORT, following element is length of character
482	   classes, length of collating symbols, length of equivalence
483	   classes, length of character ranges, and length of characters.
484	   Next, character class element, collating symbols elements,
485	   equivalence class elements, range elements, and character
486	   elements follow.
487	   See regex_compile function.  */
488  charset,
489
490        /* Same parameters as charset, but match any character that is
491           not one of those specified.  */
492  charset_not,
493
494        /* Start remembering the text that is matched, for storing in a
495           register.  Followed by one byte with the register number, in
496           the range 0 to one less than the pattern buffer's re_nsub
497           field.  Then followed by one byte with the number of groups
498           inner to this one.  (This last has to be part of the
499           start_memory only because we need it in the on_failure_jump
500           of re_match_2.)  */
501  start_memory,
502
503        /* Stop remembering the text that is matched and store it in a
504           memory register.  Followed by one byte with the register
505           number, in the range 0 to one less than `re_nsub' in the
506           pattern buffer, and one byte with the number of inner groups,
507           just like `start_memory'.  (We need the number of inner
508           groups here because we don't have any easy way of finding the
509           corresponding start_memory when we're at a stop_memory.)  */
510  stop_memory,
511
512        /* Match a duplicate of something remembered. Followed by one
513           byte containing the register number.  */
514  duplicate,
515
516        /* Fail unless at beginning of line.  */
517  begline,
518
519        /* Fail unless at end of line.  */
520  endline,
521
522        /* Succeeds if at beginning of buffer (if emacs) or at beginning
523           of string to be matched (if not).  */
524  begbuf,
525
526        /* Analogously, for end of buffer/string.  */
527  endbuf,
528
529        /* Followed by two byte relative address to which to jump.  */
530  jump,
531
532	/* Same as jump, but marks the end of an alternative.  */
533  jump_past_alt,
534
535        /* Followed by two-byte relative address of place to resume at
536           in case of failure.  */
537        /* ifdef MBS_SUPPORT, the size of address is 1.  */
538  on_failure_jump,
539
540        /* Like on_failure_jump, but pushes a placeholder instead of the
541           current string position when executed.  */
542  on_failure_keep_string_jump,
543
544        /* Throw away latest failure point and then jump to following
545           two-byte relative address.  */
546        /* ifdef MBS_SUPPORT, the size of address is 1.  */
547  pop_failure_jump,
548
549        /* Change to pop_failure_jump if know won't have to backtrack to
550           match; otherwise change to jump.  This is used to jump
551           back to the beginning of a repeat.  If what follows this jump
552           clearly won't match what the repeat does, such that we can be
553           sure that there is no use backtracking out of repetitions
554           already matched, then we change it to a pop_failure_jump.
555           Followed by two-byte address.  */
556        /* ifdef MBS_SUPPORT, the size of address is 1.  */
557  maybe_pop_jump,
558
559        /* Jump to following two-byte address, and push a dummy failure
560           point. This failure point will be thrown away if an attempt
561           is made to use it for a failure.  A `+' construct makes this
562           before the first repeat.  Also used as an intermediary kind
563           of jump when compiling an alternative.  */
564        /* ifdef MBS_SUPPORT, the size of address is 1.  */
565  dummy_failure_jump,
566
567	/* Push a dummy failure point and continue.  Used at the end of
568	   alternatives.  */
569  push_dummy_failure,
570
571        /* Followed by two-byte relative address and two-byte number n.
572           After matching N times, jump to the address upon failure.  */
573        /* ifdef MBS_SUPPORT, the size of address is 1.  */
574  succeed_n,
575
576        /* Followed by two-byte relative address, and two-byte number n.
577           Jump to the address N times, then fail.  */
578        /* ifdef MBS_SUPPORT, the size of address is 1.  */
579  jump_n,
580
581        /* Set the following two-byte relative address to the
582           subsequent two-byte number.  The address *includes* the two
583           bytes of number.  */
584        /* ifdef MBS_SUPPORT, the size of address is 1.  */
585  set_number_at,
586
587  wordchar,	/* Matches any word-constituent character.  */
588  notwordchar,	/* Matches any char that is not a word-constituent.  */
589
590  wordbeg,	/* Succeeds if at word beginning.  */
591  wordend,	/* Succeeds if at word end.  */
592
593  wordbound,	/* Succeeds if at a word boundary.  */
594  notwordbound	/* Succeeds if not at a word boundary.  */
595
596# ifdef emacs
597  ,before_dot,	/* Succeeds if before point.  */
598  at_dot,	/* Succeeds if at point.  */
599  after_dot,	/* Succeeds if after point.  */
600
601	/* Matches any character whose syntax is specified.  Followed by
602           a byte which contains a syntax code, e.g., Sword.  */
603  syntaxspec,
604
605	/* Matches any character whose syntax is not that specified.  */
606  notsyntaxspec
607# endif /* emacs */
608} re_opcode_t;
609#endif /* not INSIDE_RECURSION */
610
611
612#ifdef BYTE
613# define CHAR_T char
614# define UCHAR_T unsigned char
615# define COMPILED_BUFFER_VAR bufp->buffer
616# define OFFSET_ADDRESS_SIZE 2
617# if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
618#  define PREFIX(name) byte_##name
619# else
620#  define PREFIX(name) byte_/**/name
621# endif
622# define ARG_PREFIX(name) name
623# define PUT_CHAR(c) putchar (c)
624#else
625# ifdef WCHAR
626#  define CHAR_T wchar_t
627#  define UCHAR_T wchar_t
628#  define COMPILED_BUFFER_VAR wc_buffer
629#  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
630#  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
631#  if defined (__STDC__) || defined (ALMOST_STDC) || defined (HAVE_STRINGIZE)
632#   define PREFIX(name) wcs_##name
633#   define ARG_PREFIX(name) c##name
634#  else
635#   define PREFIX(name) wcs_/**/name
636#   define ARG_PREFIX(name) c/**/name
637#  endif
638/* Should we use wide stream??  */
639#  define PUT_CHAR(c) printf ("%C", c);
640#  define TRUE 1
641#  define FALSE 0
642# else
643#  ifdef MBS_SUPPORT
644#   define WCHAR
645#   define INSIDE_RECURSION
646#   include "regex.c"
647#   undef INSIDE_RECURSION
648#  endif
649#  define BYTE
650#  define INSIDE_RECURSION
651#  include "regex.c"
652#  undef INSIDE_RECURSION
653# endif
654#endif
655
656#ifdef INSIDE_RECURSION
657/* Common operations on the compiled pattern.  */
658
659/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
660/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
661
662# ifdef WCHAR
663#  define STORE_NUMBER(destination, number)				\
664  do {									\
665    *(destination) = (UCHAR_T)(number);				\
666  } while (0)
667# else /* BYTE */
668#  define STORE_NUMBER(destination, number)				\
669  do {									\
670    (destination)[0] = (number) & 0377;					\
671    (destination)[1] = (number) >> 8;					\
672  } while (0)
673# endif /* WCHAR */
674
675/* Same as STORE_NUMBER, except increment DESTINATION to
676   the byte after where the number is stored.  Therefore, DESTINATION
677   must be an lvalue.  */
678/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
679
680# define STORE_NUMBER_AND_INCR(destination, number)			\
681  do {									\
682    STORE_NUMBER (destination, number);					\
683    (destination) += OFFSET_ADDRESS_SIZE;				\
684  } while (0)
685
686/* Put into DESTINATION a number stored in two contiguous bytes starting
687   at SOURCE.  */
688/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
689
690# ifdef WCHAR
691#  define EXTRACT_NUMBER(destination, source)				\
692  do {									\
693    (destination) = *(source);						\
694  } while (0)
695# else /* BYTE */
696#  define EXTRACT_NUMBER(destination, source)				\
697  do {									\
698    (destination) = *(source) & 0377;					\
699    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
700  } while (0)
701# endif
702
703# ifdef DEBUG
704static void PREFIX(extract_number) _RE_ARGS ((int *dest, UCHAR_T *source));
705static void
706PREFIX(extract_number) (dest, source)
707    int *dest;
708    UCHAR_T *source;
709{
710#  ifdef WCHAR
711  *dest = *source;
712#  else /* BYTE */
713  int temp = SIGN_EXTEND_CHAR (*(source + 1));
714  *dest = *source & 0377;
715  *dest += temp << 8;
716#  endif
717}
718
719#  ifndef EXTRACT_MACROS /* To debug the macros.  */
720#   undef EXTRACT_NUMBER
721#   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
722#  endif /* not EXTRACT_MACROS */
723
724# endif /* DEBUG */
725
726/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
727   SOURCE must be an lvalue.  */
728
729# define EXTRACT_NUMBER_AND_INCR(destination, source)			\
730  do {									\
731    EXTRACT_NUMBER (destination, source);				\
732    (source) += OFFSET_ADDRESS_SIZE; 					\
733  } while (0)
734
735# ifdef DEBUG
736static void PREFIX(extract_number_and_incr) _RE_ARGS ((int *destination,
737						       UCHAR_T **source));
738static void
739PREFIX(extract_number_and_incr) (destination, source)
740    int *destination;
741    UCHAR_T **source;
742{
743  PREFIX(extract_number) (destination, *source);
744  *source += OFFSET_ADDRESS_SIZE;
745}
746
747#  ifndef EXTRACT_MACROS
748#   undef EXTRACT_NUMBER_AND_INCR
749#   define EXTRACT_NUMBER_AND_INCR(dest, src) \
750  PREFIX(extract_number_and_incr) (&dest, &src)
751#  endif /* not EXTRACT_MACROS */
752
753# endif /* DEBUG */
754
755
756
757/* If DEBUG is defined, Regex prints many voluminous messages about what
758   it is doing (if the variable `debug' is nonzero).  If linked with the
759   main program in `iregex.c', you can enter patterns and strings
760   interactively.  And if linked with the main program in `main.c' and
761   the other test files, you can run the already-written tests.  */
762
763# ifdef DEBUG
764
765#  ifndef DEFINED_ONCE
766
767/* We use standard I/O for debugging.  */
768#   include <stdio.h>
769
770/* It is useful to test things that ``must'' be true when debugging.  */
771#   include <assert.h>
772
773static int debug;
774
775#   define DEBUG_STATEMENT(e) e
776#   define DEBUG_PRINT1(x) if (debug) printf (x)
777#   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
778#   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
779#   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
780#  endif /* not DEFINED_ONCE */
781
782#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\
783  if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
784#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\
785  if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
786
787
788/* Print the fastmap in human-readable form.  */
789
790#  ifndef DEFINED_ONCE
791void
792print_fastmap (fastmap)
793    char *fastmap;
794{
795  unsigned was_a_range = 0;
796  unsigned i = 0;
797
798  while (i < (1 << BYTEWIDTH))
799    {
800      if (fastmap[i++])
801	{
802	  was_a_range = 0;
803          putchar (i - 1);
804          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
805            {
806              was_a_range = 1;
807              i++;
808            }
809	  if (was_a_range)
810            {
811              printf ("-");
812              putchar (i - 1);
813            }
814        }
815    }
816  putchar ('\n');
817}
818#  endif /* not DEFINED_ONCE */
819
820
821/* Print a compiled pattern string in human-readable form, starting at
822   the START pointer into it and ending just before the pointer END.  */
823
824void
825PREFIX(print_partial_compiled_pattern) (start, end)
826    UCHAR_T *start;
827    UCHAR_T *end;
828{
829  int mcnt, mcnt2;
830  UCHAR_T *p1;
831  UCHAR_T *p = start;
832  UCHAR_T *pend = end;
833
834  if (start == NULL)
835    {
836      printf ("(null)\n");
837      return;
838    }
839
840  /* Loop over pattern commands.  */
841  while (p < pend)
842    {
843#  ifdef _LIBC
844      printf ("%td:\t", p - start);
845#  else
846      printf ("%ld:\t", (long int) (p - start));
847#  endif
848
849      switch ((re_opcode_t) *p++)
850	{
851        case no_op:
852          printf ("/no_op");
853          break;
854
855	case exactn:
856	  mcnt = *p++;
857          printf ("/exactn/%d", mcnt);
858          do
859	    {
860              putchar ('/');
861	      PUT_CHAR (*p++);
862            }
863          while (--mcnt);
864          break;
865
866#  ifdef MBS_SUPPORT
867	case exactn_bin:
868	  mcnt = *p++;
869	  printf ("/exactn_bin/%d", mcnt);
870          do
871	    {
872	      printf("/%lx", (long int) *p++);
873            }
874          while (--mcnt);
875          break;
876#  endif /* MBS_SUPPORT */
877
878	case start_memory:
879          mcnt = *p++;
880          printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
881          break;
882
883	case stop_memory:
884          mcnt = *p++;
885	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
886          break;
887
888	case duplicate:
889	  printf ("/duplicate/%ld", (long int) *p++);
890	  break;
891
892	case anychar:
893	  printf ("/anychar");
894	  break;
895
896	case charset:
897        case charset_not:
898          {
899#  ifdef WCHAR
900	    int i, length;
901	    wchar_t *workp = p;
902	    printf ("/charset [%s",
903	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
904	    p += 5;
905	    length = *workp++; /* the length of char_classes */
906	    for (i=0 ; i<length ; i++)
907	      printf("[:%lx:]", (long int) *p++);
908	    length = *workp++; /* the length of collating_symbol */
909	    for (i=0 ; i<length ;)
910	      {
911		printf("[.");
912		while(*p != 0)
913		  PUT_CHAR((i++,*p++));
914		i++,p++;
915		printf(".]");
916	      }
917	    length = *workp++; /* the length of equivalence_class */
918	    for (i=0 ; i<length ;)
919	      {
920		printf("[=");
921		while(*p != 0)
922		  PUT_CHAR((i++,*p++));
923		i++,p++;
924		printf("=]");
925	      }
926	    length = *workp++; /* the length of char_range */
927	    for (i=0 ; i<length ; i++)
928	      {
929		wchar_t range_start = *p++;
930		wchar_t range_end = *p++;
931		printf("%C-%C", range_start, range_end);
932	      }
933	    length = *workp++; /* the length of char */
934	    for (i=0 ; i<length ; i++)
935	      printf("%C", *p++);
936	    putchar (']');
937#  else
938            register int c, last = -100;
939	    register int in_range = 0;
940
941	    printf ("/charset [%s",
942	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
943
944            assert (p + *p < pend);
945
946            for (c = 0; c < 256; c++)
947	      if (c / 8 < *p
948		  && (p[1 + (c/8)] & (1 << (c % 8))))
949		{
950		  /* Are we starting a range?  */
951		  if (last + 1 == c && ! in_range)
952		    {
953		      putchar ('-');
954		      in_range = 1;
955		    }
956		  /* Have we broken a range?  */
957		  else if (last + 1 != c && in_range)
958              {
959		      putchar (last);
960		      in_range = 0;
961		    }
962
963		  if (! in_range)
964		    putchar (c);
965
966		  last = c;
967              }
968
969	    if (in_range)
970	      putchar (last);
971
972	    putchar (']');
973
974	    p += 1 + *p;
975#  endif /* WCHAR */
976	  }
977	  break;
978
979	case begline:
980	  printf ("/begline");
981          break;
982
983	case endline:
984          printf ("/endline");
985          break;
986
987	case on_failure_jump:
988          PREFIX(extract_number_and_incr) (&mcnt, &p);
989#  ifdef _LIBC
990  	  printf ("/on_failure_jump to %td", p + mcnt - start);
991#  else
992  	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
993#  endif
994          break;
995
996	case on_failure_keep_string_jump:
997          PREFIX(extract_number_and_incr) (&mcnt, &p);
998#  ifdef _LIBC
999  	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
1000#  else
1001  	  printf ("/on_failure_keep_string_jump to %ld",
1002		  (long int) (p + mcnt - start));
1003#  endif
1004          break;
1005
1006	case dummy_failure_jump:
1007          PREFIX(extract_number_and_incr) (&mcnt, &p);
1008#  ifdef _LIBC
1009  	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
1010#  else
1011  	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
1012#  endif
1013          break;
1014
1015	case push_dummy_failure:
1016          printf ("/push_dummy_failure");
1017          break;
1018
1019        case maybe_pop_jump:
1020          PREFIX(extract_number_and_incr) (&mcnt, &p);
1021#  ifdef _LIBC
1022  	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
1023#  else
1024  	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1025#  endif
1026	  break;
1027
1028        case pop_failure_jump:
1029	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1030#  ifdef _LIBC
1031  	  printf ("/pop_failure_jump to %td", p + mcnt - start);
1032#  else
1033  	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1034#  endif
1035	  break;
1036
1037        case jump_past_alt:
1038	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1039#  ifdef _LIBC
1040  	  printf ("/jump_past_alt to %td", p + mcnt - start);
1041#  else
1042  	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1043#  endif
1044	  break;
1045
1046        case jump:
1047	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1048#  ifdef _LIBC
1049  	  printf ("/jump to %td", p + mcnt - start);
1050#  else
1051  	  printf ("/jump to %ld", (long int) (p + mcnt - start));
1052#  endif
1053	  break;
1054
1055        case succeed_n:
1056          PREFIX(extract_number_and_incr) (&mcnt, &p);
1057	  p1 = p + mcnt;
1058          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1059#  ifdef _LIBC
1060	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1061#  else
1062	  printf ("/succeed_n to %ld, %d times",
1063		  (long int) (p1 - start), mcnt2);
1064#  endif
1065          break;
1066
1067        case jump_n:
1068          PREFIX(extract_number_and_incr) (&mcnt, &p);
1069	  p1 = p + mcnt;
1070          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1071	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1072          break;
1073
1074        case set_number_at:
1075          PREFIX(extract_number_and_incr) (&mcnt, &p);
1076	  p1 = p + mcnt;
1077          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1078#  ifdef _LIBC
1079	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1080#  else
1081	  printf ("/set_number_at location %ld to %d",
1082		  (long int) (p1 - start), mcnt2);
1083#  endif
1084          break;
1085
1086        case wordbound:
1087	  printf ("/wordbound");
1088	  break;
1089
1090	case notwordbound:
1091	  printf ("/notwordbound");
1092          break;
1093
1094	case wordbeg:
1095	  printf ("/wordbeg");
1096	  break;
1097
1098	case wordend:
1099	  printf ("/wordend");
1100	  break;
1101
1102#  ifdef emacs
1103	case before_dot:
1104	  printf ("/before_dot");
1105          break;
1106
1107	case at_dot:
1108	  printf ("/at_dot");
1109          break;
1110
1111	case after_dot:
1112	  printf ("/after_dot");
1113          break;
1114
1115	case syntaxspec:
1116          printf ("/syntaxspec");
1117	  mcnt = *p++;
1118	  printf ("/%d", mcnt);
1119          break;
1120
1121	case notsyntaxspec:
1122          printf ("/notsyntaxspec");
1123	  mcnt = *p++;
1124	  printf ("/%d", mcnt);
1125	  break;
1126#  endif /* emacs */
1127
1128	case wordchar:
1129	  printf ("/wordchar");
1130          break;
1131
1132	case notwordchar:
1133	  printf ("/notwordchar");
1134          break;
1135
1136	case begbuf:
1137	  printf ("/begbuf");
1138          break;
1139
1140	case endbuf:
1141	  printf ("/endbuf");
1142          break;
1143
1144        default:
1145          printf ("?%ld", (long int) *(p-1));
1146	}
1147
1148      putchar ('\n');
1149    }
1150
1151#  ifdef _LIBC
1152  printf ("%td:\tend of pattern.\n", p - start);
1153#  else
1154  printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1155#  endif
1156}
1157
1158
1159void
1160PREFIX(print_compiled_pattern) (bufp)
1161    struct re_pattern_buffer *bufp;
1162{
1163  UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1164
1165  PREFIX(print_partial_compiled_pattern) (buffer, buffer
1166				  + bufp->used / sizeof(UCHAR_T));
1167  printf ("%ld bytes used/%ld bytes allocated.\n",
1168	  bufp->used, bufp->allocated);
1169
1170  if (bufp->fastmap_accurate && bufp->fastmap)
1171    {
1172      printf ("fastmap: ");
1173      print_fastmap (bufp->fastmap);
1174    }
1175
1176#  ifdef _LIBC
1177  printf ("re_nsub: %Zd\t", bufp->re_nsub);
1178#  else
1179  printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1180#  endif
1181  printf ("regs_alloc: %d\t", bufp->regs_allocated);
1182  printf ("can_be_null: %d\t", bufp->can_be_null);
1183  printf ("newline_anchor: %d\n", bufp->newline_anchor);
1184  printf ("no_sub: %d\t", bufp->no_sub);
1185  printf ("not_bol: %d\t", bufp->not_bol);
1186  printf ("not_eol: %d\t", bufp->not_eol);
1187  printf ("syntax: %lx\n", bufp->syntax);
1188  /* Perhaps we should print the translate table?  */
1189}
1190
1191
1192void
1193PREFIX(print_double_string) (where, string1, size1, string2, size2)
1194    const CHAR_T *where;
1195    const CHAR_T *string1;
1196    const CHAR_T *string2;
1197    int size1;
1198    int size2;
1199{
1200  int this_char;
1201
1202  if (where == NULL)
1203    printf ("(null)");
1204  else
1205    {
1206      int cnt;
1207
1208      if (FIRST_STRING_P (where))
1209        {
1210          for (this_char = where - string1; this_char < size1; this_char++)
1211	    PUT_CHAR (string1[this_char]);
1212
1213          where = string2;
1214        }
1215
1216      cnt = 0;
1217      for (this_char = where - string2; this_char < size2; this_char++)
1218	{
1219	  PUT_CHAR (string2[this_char]);
1220	  if (++cnt > 100)
1221	    {
1222	      fputs ("...", stdout);
1223	      break;
1224	    }
1225	}
1226    }
1227}
1228
1229#  ifndef DEFINED_ONCE
1230void
1231printchar (c)
1232     int c;
1233{
1234  putc (c, stderr);
1235}
1236#  endif
1237
1238# else /* not DEBUG */
1239
1240#  ifndef DEFINED_ONCE
1241#   undef assert
1242#   define assert(e)
1243
1244#   define DEBUG_STATEMENT(e)
1245#   define DEBUG_PRINT1(x)
1246#   define DEBUG_PRINT2(x1, x2)
1247#   define DEBUG_PRINT3(x1, x2, x3)
1248#   define DEBUG_PRINT4(x1, x2, x3, x4)
1249#  endif /* not DEFINED_ONCE */
1250#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1251#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1252
1253# endif /* not DEBUG */
1254
1255
1256
1257# ifdef WCHAR
1258/* This  convert a multibyte string to a wide character string.
1259   And write their correspondances to offset_buffer(see below)
1260   and write whether each wchar_t is binary data to is_binary.
1261   This assume invalid multibyte sequences as binary data.
1262   We assume offset_buffer and is_binary is already allocated
1263   enough space.  */
1264
1265static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1266				  size_t len, int *offset_buffer,
1267				  char *is_binary);
1268static size_t
1269convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1270     CHAR_T *dest;
1271     const unsigned char* src;
1272     size_t len; /* the length of multibyte string.  */
1273
1274     /* It hold correspondances between src(char string) and
1275	dest(wchar_t string) for optimization.
1276	e.g. src  = "xxxyzz"
1277             dest = {'X', 'Y', 'Z'}
1278	      (each "xxx", "y" and "zz" represent one multibyte character
1279	       corresponding to 'X', 'Y' and 'Z'.)
1280	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1281	  	        = {0, 3, 4, 6}
1282     */
1283     int *offset_buffer;
1284     char *is_binary;
1285{
1286  wchar_t *pdest = dest;
1287  const unsigned char *psrc = src;
1288  size_t wc_count = 0;
1289
1290  mbstate_t mbs;
1291  int i, consumed;
1292  size_t mb_remain = len;
1293  size_t mb_count = 0;
1294
1295  /* Initialize the conversion state.  */
1296  memset (&mbs, 0, sizeof (mbstate_t));
1297
1298  offset_buffer[0] = 0;
1299  for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1300	 psrc += consumed)
1301    {
1302#ifdef _LIBC
1303      consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1304#else
1305      consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1306#endif
1307
1308      if (consumed <= 0)
1309	/* failed to convert. maybe src contains binary data.
1310	   So we consume 1 byte manualy.  */
1311	{
1312	  *pdest = *psrc;
1313	  consumed = 1;
1314	  is_binary[wc_count] = TRUE;
1315	}
1316      else
1317	is_binary[wc_count] = FALSE;
1318      /* In sjis encoding, we use yen sign as escape character in
1319	 place of reverse solidus. So we convert 0x5c(yen sign in
1320	 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1321	 solidus in UCS2).  */
1322      if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1323	*pdest = (wchar_t) *psrc;
1324
1325      offset_buffer[wc_count + 1] = mb_count += consumed;
1326    }
1327
1328  /* Fill remain of the buffer with sentinel.  */
1329  for (i = wc_count + 1 ; i <= len ; i++)
1330    offset_buffer[i] = mb_count + 1;
1331
1332  return wc_count;
1333}
1334
1335# endif /* WCHAR */
1336
1337#else /* not INSIDE_RECURSION */
1338
1339/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1340   also be assigned to arbitrarily: each pattern buffer stores its own
1341   syntax, so it can be changed between regex compilations.  */
1342/* This has no initializer because initialized variables in Emacs
1343   become read-only after dumping.  */
1344reg_syntax_t re_syntax_options;
1345
1346
1347/* Specify the precise syntax of regexps for compilation.  This provides
1348   for compatibility for various utilities which historically have
1349   different, incompatible syntaxes.
1350
1351   The argument SYNTAX is a bit mask comprised of the various bits
1352   defined in regex.h.  We return the old syntax.  */
1353
1354reg_syntax_t
1355re_set_syntax (syntax)
1356    reg_syntax_t syntax;
1357{
1358  reg_syntax_t ret = re_syntax_options;
1359
1360  re_syntax_options = syntax;
1361# ifdef DEBUG
1362  if (syntax & RE_DEBUG)
1363    debug = 1;
1364  else if (debug) /* was on but now is not */
1365    debug = 0;
1366# endif /* DEBUG */
1367  return ret;
1368}
1369# ifdef _LIBC
1370weak_alias (__re_set_syntax, re_set_syntax)
1371# endif
1372
1373/* This table gives an error message for each of the error codes listed
1374   in regex.h.  Obviously the order here has to be same as there.
1375   POSIX doesn't require that we do anything for REG_NOERROR,
1376   but why not be nice?  */
1377
1378static const char *re_error_msgid[] =
1379  {
1380    gettext_noop ("Success"),	/* REG_NOERROR */
1381    gettext_noop ("No match"),	/* REG_NOMATCH */
1382    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1383    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1384    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1385    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1386    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1387    gettext_noop ("Unmatched [ or [^"),	/* REG_EBRACK */
1388    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1389    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1390    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1391    gettext_noop ("Invalid range end"),	/* REG_ERANGE */
1392    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1393    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1394    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1395    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1396    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1397  };
1398
1399#endif /* INSIDE_RECURSION */
1400
1401#ifndef DEFINED_ONCE
1402/* Avoiding alloca during matching, to placate r_alloc.  */
1403
1404/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1405   searching and matching functions should not call alloca.  On some
1406   systems, alloca is implemented in terms of malloc, and if we're
1407   using the relocating allocator routines, then malloc could cause a
1408   relocation, which might (if the strings being searched are in the
1409   ralloc heap) shift the data out from underneath the regexp
1410   routines.
1411
1412   Here's another reason to avoid allocation: Emacs
1413   processes input from X in a signal handler; processing X input may
1414   call malloc; if input arrives while a matching routine is calling
1415   malloc, then we're scrod.  But Emacs can't just block input while
1416   calling matching routines; then we don't notice interrupts when
1417   they come in.  So, Emacs blocks input around all regexp calls
1418   except the matching calls, which it leaves unprotected, in the
1419   faith that they will not malloc.  */
1420
1421/* Normally, this is fine.  */
1422# define MATCH_MAY_ALLOCATE
1423
1424/* When using GNU C, we are not REALLY using the C alloca, no matter
1425   what config.h may say.  So don't take precautions for it.  */
1426# ifdef __GNUC__
1427#  undef C_ALLOCA
1428# endif
1429
1430/* The match routines may not allocate if (1) they would do it with malloc
1431   and (2) it's not safe for them to use malloc.
1432   Note that if REL_ALLOC is defined, matching would not use malloc for the
1433   failure stack, but we would still use it for the register vectors;
1434   so REL_ALLOC should not affect this.  */
1435# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1436#  undef MATCH_MAY_ALLOCATE
1437# endif
1438#endif /* not DEFINED_ONCE */
1439
1440#ifdef INSIDE_RECURSION
1441/* Failure stack declarations and macros; both re_compile_fastmap and
1442   re_match_2 use a failure stack.  These have to be macros because of
1443   REGEX_ALLOCATE_STACK.  */
1444
1445
1446/* Number of failure points for which to initially allocate space
1447   when matching.  If this number is exceeded, we allocate more
1448   space, so it is not a hard limit.  */
1449# ifndef INIT_FAILURE_ALLOC
1450#  define INIT_FAILURE_ALLOC 5
1451# endif
1452
1453/* Roughly the maximum number of failure points on the stack.  Would be
1454   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1455   This is a variable only so users of regex can assign to it; we never
1456   change it ourselves.  */
1457
1458# ifdef INT_IS_16BIT
1459
1460#  ifndef DEFINED_ONCE
1461#   if defined MATCH_MAY_ALLOCATE
1462/* 4400 was enough to cause a crash on Alpha OSF/1,
1463   whose default stack limit is 2mb.  */
1464long int re_max_failures = 4000;
1465#   else
1466long int re_max_failures = 2000;
1467#   endif
1468#  endif
1469
1470union PREFIX(fail_stack_elt)
1471{
1472  UCHAR_T *pointer;
1473  long int integer;
1474};
1475
1476typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1477
1478typedef struct
1479{
1480  PREFIX(fail_stack_elt_t) *stack;
1481  unsigned long int size;
1482  unsigned long int avail;		/* Offset of next open position.  */
1483} PREFIX(fail_stack_type);
1484
1485# else /* not INT_IS_16BIT */
1486
1487#  ifndef DEFINED_ONCE
1488#   if defined MATCH_MAY_ALLOCATE
1489/* 4400 was enough to cause a crash on Alpha OSF/1,
1490   whose default stack limit is 2mb.  */
1491int re_max_failures = 4000;
1492#   else
1493int re_max_failures = 2000;
1494#   endif
1495#  endif
1496
1497union PREFIX(fail_stack_elt)
1498{
1499  UCHAR_T *pointer;
1500  int integer;
1501};
1502
1503typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1504
1505typedef struct
1506{
1507  PREFIX(fail_stack_elt_t) *stack;
1508  unsigned size;
1509  unsigned avail;			/* Offset of next open position.  */
1510} PREFIX(fail_stack_type);
1511
1512# endif /* INT_IS_16BIT */
1513
1514# ifndef DEFINED_ONCE
1515#  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1516#  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1517#  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1518# endif
1519
1520
1521/* Define macros to initialize and free the failure stack.
1522   Do `return -2' if the alloc fails.  */
1523
1524# ifdef MATCH_MAY_ALLOCATE
1525#  define INIT_FAIL_STACK()						\
1526  do {									\
1527    fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\
1528      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1529									\
1530    if (fail_stack.stack == NULL)				\
1531      return -2;							\
1532									\
1533    fail_stack.size = INIT_FAILURE_ALLOC;			\
1534    fail_stack.avail = 0;					\
1535  } while (0)
1536
1537#  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1538# else
1539#  define INIT_FAIL_STACK()						\
1540  do {									\
1541    fail_stack.avail = 0;					\
1542  } while (0)
1543
1544#  define RESET_FAIL_STACK()
1545# endif
1546
1547
1548/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1549
1550   Return 1 if succeeds, and 0 if either ran out of memory
1551   allocating space for it or it was already too large.
1552
1553   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1554
1555# define DOUBLE_FAIL_STACK(fail_stack)					\
1556  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1557   ? 0									\
1558   : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\
1559        REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1560          (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\
1561          ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1562									\
1563      (fail_stack).stack == NULL					\
1564      ? 0								\
1565      : ((fail_stack).size <<= 1, 					\
1566         1)))
1567
1568
1569/* Push pointer POINTER on FAIL_STACK.
1570   Return 1 if was able to do so and 0 if ran out of memory allocating
1571   space to do so.  */
1572# define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1573  ((FAIL_STACK_FULL ()							\
1574    && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1575   ? 0									\
1576   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1577      1))
1578
1579/* Push a pointer value onto the failure stack.
1580   Assumes the variable `fail_stack'.  Probably should only
1581   be called from within `PUSH_FAILURE_POINT'.  */
1582# define PUSH_FAILURE_POINTER(item)					\
1583  fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1584
1585/* This pushes an integer-valued item onto the failure stack.
1586   Assumes the variable `fail_stack'.  Probably should only
1587   be called from within `PUSH_FAILURE_POINT'.  */
1588# define PUSH_FAILURE_INT(item)					\
1589  fail_stack.stack[fail_stack.avail++].integer = (item)
1590
1591/* Push a fail_stack_elt_t value onto the failure stack.
1592   Assumes the variable `fail_stack'.  Probably should only
1593   be called from within `PUSH_FAILURE_POINT'.  */
1594# define PUSH_FAILURE_ELT(item)					\
1595  fail_stack.stack[fail_stack.avail++] =  (item)
1596
1597/* These three POP... operations complement the three PUSH... operations.
1598   All assume that `fail_stack' is nonempty.  */
1599# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1600# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1601# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1602
1603/* Used to omit pushing failure point id's when we're not debugging.  */
1604# ifdef DEBUG
1605#  define DEBUG_PUSH PUSH_FAILURE_INT
1606#  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1607# else
1608#  define DEBUG_PUSH(item)
1609#  define DEBUG_POP(item_addr)
1610# endif
1611
1612
1613/* Push the information about the state we will need
1614   if we ever fail back to it.
1615
1616   Requires variables fail_stack, regstart, regend, reg_info, and
1617   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1618   be declared.
1619
1620   Does `return FAILURE_CODE' if runs out of memory.  */
1621
1622# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1623  do {									\
1624    char *destination;							\
1625    /* Must be int, so when we don't save any registers, the arithmetic	\
1626       of 0 + -1 isn't done as unsigned.  */				\
1627    /* Can't be int, since there is not a shred of a guarantee that int	\
1628       is wide enough to hold a value of something to which pointer can	\
1629       be assigned */							\
1630    active_reg_t this_reg;						\
1631    									\
1632    DEBUG_STATEMENT (failure_id++);					\
1633    DEBUG_STATEMENT (nfailure_points_pushed++);				\
1634    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1635    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1636    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1637									\
1638    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1639    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1640									\
1641    /* Ensure we have enough space allocated for what we will push.  */	\
1642    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1643      {									\
1644        if (!DOUBLE_FAIL_STACK (fail_stack))				\
1645          return failure_code;						\
1646									\
1647        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1648		       (fail_stack).size);				\
1649        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1650      }									\
1651									\
1652    /* Push the info, starting with the registers.  */			\
1653    DEBUG_PRINT1 ("\n");						\
1654									\
1655    if (1)								\
1656      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1657	   this_reg++)							\
1658	{								\
1659	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1660	  DEBUG_STATEMENT (num_regs_pushed++);				\
1661									\
1662	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1663	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1664									\
1665	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1666	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1667									\
1668	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1669			reg_info[this_reg].word.pointer);		\
1670	  DEBUG_PRINT2 (" match_null=%d",				\
1671			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1672	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1673	  DEBUG_PRINT2 (" matched_something=%d",			\
1674			MATCHED_SOMETHING (reg_info[this_reg]));	\
1675	  DEBUG_PRINT2 (" ever_matched=%d",				\
1676			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1677	  DEBUG_PRINT1 ("\n");						\
1678	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1679	}								\
1680									\
1681    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1682    PUSH_FAILURE_INT (lowest_active_reg);				\
1683									\
1684    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1685    PUSH_FAILURE_INT (highest_active_reg);				\
1686									\
1687    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1688    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1689    PUSH_FAILURE_POINTER (pattern_place);				\
1690									\
1691    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1692    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1693				 size2);				\
1694    DEBUG_PRINT1 ("'\n");						\
1695    PUSH_FAILURE_POINTER (string_place);				\
1696									\
1697    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1698    DEBUG_PUSH (failure_id);						\
1699  } while (0)
1700
1701# ifndef DEFINED_ONCE
1702/* This is the number of items that are pushed and popped on the stack
1703   for each register.  */
1704#  define NUM_REG_ITEMS  3
1705
1706/* Individual items aside from the registers.  */
1707#  ifdef DEBUG
1708#   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1709#  else
1710#   define NUM_NONREG_ITEMS 4
1711#  endif
1712
1713/* We push at most this many items on the stack.  */
1714/* We used to use (num_regs - 1), which is the number of registers
1715   this regexp will save; but that was changed to 5
1716   to avoid stack overflow for a regexp with lots of parens.  */
1717#  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1718
1719/* We actually push this many items.  */
1720#  define NUM_FAILURE_ITEMS				\
1721  (((0							\
1722     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1723    * NUM_REG_ITEMS)					\
1724   + NUM_NONREG_ITEMS)
1725
1726/* How many items can still be added to the stack without overflowing it.  */
1727#  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1728# endif /* not DEFINED_ONCE */
1729
1730
1731/* Pops what PUSH_FAIL_STACK pushes.
1732
1733   We restore into the parameters, all of which should be lvalues:
1734     STR -- the saved data position.
1735     PAT -- the saved pattern position.
1736     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1737     REGSTART, REGEND -- arrays of string positions.
1738     REG_INFO -- array of information about each subexpression.
1739
1740   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1741   `pend', `string1', `size1', `string2', and `size2'.  */
1742# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1743{									\
1744  DEBUG_STATEMENT (unsigned failure_id;)				\
1745  active_reg_t this_reg;						\
1746  const UCHAR_T *string_temp;						\
1747									\
1748  assert (!FAIL_STACK_EMPTY ());					\
1749									\
1750  /* Remove failure points and point to how many regs pushed.  */	\
1751  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1752  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1753  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1754									\
1755  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1756									\
1757  DEBUG_POP (&failure_id);						\
1758  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1759									\
1760  /* If the saved string location is NULL, it came from an		\
1761     on_failure_keep_string_jump opcode, and we want to throw away the	\
1762     saved NULL, thus retaining our current position in the string.  */	\
1763  string_temp = POP_FAILURE_POINTER ();					\
1764  if (string_temp != NULL)						\
1765    str = (const CHAR_T *) string_temp;					\
1766									\
1767  DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1768  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1769  DEBUG_PRINT1 ("'\n");							\
1770									\
1771  pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\
1772  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1773  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1774									\
1775  /* Restore register info.  */						\
1776  high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1777  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1778									\
1779  low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1780  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1781									\
1782  if (1)								\
1783    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1784      {									\
1785	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1786									\
1787	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1788	DEBUG_PRINT2 ("      info: %p\n",				\
1789		      reg_info[this_reg].word.pointer);			\
1790									\
1791	regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1792	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1793									\
1794	regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1795	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1796      }									\
1797  else									\
1798    {									\
1799      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1800	{								\
1801	  reg_info[this_reg].word.integer = 0;				\
1802	  regend[this_reg] = 0;						\
1803	  regstart[this_reg] = 0;					\
1804	}								\
1805      highest_active_reg = high_reg;					\
1806    }									\
1807									\
1808  set_regs_matched_done = 0;						\
1809  DEBUG_STATEMENT (nfailure_points_popped++);				\
1810} /* POP_FAILURE_POINT */
1811
1812/* Structure for per-register (a.k.a. per-group) information.
1813   Other register information, such as the
1814   starting and ending positions (which are addresses), and the list of
1815   inner groups (which is a bits list) are maintained in separate
1816   variables.
1817
1818   We are making a (strictly speaking) nonportable assumption here: that
1819   the compiler will pack our bit fields into something that fits into
1820   the type of `word', i.e., is something that fits into one item on the
1821   failure stack.  */
1822
1823
1824/* Declarations and macros for re_match_2.  */
1825
1826typedef union
1827{
1828  PREFIX(fail_stack_elt_t) word;
1829  struct
1830  {
1831      /* This field is one if this group can match the empty string,
1832         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1833# define MATCH_NULL_UNSET_VALUE 3
1834    unsigned match_null_string_p : 2;
1835    unsigned is_active : 1;
1836    unsigned matched_something : 1;
1837    unsigned ever_matched_something : 1;
1838  } bits;
1839} PREFIX(register_info_type);
1840
1841# ifndef DEFINED_ONCE
1842#  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1843#  define IS_ACTIVE(R)  ((R).bits.is_active)
1844#  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1845#  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1846
1847
1848/* Call this when have matched a real character; it sets `matched' flags
1849   for the subexpressions which we are currently inside.  Also records
1850   that those subexprs have matched.  */
1851#  define SET_REGS_MATCHED()						\
1852  do									\
1853    {									\
1854      if (!set_regs_matched_done)					\
1855	{								\
1856	  active_reg_t r;						\
1857	  set_regs_matched_done = 1;					\
1858	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1859	    {								\
1860	      MATCHED_SOMETHING (reg_info[r])				\
1861		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1862		= 1;							\
1863	    }								\
1864	}								\
1865    }									\
1866  while (0)
1867# endif /* not DEFINED_ONCE */
1868
1869/* Registers are set to a sentinel when they haven't yet matched.  */
1870static CHAR_T PREFIX(reg_unset_dummy);
1871# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1872# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1873
1874/* Subroutine declarations and macros for regex_compile.  */
1875static void PREFIX(store_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc, int arg));
1876static void PREFIX(store_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1877				 int arg1, int arg2));
1878static void PREFIX(insert_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1879				  int arg, UCHAR_T *end));
1880static void PREFIX(insert_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1881				  int arg1, int arg2, UCHAR_T *end));
1882static boolean PREFIX(at_begline_loc_p) _RE_ARGS ((const CHAR_T *pattern,
1883					   const CHAR_T *p,
1884					   reg_syntax_t syntax));
1885static boolean PREFIX(at_endline_loc_p) _RE_ARGS ((const CHAR_T *p,
1886					   const CHAR_T *pend,
1887					   reg_syntax_t syntax));
1888# ifdef WCHAR
1889static reg_errcode_t wcs_compile_range _RE_ARGS ((CHAR_T range_start,
1890						  const CHAR_T **p_ptr,
1891						  const CHAR_T *pend,
1892						  char *translate,
1893						  reg_syntax_t syntax,
1894						  UCHAR_T *b,
1895						  CHAR_T *char_set));
1896static void insert_space _RE_ARGS ((int num, CHAR_T *loc, CHAR_T *end));
1897# else /* BYTE */
1898static reg_errcode_t byte_compile_range _RE_ARGS ((unsigned int range_start,
1899						   const char **p_ptr,
1900						   const char *pend,
1901						   char *translate,
1902						   reg_syntax_t syntax,
1903						   unsigned char *b));
1904# endif /* WCHAR */
1905
1906/* Fetch the next character in the uncompiled pattern---translating it
1907   if necessary.  Also cast from a signed character in the constant
1908   string passed to us by the user to an unsigned char that we can use
1909   as an array index (in, e.g., `translate').  */
1910/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1911   because it is impossible to allocate 4GB array for some encodings
1912   which have 4 byte character_set like UCS4.  */
1913# ifndef PATFETCH
1914#  ifdef WCHAR
1915#   define PATFETCH(c)							\
1916  do {if (p == pend) return REG_EEND;					\
1917    c = (UCHAR_T) *p++;							\
1918    if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\
1919  } while (0)
1920#  else /* BYTE */
1921#   define PATFETCH(c)							\
1922  do {if (p == pend) return REG_EEND;					\
1923    c = (unsigned char) *p++;						\
1924    if (translate) c = (unsigned char) translate[c];			\
1925  } while (0)
1926#  endif /* WCHAR */
1927# endif
1928
1929/* Fetch the next character in the uncompiled pattern, with no
1930   translation.  */
1931# define PATFETCH_RAW(c)						\
1932  do {if (p == pend) return REG_EEND;					\
1933    c = (UCHAR_T) *p++; 	       					\
1934  } while (0)
1935
1936/* Go backwards one character in the pattern.  */
1937# define PATUNFETCH p--
1938
1939
1940/* If `translate' is non-null, return translate[D], else just D.  We
1941   cast the subscript to translate because some data is declared as
1942   `char *', to avoid warnings when a string constant is passed.  But
1943   when we use a character as a subscript we must make it unsigned.  */
1944/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1945   because it is impossible to allocate 4GB array for some encodings
1946   which have 4 byte character_set like UCS4.  */
1947
1948# ifndef TRANSLATE
1949#  ifdef WCHAR
1950#   define TRANSLATE(d) \
1951  ((translate && ((UCHAR_T) (d)) <= 0xff) \
1952   ? (char) translate[(unsigned char) (d)] : (d))
1953# else /* BYTE */
1954#   define TRANSLATE(d) \
1955  (translate ? (char) translate[(unsigned char) (d)] : (d))
1956#  endif /* WCHAR */
1957# endif
1958
1959
1960/* Macros for outputting the compiled pattern into `buffer'.  */
1961
1962/* If the buffer isn't allocated when it comes in, use this.  */
1963# define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
1964
1965/* Make sure we have at least N more bytes of space in buffer.  */
1966# ifdef WCHAR
1967#  define GET_BUFFER_SPACE(n)						\
1968    while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1969            + (n)*sizeof(CHAR_T)) > bufp->allocated)			\
1970      EXTEND_BUFFER ()
1971# else /* BYTE */
1972#  define GET_BUFFER_SPACE(n)						\
1973    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1974      EXTEND_BUFFER ()
1975# endif /* WCHAR */
1976
1977/* Make sure we have one more byte of buffer space and then add C to it.  */
1978# define BUF_PUSH(c)							\
1979  do {									\
1980    GET_BUFFER_SPACE (1);						\
1981    *b++ = (UCHAR_T) (c);						\
1982  } while (0)
1983
1984
1985/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1986# define BUF_PUSH_2(c1, c2)						\
1987  do {									\
1988    GET_BUFFER_SPACE (2);						\
1989    *b++ = (UCHAR_T) (c1);						\
1990    *b++ = (UCHAR_T) (c2);						\
1991  } while (0)
1992
1993
1994/* As with BUF_PUSH_2, except for three bytes.  */
1995# define BUF_PUSH_3(c1, c2, c3)						\
1996  do {									\
1997    GET_BUFFER_SPACE (3);						\
1998    *b++ = (UCHAR_T) (c1);						\
1999    *b++ = (UCHAR_T) (c2);						\
2000    *b++ = (UCHAR_T) (c3);						\
2001  } while (0)
2002
2003/* Store a jump with opcode OP at LOC to location TO.  We store a
2004   relative address offset by the three bytes the jump itself occupies.  */
2005# define STORE_JUMP(op, loc, to) \
2006 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2007
2008/* Likewise, for a two-argument jump.  */
2009# define STORE_JUMP2(op, loc, to, arg) \
2010  PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2011
2012/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
2013# define INSERT_JUMP(op, loc, to) \
2014  PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2015
2016/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
2017# define INSERT_JUMP2(op, loc, to, arg) \
2018  PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2019	      arg, b)
2020
2021/* This is not an arbitrary limit: the arguments which represent offsets
2022   into the pattern are two bytes long.  So if 2^16 bytes turns out to
2023   be too small, many things would have to change.  */
2024/* Any other compiler which, like MSC, has allocation limit below 2^16
2025   bytes will have to use approach similar to what was done below for
2026   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
2027   reallocating to 0 bytes.  Such thing is not going to work too well.
2028   You have been warned!!  */
2029# ifndef DEFINED_ONCE
2030#  if defined _MSC_VER  && !defined WIN32
2031/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2032   The REALLOC define eliminates a flurry of conversion warnings,
2033   but is not required. */
2034#   define MAX_BUF_SIZE  65500L
2035#   define REALLOC(p,s) realloc ((p), (size_t) (s))
2036#  else
2037#   define MAX_BUF_SIZE (1L << 16)
2038#   define REALLOC(p,s) realloc ((p), (s))
2039#  endif
2040
2041/* Extend the buffer by twice its current size via realloc and
2042   reset the pointers that pointed into the old block to point to the
2043   correct places in the new one.  If extending the buffer results in it
2044   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2045#  if __BOUNDED_POINTERS__
2046#   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2047#   define MOVE_BUFFER_POINTER(P) \
2048  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2049#   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\
2050  else						\
2051    {						\
2052      SET_HIGH_BOUND (b);			\
2053      SET_HIGH_BOUND (begalt);			\
2054      if (fixup_alt_jump)			\
2055	SET_HIGH_BOUND (fixup_alt_jump);	\
2056      if (laststart)				\
2057	SET_HIGH_BOUND (laststart);		\
2058      if (pending_exact)			\
2059	SET_HIGH_BOUND (pending_exact);		\
2060    }
2061#  else
2062#   define MOVE_BUFFER_POINTER(P) (P) += incr
2063#   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2064#  endif
2065# endif /* not DEFINED_ONCE */
2066
2067# ifdef WCHAR
2068#  define EXTEND_BUFFER()						\
2069  do {									\
2070    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2071    int wchar_count;							\
2072    if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\
2073      return REG_ESIZE;							\
2074    bufp->allocated <<= 1;						\
2075    if (bufp->allocated > MAX_BUF_SIZE)					\
2076      bufp->allocated = MAX_BUF_SIZE;					\
2077    /* How many characters the new buffer can have?  */			\
2078    wchar_count = bufp->allocated / sizeof(UCHAR_T);			\
2079    if (wchar_count == 0) wchar_count = 1;				\
2080    /* Truncate the buffer to CHAR_T align.  */			\
2081    bufp->allocated = wchar_count * sizeof(UCHAR_T);			\
2082    RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\
2083    bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2084    if (COMPILED_BUFFER_VAR == NULL)					\
2085      return REG_ESPACE;						\
2086    /* If the buffer moved, move all the pointers into it.  */		\
2087    if (old_buffer != COMPILED_BUFFER_VAR)				\
2088      {									\
2089	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2090	MOVE_BUFFER_POINTER (b);					\
2091	MOVE_BUFFER_POINTER (begalt);					\
2092	if (fixup_alt_jump)						\
2093	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2094	if (laststart)							\
2095	  MOVE_BUFFER_POINTER (laststart);				\
2096	if (pending_exact)						\
2097	  MOVE_BUFFER_POINTER (pending_exact);				\
2098      }									\
2099    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2100  } while (0)
2101# else /* BYTE */
2102#  define EXTEND_BUFFER()						\
2103  do {									\
2104    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2105    if (bufp->allocated == MAX_BUF_SIZE)				\
2106      return REG_ESIZE;							\
2107    bufp->allocated <<= 1;						\
2108    if (bufp->allocated > MAX_BUF_SIZE)					\
2109      bufp->allocated = MAX_BUF_SIZE;					\
2110    bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,		\
2111						bufp->allocated);	\
2112    if (COMPILED_BUFFER_VAR == NULL)					\
2113      return REG_ESPACE;						\
2114    /* If the buffer moved, move all the pointers into it.  */		\
2115    if (old_buffer != COMPILED_BUFFER_VAR)				\
2116      {									\
2117	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2118	MOVE_BUFFER_POINTER (b);					\
2119	MOVE_BUFFER_POINTER (begalt);					\
2120	if (fixup_alt_jump)						\
2121	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2122	if (laststart)							\
2123	  MOVE_BUFFER_POINTER (laststart);				\
2124	if (pending_exact)						\
2125	  MOVE_BUFFER_POINTER (pending_exact);				\
2126      }									\
2127    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2128  } while (0)
2129# endif /* WCHAR */
2130
2131# ifndef DEFINED_ONCE
2132/* Since we have one byte reserved for the register number argument to
2133   {start,stop}_memory, the maximum number of groups we can report
2134   things about is what fits in that byte.  */
2135#  define MAX_REGNUM 255
2136
2137/* But patterns can have more than `MAX_REGNUM' registers.  We just
2138   ignore the excess.  */
2139typedef unsigned regnum_t;
2140
2141
2142/* Macros for the compile stack.  */
2143
2144/* Since offsets can go either forwards or backwards, this type needs to
2145   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2146/* int may be not enough when sizeof(int) == 2.  */
2147typedef long pattern_offset_t;
2148
2149typedef struct
2150{
2151  pattern_offset_t begalt_offset;
2152  pattern_offset_t fixup_alt_jump;
2153  pattern_offset_t inner_group_offset;
2154  pattern_offset_t laststart_offset;
2155  regnum_t regnum;
2156} compile_stack_elt_t;
2157
2158
2159typedef struct
2160{
2161  compile_stack_elt_t *stack;
2162  unsigned size;
2163  unsigned avail;			/* Offset of next open position.  */
2164} compile_stack_type;
2165
2166
2167#  define INIT_COMPILE_STACK_SIZE 32
2168
2169#  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2170#  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2171
2172/* The next available element.  */
2173#  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2174
2175# endif /* not DEFINED_ONCE */
2176
2177/* Set the bit for character C in a list.  */
2178# ifndef DEFINED_ONCE
2179#  define SET_LIST_BIT(c)                               \
2180  (b[((unsigned char) (c)) / BYTEWIDTH]               \
2181   |= 1 << (((unsigned char) c) % BYTEWIDTH))
2182# endif /* DEFINED_ONCE */
2183
2184/* Get the next unsigned number in the uncompiled pattern.  */
2185# define GET_UNSIGNED_NUMBER(num) \
2186  {									\
2187    while (p != pend)							\
2188      {									\
2189	PATFETCH (c);							\
2190	if (c < '0' || c > '9')						\
2191	  break;							\
2192	if (num <= RE_DUP_MAX)						\
2193	  {								\
2194	    if (num < 0)						\
2195	      num = 0;							\
2196	    num = num * 10 + c - '0';					\
2197	  }								\
2198      }									\
2199  }
2200
2201# ifndef DEFINED_ONCE
2202#  if defined _LIBC || WIDE_CHAR_SUPPORT
2203/* The GNU C library provides support for user-defined character classes
2204   and the functions from ISO C amendement 1.  */
2205#   ifdef CHARCLASS_NAME_MAX
2206#    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2207#   else
2208/* This shouldn't happen but some implementation might still have this
2209   problem.  Use a reasonable default value.  */
2210#    define CHAR_CLASS_MAX_LENGTH 256
2211#   endif
2212
2213#   ifdef _LIBC
2214#    define IS_CHAR_CLASS(string) __wctype (string)
2215#   else
2216#    define IS_CHAR_CLASS(string) wctype (string)
2217#   endif
2218#  else
2219#   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2220
2221#   define IS_CHAR_CLASS(string)					\
2222   (STREQ (string, "alpha") || STREQ (string, "upper")			\
2223    || STREQ (string, "lower") || STREQ (string, "digit")		\
2224    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2225    || STREQ (string, "space") || STREQ (string, "print")		\
2226    || STREQ (string, "punct") || STREQ (string, "graph")		\
2227    || STREQ (string, "cntrl") || STREQ (string, "blank"))
2228#  endif
2229# endif /* DEFINED_ONCE */
2230
2231# ifndef MATCH_MAY_ALLOCATE
2232
2233/* If we cannot allocate large objects within re_match_2_internal,
2234   we make the fail stack and register vectors global.
2235   The fail stack, we grow to the maximum size when a regexp
2236   is compiled.
2237   The register vectors, we adjust in size each time we
2238   compile a regexp, according to the number of registers it needs.  */
2239
2240static PREFIX(fail_stack_type) fail_stack;
2241
2242/* Size with which the following vectors are currently allocated.
2243   That is so we can make them bigger as needed,
2244   but never make them smaller.  */
2245#  ifdef DEFINED_ONCE
2246static int regs_allocated_size;
2247
2248static const char **     regstart, **     regend;
2249static const char ** old_regstart, ** old_regend;
2250static const char **best_regstart, **best_regend;
2251static const char **reg_dummy;
2252#  endif /* DEFINED_ONCE */
2253
2254static PREFIX(register_info_type) *PREFIX(reg_info);
2255static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2256
2257/* Make the register vectors big enough for NUM_REGS registers,
2258   but don't make them smaller.  */
2259
2260static void
2261PREFIX(regex_grow_registers) (num_regs)
2262     int num_regs;
2263{
2264  if (num_regs > regs_allocated_size)
2265    {
2266      RETALLOC_IF (regstart,	 num_regs, const char *);
2267      RETALLOC_IF (regend,	 num_regs, const char *);
2268      RETALLOC_IF (old_regstart, num_regs, const char *);
2269      RETALLOC_IF (old_regend,	 num_regs, const char *);
2270      RETALLOC_IF (best_regstart, num_regs, const char *);
2271      RETALLOC_IF (best_regend,	 num_regs, const char *);
2272      RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2273      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2274      RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2275
2276      regs_allocated_size = num_regs;
2277    }
2278}
2279
2280# endif /* not MATCH_MAY_ALLOCATE */
2281
2282# ifndef DEFINED_ONCE
2283static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2284						 compile_stack,
2285						 regnum_t regnum));
2286# endif /* not DEFINED_ONCE */
2287
2288/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2289   Returns one of error codes defined in `regex.h', or zero for success.
2290
2291   Assumes the `allocated' (and perhaps `buffer') and `translate'
2292   fields are set in BUFP on entry.
2293
2294   If it succeeds, results are put in BUFP (if it returns an error, the
2295   contents of BUFP are undefined):
2296     `buffer' is the compiled pattern;
2297     `syntax' is set to SYNTAX;
2298     `used' is set to the length of the compiled pattern;
2299     `fastmap_accurate' is zero;
2300     `re_nsub' is the number of subexpressions in PATTERN;
2301     `not_bol' and `not_eol' are zero;
2302
2303   The `fastmap' and `newline_anchor' fields are neither
2304   examined nor set.  */
2305
2306/* Return, freeing storage we allocated.  */
2307# ifdef WCHAR
2308#  define FREE_STACK_RETURN(value)		\
2309  return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2310# else
2311#  define FREE_STACK_RETURN(value)		\
2312  return (free (compile_stack.stack), value)
2313# endif /* WCHAR */
2314
2315static reg_errcode_t
2316PREFIX(regex_compile) (ARG_PREFIX(pattern), ARG_PREFIX(size), syntax, bufp)
2317     const char *ARG_PREFIX(pattern);
2318     size_t ARG_PREFIX(size);
2319     reg_syntax_t syntax;
2320     struct re_pattern_buffer *bufp;
2321{
2322  /* We fetch characters from PATTERN here.  Even though PATTERN is
2323     `char *' (i.e., signed), we declare these variables as unsigned, so
2324     they can be reliably used as array indices.  */
2325  register UCHAR_T c, c1;
2326
2327#ifdef WCHAR
2328  /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2329  CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2330  size_t size;
2331  /* offset buffer for optimization. See convert_mbs_to_wc.  */
2332  int *mbs_offset = NULL;
2333  /* It hold whether each wchar_t is binary data or not.  */
2334  char *is_binary = NULL;
2335  /* A flag whether exactn is handling binary data or not.  */
2336  char is_exactn_bin = FALSE;
2337#endif /* WCHAR */
2338
2339  /* A random temporary spot in PATTERN.  */
2340  const CHAR_T *p1;
2341
2342  /* Points to the end of the buffer, where we should append.  */
2343  register UCHAR_T *b;
2344
2345  /* Keeps track of unclosed groups.  */
2346  compile_stack_type compile_stack;
2347
2348  /* Points to the current (ending) position in the pattern.  */
2349#ifdef WCHAR
2350  const CHAR_T *p;
2351  const CHAR_T *pend;
2352#else /* BYTE */
2353  const CHAR_T *p = pattern;
2354  const CHAR_T *pend = pattern + size;
2355#endif /* WCHAR */
2356
2357  /* How to translate the characters in the pattern.  */
2358  RE_TRANSLATE_TYPE translate = bufp->translate;
2359
2360  /* Address of the count-byte of the most recently inserted `exactn'
2361     command.  This makes it possible to tell if a new exact-match
2362     character can be added to that command or if the character requires
2363     a new `exactn' command.  */
2364  UCHAR_T *pending_exact = 0;
2365
2366  /* Address of start of the most recently finished expression.
2367     This tells, e.g., postfix * where to find the start of its
2368     operand.  Reset at the beginning of groups and alternatives.  */
2369  UCHAR_T *laststart = 0;
2370
2371  /* Address of beginning of regexp, or inside of last group.  */
2372  UCHAR_T *begalt;
2373
2374  /* Address of the place where a forward jump should go to the end of
2375     the containing expression.  Each alternative of an `or' -- except the
2376     last -- ends with a forward jump of this sort.  */
2377  UCHAR_T *fixup_alt_jump = 0;
2378
2379  /* Counts open-groups as they are encountered.  Remembered for the
2380     matching close-group on the compile stack, so the same register
2381     number is put in the stop_memory as the start_memory.  */
2382  regnum_t regnum = 0;
2383
2384#ifdef WCHAR
2385  /* Initialize the wchar_t PATTERN and offset_buffer.  */
2386  p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2387  mbs_offset = TALLOC(csize + 1, int);
2388  is_binary = TALLOC(csize + 1, char);
2389  if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2390    {
2391      free(pattern);
2392      free(mbs_offset);
2393      free(is_binary);
2394      return REG_ESPACE;
2395    }
2396  pattern[csize] = L'\0';	/* sentinel */
2397  size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2398  pend = p + size;
2399  if (size < 0)
2400    {
2401      free(pattern);
2402      free(mbs_offset);
2403      free(is_binary);
2404      return REG_BADPAT;
2405    }
2406#endif
2407
2408#ifdef DEBUG
2409  DEBUG_PRINT1 ("\nCompiling pattern: ");
2410  if (debug)
2411    {
2412      unsigned debug_count;
2413
2414      for (debug_count = 0; debug_count < size; debug_count++)
2415        PUT_CHAR (pattern[debug_count]);
2416      putchar ('\n');
2417    }
2418#endif /* DEBUG */
2419
2420  /* Initialize the compile stack.  */
2421  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2422  if (compile_stack.stack == NULL)
2423    {
2424#ifdef WCHAR
2425      free(pattern);
2426      free(mbs_offset);
2427      free(is_binary);
2428#endif
2429      return REG_ESPACE;
2430    }
2431
2432  compile_stack.size = INIT_COMPILE_STACK_SIZE;
2433  compile_stack.avail = 0;
2434
2435  /* Initialize the pattern buffer.  */
2436  bufp->syntax = syntax;
2437  bufp->fastmap_accurate = 0;
2438  bufp->not_bol = bufp->not_eol = 0;
2439
2440  /* Set `used' to zero, so that if we return an error, the pattern
2441     printer (for debugging) will think there's no pattern.  We reset it
2442     at the end.  */
2443  bufp->used = 0;
2444
2445  /* Always count groups, whether or not bufp->no_sub is set.  */
2446  bufp->re_nsub = 0;
2447
2448#if !defined emacs && !defined SYNTAX_TABLE
2449  /* Initialize the syntax table.  */
2450   init_syntax_once ();
2451#endif
2452
2453  if (bufp->allocated == 0)
2454    {
2455      if (bufp->buffer)
2456	{ /* If zero allocated, but buffer is non-null, try to realloc
2457             enough space.  This loses if buffer's address is bogus, but
2458             that is the user's responsibility.  */
2459#ifdef WCHAR
2460	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2461	     buffer.  */
2462          free(bufp->buffer);
2463          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2464					UCHAR_T);
2465#else
2466          RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2467#endif /* WCHAR */
2468        }
2469      else
2470        { /* Caller did not allocate a buffer.  Do it for them.  */
2471          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2472					UCHAR_T);
2473        }
2474
2475      if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2476#ifdef WCHAR
2477      bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2478#endif /* WCHAR */
2479      bufp->allocated = INIT_BUF_SIZE;
2480    }
2481#ifdef WCHAR
2482  else
2483    COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2484#endif
2485
2486  begalt = b = COMPILED_BUFFER_VAR;
2487
2488  /* Loop through the uncompiled pattern until we're at the end.  */
2489  while (p != pend)
2490    {
2491      PATFETCH (c);
2492
2493      switch (c)
2494        {
2495        case '^':
2496          {
2497            if (   /* If at start of pattern, it's an operator.  */
2498                   p == pattern + 1
2499                   /* If context independent, it's an operator.  */
2500                || syntax & RE_CONTEXT_INDEP_ANCHORS
2501                   /* Otherwise, depends on what's come before.  */
2502                || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2503              BUF_PUSH (begline);
2504            else
2505              goto normal_char;
2506          }
2507          break;
2508
2509
2510        case '$':
2511          {
2512            if (   /* If at end of pattern, it's an operator.  */
2513                   p == pend
2514                   /* If context independent, it's an operator.  */
2515                || syntax & RE_CONTEXT_INDEP_ANCHORS
2516                   /* Otherwise, depends on what's next.  */
2517                || PREFIX(at_endline_loc_p) (p, pend, syntax))
2518               BUF_PUSH (endline);
2519             else
2520               goto normal_char;
2521           }
2522           break;
2523
2524
2525	case '+':
2526        case '?':
2527          if ((syntax & RE_BK_PLUS_QM)
2528              || (syntax & RE_LIMITED_OPS))
2529            goto normal_char;
2530        handle_plus:
2531        case '*':
2532          /* If there is no previous pattern... */
2533          if (!laststart)
2534            {
2535              if (syntax & RE_CONTEXT_INVALID_OPS)
2536                FREE_STACK_RETURN (REG_BADRPT);
2537              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2538                goto normal_char;
2539            }
2540
2541          {
2542            /* Are we optimizing this jump?  */
2543            boolean keep_string_p = false;
2544
2545            /* 1 means zero (many) matches is allowed.  */
2546            char zero_times_ok = 0, many_times_ok = 0;
2547
2548            /* If there is a sequence of repetition chars, collapse it
2549               down to just one (the right one).  We can't combine
2550               interval operators with these because of, e.g., `a{2}*',
2551               which should only match an even number of `a's.  */
2552
2553            for (;;)
2554              {
2555                zero_times_ok |= c != '+';
2556                many_times_ok |= c != '?';
2557
2558                if (p == pend)
2559                  break;
2560
2561                PATFETCH (c);
2562
2563                if (c == '*'
2564                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2565                  ;
2566
2567                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2568                  {
2569                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2570
2571                    PATFETCH (c1);
2572                    if (!(c1 == '+' || c1 == '?'))
2573                      {
2574                        PATUNFETCH;
2575                        PATUNFETCH;
2576                        break;
2577                      }
2578
2579                    c = c1;
2580                  }
2581                else
2582                  {
2583                    PATUNFETCH;
2584                    break;
2585                  }
2586
2587                /* If we get here, we found another repeat character.  */
2588               }
2589
2590            /* Star, etc. applied to an empty pattern is equivalent
2591               to an empty pattern.  */
2592            if (!laststart)
2593              break;
2594
2595            /* Now we know whether or not zero matches is allowed
2596               and also whether or not two or more matches is allowed.  */
2597            if (many_times_ok)
2598              { /* More than one repetition is allowed, so put in at the
2599                   end a backward relative jump from `b' to before the next
2600                   jump we're going to put in below (which jumps from
2601                   laststart to after this jump).
2602
2603                   But if we are at the `*' in the exact sequence `.*\n',
2604                   insert an unconditional jump backwards to the .,
2605                   instead of the beginning of the loop.  This way we only
2606                   push a failure point once, instead of every time
2607                   through the loop.  */
2608                assert (p - 1 > pattern);
2609
2610                /* Allocate the space for the jump.  */
2611                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2612
2613                /* We know we are not at the first character of the pattern,
2614                   because laststart was nonzero.  And we've already
2615                   incremented `p', by the way, to be the character after
2616                   the `*'.  Do we have to do something analogous here
2617                   for null bytes, because of RE_DOT_NOT_NULL?  */
2618                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2619		    && zero_times_ok
2620                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2621                    && !(syntax & RE_DOT_NEWLINE))
2622                  { /* We have .*\n.  */
2623                    STORE_JUMP (jump, b, laststart);
2624                    keep_string_p = true;
2625                  }
2626                else
2627                  /* Anything else.  */
2628                  STORE_JUMP (maybe_pop_jump, b, laststart -
2629			      (1 + OFFSET_ADDRESS_SIZE));
2630
2631                /* We've added more stuff to the buffer.  */
2632                b += 1 + OFFSET_ADDRESS_SIZE;
2633              }
2634
2635            /* On failure, jump from laststart to b + 3, which will be the
2636               end of the buffer after this jump is inserted.  */
2637	    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2638	       'b + 3'.  */
2639            GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2640            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2641                                       : on_failure_jump,
2642                         laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2643            pending_exact = 0;
2644            b += 1 + OFFSET_ADDRESS_SIZE;
2645
2646            if (!zero_times_ok)
2647              {
2648                /* At least one repetition is required, so insert a
2649                   `dummy_failure_jump' before the initial
2650                   `on_failure_jump' instruction of the loop. This
2651                   effects a skip over that instruction the first time
2652                   we hit that loop.  */
2653                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2654                INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2655			     2 + 2 * OFFSET_ADDRESS_SIZE);
2656                b += 1 + OFFSET_ADDRESS_SIZE;
2657              }
2658            }
2659	  break;
2660
2661
2662	case '.':
2663          laststart = b;
2664          BUF_PUSH (anychar);
2665          break;
2666
2667
2668        case '[':
2669          {
2670            boolean had_char_class = false;
2671#ifdef WCHAR
2672	    CHAR_T range_start = 0xffffffff;
2673#else
2674	    unsigned int range_start = 0xffffffff;
2675#endif
2676            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2677
2678#ifdef WCHAR
2679	    /* We assume a charset(_not) structure as a wchar_t array.
2680	       charset[0] = (re_opcode_t) charset(_not)
2681               charset[1] = l (= length of char_classes)
2682               charset[2] = m (= length of collating_symbols)
2683               charset[3] = n (= length of equivalence_classes)
2684	       charset[4] = o (= length of char_ranges)
2685	       charset[5] = p (= length of chars)
2686
2687               charset[6] = char_class (wctype_t)
2688               charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2689                         ...
2690               charset[l+5]  = char_class (wctype_t)
2691
2692               charset[l+6]  = collating_symbol (wchar_t)
2693                            ...
2694               charset[l+m+5]  = collating_symbol (wchar_t)
2695					ifdef _LIBC we use the index if
2696					_NL_COLLATE_SYMB_EXTRAMB instead of
2697					wchar_t string.
2698
2699               charset[l+m+6]  = equivalence_classes (wchar_t)
2700                              ...
2701               charset[l+m+n+5]  = equivalence_classes (wchar_t)
2702					ifdef _LIBC we use the index in
2703					_NL_COLLATE_WEIGHT instead of
2704					wchar_t string.
2705
2706	       charset[l+m+n+6] = range_start
2707	       charset[l+m+n+7] = range_end
2708	                       ...
2709	       charset[l+m+n+2o+4] = range_start
2710	       charset[l+m+n+2o+5] = range_end
2711					ifdef _LIBC we use the value looked up
2712					in _NL_COLLATE_COLLSEQ instead of
2713					wchar_t character.
2714
2715	       charset[l+m+n+2o+6] = char
2716	                          ...
2717	       charset[l+m+n+2o+p+5] = char
2718
2719	     */
2720
2721	    /* We need at least 6 spaces: the opcode, the length of
2722               char_classes, the length of collating_symbols, the length of
2723               equivalence_classes, the length of char_ranges, the length of
2724               chars.  */
2725	    GET_BUFFER_SPACE (6);
2726
2727	    /* Save b as laststart. And We use laststart as the pointer
2728	       to the first element of the charset here.
2729	       In other words, laststart[i] indicates charset[i].  */
2730            laststart = b;
2731
2732            /* We test `*p == '^' twice, instead of using an if
2733               statement, so we only need one BUF_PUSH.  */
2734            BUF_PUSH (*p == '^' ? charset_not : charset);
2735            if (*p == '^')
2736              p++;
2737
2738            /* Push the length of char_classes, the length of
2739               collating_symbols, the length of equivalence_classes, the
2740               length of char_ranges and the length of chars.  */
2741            BUF_PUSH_3 (0, 0, 0);
2742            BUF_PUSH_2 (0, 0);
2743
2744            /* Remember the first position in the bracket expression.  */
2745            p1 = p;
2746
2747            /* charset_not matches newline according to a syntax bit.  */
2748            if ((re_opcode_t) b[-6] == charset_not
2749                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2750	      {
2751		BUF_PUSH('\n');
2752		laststart[5]++; /* Update the length of characters  */
2753	      }
2754
2755            /* Read in characters and ranges, setting map bits.  */
2756            for (;;)
2757              {
2758                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2759
2760                PATFETCH (c);
2761
2762                /* \ might escape characters inside [...] and [^...].  */
2763                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2764                  {
2765                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2766
2767                    PATFETCH (c1);
2768		    BUF_PUSH(c1);
2769		    laststart[5]++; /* Update the length of chars  */
2770		    range_start = c1;
2771                    continue;
2772                  }
2773
2774                /* Could be the end of the bracket expression.  If it's
2775                   not (i.e., when the bracket expression is `[]' so
2776                   far), the ']' character bit gets set way below.  */
2777                if (c == ']' && p != p1 + 1)
2778                  break;
2779
2780                /* Look ahead to see if it's a range when the last thing
2781                   was a character class.  */
2782                if (had_char_class && c == '-' && *p != ']')
2783                  FREE_STACK_RETURN (REG_ERANGE);
2784
2785                /* Look ahead to see if it's a range when the last thing
2786                   was a character: if this is a hyphen not at the
2787                   beginning or the end of a list, then it's the range
2788                   operator.  */
2789                if (c == '-'
2790                    && !(p - 2 >= pattern && p[-2] == '[')
2791                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2792                    && *p != ']')
2793                  {
2794                    reg_errcode_t ret;
2795		    /* Allocate the space for range_start and range_end.  */
2796		    GET_BUFFER_SPACE (2);
2797		    /* Update the pointer to indicate end of buffer.  */
2798                    b += 2;
2799                    ret = wcs_compile_range (range_start, &p, pend, translate,
2800                                         syntax, b, laststart);
2801                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2802                    range_start = 0xffffffff;
2803                  }
2804                else if (p[0] == '-' && p[1] != ']')
2805                  { /* This handles ranges made up of characters only.  */
2806                    reg_errcode_t ret;
2807
2808		    /* Move past the `-'.  */
2809                    PATFETCH (c1);
2810		    /* Allocate the space for range_start and range_end.  */
2811		    GET_BUFFER_SPACE (2);
2812		    /* Update the pointer to indicate end of buffer.  */
2813                    b += 2;
2814                    ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2815                                         laststart);
2816                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2817		    range_start = 0xffffffff;
2818                  }
2819
2820                /* See if we're at the beginning of a possible character
2821                   class.  */
2822                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2823                  { /* Leave room for the null.  */
2824                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2825
2826                    PATFETCH (c);
2827                    c1 = 0;
2828
2829                    /* If pattern is `[[:'.  */
2830                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2831
2832                    for (;;)
2833                      {
2834                        PATFETCH (c);
2835                        if ((c == ':' && *p == ']') || p == pend)
2836                          break;
2837			if (c1 < CHAR_CLASS_MAX_LENGTH)
2838			  str[c1++] = c;
2839			else
2840			  /* This is in any case an invalid class name.  */
2841			  str[0] = '\0';
2842                      }
2843                    str[c1] = '\0';
2844
2845                    /* If isn't a word bracketed by `[:' and `:]':
2846                       undo the ending character, the letters, and leave
2847                       the leading `:' and `[' (but store them as character).  */
2848                    if (c == ':' && *p == ']')
2849                      {
2850			wctype_t wt;
2851			uintptr_t alignedp;
2852
2853			/* Query the character class as wctype_t.  */
2854			wt = IS_CHAR_CLASS (str);
2855			if (wt == 0)
2856			  FREE_STACK_RETURN (REG_ECTYPE);
2857
2858                        /* Throw away the ] at the end of the character
2859                           class.  */
2860                        PATFETCH (c);
2861
2862                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2863
2864			/* Allocate the space for character class.  */
2865                        GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2866			/* Update the pointer to indicate end of buffer.  */
2867                        b += CHAR_CLASS_SIZE;
2868			/* Move data which follow character classes
2869			    not to violate the data.  */
2870                        insert_space(CHAR_CLASS_SIZE,
2871				     laststart + 6 + laststart[1],
2872				     b - 1);
2873			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2874				    + __alignof__(wctype_t) - 1)
2875			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2876			/* Store the character class.  */
2877                        *((wctype_t*)alignedp) = wt;
2878                        /* Update length of char_classes */
2879                        laststart[1] += CHAR_CLASS_SIZE;
2880
2881                        had_char_class = true;
2882                      }
2883                    else
2884                      {
2885                        c1++;
2886                        while (c1--)
2887                          PATUNFETCH;
2888                        BUF_PUSH ('[');
2889                        BUF_PUSH (':');
2890                        laststart[5] += 2; /* Update the length of characters  */
2891			range_start = ':';
2892                        had_char_class = false;
2893                      }
2894                  }
2895                else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2896							  || *p == '.'))
2897		  {
2898		    CHAR_T str[128];	/* Should be large enough.  */
2899		    CHAR_T delim = *p; /* '=' or '.'  */
2900# ifdef _LIBC
2901		    uint32_t nrules =
2902		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2903# endif
2904		    PATFETCH (c);
2905		    c1 = 0;
2906
2907		    /* If pattern is `[[=' or '[[.'.  */
2908		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2909
2910		    for (;;)
2911		      {
2912			PATFETCH (c);
2913			if ((c == delim && *p == ']') || p == pend)
2914			  break;
2915			if (c1 < sizeof (str) - 1)
2916			  str[c1++] = c;
2917			else
2918			  /* This is in any case an invalid class name.  */
2919			  str[0] = '\0';
2920                      }
2921		    str[c1] = '\0';
2922
2923		    if (c == delim && *p == ']' && str[0] != '\0')
2924		      {
2925                        unsigned int i, offset;
2926			/* If we have no collation data we use the default
2927			   collation in which each character is in a class
2928			   by itself.  It also means that ASCII is the
2929			   character set and therefore we cannot have character
2930			   with more than one byte in the multibyte
2931			   representation.  */
2932
2933                        /* If not defined _LIBC, we push the name and
2934			   `\0' for the sake of matching performance.  */
2935			int datasize = c1 + 1;
2936
2937# ifdef _LIBC
2938			int32_t idx = 0;
2939			if (nrules == 0)
2940# endif
2941			  {
2942			    if (c1 != 1)
2943			      FREE_STACK_RETURN (REG_ECOLLATE);
2944			  }
2945# ifdef _LIBC
2946			else
2947			  {
2948			    const int32_t *table;
2949			    const int32_t *weights;
2950			    const int32_t *extra;
2951			    const int32_t *indirect;
2952			    wint_t *cp;
2953
2954			    /* This #include defines a local function!  */
2955#  include <locale/weightwc.h>
2956
2957			    if(delim == '=')
2958			      {
2959				/* We push the index for equivalence class.  */
2960				cp = (wint_t*)str;
2961
2962				table = (const int32_t *)
2963				  _NL_CURRENT (LC_COLLATE,
2964					       _NL_COLLATE_TABLEWC);
2965				weights = (const int32_t *)
2966				  _NL_CURRENT (LC_COLLATE,
2967					       _NL_COLLATE_WEIGHTWC);
2968				extra = (const int32_t *)
2969				  _NL_CURRENT (LC_COLLATE,
2970					       _NL_COLLATE_EXTRAWC);
2971				indirect = (const int32_t *)
2972				  _NL_CURRENT (LC_COLLATE,
2973					       _NL_COLLATE_INDIRECTWC);
2974
2975				idx = findidx ((const wint_t**)&cp);
2976				if (idx == 0 || cp < (wint_t*) str + c1)
2977				  /* This is no valid character.  */
2978				  FREE_STACK_RETURN (REG_ECOLLATE);
2979
2980				str[0] = (wchar_t)idx;
2981			      }
2982			    else /* delim == '.' */
2983			      {
2984				/* We push collation sequence value
2985				   for collating symbol.  */
2986				int32_t table_size;
2987				const int32_t *symb_table;
2988				const unsigned char *extra;
2989				int32_t idx;
2990				int32_t elem;
2991				int32_t second;
2992				int32_t hash;
2993				char char_str[c1];
2994
2995				/* We have to convert the name to a single-byte
2996				   string.  This is possible since the names
2997				   consist of ASCII characters and the internal
2998				   representation is UCS4.  */
2999				for (i = 0; i < c1; ++i)
3000				  char_str[i] = str[i];
3001
3002				table_size =
3003				  _NL_CURRENT_WORD (LC_COLLATE,
3004						    _NL_COLLATE_SYMB_HASH_SIZEMB);
3005				symb_table = (const int32_t *)
3006				  _NL_CURRENT (LC_COLLATE,
3007					       _NL_COLLATE_SYMB_TABLEMB);
3008				extra = (const unsigned char *)
3009				  _NL_CURRENT (LC_COLLATE,
3010					       _NL_COLLATE_SYMB_EXTRAMB);
3011
3012				/* Locate the character in the hashing table.  */
3013				hash = elem_hash (char_str, c1);
3014
3015				idx = 0;
3016				elem = hash % table_size;
3017				second = hash % (table_size - 2);
3018				while (symb_table[2 * elem] != 0)
3019				  {
3020				    /* First compare the hashing value.  */
3021				    if (symb_table[2 * elem] == hash
3022					&& c1 == extra[symb_table[2 * elem + 1]]
3023					&& memcmp (char_str,
3024						   &extra[symb_table[2 * elem + 1]
3025							 + 1], c1) == 0)
3026				      {
3027					/* Yep, this is the entry.  */
3028					idx = symb_table[2 * elem + 1];
3029					idx += 1 + extra[idx];
3030					break;
3031				      }
3032
3033				    /* Next entry.  */
3034				    elem += second;
3035				  }
3036
3037				if (symb_table[2 * elem] != 0)
3038				  {
3039				    /* Compute the index of the byte sequence
3040				       in the table.  */
3041				    idx += 1 + extra[idx];
3042				    /* Adjust for the alignment.  */
3043				    idx = (idx + 3) & ~3;
3044
3045				    str[0] = (wchar_t) idx + 4;
3046				  }
3047				else if (symb_table[2 * elem] == 0 && c1 == 1)
3048				  {
3049				    /* No valid character.  Match it as a
3050				       single byte character.  */
3051				    had_char_class = false;
3052				    BUF_PUSH(str[0]);
3053				    /* Update the length of characters  */
3054				    laststart[5]++;
3055				    range_start = str[0];
3056
3057				    /* Throw away the ] at the end of the
3058				       collating symbol.  */
3059				    PATFETCH (c);
3060				    /* exit from the switch block.  */
3061				    continue;
3062				  }
3063				else
3064				  FREE_STACK_RETURN (REG_ECOLLATE);
3065			      }
3066			    datasize = 1;
3067			  }
3068# endif
3069                        /* Throw away the ] at the end of the equivalence
3070                           class (or collating symbol).  */
3071                        PATFETCH (c);
3072
3073			/* Allocate the space for the equivalence class
3074			   (or collating symbol) (and '\0' if needed).  */
3075                        GET_BUFFER_SPACE(datasize);
3076			/* Update the pointer to indicate end of buffer.  */
3077                        b += datasize;
3078
3079			if (delim == '=')
3080			  { /* equivalence class  */
3081			    /* Calculate the offset of char_ranges,
3082			       which is next to equivalence_classes.  */
3083			    offset = laststart[1] + laststart[2]
3084			      + laststart[3] +6;
3085			    /* Insert space.  */
3086			    insert_space(datasize, laststart + offset, b - 1);
3087
3088			    /* Write the equivalence_class and \0.  */
3089			    for (i = 0 ; i < datasize ; i++)
3090			      laststart[offset + i] = str[i];
3091
3092			    /* Update the length of equivalence_classes.  */
3093			    laststart[3] += datasize;
3094			    had_char_class = true;
3095			  }
3096			else /* delim == '.' */
3097			  { /* collating symbol  */
3098			    /* Calculate the offset of the equivalence_classes,
3099			       which is next to collating_symbols.  */
3100			    offset = laststart[1] + laststart[2] + 6;
3101			    /* Insert space and write the collationg_symbol
3102			       and \0.  */
3103			    insert_space(datasize, laststart + offset, b-1);
3104			    for (i = 0 ; i < datasize ; i++)
3105			      laststart[offset + i] = str[i];
3106
3107			    /* In re_match_2_internal if range_start < -1, we
3108			       assume -range_start is the offset of the
3109			       collating symbol which is specified as
3110			       the character of the range start.  So we assign
3111			       -(laststart[1] + laststart[2] + 6) to
3112			       range_start.  */
3113			    range_start = -(laststart[1] + laststart[2] + 6);
3114			    /* Update the length of collating_symbol.  */
3115			    laststart[2] += datasize;
3116			    had_char_class = false;
3117			  }
3118		      }
3119                    else
3120                      {
3121                        c1++;
3122                        while (c1--)
3123                          PATUNFETCH;
3124                        BUF_PUSH ('[');
3125                        BUF_PUSH (delim);
3126                        laststart[5] += 2; /* Update the length of characters  */
3127			range_start = delim;
3128                        had_char_class = false;
3129                      }
3130		  }
3131                else
3132                  {
3133                    had_char_class = false;
3134		    BUF_PUSH(c);
3135		    laststart[5]++;  /* Update the length of characters  */
3136		    range_start = c;
3137                  }
3138	      }
3139
3140#else /* BYTE */
3141            /* Ensure that we have enough space to push a charset: the
3142               opcode, the length count, and the bitset; 34 bytes in all.  */
3143	    GET_BUFFER_SPACE (34);
3144
3145            laststart = b;
3146
3147            /* We test `*p == '^' twice, instead of using an if
3148               statement, so we only need one BUF_PUSH.  */
3149            BUF_PUSH (*p == '^' ? charset_not : charset);
3150            if (*p == '^')
3151              p++;
3152
3153            /* Remember the first position in the bracket expression.  */
3154            p1 = p;
3155
3156            /* Push the number of bytes in the bitmap.  */
3157            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3158
3159            /* Clear the whole map.  */
3160            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3161
3162            /* charset_not matches newline according to a syntax bit.  */
3163            if ((re_opcode_t) b[-2] == charset_not
3164                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3165              SET_LIST_BIT ('\n');
3166
3167            /* Read in characters and ranges, setting map bits.  */
3168            for (;;)
3169              {
3170                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3171
3172                PATFETCH (c);
3173
3174                /* \ might escape characters inside [...] and [^...].  */
3175                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3176                  {
3177                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3178
3179                    PATFETCH (c1);
3180                    SET_LIST_BIT (c1);
3181		    range_start = c1;
3182                    continue;
3183                  }
3184
3185                /* Could be the end of the bracket expression.  If it's
3186                   not (i.e., when the bracket expression is `[]' so
3187                   far), the ']' character bit gets set way below.  */
3188                if (c == ']' && p != p1 + 1)
3189                  break;
3190
3191                /* Look ahead to see if it's a range when the last thing
3192                   was a character class.  */
3193                if (had_char_class && c == '-' && *p != ']')
3194                  FREE_STACK_RETURN (REG_ERANGE);
3195
3196                /* Look ahead to see if it's a range when the last thing
3197                   was a character: if this is a hyphen not at the
3198                   beginning or the end of a list, then it's the range
3199                   operator.  */
3200                if (c == '-'
3201                    && !(p - 2 >= pattern && p[-2] == '[')
3202                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3203                    && *p != ']')
3204                  {
3205                    reg_errcode_t ret
3206                      = byte_compile_range (range_start, &p, pend, translate,
3207					    syntax, b);
3208                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3209		    range_start = 0xffffffff;
3210                  }
3211
3212                else if (p[0] == '-' && p[1] != ']')
3213                  { /* This handles ranges made up of characters only.  */
3214                    reg_errcode_t ret;
3215
3216		    /* Move past the `-'.  */
3217                    PATFETCH (c1);
3218
3219                    ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3220                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3221		    range_start = 0xffffffff;
3222                  }
3223
3224                /* See if we're at the beginning of a possible character
3225                   class.  */
3226
3227                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3228                  { /* Leave room for the null.  */
3229                    char str[CHAR_CLASS_MAX_LENGTH + 1];
3230
3231                    PATFETCH (c);
3232                    c1 = 0;
3233
3234                    /* If pattern is `[[:'.  */
3235                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3236
3237                    for (;;)
3238                      {
3239                        PATFETCH (c);
3240                        if ((c == ':' && *p == ']') || p == pend)
3241                          break;
3242			if (c1 < CHAR_CLASS_MAX_LENGTH)
3243			  str[c1++] = c;
3244			else
3245			  /* This is in any case an invalid class name.  */
3246			  str[0] = '\0';
3247                      }
3248                    str[c1] = '\0';
3249
3250                    /* If isn't a word bracketed by `[:' and `:]':
3251                       undo the ending character, the letters, and leave
3252                       the leading `:' and `[' (but set bits for them).  */
3253                    if (c == ':' && *p == ']')
3254                      {
3255# if defined _LIBC || WIDE_CHAR_SUPPORT
3256                        boolean is_lower = STREQ (str, "lower");
3257                        boolean is_upper = STREQ (str, "upper");
3258			wctype_t wt;
3259                        int ch;
3260
3261			wt = IS_CHAR_CLASS (str);
3262			if (wt == 0)
3263			  FREE_STACK_RETURN (REG_ECTYPE);
3264
3265                        /* Throw away the ] at the end of the character
3266                           class.  */
3267                        PATFETCH (c);
3268
3269                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3270
3271                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3272			  {
3273#  ifdef _LIBC
3274			    if (__iswctype (__btowc (ch), wt))
3275			      SET_LIST_BIT (ch);
3276#  else
3277			    if (iswctype (btowc (ch), wt))
3278			      SET_LIST_BIT (ch);
3279#  endif
3280
3281			    if (translate && (is_upper || is_lower)
3282				&& (ISUPPER (ch) || ISLOWER (ch)))
3283			      SET_LIST_BIT (ch);
3284			  }
3285
3286                        had_char_class = true;
3287# else
3288                        int ch;
3289                        boolean is_alnum = STREQ (str, "alnum");
3290                        boolean is_alpha = STREQ (str, "alpha");
3291                        boolean is_blank = STREQ (str, "blank");
3292                        boolean is_cntrl = STREQ (str, "cntrl");
3293                        boolean is_digit = STREQ (str, "digit");
3294                        boolean is_graph = STREQ (str, "graph");
3295                        boolean is_lower = STREQ (str, "lower");
3296                        boolean is_print = STREQ (str, "print");
3297                        boolean is_punct = STREQ (str, "punct");
3298                        boolean is_space = STREQ (str, "space");
3299                        boolean is_upper = STREQ (str, "upper");
3300                        boolean is_xdigit = STREQ (str, "xdigit");
3301
3302                        if (!IS_CHAR_CLASS (str))
3303			  FREE_STACK_RETURN (REG_ECTYPE);
3304
3305                        /* Throw away the ] at the end of the character
3306                           class.  */
3307                        PATFETCH (c);
3308
3309                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3310
3311                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3312                          {
3313			    /* This was split into 3 if's to
3314			       avoid an arbitrary limit in some compiler.  */
3315                            if (   (is_alnum  && ISALNUM (ch))
3316                                || (is_alpha  && ISALPHA (ch))
3317                                || (is_blank  && ISBLANK (ch))
3318                                || (is_cntrl  && ISCNTRL (ch)))
3319			      SET_LIST_BIT (ch);
3320			    if (   (is_digit  && ISDIGIT (ch))
3321                                || (is_graph  && ISGRAPH (ch))
3322                                || (is_lower  && ISLOWER (ch))
3323                                || (is_print  && ISPRINT (ch)))
3324			      SET_LIST_BIT (ch);
3325			    if (   (is_punct  && ISPUNCT (ch))
3326                                || (is_space  && ISSPACE (ch))
3327                                || (is_upper  && ISUPPER (ch))
3328                                || (is_xdigit && ISXDIGIT (ch)))
3329			      SET_LIST_BIT (ch);
3330			    if (   translate && (is_upper || is_lower)
3331				&& (ISUPPER (ch) || ISLOWER (ch)))
3332			      SET_LIST_BIT (ch);
3333                          }
3334                        had_char_class = true;
3335# endif	/* libc || wctype.h */
3336                      }
3337                    else
3338                      {
3339                        c1++;
3340                        while (c1--)
3341                          PATUNFETCH;
3342                        SET_LIST_BIT ('[');
3343                        SET_LIST_BIT (':');
3344			range_start = ':';
3345                        had_char_class = false;
3346                      }
3347                  }
3348                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3349		  {
3350		    unsigned char str[MB_LEN_MAX + 1];
3351# ifdef _LIBC
3352		    uint32_t nrules =
3353		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3354# endif
3355
3356		    PATFETCH (c);
3357		    c1 = 0;
3358
3359		    /* If pattern is `[[='.  */
3360		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3361
3362		    for (;;)
3363		      {
3364			PATFETCH (c);
3365			if ((c == '=' && *p == ']') || p == pend)
3366			  break;
3367			if (c1 < MB_LEN_MAX)
3368			  str[c1++] = c;
3369			else
3370			  /* This is in any case an invalid class name.  */
3371			  str[0] = '\0';
3372                      }
3373		    str[c1] = '\0';
3374
3375		    if (c == '=' && *p == ']' && str[0] != '\0')
3376		      {
3377			/* If we have no collation data we use the default
3378			   collation in which each character is in a class
3379			   by itself.  It also means that ASCII is the
3380			   character set and therefore we cannot have character
3381			   with more than one byte in the multibyte
3382			   representation.  */
3383# ifdef _LIBC
3384			if (nrules == 0)
3385# endif
3386			  {
3387			    if (c1 != 1)
3388			      FREE_STACK_RETURN (REG_ECOLLATE);
3389
3390			    /* Throw away the ] at the end of the equivalence
3391			       class.  */
3392			    PATFETCH (c);
3393
3394			    /* Set the bit for the character.  */
3395			    SET_LIST_BIT (str[0]);
3396			  }
3397# ifdef _LIBC
3398			else
3399			  {
3400			    /* Try to match the byte sequence in `str' against
3401			       those known to the collate implementation.
3402			       First find out whether the bytes in `str' are
3403			       actually from exactly one character.  */
3404			    const int32_t *table;
3405			    const unsigned char *weights;
3406			    const unsigned char *extra;
3407			    const int32_t *indirect;
3408			    int32_t idx;
3409			    const unsigned char *cp = str;
3410			    int ch;
3411
3412			    /* This #include defines a local function!  */
3413#  include <locale/weight.h>
3414
3415			    table = (const int32_t *)
3416			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3417			    weights = (const unsigned char *)
3418			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3419			    extra = (const unsigned char *)
3420			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3421			    indirect = (const int32_t *)
3422			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3423
3424			    idx = findidx (&cp);
3425			    if (idx == 0 || cp < str + c1)
3426			      /* This is no valid character.  */
3427			      FREE_STACK_RETURN (REG_ECOLLATE);
3428
3429			    /* Throw away the ] at the end of the equivalence
3430			       class.  */
3431			    PATFETCH (c);
3432
3433			    /* Now we have to go throught the whole table
3434			       and find all characters which have the same
3435			       first level weight.
3436
3437			       XXX Note that this is not entirely correct.
3438			       we would have to match multibyte sequences
3439			       but this is not possible with the current
3440			       implementation.  */
3441			    for (ch = 1; ch < 256; ++ch)
3442			      /* XXX This test would have to be changed if we
3443				 would allow matching multibyte sequences.  */
3444			      if (table[ch] > 0)
3445				{
3446				  int32_t idx2 = table[ch];
3447				  size_t len = weights[idx2];
3448
3449				  /* Test whether the lenghts match.  */
3450				  if (weights[idx] == len)
3451				    {
3452				      /* They do.  New compare the bytes of
3453					 the weight.  */
3454				      size_t cnt = 0;
3455
3456				      while (cnt < len
3457					     && (weights[idx + 1 + cnt]
3458						 == weights[idx2 + 1 + cnt]))
3459					++cnt;
3460
3461				      if (cnt == len)
3462					/* They match.  Mark the character as
3463					   acceptable.  */
3464					SET_LIST_BIT (ch);
3465				    }
3466				}
3467			  }
3468# endif
3469			had_char_class = true;
3470		      }
3471                    else
3472                      {
3473                        c1++;
3474                        while (c1--)
3475                          PATUNFETCH;
3476                        SET_LIST_BIT ('[');
3477                        SET_LIST_BIT ('=');
3478			range_start = '=';
3479                        had_char_class = false;
3480                      }
3481		  }
3482                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3483		  {
3484		    unsigned char str[128];	/* Should be large enough.  */
3485# ifdef _LIBC
3486		    uint32_t nrules =
3487		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3488# endif
3489
3490		    PATFETCH (c);
3491		    c1 = 0;
3492
3493		    /* If pattern is `[[.'.  */
3494		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3495
3496		    for (;;)
3497		      {
3498			PATFETCH (c);
3499			if ((c == '.' && *p == ']') || p == pend)
3500			  break;
3501			if (c1 < sizeof (str))
3502			  str[c1++] = c;
3503			else
3504			  /* This is in any case an invalid class name.  */
3505			  str[0] = '\0';
3506                      }
3507		    str[c1] = '\0';
3508
3509		    if (c == '.' && *p == ']' && str[0] != '\0')
3510		      {
3511			/* If we have no collation data we use the default
3512			   collation in which each character is the name
3513			   for its own class which contains only the one
3514			   character.  It also means that ASCII is the
3515			   character set and therefore we cannot have character
3516			   with more than one byte in the multibyte
3517			   representation.  */
3518# ifdef _LIBC
3519			if (nrules == 0)
3520# endif
3521			  {
3522			    if (c1 != 1)
3523			      FREE_STACK_RETURN (REG_ECOLLATE);
3524
3525			    /* Throw away the ] at the end of the equivalence
3526			       class.  */
3527			    PATFETCH (c);
3528
3529			    /* Set the bit for the character.  */
3530			    SET_LIST_BIT (str[0]);
3531			    range_start = ((const unsigned char *) str)[0];
3532			  }
3533# ifdef _LIBC
3534			else
3535			  {
3536			    /* Try to match the byte sequence in `str' against
3537			       those known to the collate implementation.
3538			       First find out whether the bytes in `str' are
3539			       actually from exactly one character.  */
3540			    int32_t table_size;
3541			    const int32_t *symb_table;
3542			    const unsigned char *extra;
3543			    int32_t idx;
3544			    int32_t elem;
3545			    int32_t second;
3546			    int32_t hash;
3547
3548			    table_size =
3549			      _NL_CURRENT_WORD (LC_COLLATE,
3550						_NL_COLLATE_SYMB_HASH_SIZEMB);
3551			    symb_table = (const int32_t *)
3552			      _NL_CURRENT (LC_COLLATE,
3553					   _NL_COLLATE_SYMB_TABLEMB);
3554			    extra = (const unsigned char *)
3555			      _NL_CURRENT (LC_COLLATE,
3556					   _NL_COLLATE_SYMB_EXTRAMB);
3557
3558			    /* Locate the character in the hashing table.  */
3559			    hash = elem_hash (str, c1);
3560
3561			    idx = 0;
3562			    elem = hash % table_size;
3563			    second = hash % (table_size - 2);
3564			    while (symb_table[2 * elem] != 0)
3565			      {
3566				/* First compare the hashing value.  */
3567				if (symb_table[2 * elem] == hash
3568				    && c1 == extra[symb_table[2 * elem + 1]]
3569				    && memcmp (str,
3570					       &extra[symb_table[2 * elem + 1]
3571						     + 1],
3572					       c1) == 0)
3573				  {
3574				    /* Yep, this is the entry.  */
3575				    idx = symb_table[2 * elem + 1];
3576				    idx += 1 + extra[idx];
3577				    break;
3578				  }
3579
3580				/* Next entry.  */
3581				elem += second;
3582			      }
3583
3584			    if (symb_table[2 * elem] == 0)
3585			      /* This is no valid character.  */
3586			      FREE_STACK_RETURN (REG_ECOLLATE);
3587
3588			    /* Throw away the ] at the end of the equivalence
3589			       class.  */
3590			    PATFETCH (c);
3591
3592			    /* Now add the multibyte character(s) we found
3593			       to the accept list.
3594
3595			       XXX Note that this is not entirely correct.
3596			       we would have to match multibyte sequences
3597			       but this is not possible with the current
3598			       implementation.  Also, we have to match
3599			       collating symbols, which expand to more than
3600			       one file, as a whole and not allow the
3601			       individual bytes.  */
3602			    c1 = extra[idx++];
3603			    if (c1 == 1)
3604			      range_start = extra[idx];
3605			    while (c1-- > 0)
3606			      {
3607				SET_LIST_BIT (extra[idx]);
3608				++idx;
3609			      }
3610			  }
3611# endif
3612			had_char_class = false;
3613		      }
3614                    else
3615                      {
3616                        c1++;
3617                        while (c1--)
3618                          PATUNFETCH;
3619                        SET_LIST_BIT ('[');
3620                        SET_LIST_BIT ('.');
3621			range_start = '.';
3622                        had_char_class = false;
3623                      }
3624		  }
3625                else
3626                  {
3627                    had_char_class = false;
3628                    SET_LIST_BIT (c);
3629		    range_start = c;
3630                  }
3631              }
3632
3633            /* Discard any (non)matching list bytes that are all 0 at the
3634               end of the map.  Decrease the map-length byte too.  */
3635            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3636              b[-1]--;
3637            b += b[-1];
3638#endif /* WCHAR */
3639          }
3640          break;
3641
3642
3643	case '(':
3644          if (syntax & RE_NO_BK_PARENS)
3645            goto handle_open;
3646          else
3647            goto normal_char;
3648
3649
3650        case ')':
3651          if (syntax & RE_NO_BK_PARENS)
3652            goto handle_close;
3653          else
3654            goto normal_char;
3655
3656
3657        case '\n':
3658          if (syntax & RE_NEWLINE_ALT)
3659            goto handle_alt;
3660          else
3661            goto normal_char;
3662
3663
3664	case '|':
3665          if (syntax & RE_NO_BK_VBAR)
3666            goto handle_alt;
3667          else
3668            goto normal_char;
3669
3670
3671        case '{':
3672           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3673             goto handle_interval;
3674           else
3675             goto normal_char;
3676
3677
3678        case '\\':
3679          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3680
3681          /* Do not translate the character after the \, so that we can
3682             distinguish, e.g., \B from \b, even if we normally would
3683             translate, e.g., B to b.  */
3684          PATFETCH_RAW (c);
3685
3686          switch (c)
3687            {
3688            case '(':
3689              if (syntax & RE_NO_BK_PARENS)
3690                goto normal_backslash;
3691
3692            handle_open:
3693              bufp->re_nsub++;
3694              regnum++;
3695
3696              if (COMPILE_STACK_FULL)
3697                {
3698                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
3699                            compile_stack_elt_t);
3700                  if (compile_stack.stack == NULL) return REG_ESPACE;
3701
3702                  compile_stack.size <<= 1;
3703                }
3704
3705              /* These are the values to restore when we hit end of this
3706                 group.  They are all relative offsets, so that if the
3707                 whole pattern moves because of realloc, they will still
3708                 be valid.  */
3709              COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3710              COMPILE_STACK_TOP.fixup_alt_jump
3711                = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3712              COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3713              COMPILE_STACK_TOP.regnum = regnum;
3714
3715              /* We will eventually replace the 0 with the number of
3716                 groups inner to this one.  But do not push a
3717                 start_memory for groups beyond the last one we can
3718                 represent in the compiled pattern.  */
3719              if (regnum <= MAX_REGNUM)
3720                {
3721                  COMPILE_STACK_TOP.inner_group_offset = b
3722		    - COMPILED_BUFFER_VAR + 2;
3723                  BUF_PUSH_3 (start_memory, regnum, 0);
3724                }
3725
3726              compile_stack.avail++;
3727
3728              fixup_alt_jump = 0;
3729              laststart = 0;
3730              begalt = b;
3731	      /* If we've reached MAX_REGNUM groups, then this open
3732		 won't actually generate any code, so we'll have to
3733		 clear pending_exact explicitly.  */
3734	      pending_exact = 0;
3735              break;
3736
3737
3738            case ')':
3739              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3740
3741              if (COMPILE_STACK_EMPTY)
3742		{
3743		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3744		    goto normal_backslash;
3745		  else
3746		    FREE_STACK_RETURN (REG_ERPAREN);
3747		}
3748
3749            handle_close:
3750              if (fixup_alt_jump)
3751                { /* Push a dummy failure point at the end of the
3752                     alternative for a possible future
3753                     `pop_failure_jump' to pop.  See comments at
3754                     `push_dummy_failure' in `re_match_2'.  */
3755                  BUF_PUSH (push_dummy_failure);
3756
3757                  /* We allocated space for this jump when we assigned
3758                     to `fixup_alt_jump', in the `handle_alt' case below.  */
3759                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3760                }
3761
3762              /* See similar code for backslashed left paren above.  */
3763              if (COMPILE_STACK_EMPTY)
3764		{
3765		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3766		    goto normal_char;
3767		  else
3768		    FREE_STACK_RETURN (REG_ERPAREN);
3769		}
3770
3771              /* Since we just checked for an empty stack above, this
3772                 ``can't happen''.  */
3773              assert (compile_stack.avail != 0);
3774              {
3775                /* We don't just want to restore into `regnum', because
3776                   later groups should continue to be numbered higher,
3777                   as in `(ab)c(de)' -- the second group is #2.  */
3778                regnum_t this_group_regnum;
3779
3780                compile_stack.avail--;
3781                begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3782                fixup_alt_jump
3783                  = COMPILE_STACK_TOP.fixup_alt_jump
3784                    ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3785                    : 0;
3786                laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3787                this_group_regnum = COMPILE_STACK_TOP.regnum;
3788		/* If we've reached MAX_REGNUM groups, then this open
3789		   won't actually generate any code, so we'll have to
3790		   clear pending_exact explicitly.  */
3791		pending_exact = 0;
3792
3793                /* We're at the end of the group, so now we know how many
3794                   groups were inside this one.  */
3795                if (this_group_regnum <= MAX_REGNUM)
3796                  {
3797		    UCHAR_T *inner_group_loc
3798                      = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3799
3800                    *inner_group_loc = regnum - this_group_regnum;
3801                    BUF_PUSH_3 (stop_memory, this_group_regnum,
3802                                regnum - this_group_regnum);
3803                  }
3804              }
3805              break;
3806
3807
3808            case '|':					/* `\|'.  */
3809              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3810                goto normal_backslash;
3811            handle_alt:
3812              if (syntax & RE_LIMITED_OPS)
3813                goto normal_char;
3814
3815              /* Insert before the previous alternative a jump which
3816                 jumps to this alternative if the former fails.  */
3817              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3818              INSERT_JUMP (on_failure_jump, begalt,
3819			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3820              pending_exact = 0;
3821              b += 1 + OFFSET_ADDRESS_SIZE;
3822
3823              /* The alternative before this one has a jump after it
3824                 which gets executed if it gets matched.  Adjust that
3825                 jump so it will jump to this alternative's analogous
3826                 jump (put in below, which in turn will jump to the next
3827                 (if any) alternative's such jump, etc.).  The last such
3828                 jump jumps to the correct final destination.  A picture:
3829                          _____ _____
3830                          |   | |   |
3831                          |   v |   v
3832                         a | b   | c
3833
3834                 If we are at `b', then fixup_alt_jump right now points to a
3835                 three-byte space after `a'.  We'll put in the jump, set
3836                 fixup_alt_jump to right after `b', and leave behind three
3837                 bytes which we'll fill in when we get to after `c'.  */
3838
3839              if (fixup_alt_jump)
3840                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3841
3842              /* Mark and leave space for a jump after this alternative,
3843                 to be filled in later either by next alternative or
3844                 when know we're at the end of a series of alternatives.  */
3845              fixup_alt_jump = b;
3846              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3847              b += 1 + OFFSET_ADDRESS_SIZE;
3848
3849              laststart = 0;
3850              begalt = b;
3851              break;
3852
3853
3854            case '{':
3855              /* If \{ is a literal.  */
3856              if (!(syntax & RE_INTERVALS)
3857                     /* If we're at `\{' and it's not the open-interval
3858                        operator.  */
3859		  || (syntax & RE_NO_BK_BRACES))
3860                goto normal_backslash;
3861
3862            handle_interval:
3863              {
3864                /* If got here, then the syntax allows intervals.  */
3865
3866                /* At least (most) this many matches must be made.  */
3867                int lower_bound = -1, upper_bound = -1;
3868
3869		/* Place in the uncompiled pattern (i.e., just after
3870		   the '{') to go back to if the interval is invalid.  */
3871		const CHAR_T *beg_interval = p;
3872
3873                if (p == pend)
3874		  goto invalid_interval;
3875
3876                GET_UNSIGNED_NUMBER (lower_bound);
3877
3878                if (c == ',')
3879                  {
3880                    GET_UNSIGNED_NUMBER (upper_bound);
3881		    if (upper_bound < 0)
3882		      upper_bound = RE_DUP_MAX;
3883                  }
3884                else
3885                  /* Interval such as `{1}' => match exactly once. */
3886                  upper_bound = lower_bound;
3887
3888                if (! (0 <= lower_bound && lower_bound <= upper_bound))
3889		  goto invalid_interval;
3890
3891                if (!(syntax & RE_NO_BK_BRACES))
3892                  {
3893		    if (c != '\\' || p == pend)
3894		      goto invalid_interval;
3895                    PATFETCH (c);
3896                  }
3897
3898                if (c != '}')
3899		  goto invalid_interval;
3900
3901                /* If it's invalid to have no preceding re.  */
3902                if (!laststart)
3903                  {
3904		    if (syntax & RE_CONTEXT_INVALID_OPS
3905			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3906                      FREE_STACK_RETURN (REG_BADRPT);
3907                    else if (syntax & RE_CONTEXT_INDEP_OPS)
3908                      laststart = b;
3909                    else
3910                      goto unfetch_interval;
3911                  }
3912
3913                /* We just parsed a valid interval.  */
3914
3915                if (RE_DUP_MAX < upper_bound)
3916		  FREE_STACK_RETURN (REG_BADBR);
3917
3918                /* If the upper bound is zero, don't want to succeed at
3919                   all; jump from `laststart' to `b + 3', which will be
3920		   the end of the buffer after we insert the jump.  */
3921		/* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3922		   instead of 'b + 3'.  */
3923                 if (upper_bound == 0)
3924                   {
3925                     GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3926                     INSERT_JUMP (jump, laststart, b + 1
3927				  + OFFSET_ADDRESS_SIZE);
3928                     b += 1 + OFFSET_ADDRESS_SIZE;
3929                   }
3930
3931                 /* Otherwise, we have a nontrivial interval.  When
3932                    we're all done, the pattern will look like:
3933                      set_number_at <jump count> <upper bound>
3934                      set_number_at <succeed_n count> <lower bound>
3935                      succeed_n <after jump addr> <succeed_n count>
3936                      <body of loop>
3937                      jump_n <succeed_n addr> <jump count>
3938                    (The upper bound and `jump_n' are omitted if
3939                    `upper_bound' is 1, though.)  */
3940                 else
3941                   { /* If the upper bound is > 1, we need to insert
3942                        more at the end of the loop.  */
3943                     unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3944		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3945
3946                     GET_BUFFER_SPACE (nbytes);
3947
3948                     /* Initialize lower bound of the `succeed_n', even
3949                        though it will be set during matching by its
3950                        attendant `set_number_at' (inserted next),
3951                        because `re_compile_fastmap' needs to know.
3952                        Jump to the `jump_n' we might insert below.  */
3953                     INSERT_JUMP2 (succeed_n, laststart,
3954                                   b + 1 + 2 * OFFSET_ADDRESS_SIZE
3955				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3956				   , lower_bound);
3957                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3958
3959                     /* Code to initialize the lower bound.  Insert
3960                        before the `succeed_n'.  The `5' is the last two
3961                        bytes of this `set_number_at', plus 3 bytes of
3962                        the following `succeed_n'.  */
3963		     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3964			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3965			of the following `succeed_n'.  */
3966                     PREFIX(insert_op2) (set_number_at, laststart, 1
3967				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3968                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3969
3970                     if (upper_bound > 1)
3971                       { /* More than one repetition is allowed, so
3972                            append a backward jump to the `succeed_n'
3973                            that starts this interval.
3974
3975                            When we've reached this during matching,
3976                            we'll have matched the interval once, so
3977                            jump back only `upper_bound - 1' times.  */
3978                         STORE_JUMP2 (jump_n, b, laststart
3979				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3980                                      upper_bound - 1);
3981                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3982
3983                         /* The location we want to set is the second
3984                            parameter of the `jump_n'; that is `b-2' as
3985                            an absolute address.  `laststart' will be
3986                            the `set_number_at' we're about to insert;
3987                            `laststart+3' the number to set, the source
3988                            for the relative address.  But we are
3989                            inserting into the middle of the pattern --
3990                            so everything is getting moved up by 5.
3991                            Conclusion: (b - 2) - (laststart + 3) + 5,
3992                            i.e., b - laststart.
3993
3994                            We insert this at the beginning of the loop
3995                            so that if we fail during matching, we'll
3996                            reinitialize the bounds.  */
3997                         PREFIX(insert_op2) (set_number_at, laststart,
3998					     b - laststart,
3999					     upper_bound - 1, b);
4000                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4001                       }
4002                   }
4003                pending_exact = 0;
4004		break;
4005
4006	      invalid_interval:
4007		if (!(syntax & RE_INVALID_INTERVAL_ORD))
4008		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
4009	      unfetch_interval:
4010		/* Match the characters as literals.  */
4011		p = beg_interval;
4012		c = '{';
4013		if (syntax & RE_NO_BK_BRACES)
4014		  goto normal_char;
4015		else
4016		  goto normal_backslash;
4017	      }
4018
4019#ifdef emacs
4020            /* There is no way to specify the before_dot and after_dot
4021               operators.  rms says this is ok.  --karl  */
4022            case '=':
4023              BUF_PUSH (at_dot);
4024              break;
4025
4026            case 's':
4027              laststart = b;
4028              PATFETCH (c);
4029              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4030              break;
4031
4032            case 'S':
4033              laststart = b;
4034              PATFETCH (c);
4035              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4036              break;
4037#endif /* emacs */
4038
4039
4040            case 'w':
4041	      if (syntax & RE_NO_GNU_OPS)
4042		goto normal_char;
4043              laststart = b;
4044              BUF_PUSH (wordchar);
4045              break;
4046
4047
4048            case 'W':
4049	      if (syntax & RE_NO_GNU_OPS)
4050		goto normal_char;
4051              laststart = b;
4052              BUF_PUSH (notwordchar);
4053              break;
4054
4055
4056            case '<':
4057	      if (syntax & RE_NO_GNU_OPS)
4058		goto normal_char;
4059              BUF_PUSH (wordbeg);
4060              break;
4061
4062            case '>':
4063	      if (syntax & RE_NO_GNU_OPS)
4064		goto normal_char;
4065              BUF_PUSH (wordend);
4066              break;
4067
4068            case 'b':
4069	      if (syntax & RE_NO_GNU_OPS)
4070		goto normal_char;
4071              BUF_PUSH (wordbound);
4072              break;
4073
4074            case 'B':
4075	      if (syntax & RE_NO_GNU_OPS)
4076		goto normal_char;
4077              BUF_PUSH (notwordbound);
4078              break;
4079
4080            case '`':
4081	      if (syntax & RE_NO_GNU_OPS)
4082		goto normal_char;
4083              BUF_PUSH (begbuf);
4084              break;
4085
4086            case '\'':
4087	      if (syntax & RE_NO_GNU_OPS)
4088		goto normal_char;
4089              BUF_PUSH (endbuf);
4090              break;
4091
4092            case '1': case '2': case '3': case '4': case '5':
4093            case '6': case '7': case '8': case '9':
4094              if (syntax & RE_NO_BK_REFS)
4095                goto normal_char;
4096
4097              c1 = c - '0';
4098
4099              if (c1 > regnum)
4100                FREE_STACK_RETURN (REG_ESUBREG);
4101
4102              /* Can't back reference to a subexpression if inside of it.  */
4103              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4104                goto normal_char;
4105
4106              laststart = b;
4107              BUF_PUSH_2 (duplicate, c1);
4108              break;
4109
4110
4111            case '+':
4112            case '?':
4113              if (syntax & RE_BK_PLUS_QM)
4114                goto handle_plus;
4115              else
4116                goto normal_backslash;
4117
4118            default:
4119            normal_backslash:
4120              /* You might think it would be useful for \ to mean
4121                 not to translate; but if we don't translate it
4122                 it will never match anything.  */
4123              c = TRANSLATE (c);
4124              goto normal_char;
4125            }
4126          break;
4127
4128
4129	default:
4130        /* Expects the character in `c'.  */
4131	normal_char:
4132	      /* If no exactn currently being built.  */
4133          if (!pending_exact
4134#ifdef WCHAR
4135	      /* If last exactn handle binary(or character) and
4136		 new exactn handle character(or binary).  */
4137	      || is_exactn_bin != is_binary[p - 1 - pattern]
4138#endif /* WCHAR */
4139
4140              /* If last exactn not at current position.  */
4141              || pending_exact + *pending_exact + 1 != b
4142
4143              /* We have only one byte following the exactn for the count.  */
4144	      || *pending_exact == (1 << BYTEWIDTH) - 1
4145
4146              /* If followed by a repetition operator.  */
4147              || *p == '*' || *p == '^'
4148	      || ((syntax & RE_BK_PLUS_QM)
4149		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4150		  : (*p == '+' || *p == '?'))
4151	      || ((syntax & RE_INTERVALS)
4152                  && ((syntax & RE_NO_BK_BRACES)
4153		      ? *p == '{'
4154                      : (p[0] == '\\' && p[1] == '{'))))
4155	    {
4156	      /* Start building a new exactn.  */
4157
4158              laststart = b;
4159
4160#ifdef WCHAR
4161	      /* Is this exactn binary data or character? */
4162	      is_exactn_bin = is_binary[p - 1 - pattern];
4163	      if (is_exactn_bin)
4164		  BUF_PUSH_2 (exactn_bin, 0);
4165	      else
4166		  BUF_PUSH_2 (exactn, 0);
4167#else
4168	      BUF_PUSH_2 (exactn, 0);
4169#endif /* WCHAR */
4170	      pending_exact = b - 1;
4171            }
4172
4173	  BUF_PUSH (c);
4174          (*pending_exact)++;
4175	  break;
4176        } /* switch (c) */
4177    } /* while p != pend */
4178
4179
4180  /* Through the pattern now.  */
4181
4182  if (fixup_alt_jump)
4183    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4184
4185  if (!COMPILE_STACK_EMPTY)
4186    FREE_STACK_RETURN (REG_EPAREN);
4187
4188  /* If we don't want backtracking, force success
4189     the first time we reach the end of the compiled pattern.  */
4190  if (syntax & RE_NO_POSIX_BACKTRACKING)
4191    BUF_PUSH (succeed);
4192
4193#ifdef WCHAR
4194  free (pattern);
4195  free (mbs_offset);
4196  free (is_binary);
4197#endif
4198  free (compile_stack.stack);
4199
4200  /* We have succeeded; set the length of the buffer.  */
4201#ifdef WCHAR
4202  bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4203#else
4204  bufp->used = b - bufp->buffer;
4205#endif
4206
4207#ifdef DEBUG
4208  if (debug)
4209    {
4210      DEBUG_PRINT1 ("\nCompiled pattern: \n");
4211      PREFIX(print_compiled_pattern) (bufp);
4212    }
4213#endif /* DEBUG */
4214
4215#ifndef MATCH_MAY_ALLOCATE
4216  /* Initialize the failure stack to the largest possible stack.  This
4217     isn't necessary unless we're trying to avoid calling alloca in
4218     the search and match routines.  */
4219  {
4220    int num_regs = bufp->re_nsub + 1;
4221
4222    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4223       is strictly greater than re_max_failures, the largest possible stack
4224       is 2 * re_max_failures failure points.  */
4225    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4226      {
4227	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4228
4229# ifdef emacs
4230	if (! fail_stack.stack)
4231	  fail_stack.stack
4232	    = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4233				    * sizeof (PREFIX(fail_stack_elt_t)));
4234	else
4235	  fail_stack.stack
4236	    = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4237				     (fail_stack.size
4238				      * sizeof (PREFIX(fail_stack_elt_t))));
4239# else /* not emacs */
4240	if (! fail_stack.stack)
4241	  fail_stack.stack
4242	    = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4243				   * sizeof (PREFIX(fail_stack_elt_t)));
4244	else
4245	  fail_stack.stack
4246	    = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4247					    (fail_stack.size
4248				     * sizeof (PREFIX(fail_stack_elt_t))));
4249# endif /* not emacs */
4250      }
4251
4252   PREFIX(regex_grow_registers) (num_regs);
4253  }
4254#endif /* not MATCH_MAY_ALLOCATE */
4255
4256  return REG_NOERROR;
4257} /* regex_compile */
4258
4259/* Subroutines for `regex_compile'.  */
4260
4261/* Store OP at LOC followed by two-byte integer parameter ARG.  */
4262/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4263
4264static void
4265PREFIX(store_op1) (op, loc, arg)
4266    re_opcode_t op;
4267    UCHAR_T *loc;
4268    int arg;
4269{
4270  *loc = (UCHAR_T) op;
4271  STORE_NUMBER (loc + 1, arg);
4272}
4273
4274
4275/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4276/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4277
4278static void
4279PREFIX(store_op2) (op, loc, arg1, arg2)
4280    re_opcode_t op;
4281    UCHAR_T *loc;
4282    int arg1, arg2;
4283{
4284  *loc = (UCHAR_T) op;
4285  STORE_NUMBER (loc + 1, arg1);
4286  STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4287}
4288
4289
4290/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4291   for OP followed by two-byte integer parameter ARG.  */
4292/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4293
4294static void
4295PREFIX(insert_op1) (op, loc, arg, end)
4296    re_opcode_t op;
4297    UCHAR_T *loc;
4298    int arg;
4299    UCHAR_T *end;
4300{
4301  register UCHAR_T *pfrom = end;
4302  register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4303
4304  while (pfrom != loc)
4305    *--pto = *--pfrom;
4306
4307  PREFIX(store_op1) (op, loc, arg);
4308}
4309
4310
4311/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4312/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4313
4314static void
4315PREFIX(insert_op2) (op, loc, arg1, arg2, end)
4316    re_opcode_t op;
4317    UCHAR_T *loc;
4318    int arg1, arg2;
4319    UCHAR_T *end;
4320{
4321  register UCHAR_T *pfrom = end;
4322  register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4323
4324  while (pfrom != loc)
4325    *--pto = *--pfrom;
4326
4327  PREFIX(store_op2) (op, loc, arg1, arg2);
4328}
4329
4330
4331/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4332   after an alternative or a begin-subexpression.  We assume there is at
4333   least one character before the ^.  */
4334
4335static boolean
4336PREFIX(at_begline_loc_p) (pattern, p, syntax)
4337    const CHAR_T *pattern, *p;
4338    reg_syntax_t syntax;
4339{
4340  const CHAR_T *prev = p - 2;
4341  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4342
4343  return
4344       /* After a subexpression?  */
4345       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4346       /* After an alternative?  */
4347    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4348}
4349
4350
4351/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4352   at least one character after the $, i.e., `P < PEND'.  */
4353
4354static boolean
4355PREFIX(at_endline_loc_p) (p, pend, syntax)
4356    const CHAR_T *p, *pend;
4357    reg_syntax_t syntax;
4358{
4359  const CHAR_T *next = p;
4360  boolean next_backslash = *next == '\\';
4361  const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4362
4363  return
4364       /* Before a subexpression?  */
4365       (syntax & RE_NO_BK_PARENS ? *next == ')'
4366        : next_backslash && next_next && *next_next == ')')
4367       /* Before an alternative?  */
4368    || (syntax & RE_NO_BK_VBAR ? *next == '|'
4369        : next_backslash && next_next && *next_next == '|');
4370}
4371
4372#else /* not INSIDE_RECURSION */
4373
4374/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4375   false if it's not.  */
4376
4377static boolean
4378group_in_compile_stack (compile_stack, regnum)
4379    compile_stack_type compile_stack;
4380    regnum_t regnum;
4381{
4382  int this_element;
4383
4384  for (this_element = compile_stack.avail - 1;
4385       this_element >= 0;
4386       this_element--)
4387    if (compile_stack.stack[this_element].regnum == regnum)
4388      return true;
4389
4390  return false;
4391}
4392#endif /* not INSIDE_RECURSION */
4393
4394#ifdef INSIDE_RECURSION
4395
4396#ifdef WCHAR
4397/* This insert space, which size is "num", into the pattern at "loc".
4398   "end" must point the end of the allocated buffer.  */
4399static void
4400insert_space (num, loc, end)
4401     int num;
4402     CHAR_T *loc;
4403     CHAR_T *end;
4404{
4405  register CHAR_T *pto = end;
4406  register CHAR_T *pfrom = end - num;
4407
4408  while (pfrom >= loc)
4409    *pto-- = *pfrom--;
4410}
4411#endif /* WCHAR */
4412
4413#ifdef WCHAR
4414static reg_errcode_t
4415wcs_compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4416		   char_set)
4417     CHAR_T range_start_char;
4418     const CHAR_T **p_ptr, *pend;
4419     CHAR_T *char_set, *b;
4420     RE_TRANSLATE_TYPE translate;
4421     reg_syntax_t syntax;
4422{
4423  const CHAR_T *p = *p_ptr;
4424  CHAR_T range_start, range_end;
4425  reg_errcode_t ret;
4426# ifdef _LIBC
4427  uint32_t nrules;
4428  uint32_t start_val, end_val;
4429# endif
4430  if (p == pend)
4431    return REG_ERANGE;
4432
4433# ifdef _LIBC
4434  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4435  if (nrules != 0)
4436    {
4437      const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4438						       _NL_COLLATE_COLLSEQWC);
4439      const unsigned char *extra = (const unsigned char *)
4440	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4441
4442      if (range_start_char < -1)
4443	{
4444	  /* range_start is a collating symbol.  */
4445	  int32_t *wextra;
4446	  /* Retreive the index and get collation sequence value.  */
4447	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4448	  start_val = wextra[1 + *wextra];
4449	}
4450      else
4451	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4452
4453      end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4454
4455      /* Report an error if the range is empty and the syntax prohibits
4456	 this.  */
4457      ret = ((syntax & RE_NO_EMPTY_RANGES)
4458	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4459
4460      /* Insert space to the end of the char_ranges.  */
4461      insert_space(2, b - char_set[5] - 2, b - 1);
4462      *(b - char_set[5] - 2) = (wchar_t)start_val;
4463      *(b - char_set[5] - 1) = (wchar_t)end_val;
4464      char_set[4]++; /* ranges_index */
4465    }
4466  else
4467# endif
4468    {
4469      range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4470	range_start_char;
4471      range_end = TRANSLATE (p[0]);
4472      /* Report an error if the range is empty and the syntax prohibits
4473	 this.  */
4474      ret = ((syntax & RE_NO_EMPTY_RANGES)
4475	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4476
4477      /* Insert space to the end of the char_ranges.  */
4478      insert_space(2, b - char_set[5] - 2, b - 1);
4479      *(b - char_set[5] - 2) = range_start;
4480      *(b - char_set[5] - 1) = range_end;
4481      char_set[4]++; /* ranges_index */
4482    }
4483  /* Have to increment the pointer into the pattern string, so the
4484     caller isn't still at the ending character.  */
4485  (*p_ptr)++;
4486
4487  return ret;
4488}
4489#else /* BYTE */
4490/* Read the ending character of a range (in a bracket expression) from the
4491   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4492   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4493   Then we set the translation of all bits between the starting and
4494   ending characters (inclusive) in the compiled pattern B.
4495
4496   Return an error code.
4497
4498   We use these short variable names so we can use the same macros as
4499   `regex_compile' itself.  */
4500
4501static reg_errcode_t
4502byte_compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4503     unsigned int range_start_char;
4504     const char **p_ptr, *pend;
4505     RE_TRANSLATE_TYPE translate;
4506     reg_syntax_t syntax;
4507     unsigned char *b;
4508{
4509  unsigned this_char;
4510  const char *p = *p_ptr;
4511  reg_errcode_t ret;
4512# if _LIBC
4513  const unsigned char *collseq;
4514  unsigned int start_colseq;
4515  unsigned int end_colseq;
4516# else
4517  unsigned end_char;
4518# endif
4519
4520  if (p == pend)
4521    return REG_ERANGE;
4522
4523  /* Have to increment the pointer into the pattern string, so the
4524     caller isn't still at the ending character.  */
4525  (*p_ptr)++;
4526
4527  /* Report an error if the range is empty and the syntax prohibits this.  */
4528  ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4529
4530# if _LIBC
4531  collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4532						 _NL_COLLATE_COLLSEQMB);
4533
4534  start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4535  end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4536  for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4537    {
4538      unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4539
4540      if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4541	{
4542	  SET_LIST_BIT (TRANSLATE (this_char));
4543	  ret = REG_NOERROR;
4544	}
4545    }
4546# else
4547  /* Here we see why `this_char' has to be larger than an `unsigned
4548     char' -- we would otherwise go into an infinite loop, since all
4549     characters <= 0xff.  */
4550  range_start_char = TRANSLATE (range_start_char);
4551  /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4552     and some compilers cast it to int implicitly, so following for_loop
4553     may fall to (almost) infinite loop.
4554     e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4555     To avoid this, we cast p[0] to unsigned int and truncate it.  */
4556  end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4557
4558  for (this_char = range_start_char; this_char <= end_char; ++this_char)
4559    {
4560      SET_LIST_BIT (TRANSLATE (this_char));
4561      ret = REG_NOERROR;
4562    }
4563# endif
4564
4565  return ret;
4566}
4567#endif /* WCHAR */
4568
4569/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4570   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4571   characters can start a string that matches the pattern.  This fastmap
4572   is used by re_search to skip quickly over impossible starting points.
4573
4574   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4575   area as BUFP->fastmap.
4576
4577   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4578   the pattern buffer.
4579
4580   Returns 0 if we succeed, -2 if an internal error.   */
4581
4582#ifdef WCHAR
4583/* local function for re_compile_fastmap.
4584   truncate wchar_t character to char.  */
4585static unsigned char truncate_wchar (CHAR_T c);
4586
4587static unsigned char
4588truncate_wchar (c)
4589     CHAR_T c;
4590{
4591  unsigned char buf[MB_CUR_MAX];
4592  mbstate_t state;
4593  int retval;
4594  memset (&state, '\0', sizeof (state));
4595# ifdef _LIBC
4596  retval = __wcrtomb (buf, c, &state);
4597# else
4598  retval = wcrtomb (buf, c, &state);
4599# endif
4600  return retval > 0 ? buf[0] : (unsigned char) c;
4601}
4602#endif /* WCHAR */
4603
4604static int
4605PREFIX(re_compile_fastmap) (bufp)
4606     struct re_pattern_buffer *bufp;
4607{
4608  int j, k;
4609#ifdef MATCH_MAY_ALLOCATE
4610  PREFIX(fail_stack_type) fail_stack;
4611#endif
4612#ifndef REGEX_MALLOC
4613  char *destination;
4614#endif
4615
4616  register char *fastmap = bufp->fastmap;
4617
4618#ifdef WCHAR
4619  /* We need to cast pattern to (wchar_t*), because we casted this compiled
4620     pattern to (char*) in regex_compile.  */
4621  UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4622  register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4623#else /* BYTE */
4624  UCHAR_T *pattern = bufp->buffer;
4625  register UCHAR_T *pend = pattern + bufp->used;
4626#endif /* WCHAR */
4627  UCHAR_T *p = pattern;
4628
4629#ifdef REL_ALLOC
4630  /* This holds the pointer to the failure stack, when
4631     it is allocated relocatably.  */
4632  fail_stack_elt_t *failure_stack_ptr;
4633#endif
4634
4635  /* Assume that each path through the pattern can be null until
4636     proven otherwise.  We set this false at the bottom of switch
4637     statement, to which we get only if a particular path doesn't
4638     match the empty string.  */
4639  boolean path_can_be_null = true;
4640
4641  /* We aren't doing a `succeed_n' to begin with.  */
4642  boolean succeed_n_p = false;
4643
4644  assert (fastmap != NULL && p != NULL);
4645
4646  INIT_FAIL_STACK ();
4647  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4648  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4649  bufp->can_be_null = 0;
4650
4651  while (1)
4652    {
4653      if (p == pend || *p == (UCHAR_T) succeed)
4654	{
4655	  /* We have reached the (effective) end of pattern.  */
4656	  if (!FAIL_STACK_EMPTY ())
4657	    {
4658	      bufp->can_be_null |= path_can_be_null;
4659
4660	      /* Reset for next path.  */
4661	      path_can_be_null = true;
4662
4663	      p = fail_stack.stack[--fail_stack.avail].pointer;
4664
4665	      continue;
4666	    }
4667	  else
4668	    break;
4669	}
4670
4671      /* We should never be about to go beyond the end of the pattern.  */
4672      assert (p < pend);
4673
4674      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4675	{
4676
4677        /* I guess the idea here is to simply not bother with a fastmap
4678           if a backreference is used, since it's too hard to figure out
4679           the fastmap for the corresponding group.  Setting
4680           `can_be_null' stops `re_search_2' from using the fastmap, so
4681           that is all we do.  */
4682	case duplicate:
4683	  bufp->can_be_null = 1;
4684          goto done;
4685
4686
4687      /* Following are the cases which match a character.  These end
4688         with `break'.  */
4689
4690#ifdef WCHAR
4691	case exactn:
4692          fastmap[truncate_wchar(p[1])] = 1;
4693	  break;
4694#else /* BYTE */
4695	case exactn:
4696          fastmap[p[1]] = 1;
4697	  break;
4698#endif /* WCHAR */
4699#ifdef MBS_SUPPORT
4700	case exactn_bin:
4701	  fastmap[p[1]] = 1;
4702	  break;
4703#endif
4704
4705#ifdef WCHAR
4706        /* It is hard to distinguish fastmap from (multi byte) characters
4707           which depends on current locale.  */
4708        case charset:
4709	case charset_not:
4710	case wordchar:
4711	case notwordchar:
4712          bufp->can_be_null = 1;
4713          goto done;
4714#else /* BYTE */
4715        case charset:
4716          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4717	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4718              fastmap[j] = 1;
4719	  break;
4720
4721
4722	case charset_not:
4723	  /* Chars beyond end of map must be allowed.  */
4724	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4725            fastmap[j] = 1;
4726
4727	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4728	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4729              fastmap[j] = 1;
4730          break;
4731
4732
4733	case wordchar:
4734	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4735	    if (SYNTAX (j) == Sword)
4736	      fastmap[j] = 1;
4737	  break;
4738
4739
4740	case notwordchar:
4741	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4742	    if (SYNTAX (j) != Sword)
4743	      fastmap[j] = 1;
4744	  break;
4745#endif /* WCHAR */
4746
4747        case anychar:
4748	  {
4749	    int fastmap_newline = fastmap['\n'];
4750
4751	    /* `.' matches anything ...  */
4752	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4753	      fastmap[j] = 1;
4754
4755	    /* ... except perhaps newline.  */
4756	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4757	      fastmap['\n'] = fastmap_newline;
4758
4759	    /* Return if we have already set `can_be_null'; if we have,
4760	       then the fastmap is irrelevant.  Something's wrong here.  */
4761	    else if (bufp->can_be_null)
4762	      goto done;
4763
4764	    /* Otherwise, have to check alternative paths.  */
4765	    break;
4766	  }
4767
4768#ifdef emacs
4769        case syntaxspec:
4770	  k = *p++;
4771	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4772	    if (SYNTAX (j) == (enum syntaxcode) k)
4773	      fastmap[j] = 1;
4774	  break;
4775
4776
4777	case notsyntaxspec:
4778	  k = *p++;
4779	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4780	    if (SYNTAX (j) != (enum syntaxcode) k)
4781	      fastmap[j] = 1;
4782	  break;
4783
4784
4785      /* All cases after this match the empty string.  These end with
4786         `continue'.  */
4787
4788
4789	case before_dot:
4790	case at_dot:
4791	case after_dot:
4792          continue;
4793#endif /* emacs */
4794
4795
4796        case no_op:
4797        case begline:
4798        case endline:
4799	case begbuf:
4800	case endbuf:
4801	case wordbound:
4802	case notwordbound:
4803	case wordbeg:
4804	case wordend:
4805        case push_dummy_failure:
4806          continue;
4807
4808
4809	case jump_n:
4810        case pop_failure_jump:
4811	case maybe_pop_jump:
4812	case jump:
4813        case jump_past_alt:
4814	case dummy_failure_jump:
4815          EXTRACT_NUMBER_AND_INCR (j, p);
4816	  p += j;
4817	  if (j > 0)
4818	    continue;
4819
4820          /* Jump backward implies we just went through the body of a
4821             loop and matched nothing.  Opcode jumped to should be
4822             `on_failure_jump' or `succeed_n'.  Just treat it like an
4823             ordinary jump.  For a * loop, it has pushed its failure
4824             point already; if so, discard that as redundant.  */
4825          if ((re_opcode_t) *p != on_failure_jump
4826	      && (re_opcode_t) *p != succeed_n)
4827	    continue;
4828
4829          p++;
4830          EXTRACT_NUMBER_AND_INCR (j, p);
4831          p += j;
4832
4833          /* If what's on the stack is where we are now, pop it.  */
4834          if (!FAIL_STACK_EMPTY ()
4835	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4836            fail_stack.avail--;
4837
4838          continue;
4839
4840
4841        case on_failure_jump:
4842        case on_failure_keep_string_jump:
4843	handle_on_failure_jump:
4844          EXTRACT_NUMBER_AND_INCR (j, p);
4845
4846          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4847             end of the pattern.  We don't want to push such a point,
4848             since when we restore it above, entering the switch will
4849             increment `p' past the end of the pattern.  We don't need
4850             to push such a point since we obviously won't find any more
4851             fastmap entries beyond `pend'.  Such a pattern can match
4852             the null string, though.  */
4853          if (p + j < pend)
4854            {
4855              if (!PUSH_PATTERN_OP (p + j, fail_stack))
4856		{
4857		  RESET_FAIL_STACK ();
4858		  return -2;
4859		}
4860            }
4861          else
4862            bufp->can_be_null = 1;
4863
4864          if (succeed_n_p)
4865            {
4866              EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4867              succeed_n_p = false;
4868	    }
4869
4870          continue;
4871
4872
4873	case succeed_n:
4874          /* Get to the number of times to succeed.  */
4875          p += OFFSET_ADDRESS_SIZE;
4876
4877          /* Increment p past the n for when k != 0.  */
4878          EXTRACT_NUMBER_AND_INCR (k, p);
4879          if (k == 0)
4880	    {
4881              p -= 2 * OFFSET_ADDRESS_SIZE;
4882  	      succeed_n_p = true;  /* Spaghetti code alert.  */
4883              goto handle_on_failure_jump;
4884            }
4885          continue;
4886
4887
4888	case set_number_at:
4889          p += 2 * OFFSET_ADDRESS_SIZE;
4890          continue;
4891
4892
4893	case start_memory:
4894        case stop_memory:
4895	  p += 2;
4896	  continue;
4897
4898
4899	default:
4900          abort (); /* We have listed all the cases.  */
4901        } /* switch *p++ */
4902
4903      /* Getting here means we have found the possible starting
4904         characters for one path of the pattern -- and that the empty
4905         string does not match.  We need not follow this path further.
4906         Instead, look at the next alternative (remembered on the
4907         stack), or quit if no more.  The test at the top of the loop
4908         does these things.  */
4909      path_can_be_null = false;
4910      p = pend;
4911    } /* while p */
4912
4913  /* Set `can_be_null' for the last path (also the first path, if the
4914     pattern is empty).  */
4915  bufp->can_be_null |= path_can_be_null;
4916
4917 done:
4918  RESET_FAIL_STACK ();
4919  return 0;
4920}
4921
4922#else /* not INSIDE_RECURSION */
4923
4924int
4925re_compile_fastmap (bufp)
4926     struct re_pattern_buffer *bufp;
4927{
4928# ifdef MBS_SUPPORT
4929  if (MB_CUR_MAX != 1)
4930    return wcs_re_compile_fastmap(bufp);
4931  else
4932# endif
4933    return byte_re_compile_fastmap(bufp);
4934} /* re_compile_fastmap */
4935#ifdef _LIBC
4936weak_alias (__re_compile_fastmap, re_compile_fastmap)
4937#endif
4938
4939
4940/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4941   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4942   this memory for recording register information.  STARTS and ENDS
4943   must be allocated using the malloc library routine, and must each
4944   be at least NUM_REGS * sizeof (regoff_t) bytes long.
4945
4946   If NUM_REGS == 0, then subsequent matches should allocate their own
4947   register data.
4948
4949   Unless this function is called, the first search or match using
4950   PATTERN_BUFFER will allocate its own register data, without
4951   freeing the old data.  */
4952
4953void
4954re_set_registers (bufp, regs, num_regs, starts, ends)
4955    struct re_pattern_buffer *bufp;
4956    struct re_registers *regs;
4957    unsigned num_regs;
4958    regoff_t *starts, *ends;
4959{
4960  if (num_regs)
4961    {
4962      bufp->regs_allocated = REGS_REALLOCATE;
4963      regs->num_regs = num_regs;
4964      regs->start = starts;
4965      regs->end = ends;
4966    }
4967  else
4968    {
4969      bufp->regs_allocated = REGS_UNALLOCATED;
4970      regs->num_regs = 0;
4971      regs->start = regs->end = (regoff_t *) 0;
4972    }
4973}
4974#ifdef _LIBC
4975weak_alias (__re_set_registers, re_set_registers)
4976#endif
4977
4978/* Searching routines.  */
4979
4980/* Like re_search_2, below, but only one string is specified, and
4981   doesn't let you say where to stop matching.  */
4982
4983int
4984re_search (bufp, string, size, startpos, range, regs)
4985     struct re_pattern_buffer *bufp;
4986     const char *string;
4987     int size, startpos, range;
4988     struct re_registers *regs;
4989{
4990  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4991		      regs, size);
4992}
4993#ifdef _LIBC
4994weak_alias (__re_search, re_search)
4995#endif
4996
4997
4998/* Using the compiled pattern in BUFP->buffer, first tries to match the
4999   virtual concatenation of STRING1 and STRING2, starting first at index
5000   STARTPOS, then at STARTPOS + 1, and so on.
5001
5002   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5003
5004   RANGE is how far to scan while trying to match.  RANGE = 0 means try
5005   only at STARTPOS; in general, the last start tried is STARTPOS +
5006   RANGE.
5007
5008   In REGS, return the indices of the virtual concatenation of STRING1
5009   and STRING2 that matched the entire BUFP->buffer and its contained
5010   subexpressions.
5011
5012   Do not consider matching one past the index STOP in the virtual
5013   concatenation of STRING1 and STRING2.
5014
5015   We return either the position in the strings at which the match was
5016   found, -1 if no match, or -2 if error (such as failure
5017   stack overflow).  */
5018
5019int
5020re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
5021     struct re_pattern_buffer *bufp;
5022     const char *string1, *string2;
5023     int size1, size2;
5024     int startpos;
5025     int range;
5026     struct re_registers *regs;
5027     int stop;
5028{
5029# ifdef MBS_SUPPORT
5030  if (MB_CUR_MAX != 1)
5031    return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5032			    range, regs, stop);
5033  else
5034# endif
5035    return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5036			     range, regs, stop);
5037} /* re_search_2 */
5038#ifdef _LIBC
5039weak_alias (__re_search_2, re_search_2)
5040#endif
5041
5042#endif /* not INSIDE_RECURSION */
5043
5044#ifdef INSIDE_RECURSION
5045
5046#ifdef MATCH_MAY_ALLOCATE
5047# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5048#else
5049# define FREE_VAR(var) if (var) free (var); var = NULL
5050#endif
5051
5052#ifdef WCHAR
5053# define MAX_ALLOCA_SIZE	2000
5054
5055# define FREE_WCS_BUFFERS() \
5056  do {									      \
5057    if (size1 > MAX_ALLOCA_SIZE)					      \
5058      {									      \
5059	free (wcs_string1);						      \
5060	free (mbs_offset1);						      \
5061      }									      \
5062    else								      \
5063      {									      \
5064	FREE_VAR (wcs_string1);						      \
5065	FREE_VAR (mbs_offset1);						      \
5066      }									      \
5067    if (size2 > MAX_ALLOCA_SIZE) 					      \
5068      {									      \
5069	free (wcs_string2);						      \
5070	free (mbs_offset2);						      \
5071      }									      \
5072    else								      \
5073      {									      \
5074	FREE_VAR (wcs_string2);						      \
5075	FREE_VAR (mbs_offset2);						      \
5076      }									      \
5077  } while (0)
5078
5079#endif
5080
5081
5082static int
5083PREFIX(re_search_2) (bufp, string1, size1, string2, size2, startpos, range,
5084		     regs, stop)
5085     struct re_pattern_buffer *bufp;
5086     const char *string1, *string2;
5087     int size1, size2;
5088     int startpos;
5089     int range;
5090     struct re_registers *regs;
5091     int stop;
5092{
5093  int val;
5094  register char *fastmap = bufp->fastmap;
5095  register RE_TRANSLATE_TYPE translate = bufp->translate;
5096  int total_size = size1 + size2;
5097  int endpos = startpos + range;
5098#ifdef WCHAR
5099  /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5100  wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5101  /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5102  int wcs_size1 = 0, wcs_size2 = 0;
5103  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5104  int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5105  /* They hold whether each wchar_t is binary data or not.  */
5106  char *is_binary = NULL;
5107#endif /* WCHAR */
5108
5109  /* Check for out-of-range STARTPOS.  */
5110  if (startpos < 0 || startpos > total_size)
5111    return -1;
5112
5113  /* Fix up RANGE if it might eventually take us outside
5114     the virtual concatenation of STRING1 and STRING2.
5115     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5116  if (endpos < 0)
5117    range = 0 - startpos;
5118  else if (endpos > total_size)
5119    range = total_size - startpos;
5120
5121  /* If the search isn't to be a backwards one, don't waste time in a
5122     search for a pattern that must be anchored.  */
5123  if (bufp->used > 0 && range > 0
5124      && ((re_opcode_t) bufp->buffer[0] == begbuf
5125	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
5126	  || ((re_opcode_t) bufp->buffer[0] == begline
5127	      && !bufp->newline_anchor)))
5128    {
5129      if (startpos > 0)
5130	return -1;
5131      else
5132	range = 1;
5133    }
5134
5135#ifdef emacs
5136  /* In a forward search for something that starts with \=.
5137     don't keep searching past point.  */
5138  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5139    {
5140      range = PT - startpos;
5141      if (range <= 0)
5142	return -1;
5143    }
5144#endif /* emacs */
5145
5146  /* Update the fastmap now if not correct already.  */
5147  if (fastmap && !bufp->fastmap_accurate)
5148    if (re_compile_fastmap (bufp) == -2)
5149      return -2;
5150
5151#ifdef WCHAR
5152  /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5153     fill them with converted string.  */
5154  if (size1 != 0)
5155    {
5156      if (size1 > MAX_ALLOCA_SIZE)
5157	{
5158	  wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5159	  mbs_offset1 = TALLOC (size1 + 1, int);
5160	  is_binary = TALLOC (size1 + 1, char);
5161	}
5162      else
5163	{
5164	  wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5165	  mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5166	  is_binary = REGEX_TALLOC (size1 + 1, char);
5167	}
5168      if (!wcs_string1 || !mbs_offset1 || !is_binary)
5169	{
5170	  if (size1 > MAX_ALLOCA_SIZE)
5171	    {
5172	      free (wcs_string1);
5173	      free (mbs_offset1);
5174	      free (is_binary);
5175	    }
5176	  else
5177	    {
5178	      FREE_VAR (wcs_string1);
5179	      FREE_VAR (mbs_offset1);
5180	      FREE_VAR (is_binary);
5181	    }
5182	  return -2;
5183	}
5184      wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5185				     mbs_offset1, is_binary);
5186      wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5187      if (size1 > MAX_ALLOCA_SIZE)
5188	free (is_binary);
5189      else
5190	FREE_VAR (is_binary);
5191    }
5192  if (size2 != 0)
5193    {
5194      if (size2 > MAX_ALLOCA_SIZE)
5195	{
5196	  wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5197	  mbs_offset2 = TALLOC (size2 + 1, int);
5198	  is_binary = TALLOC (size2 + 1, char);
5199	}
5200      else
5201	{
5202	  wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5203	  mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5204	  is_binary = REGEX_TALLOC (size2 + 1, char);
5205	}
5206      if (!wcs_string2 || !mbs_offset2 || !is_binary)
5207	{
5208	  FREE_WCS_BUFFERS ();
5209	  if (size2 > MAX_ALLOCA_SIZE)
5210	    free (is_binary);
5211	  else
5212	    FREE_VAR (is_binary);
5213	  return -2;
5214	}
5215      wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5216				     mbs_offset2, is_binary);
5217      wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5218      if (size2 > MAX_ALLOCA_SIZE)
5219	free (is_binary);
5220      else
5221	FREE_VAR (is_binary);
5222    }
5223#endif /* WCHAR */
5224
5225
5226  /* Loop through the string, looking for a place to start matching.  */
5227  for (;;)
5228    {
5229      /* If a fastmap is supplied, skip quickly over characters that
5230         cannot be the start of a match.  If the pattern can match the
5231         null string, however, we don't need to skip characters; we want
5232         the first null string.  */
5233      if (fastmap && startpos < total_size && !bufp->can_be_null)
5234	{
5235	  if (range > 0)	/* Searching forwards.  */
5236	    {
5237	      register const char *d;
5238	      register int lim = 0;
5239	      int irange = range;
5240
5241              if (startpos < size1 && startpos + range >= size1)
5242                lim = range - (size1 - startpos);
5243
5244	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5245
5246              /* Written out as an if-else to avoid testing `translate'
5247                 inside the loop.  */
5248	      if (translate)
5249                while (range > lim
5250                       && !fastmap[(unsigned char)
5251				   translate[(unsigned char) *d++]])
5252                  range--;
5253	      else
5254                while (range > lim && !fastmap[(unsigned char) *d++])
5255                  range--;
5256
5257	      startpos += irange - range;
5258	    }
5259	  else				/* Searching backwards.  */
5260	    {
5261	      register CHAR_T c = (size1 == 0 || startpos >= size1
5262				      ? string2[startpos - size1]
5263				      : string1[startpos]);
5264
5265	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5266		goto advance;
5267	    }
5268	}
5269
5270      /* If can't match the null string, and that's all we have left, fail.  */
5271      if (range >= 0 && startpos == total_size && fastmap
5272          && !bufp->can_be_null)
5273       {
5274#ifdef WCHAR
5275         FREE_WCS_BUFFERS ();
5276#endif
5277         return -1;
5278       }
5279
5280#ifdef WCHAR
5281      val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5282				     size2, startpos, regs, stop,
5283				     wcs_string1, wcs_size1,
5284				     wcs_string2, wcs_size2,
5285				     mbs_offset1, mbs_offset2);
5286#else /* BYTE */
5287      val = byte_re_match_2_internal (bufp, string1, size1, string2,
5288				      size2, startpos, regs, stop);
5289#endif /* BYTE */
5290
5291#ifndef REGEX_MALLOC
5292# ifdef C_ALLOCA
5293      alloca (0);
5294# endif
5295#endif
5296
5297      if (val >= 0)
5298	{
5299#ifdef WCHAR
5300	  FREE_WCS_BUFFERS ();
5301#endif
5302	  return startpos;
5303	}
5304
5305      if (val == -2)
5306	{
5307#ifdef WCHAR
5308	  FREE_WCS_BUFFERS ();
5309#endif
5310	  return -2;
5311	}
5312
5313    advance:
5314      if (!range)
5315        break;
5316      else if (range > 0)
5317        {
5318          range--;
5319          startpos++;
5320        }
5321      else
5322        {
5323          range++;
5324          startpos--;
5325        }
5326    }
5327#ifdef WCHAR
5328  FREE_WCS_BUFFERS ();
5329#endif
5330  return -1;
5331}
5332
5333#ifdef WCHAR
5334/* This converts PTR, a pointer into one of the search wchar_t strings
5335   `string1' and `string2' into an multibyte string offset from the
5336   beginning of that string. We use mbs_offset to optimize.
5337   See convert_mbs_to_wcs.  */
5338# define POINTER_TO_OFFSET(ptr)						\
5339  (FIRST_STRING_P (ptr)							\
5340   ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5341   : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5342		 + csize1)))
5343#else /* BYTE */
5344/* This converts PTR, a pointer into one of the search strings `string1'
5345   and `string2' into an offset from the beginning of that string.  */
5346# define POINTER_TO_OFFSET(ptr)			\
5347  (FIRST_STRING_P (ptr)				\
5348   ? ((regoff_t) ((ptr) - string1))		\
5349   : ((regoff_t) ((ptr) - string2 + size1)))
5350#endif /* WCHAR */
5351
5352/* Macros for dealing with the split strings in re_match_2.  */
5353
5354#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5355
5356/* Call before fetching a character with *d.  This switches over to
5357   string2 if necessary.  */
5358#define PREFETCH()							\
5359  while (d == dend)						    	\
5360    {									\
5361      /* End of string2 => fail.  */					\
5362      if (dend == end_match_2) 						\
5363        goto fail;							\
5364      /* End of string1 => advance to string2.  */ 			\
5365      d = string2;						        \
5366      dend = end_match_2;						\
5367    }
5368
5369/* Test if at very beginning or at very end of the virtual concatenation
5370   of `string1' and `string2'.  If only one string, it's `string2'.  */
5371#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5372#define AT_STRINGS_END(d) ((d) == end2)
5373
5374
5375/* Test if D points to a character which is word-constituent.  We have
5376   two special cases to check for: if past the end of string1, look at
5377   the first character in string2; and if before the beginning of
5378   string2, look at the last character in string1.  */
5379#ifdef WCHAR
5380/* Use internationalized API instead of SYNTAX.  */
5381# define WORDCHAR_P(d)							\
5382  (iswalnum ((wint_t)((d) == end1 ? *string2				\
5383           : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\
5384   || ((d) == end1 ? *string2						\
5385       : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5386#else /* BYTE */
5387# define WORDCHAR_P(d)							\
5388  (SYNTAX ((d) == end1 ? *string2					\
5389           : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5390   == Sword)
5391#endif /* WCHAR */
5392
5393/* Disabled due to a compiler bug -- see comment at case wordbound */
5394#if 0
5395/* Test if the character before D and the one at D differ with respect
5396   to being word-constituent.  */
5397#define AT_WORD_BOUNDARY(d)						\
5398  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5399   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5400#endif
5401
5402/* Free everything we malloc.  */
5403#ifdef MATCH_MAY_ALLOCATE
5404# ifdef WCHAR
5405#  define FREE_VARIABLES()						\
5406  do {									\
5407    REGEX_FREE_STACK (fail_stack.stack);				\
5408    FREE_VAR (regstart);						\
5409    FREE_VAR (regend);							\
5410    FREE_VAR (old_regstart);						\
5411    FREE_VAR (old_regend);						\
5412    FREE_VAR (best_regstart);						\
5413    FREE_VAR (best_regend);						\
5414    FREE_VAR (reg_info);						\
5415    FREE_VAR (reg_dummy);						\
5416    FREE_VAR (reg_info_dummy);						\
5417    if (!cant_free_wcs_buf)						\
5418      {									\
5419        FREE_VAR (string1);						\
5420        FREE_VAR (string2);						\
5421        FREE_VAR (mbs_offset1);						\
5422        FREE_VAR (mbs_offset2);						\
5423      }									\
5424  } while (0)
5425# else /* BYTE */
5426#  define FREE_VARIABLES()						\
5427  do {									\
5428    REGEX_FREE_STACK (fail_stack.stack);				\
5429    FREE_VAR (regstart);						\
5430    FREE_VAR (regend);							\
5431    FREE_VAR (old_regstart);						\
5432    FREE_VAR (old_regend);						\
5433    FREE_VAR (best_regstart);						\
5434    FREE_VAR (best_regend);						\
5435    FREE_VAR (reg_info);						\
5436    FREE_VAR (reg_dummy);						\
5437    FREE_VAR (reg_info_dummy);						\
5438  } while (0)
5439# endif /* WCHAR */
5440#else
5441# ifdef WCHAR
5442#  define FREE_VARIABLES()						\
5443  do {									\
5444    if (!cant_free_wcs_buf)						\
5445      {									\
5446        FREE_VAR (string1);						\
5447        FREE_VAR (string2);						\
5448        FREE_VAR (mbs_offset1);						\
5449        FREE_VAR (mbs_offset2);						\
5450      }									\
5451  } while (0)
5452# else /* BYTE */
5453#  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5454# endif /* WCHAR */
5455#endif /* not MATCH_MAY_ALLOCATE */
5456
5457/* These values must meet several constraints.  They must not be valid
5458   register values; since we have a limit of 255 registers (because
5459   we use only one byte in the pattern for the register number), we can
5460   use numbers larger than 255.  They must differ by 1, because of
5461   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5462   be larger than the value for the highest register, so we do not try
5463   to actually save any registers when none are active.  */
5464#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5465#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5466
5467#else /* not INSIDE_RECURSION */
5468/* Matching routines.  */
5469
5470#ifndef emacs   /* Emacs never uses this.  */
5471/* re_match is like re_match_2 except it takes only a single string.  */
5472
5473int
5474re_match (bufp, string, size, pos, regs)
5475     struct re_pattern_buffer *bufp;
5476     const char *string;
5477     int size, pos;
5478     struct re_registers *regs;
5479{
5480  int result;
5481# ifdef MBS_SUPPORT
5482  if (MB_CUR_MAX != 1)
5483    result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5484				      pos, regs, size,
5485				      NULL, 0, NULL, 0, NULL, NULL);
5486  else
5487# endif
5488    result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5489				  pos, regs, size);
5490# ifndef REGEX_MALLOC
5491#  ifdef C_ALLOCA
5492  alloca (0);
5493#  endif
5494# endif
5495  return result;
5496}
5497# ifdef _LIBC
5498weak_alias (__re_match, re_match)
5499# endif
5500#endif /* not emacs */
5501
5502#endif /* not INSIDE_RECURSION */
5503
5504#ifdef INSIDE_RECURSION
5505static boolean PREFIX(group_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5506						    UCHAR_T *end,
5507					PREFIX(register_info_type) *reg_info));
5508static boolean PREFIX(alt_match_null_string_p) _RE_ARGS ((UCHAR_T *p,
5509						  UCHAR_T *end,
5510					PREFIX(register_info_type) *reg_info));
5511static boolean PREFIX(common_op_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5512							UCHAR_T *end,
5513					PREFIX(register_info_type) *reg_info));
5514static int PREFIX(bcmp_translate) _RE_ARGS ((const CHAR_T *s1, const CHAR_T *s2,
5515				     int len, char *translate));
5516#else /* not INSIDE_RECURSION */
5517
5518/* re_match_2 matches the compiled pattern in BUFP against the
5519   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5520   and SIZE2, respectively).  We start matching at POS, and stop
5521   matching at STOP.
5522
5523   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5524   store offsets for the substring each group matched in REGS.  See the
5525   documentation for exactly how many groups we fill.
5526
5527   We return -1 if no match, -2 if an internal error (such as the
5528   failure stack overflowing).  Otherwise, we return the length of the
5529   matched substring.  */
5530
5531int
5532re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5533     struct re_pattern_buffer *bufp;
5534     const char *string1, *string2;
5535     int size1, size2;
5536     int pos;
5537     struct re_registers *regs;
5538     int stop;
5539{
5540  int result;
5541# ifdef MBS_SUPPORT
5542  if (MB_CUR_MAX != 1)
5543    result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5544				      pos, regs, stop,
5545				      NULL, 0, NULL, 0, NULL, NULL);
5546  else
5547# endif
5548    result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5549				  pos, regs, stop);
5550
5551#ifndef REGEX_MALLOC
5552# ifdef C_ALLOCA
5553  alloca (0);
5554# endif
5555#endif
5556  return result;
5557}
5558#ifdef _LIBC
5559weak_alias (__re_match_2, re_match_2)
5560#endif
5561
5562#endif /* not INSIDE_RECURSION */
5563
5564#ifdef INSIDE_RECURSION
5565
5566#ifdef WCHAR
5567static int count_mbs_length PARAMS ((int *, int));
5568
5569/* This check the substring (from 0, to length) of the multibyte string,
5570   to which offset_buffer correspond. And count how many wchar_t_characters
5571   the substring occupy. We use offset_buffer to optimization.
5572   See convert_mbs_to_wcs.  */
5573
5574static int
5575count_mbs_length(offset_buffer, length)
5576     int *offset_buffer;
5577     int length;
5578{
5579  int upper, lower;
5580
5581  /* Check whether the size is valid.  */
5582  if (length < 0)
5583    return -1;
5584
5585  if (offset_buffer == NULL)
5586    return 0;
5587
5588  /* If there are no multibyte character, offset_buffer[i] == i.
5589   Optmize for this case.  */
5590  if (offset_buffer[length] == length)
5591    return length;
5592
5593  /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5594  upper = length;
5595  lower = 0;
5596
5597  while (true)
5598    {
5599      int middle = (lower + upper) / 2;
5600      if (middle == lower || middle == upper)
5601	break;
5602      if (offset_buffer[middle] > length)
5603	upper = middle;
5604      else if (offset_buffer[middle] < length)
5605	lower = middle;
5606      else
5607	return middle;
5608    }
5609
5610  return -1;
5611}
5612#endif /* WCHAR */
5613
5614/* This is a separate function so that we can force an alloca cleanup
5615   afterwards.  */
5616#ifdef WCHAR
5617static int
5618wcs_re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos,
5619			 regs, stop, string1, size1, string2, size2,
5620			 mbs_offset1, mbs_offset2)
5621     struct re_pattern_buffer *bufp;
5622     const char *cstring1, *cstring2;
5623     int csize1, csize2;
5624     int pos;
5625     struct re_registers *regs;
5626     int stop;
5627     /* string1 == string2 == NULL means string1/2, size1/2 and
5628	mbs_offset1/2 need seting up in this function.  */
5629     /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5630     wchar_t *string1, *string2;
5631     /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5632     int size1, size2;
5633     /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5634     int *mbs_offset1, *mbs_offset2;
5635#else /* BYTE */
5636static int
5637byte_re_match_2_internal (bufp, string1, size1,string2, size2, pos,
5638			  regs, stop)
5639     struct re_pattern_buffer *bufp;
5640     const char *string1, *string2;
5641     int size1, size2;
5642     int pos;
5643     struct re_registers *regs;
5644     int stop;
5645#endif /* BYTE */
5646{
5647  /* General temporaries.  */
5648  int mcnt;
5649  UCHAR_T *p1;
5650#ifdef WCHAR
5651  /* They hold whether each wchar_t is binary data or not.  */
5652  char *is_binary = NULL;
5653  /* If true, we can't free string1/2, mbs_offset1/2.  */
5654  int cant_free_wcs_buf = 1;
5655#endif /* WCHAR */
5656
5657  /* Just past the end of the corresponding string.  */
5658  const CHAR_T *end1, *end2;
5659
5660  /* Pointers into string1 and string2, just past the last characters in
5661     each to consider matching.  */
5662  const CHAR_T *end_match_1, *end_match_2;
5663
5664  /* Where we are in the data, and the end of the current string.  */
5665  const CHAR_T *d, *dend;
5666
5667  /* Where we are in the pattern, and the end of the pattern.  */
5668#ifdef WCHAR
5669  UCHAR_T *pattern, *p;
5670  register UCHAR_T *pend;
5671#else /* BYTE */
5672  UCHAR_T *p = bufp->buffer;
5673  register UCHAR_T *pend = p + bufp->used;
5674#endif /* WCHAR */
5675
5676  /* Mark the opcode just after a start_memory, so we can test for an
5677     empty subpattern when we get to the stop_memory.  */
5678  UCHAR_T *just_past_start_mem = 0;
5679
5680  /* We use this to map every character in the string.  */
5681  RE_TRANSLATE_TYPE translate = bufp->translate;
5682
5683  /* Failure point stack.  Each place that can handle a failure further
5684     down the line pushes a failure point on this stack.  It consists of
5685     restart, regend, and reg_info for all registers corresponding to
5686     the subexpressions we're currently inside, plus the number of such
5687     registers, and, finally, two char *'s.  The first char * is where
5688     to resume scanning the pattern; the second one is where to resume
5689     scanning the strings.  If the latter is zero, the failure point is
5690     a ``dummy''; if a failure happens and the failure point is a dummy,
5691     it gets discarded and the next next one is tried.  */
5692#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5693  PREFIX(fail_stack_type) fail_stack;
5694#endif
5695#ifdef DEBUG
5696  static unsigned failure_id;
5697  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5698#endif
5699
5700#ifdef REL_ALLOC
5701  /* This holds the pointer to the failure stack, when
5702     it is allocated relocatably.  */
5703  fail_stack_elt_t *failure_stack_ptr;
5704#endif
5705
5706  /* We fill all the registers internally, independent of what we
5707     return, for use in backreferences.  The number here includes
5708     an element for register zero.  */
5709  size_t num_regs = bufp->re_nsub + 1;
5710
5711  /* The currently active registers.  */
5712  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5713  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5714
5715  /* Information on the contents of registers. These are pointers into
5716     the input strings; they record just what was matched (on this
5717     attempt) by a subexpression part of the pattern, that is, the
5718     regnum-th regstart pointer points to where in the pattern we began
5719     matching and the regnum-th regend points to right after where we
5720     stopped matching the regnum-th subexpression.  (The zeroth register
5721     keeps track of what the whole pattern matches.)  */
5722#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5723  const CHAR_T **regstart, **regend;
5724#endif
5725
5726  /* If a group that's operated upon by a repetition operator fails to
5727     match anything, then the register for its start will need to be
5728     restored because it will have been set to wherever in the string we
5729     are when we last see its open-group operator.  Similarly for a
5730     register's end.  */
5731#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5732  const CHAR_T **old_regstart, **old_regend;
5733#endif
5734
5735  /* The is_active field of reg_info helps us keep track of which (possibly
5736     nested) subexpressions we are currently in. The matched_something
5737     field of reg_info[reg_num] helps us tell whether or not we have
5738     matched any of the pattern so far this time through the reg_num-th
5739     subexpression.  These two fields get reset each time through any
5740     loop their register is in.  */
5741#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5742  PREFIX(register_info_type) *reg_info;
5743#endif
5744
5745  /* The following record the register info as found in the above
5746     variables when we find a match better than any we've seen before.
5747     This happens as we backtrack through the failure points, which in
5748     turn happens only if we have not yet matched the entire string. */
5749  unsigned best_regs_set = false;
5750#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5751  const CHAR_T **best_regstart, **best_regend;
5752#endif
5753
5754  /* Logically, this is `best_regend[0]'.  But we don't want to have to
5755     allocate space for that if we're not allocating space for anything
5756     else (see below).  Also, we never need info about register 0 for
5757     any of the other register vectors, and it seems rather a kludge to
5758     treat `best_regend' differently than the rest.  So we keep track of
5759     the end of the best match so far in a separate variable.  We
5760     initialize this to NULL so that when we backtrack the first time
5761     and need to test it, it's not garbage.  */
5762  const CHAR_T *match_end = NULL;
5763
5764  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5765  int set_regs_matched_done = 0;
5766
5767  /* Used when we pop values we don't care about.  */
5768#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5769  const CHAR_T **reg_dummy;
5770  PREFIX(register_info_type) *reg_info_dummy;
5771#endif
5772
5773#ifdef DEBUG
5774  /* Counts the total number of registers pushed.  */
5775  unsigned num_regs_pushed = 0;
5776#endif
5777
5778  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5779
5780  INIT_FAIL_STACK ();
5781
5782#ifdef MATCH_MAY_ALLOCATE
5783  /* Do not bother to initialize all the register variables if there are
5784     no groups in the pattern, as it takes a fair amount of time.  If
5785     there are groups, we include space for register 0 (the whole
5786     pattern), even though we never use it, since it simplifies the
5787     array indexing.  We should fix this.  */
5788  if (bufp->re_nsub)
5789    {
5790      regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5791      regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5792      old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5793      old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5794      best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5795      best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5796      reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5797      reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5798      reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5799
5800      if (!(regstart && regend && old_regstart && old_regend && reg_info
5801            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5802        {
5803          FREE_VARIABLES ();
5804          return -2;
5805        }
5806    }
5807  else
5808    {
5809      /* We must initialize all our variables to NULL, so that
5810         `FREE_VARIABLES' doesn't try to free them.  */
5811      regstart = regend = old_regstart = old_regend = best_regstart
5812        = best_regend = reg_dummy = NULL;
5813      reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5814    }
5815#endif /* MATCH_MAY_ALLOCATE */
5816
5817  /* The starting position is bogus.  */
5818#ifdef WCHAR
5819  if (pos < 0 || pos > csize1 + csize2)
5820#else /* BYTE */
5821  if (pos < 0 || pos > size1 + size2)
5822#endif
5823    {
5824      FREE_VARIABLES ();
5825      return -1;
5826    }
5827
5828#ifdef WCHAR
5829  /* Allocate wchar_t array for string1 and string2 and
5830     fill them with converted string.  */
5831  if (string1 == NULL && string2 == NULL)
5832    {
5833      /* We need seting up buffers here.  */
5834
5835      /* We must free wcs buffers in this function.  */
5836      cant_free_wcs_buf = 0;
5837
5838      if (csize1 != 0)
5839	{
5840	  string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5841	  mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5842	  is_binary = REGEX_TALLOC (csize1 + 1, char);
5843	  if (!string1 || !mbs_offset1 || !is_binary)
5844	    {
5845	      FREE_VAR (string1);
5846	      FREE_VAR (mbs_offset1);
5847	      FREE_VAR (is_binary);
5848	      return -2;
5849	    }
5850	}
5851      if (csize2 != 0)
5852	{
5853	  string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5854	  mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5855	  is_binary = REGEX_TALLOC (csize2 + 1, char);
5856	  if (!string2 || !mbs_offset2 || !is_binary)
5857	    {
5858	      FREE_VAR (string1);
5859	      FREE_VAR (mbs_offset1);
5860	      FREE_VAR (string2);
5861	      FREE_VAR (mbs_offset2);
5862	      FREE_VAR (is_binary);
5863	      return -2;
5864	    }
5865	  size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5866				     mbs_offset2, is_binary);
5867	  string2[size2] = L'\0'; /* for a sentinel  */
5868	  FREE_VAR (is_binary);
5869	}
5870    }
5871
5872  /* We need to cast pattern to (wchar_t*), because we casted this compiled
5873     pattern to (char*) in regex_compile.  */
5874  p = pattern = (CHAR_T*)bufp->buffer;
5875  pend = (CHAR_T*)(bufp->buffer + bufp->used);
5876
5877#endif /* WCHAR */
5878
5879  /* Initialize subexpression text positions to -1 to mark ones that no
5880     start_memory/stop_memory has been seen for. Also initialize the
5881     register information struct.  */
5882  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5883    {
5884      regstart[mcnt] = regend[mcnt]
5885        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5886
5887      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5888      IS_ACTIVE (reg_info[mcnt]) = 0;
5889      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5890      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5891    }
5892
5893  /* We move `string1' into `string2' if the latter's empty -- but not if
5894     `string1' is null.  */
5895  if (size2 == 0 && string1 != NULL)
5896    {
5897      string2 = string1;
5898      size2 = size1;
5899      string1 = 0;
5900      size1 = 0;
5901#ifdef WCHAR
5902      mbs_offset2 = mbs_offset1;
5903      csize2 = csize1;
5904      mbs_offset1 = NULL;
5905      csize1 = 0;
5906#endif
5907    }
5908  end1 = string1 + size1;
5909  end2 = string2 + size2;
5910
5911  /* Compute where to stop matching, within the two strings.  */
5912#ifdef WCHAR
5913  if (stop <= csize1)
5914    {
5915      mcnt = count_mbs_length(mbs_offset1, stop);
5916      end_match_1 = string1 + mcnt;
5917      end_match_2 = string2;
5918    }
5919  else
5920    {
5921      if (stop > csize1 + csize2)
5922	stop = csize1 + csize2;
5923      end_match_1 = end1;
5924      mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5925      end_match_2 = string2 + mcnt;
5926    }
5927  if (mcnt < 0)
5928    { /* count_mbs_length return error.  */
5929      FREE_VARIABLES ();
5930      return -1;
5931    }
5932#else
5933  if (stop <= size1)
5934    {
5935      end_match_1 = string1 + stop;
5936      end_match_2 = string2;
5937    }
5938  else
5939    {
5940      end_match_1 = end1;
5941      end_match_2 = string2 + stop - size1;
5942    }
5943#endif /* WCHAR */
5944
5945  /* `p' scans through the pattern as `d' scans through the data.
5946     `dend' is the end of the input string that `d' points within.  `d'
5947     is advanced into the following input string whenever necessary, but
5948     this happens before fetching; therefore, at the beginning of the
5949     loop, `d' can be pointing at the end of a string, but it cannot
5950     equal `string2'.  */
5951#ifdef WCHAR
5952  if (size1 > 0 && pos <= csize1)
5953    {
5954      mcnt = count_mbs_length(mbs_offset1, pos);
5955      d = string1 + mcnt;
5956      dend = end_match_1;
5957    }
5958  else
5959    {
5960      mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5961      d = string2 + mcnt;
5962      dend = end_match_2;
5963    }
5964
5965  if (mcnt < 0)
5966    { /* count_mbs_length return error.  */
5967      FREE_VARIABLES ();
5968      return -1;
5969    }
5970#else
5971  if (size1 > 0 && pos <= size1)
5972    {
5973      d = string1 + pos;
5974      dend = end_match_1;
5975    }
5976  else
5977    {
5978      d = string2 + pos - size1;
5979      dend = end_match_2;
5980    }
5981#endif /* WCHAR */
5982
5983  DEBUG_PRINT1 ("The compiled pattern is:\n");
5984  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5985  DEBUG_PRINT1 ("The string to match is: `");
5986  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5987  DEBUG_PRINT1 ("'\n");
5988
5989  /* This loops over pattern commands.  It exits by returning from the
5990     function if the match is complete, or it drops through if the match
5991     fails at this starting point in the input data.  */
5992  for (;;)
5993    {
5994#ifdef _LIBC
5995      DEBUG_PRINT2 ("\n%p: ", p);
5996#else
5997      DEBUG_PRINT2 ("\n0x%x: ", p);
5998#endif
5999
6000      if (p == pend)
6001	{ /* End of pattern means we might have succeeded.  */
6002          DEBUG_PRINT1 ("end of pattern ... ");
6003
6004	  /* If we haven't matched the entire string, and we want the
6005             longest match, try backtracking.  */
6006          if (d != end_match_2)
6007	    {
6008	      /* 1 if this match ends in the same string (string1 or string2)
6009		 as the best previous match.  */
6010	      boolean same_str_p = (FIRST_STRING_P (match_end)
6011				    == MATCHING_IN_FIRST_STRING);
6012	      /* 1 if this match is the best seen so far.  */
6013	      boolean best_match_p;
6014
6015	      /* AIX compiler got confused when this was combined
6016		 with the previous declaration.  */
6017	      if (same_str_p)
6018		best_match_p = d > match_end;
6019	      else
6020		best_match_p = !MATCHING_IN_FIRST_STRING;
6021
6022              DEBUG_PRINT1 ("backtracking.\n");
6023
6024              if (!FAIL_STACK_EMPTY ())
6025                { /* More failure points to try.  */
6026
6027                  /* If exceeds best match so far, save it.  */
6028                  if (!best_regs_set || best_match_p)
6029                    {
6030                      best_regs_set = true;
6031                      match_end = d;
6032
6033                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6034
6035                      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6036                        {
6037                          best_regstart[mcnt] = regstart[mcnt];
6038                          best_regend[mcnt] = regend[mcnt];
6039                        }
6040                    }
6041                  goto fail;
6042                }
6043
6044              /* If no failure points, don't restore garbage.  And if
6045                 last match is real best match, don't restore second
6046                 best one. */
6047              else if (best_regs_set && !best_match_p)
6048                {
6049  	        restore_best_regs:
6050                  /* Restore best match.  It may happen that `dend ==
6051                     end_match_1' while the restored d is in string2.
6052                     For example, the pattern `x.*y.*z' against the
6053                     strings `x-' and `y-z-', if the two strings are
6054                     not consecutive in memory.  */
6055                  DEBUG_PRINT1 ("Restoring best registers.\n");
6056
6057                  d = match_end;
6058                  dend = ((d >= string1 && d <= end1)
6059		           ? end_match_1 : end_match_2);
6060
6061		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6062		    {
6063		      regstart[mcnt] = best_regstart[mcnt];
6064		      regend[mcnt] = best_regend[mcnt];
6065		    }
6066                }
6067            } /* d != end_match_2 */
6068
6069	succeed_label:
6070          DEBUG_PRINT1 ("Accepting match.\n");
6071          /* If caller wants register contents data back, do it.  */
6072          if (regs && !bufp->no_sub)
6073	    {
6074	      /* Have the register data arrays been allocated?  */
6075              if (bufp->regs_allocated == REGS_UNALLOCATED)
6076                { /* No.  So allocate them with malloc.  We need one
6077                     extra element beyond `num_regs' for the `-1' marker
6078                     GNU code uses.  */
6079                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6080                  regs->start = TALLOC (regs->num_regs, regoff_t);
6081                  regs->end = TALLOC (regs->num_regs, regoff_t);
6082                  if (regs->start == NULL || regs->end == NULL)
6083		    {
6084		      FREE_VARIABLES ();
6085		      return -2;
6086		    }
6087                  bufp->regs_allocated = REGS_REALLOCATE;
6088                }
6089              else if (bufp->regs_allocated == REGS_REALLOCATE)
6090                { /* Yes.  If we need more elements than were already
6091                     allocated, reallocate them.  If we need fewer, just
6092                     leave it alone.  */
6093                  if (regs->num_regs < num_regs + 1)
6094                    {
6095                      regs->num_regs = num_regs + 1;
6096                      RETALLOC (regs->start, regs->num_regs, regoff_t);
6097                      RETALLOC (regs->end, regs->num_regs, regoff_t);
6098                      if (regs->start == NULL || regs->end == NULL)
6099			{
6100			  FREE_VARIABLES ();
6101			  return -2;
6102			}
6103                    }
6104                }
6105              else
6106		{
6107		  /* These braces fend off a "empty body in an else-statement"
6108		     warning under GCC when assert expands to nothing.  */
6109		  assert (bufp->regs_allocated == REGS_FIXED);
6110		}
6111
6112              /* Convert the pointer data in `regstart' and `regend' to
6113                 indices.  Register zero has to be set differently,
6114                 since we haven't kept track of any info for it.  */
6115              if (regs->num_regs > 0)
6116                {
6117                  regs->start[0] = pos;
6118#ifdef WCHAR
6119		  if (MATCHING_IN_FIRST_STRING)
6120		    regs->end[0] = mbs_offset1 != NULL ?
6121					mbs_offset1[d-string1] : 0;
6122		  else
6123		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6124					     mbs_offset2[d-string2] : 0);
6125#else
6126                  regs->end[0] = (MATCHING_IN_FIRST_STRING
6127				  ? ((regoff_t) (d - string1))
6128			          : ((regoff_t) (d - string2 + size1)));
6129#endif /* WCHAR */
6130                }
6131
6132              /* Go through the first `min (num_regs, regs->num_regs)'
6133                 registers, since that is all we initialized.  */
6134	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6135		   mcnt++)
6136		{
6137                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6138                    regs->start[mcnt] = regs->end[mcnt] = -1;
6139                  else
6140                    {
6141		      regs->start[mcnt]
6142			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6143                      regs->end[mcnt]
6144			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6145                    }
6146		}
6147
6148              /* If the regs structure we return has more elements than
6149                 were in the pattern, set the extra elements to -1.  If
6150                 we (re)allocated the registers, this is the case,
6151                 because we always allocate enough to have at least one
6152                 -1 at the end.  */
6153              for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6154                regs->start[mcnt] = regs->end[mcnt] = -1;
6155	    } /* regs && !bufp->no_sub */
6156
6157          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6158                        nfailure_points_pushed, nfailure_points_popped,
6159                        nfailure_points_pushed - nfailure_points_popped);
6160          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6161
6162#ifdef WCHAR
6163	  if (MATCHING_IN_FIRST_STRING)
6164	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6165	  else
6166	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6167			csize1;
6168          mcnt -= pos;
6169#else
6170          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6171			    ? string1
6172			    : string2 - size1);
6173#endif /* WCHAR */
6174
6175          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6176
6177          FREE_VARIABLES ();
6178          return mcnt;
6179        }
6180
6181      /* Otherwise match next pattern command.  */
6182      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6183	{
6184        /* Ignore these.  Used to ignore the n of succeed_n's which
6185           currently have n == 0.  */
6186        case no_op:
6187          DEBUG_PRINT1 ("EXECUTING no_op.\n");
6188          break;
6189
6190	case succeed:
6191          DEBUG_PRINT1 ("EXECUTING succeed.\n");
6192	  goto succeed_label;
6193
6194        /* Match the next n pattern characters exactly.  The following
6195           byte in the pattern defines n, and the n bytes after that
6196           are the characters to match.  */
6197	case exactn:
6198#ifdef MBS_SUPPORT
6199	case exactn_bin:
6200#endif
6201	  mcnt = *p++;
6202          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6203
6204          /* This is written out as an if-else so we don't waste time
6205             testing `translate' inside the loop.  */
6206          if (translate)
6207	    {
6208	      do
6209		{
6210		  PREFETCH ();
6211#ifdef WCHAR
6212		  if (*d <= 0xff)
6213		    {
6214		      if ((UCHAR_T) translate[(unsigned char) *d++]
6215			  != (UCHAR_T) *p++)
6216			goto fail;
6217		    }
6218		  else
6219		    {
6220		      if (*d++ != (CHAR_T) *p++)
6221			goto fail;
6222		    }
6223#else
6224		  if ((UCHAR_T) translate[(unsigned char) *d++]
6225		      != (UCHAR_T) *p++)
6226                    goto fail;
6227#endif /* WCHAR */
6228		}
6229	      while (--mcnt);
6230	    }
6231	  else
6232	    {
6233	      do
6234		{
6235		  PREFETCH ();
6236		  if (*d++ != (CHAR_T) *p++) goto fail;
6237		}
6238	      while (--mcnt);
6239	    }
6240	  SET_REGS_MATCHED ();
6241          break;
6242
6243
6244        /* Match any character except possibly a newline or a null.  */
6245	case anychar:
6246          DEBUG_PRINT1 ("EXECUTING anychar.\n");
6247
6248          PREFETCH ();
6249
6250          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6251              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6252	    goto fail;
6253
6254          SET_REGS_MATCHED ();
6255          DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6256          d++;
6257	  break;
6258
6259
6260	case charset:
6261	case charset_not:
6262	  {
6263	    register UCHAR_T c;
6264#ifdef WCHAR
6265	    unsigned int i, char_class_length, coll_symbol_length,
6266              equiv_class_length, ranges_length, chars_length, length;
6267	    CHAR_T *workp, *workp2, *charset_top;
6268#define WORK_BUFFER_SIZE 128
6269            CHAR_T str_buf[WORK_BUFFER_SIZE];
6270# ifdef _LIBC
6271	    uint32_t nrules;
6272# endif /* _LIBC */
6273#endif /* WCHAR */
6274	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
6275
6276            DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6277	    PREFETCH ();
6278	    c = TRANSLATE (*d); /* The character to match.  */
6279#ifdef WCHAR
6280# ifdef _LIBC
6281	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6282# endif /* _LIBC */
6283	    charset_top = p - 1;
6284	    char_class_length = *p++;
6285	    coll_symbol_length = *p++;
6286	    equiv_class_length = *p++;
6287	    ranges_length = *p++;
6288	    chars_length = *p++;
6289	    /* p points charset[6], so the address of the next instruction
6290	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6291	       where l=length of char_classes, m=length of collating_symbol,
6292	       n=equivalence_class, o=length of char_range,
6293	       p'=length of character.  */
6294	    workp = p;
6295	    /* Update p to indicate the next instruction.  */
6296	    p += char_class_length + coll_symbol_length+ equiv_class_length +
6297              2*ranges_length + chars_length;
6298
6299            /* match with char_class?  */
6300	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6301	      {
6302		wctype_t wctype;
6303		uintptr_t alignedp = ((uintptr_t)workp
6304				      + __alignof__(wctype_t) - 1)
6305		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6306		wctype = *((wctype_t*)alignedp);
6307		workp += CHAR_CLASS_SIZE;
6308# ifdef _LIBC
6309		if (__iswctype((wint_t)c, wctype))
6310		  goto char_set_matched;
6311# else
6312		if (iswctype((wint_t)c, wctype))
6313		  goto char_set_matched;
6314# endif
6315	      }
6316
6317            /* match with collating_symbol?  */
6318# ifdef _LIBC
6319	    if (nrules != 0)
6320	      {
6321		const unsigned char *extra = (const unsigned char *)
6322		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6323
6324		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6325		     workp++)
6326		  {
6327		    int32_t *wextra;
6328		    wextra = (int32_t*)(extra + *workp++);
6329		    for (i = 0; i < *wextra; ++i)
6330		      if (TRANSLATE(d[i]) != wextra[1 + i])
6331			break;
6332
6333		    if (i == *wextra)
6334		      {
6335			/* Update d, however d will be incremented at
6336			   char_set_matched:, we decrement d here.  */
6337			d += i - 1;
6338			goto char_set_matched;
6339		      }
6340		  }
6341	      }
6342	    else /* (nrules == 0) */
6343# endif
6344	      /* If we can't look up collation data, we use wcscoll
6345		 instead.  */
6346	      {
6347		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6348		  {
6349		    const CHAR_T *backup_d = d, *backup_dend = dend;
6350# ifdef _LIBC
6351		    length = __wcslen (workp);
6352# else
6353		    length = wcslen (workp);
6354# endif
6355
6356		    /* If wcscoll(the collating symbol, whole string) > 0,
6357		       any substring of the string never match with the
6358		       collating symbol.  */
6359# ifdef _LIBC
6360		    if (__wcscoll (workp, d) > 0)
6361# else
6362		    if (wcscoll (workp, d) > 0)
6363# endif
6364		      {
6365			workp += length + 1;
6366			continue;
6367		      }
6368
6369		    /* First, we compare the collating symbol with
6370		       the first character of the string.
6371		       If it don't match, we add the next character to
6372		       the compare buffer in turn.  */
6373		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6374		      {
6375			int match;
6376			if (d == dend)
6377			  {
6378			    if (dend == end_match_2)
6379			      break;
6380			    d = string2;
6381			    dend = end_match_2;
6382			  }
6383
6384			/* add next character to the compare buffer.  */
6385			str_buf[i] = TRANSLATE(*d);
6386			str_buf[i+1] = '\0';
6387
6388# ifdef _LIBC
6389			match = __wcscoll (workp, str_buf);
6390# else
6391			match = wcscoll (workp, str_buf);
6392# endif
6393			if (match == 0)
6394			  goto char_set_matched;
6395
6396			if (match < 0)
6397			  /* (str_buf > workp) indicate (str_buf + X > workp),
6398			     because for all X (str_buf + X > str_buf).
6399			     So we don't need continue this loop.  */
6400			  break;
6401
6402			/* Otherwise(str_buf < workp),
6403			   (str_buf+next_character) may equals (workp).
6404			   So we continue this loop.  */
6405		      }
6406		    /* not matched */
6407		    d = backup_d;
6408		    dend = backup_dend;
6409		    workp += length + 1;
6410		  }
6411              }
6412            /* match with equivalence_class?  */
6413# ifdef _LIBC
6414	    if (nrules != 0)
6415	      {
6416                const CHAR_T *backup_d = d, *backup_dend = dend;
6417		/* Try to match the equivalence class against
6418		   those known to the collate implementation.  */
6419		const int32_t *table;
6420		const int32_t *weights;
6421		const int32_t *extra;
6422		const int32_t *indirect;
6423		int32_t idx, idx2;
6424		wint_t *cp;
6425		size_t len;
6426
6427		/* This #include defines a local function!  */
6428#  include <locale/weightwc.h>
6429
6430		table = (const int32_t *)
6431		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6432		weights = (const wint_t *)
6433		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6434		extra = (const wint_t *)
6435		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6436		indirect = (const int32_t *)
6437		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6438
6439		/* Write 1 collating element to str_buf, and
6440		   get its index.  */
6441		idx2 = 0;
6442
6443		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6444		  {
6445		    cp = (wint_t*)str_buf;
6446		    if (d == dend)
6447		      {
6448			if (dend == end_match_2)
6449			  break;
6450			d = string2;
6451			dend = end_match_2;
6452		      }
6453		    str_buf[i] = TRANSLATE(*(d+i));
6454		    str_buf[i+1] = '\0'; /* sentinel */
6455		    idx2 = findidx ((const wint_t**)&cp);
6456		  }
6457
6458		/* Update d, however d will be incremented at
6459		   char_set_matched:, we decrement d here.  */
6460		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6461		if (d >= dend)
6462		  {
6463		    if (dend == end_match_2)
6464			d = dend;
6465		    else
6466		      {
6467			d = string2;
6468			dend = end_match_2;
6469		      }
6470		  }
6471
6472		len = weights[idx2];
6473
6474		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6475		     workp++)
6476		  {
6477		    idx = (int32_t)*workp;
6478		    /* We already checked idx != 0 in regex_compile. */
6479
6480		    if (idx2 != 0 && len == weights[idx])
6481		      {
6482			int cnt = 0;
6483			while (cnt < len && (weights[idx + 1 + cnt]
6484					     == weights[idx2 + 1 + cnt]))
6485			  ++cnt;
6486
6487			if (cnt == len)
6488			  goto char_set_matched;
6489		      }
6490		  }
6491		/* not matched */
6492                d = backup_d;
6493                dend = backup_dend;
6494	      }
6495	    else /* (nrules == 0) */
6496# endif
6497	      /* If we can't look up collation data, we use wcscoll
6498		 instead.  */
6499	      {
6500		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6501		  {
6502		    const CHAR_T *backup_d = d, *backup_dend = dend;
6503# ifdef _LIBC
6504		    length = __wcslen (workp);
6505# else
6506		    length = wcslen (workp);
6507# endif
6508
6509		    /* If wcscoll(the collating symbol, whole string) > 0,
6510		       any substring of the string never match with the
6511		       collating symbol.  */
6512# ifdef _LIBC
6513		    if (__wcscoll (workp, d) > 0)
6514# else
6515		    if (wcscoll (workp, d) > 0)
6516# endif
6517		      {
6518			workp += length + 1;
6519			break;
6520		      }
6521
6522		    /* First, we compare the equivalence class with
6523		       the first character of the string.
6524		       If it don't match, we add the next character to
6525		       the compare buffer in turn.  */
6526		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6527		      {
6528			int match;
6529			if (d == dend)
6530			  {
6531			    if (dend == end_match_2)
6532			      break;
6533			    d = string2;
6534			    dend = end_match_2;
6535			  }
6536
6537			/* add next character to the compare buffer.  */
6538			str_buf[i] = TRANSLATE(*d);
6539			str_buf[i+1] = '\0';
6540
6541# ifdef _LIBC
6542			match = __wcscoll (workp, str_buf);
6543# else
6544			match = wcscoll (workp, str_buf);
6545# endif
6546
6547			if (match == 0)
6548			  goto char_set_matched;
6549
6550			if (match < 0)
6551			/* (str_buf > workp) indicate (str_buf + X > workp),
6552			   because for all X (str_buf + X > str_buf).
6553			   So we don't need continue this loop.  */
6554			  break;
6555
6556			/* Otherwise(str_buf < workp),
6557			   (str_buf+next_character) may equals (workp).
6558			   So we continue this loop.  */
6559		      }
6560		    /* not matched */
6561		    d = backup_d;
6562		    dend = backup_dend;
6563		    workp += length + 1;
6564		  }
6565	      }
6566
6567            /* match with char_range?  */
6568# ifdef _LIBC
6569	    if (nrules != 0)
6570	      {
6571		uint32_t collseqval;
6572		const char *collseq = (const char *)
6573		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6574
6575		collseqval = collseq_table_lookup (collseq, c);
6576
6577		for (; workp < p - chars_length ;)
6578		  {
6579		    uint32_t start_val, end_val;
6580
6581		    /* We already compute the collation sequence value
6582		       of the characters (or collating symbols).  */
6583		    start_val = (uint32_t) *workp++; /* range_start */
6584		    end_val = (uint32_t) *workp++; /* range_end */
6585
6586		    if (start_val <= collseqval && collseqval <= end_val)
6587		      goto char_set_matched;
6588		  }
6589	      }
6590	    else
6591# endif
6592	      {
6593		/* We set range_start_char at str_buf[0], range_end_char
6594		   at str_buf[4], and compared char at str_buf[2].  */
6595		str_buf[1] = 0;
6596		str_buf[2] = c;
6597		str_buf[3] = 0;
6598		str_buf[5] = 0;
6599		for (; workp < p - chars_length ;)
6600		  {
6601		    wchar_t *range_start_char, *range_end_char;
6602
6603		    /* match if (range_start_char <= c <= range_end_char).  */
6604
6605		    /* If range_start(or end) < 0, we assume -range_start(end)
6606		       is the offset of the collating symbol which is specified
6607		       as the character of the range start(end).  */
6608
6609		    /* range_start */
6610		    if (*workp < 0)
6611		      range_start_char = charset_top - (*workp++);
6612		    else
6613		      {
6614			str_buf[0] = *workp++;
6615			range_start_char = str_buf;
6616		      }
6617
6618		    /* range_end */
6619		    if (*workp < 0)
6620		      range_end_char = charset_top - (*workp++);
6621		    else
6622		      {
6623			str_buf[4] = *workp++;
6624			range_end_char = str_buf + 4;
6625		      }
6626
6627# ifdef _LIBC
6628		    if (__wcscoll (range_start_char, str_buf+2) <= 0
6629			&& __wcscoll (str_buf+2, range_end_char) <= 0)
6630# else
6631		    if (wcscoll (range_start_char, str_buf+2) <= 0
6632			&& wcscoll (str_buf+2, range_end_char) <= 0)
6633# endif
6634		      goto char_set_matched;
6635		  }
6636	      }
6637
6638            /* match with char?  */
6639	    for (; workp < p ; workp++)
6640	      if (c == *workp)
6641		goto char_set_matched;
6642
6643	    not = !not;
6644
6645	  char_set_matched:
6646	    if (not) goto fail;
6647#else
6648            /* Cast to `unsigned' instead of `unsigned char' in case the
6649               bit list is a full 32 bytes long.  */
6650	    if (c < (unsigned) (*p * BYTEWIDTH)
6651		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6652	      not = !not;
6653
6654	    p += 1 + *p;
6655
6656	    if (!not) goto fail;
6657#undef WORK_BUFFER_SIZE
6658#endif /* WCHAR */
6659	    SET_REGS_MATCHED ();
6660            d++;
6661	    break;
6662	  }
6663
6664
6665        /* The beginning of a group is represented by start_memory.
6666           The arguments are the register number in the next byte, and the
6667           number of groups inner to this one in the next.  The text
6668           matched within the group is recorded (in the internal
6669           registers data structure) under the register number.  */
6670        case start_memory:
6671	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6672			(long int) *p, (long int) p[1]);
6673
6674          /* Find out if this group can match the empty string.  */
6675	  p1 = p;		/* To send to group_match_null_string_p.  */
6676
6677          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6678            REG_MATCH_NULL_STRING_P (reg_info[*p])
6679              = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6680
6681          /* Save the position in the string where we were the last time
6682             we were at this open-group operator in case the group is
6683             operated upon by a repetition operator, e.g., with `(a*)*b'
6684             against `ab'; then we want to ignore where we are now in
6685             the string in case this attempt to match fails.  */
6686          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6687                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6688                             : regstart[*p];
6689	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6690			 POINTER_TO_OFFSET (old_regstart[*p]));
6691
6692          regstart[*p] = d;
6693	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6694
6695          IS_ACTIVE (reg_info[*p]) = 1;
6696          MATCHED_SOMETHING (reg_info[*p]) = 0;
6697
6698	  /* Clear this whenever we change the register activity status.  */
6699	  set_regs_matched_done = 0;
6700
6701          /* This is the new highest active register.  */
6702          highest_active_reg = *p;
6703
6704          /* If nothing was active before, this is the new lowest active
6705             register.  */
6706          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6707            lowest_active_reg = *p;
6708
6709          /* Move past the register number and inner group count.  */
6710          p += 2;
6711	  just_past_start_mem = p;
6712
6713          break;
6714
6715
6716        /* The stop_memory opcode represents the end of a group.  Its
6717           arguments are the same as start_memory's: the register
6718           number, and the number of inner groups.  */
6719	case stop_memory:
6720	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6721			(long int) *p, (long int) p[1]);
6722
6723          /* We need to save the string position the last time we were at
6724             this close-group operator in case the group is operated
6725             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6726             against `aba'; then we want to ignore where we are now in
6727             the string in case this attempt to match fails.  */
6728          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6729                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
6730			   : regend[*p];
6731	  DEBUG_PRINT2 ("      old_regend: %d\n",
6732			 POINTER_TO_OFFSET (old_regend[*p]));
6733
6734          regend[*p] = d;
6735	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6736
6737          /* This register isn't active anymore.  */
6738          IS_ACTIVE (reg_info[*p]) = 0;
6739
6740	  /* Clear this whenever we change the register activity status.  */
6741	  set_regs_matched_done = 0;
6742
6743          /* If this was the only register active, nothing is active
6744             anymore.  */
6745          if (lowest_active_reg == highest_active_reg)
6746            {
6747              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6748              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6749            }
6750          else
6751            { /* We must scan for the new highest active register, since
6752                 it isn't necessarily one less than now: consider
6753                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6754                 new highest active register is 1.  */
6755              UCHAR_T r = *p - 1;
6756              while (r > 0 && !IS_ACTIVE (reg_info[r]))
6757                r--;
6758
6759              /* If we end up at register zero, that means that we saved
6760                 the registers as the result of an `on_failure_jump', not
6761                 a `start_memory', and we jumped to past the innermost
6762                 `stop_memory'.  For example, in ((.)*) we save
6763                 registers 1 and 2 as a result of the *, but when we pop
6764                 back to the second ), we are at the stop_memory 1.
6765                 Thus, nothing is active.  */
6766	      if (r == 0)
6767                {
6768                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6769                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6770                }
6771              else
6772                highest_active_reg = r;
6773            }
6774
6775          /* If just failed to match something this time around with a
6776             group that's operated on by a repetition operator, try to
6777             force exit from the ``loop'', and restore the register
6778             information for this group that we had before trying this
6779             last match.  */
6780          if ((!MATCHED_SOMETHING (reg_info[*p])
6781               || just_past_start_mem == p - 1)
6782	      && (p + 2) < pend)
6783            {
6784              boolean is_a_jump_n = false;
6785
6786              p1 = p + 2;
6787              mcnt = 0;
6788              switch ((re_opcode_t) *p1++)
6789                {
6790                  case jump_n:
6791		    is_a_jump_n = true;
6792                  case pop_failure_jump:
6793		  case maybe_pop_jump:
6794		  case jump:
6795		  case dummy_failure_jump:
6796                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6797		    if (is_a_jump_n)
6798		      p1 += OFFSET_ADDRESS_SIZE;
6799                    break;
6800
6801                  default:
6802                    /* do nothing */ ;
6803                }
6804	      p1 += mcnt;
6805
6806              /* If the next operation is a jump backwards in the pattern
6807	         to an on_failure_jump right before the start_memory
6808                 corresponding to this stop_memory, exit from the loop
6809                 by forcing a failure after pushing on the stack the
6810                 on_failure_jump's jump in the pattern, and d.  */
6811              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6812                  && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6813		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6814		{
6815                  /* If this group ever matched anything, then restore
6816                     what its registers were before trying this last
6817                     failed match, e.g., with `(a*)*b' against `ab' for
6818                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
6819                     against `aba' for regend[3].
6820
6821                     Also restore the registers for inner groups for,
6822                     e.g., `((a*)(b*))*' against `aba' (register 3 would
6823                     otherwise get trashed).  */
6824
6825                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6826		    {
6827		      unsigned r;
6828
6829                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6830
6831		      /* Restore this and inner groups' (if any) registers.  */
6832                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6833			   r++)
6834                        {
6835                          regstart[r] = old_regstart[r];
6836
6837                          /* xx why this test?  */
6838                          if (old_regend[r] >= regstart[r])
6839                            regend[r] = old_regend[r];
6840                        }
6841                    }
6842		  p1++;
6843                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6844                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6845
6846                  goto fail;
6847                }
6848            }
6849
6850          /* Move past the register number and the inner group count.  */
6851          p += 2;
6852          break;
6853
6854
6855	/* \<digit> has been turned into a `duplicate' command which is
6856           followed by the numeric value of <digit> as the register number.  */
6857        case duplicate:
6858	  {
6859	    register const CHAR_T *d2, *dend2;
6860	    int regno = *p++;   /* Get which register to match against.  */
6861	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6862
6863	    /* Can't back reference a group which we've never matched.  */
6864            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6865              goto fail;
6866
6867            /* Where in input to try to start matching.  */
6868            d2 = regstart[regno];
6869
6870            /* Where to stop matching; if both the place to start and
6871               the place to stop matching are in the same string, then
6872               set to the place to stop, otherwise, for now have to use
6873               the end of the first string.  */
6874
6875            dend2 = ((FIRST_STRING_P (regstart[regno])
6876		      == FIRST_STRING_P (regend[regno]))
6877		     ? regend[regno] : end_match_1);
6878	    for (;;)
6879	      {
6880		/* If necessary, advance to next segment in register
6881                   contents.  */
6882		while (d2 == dend2)
6883		  {
6884		    if (dend2 == end_match_2) break;
6885		    if (dend2 == regend[regno]) break;
6886
6887                    /* End of string1 => advance to string2. */
6888                    d2 = string2;
6889                    dend2 = regend[regno];
6890		  }
6891		/* At end of register contents => success */
6892		if (d2 == dend2) break;
6893
6894		/* If necessary, advance to next segment in data.  */
6895		PREFETCH ();
6896
6897		/* How many characters left in this segment to match.  */
6898		mcnt = dend - d;
6899
6900		/* Want how many consecutive characters we can match in
6901                   one shot, so, if necessary, adjust the count.  */
6902                if (mcnt > dend2 - d2)
6903		  mcnt = dend2 - d2;
6904
6905		/* Compare that many; failure if mismatch, else move
6906                   past them.  */
6907		if (translate
6908                    ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6909                    : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6910		  goto fail;
6911		d += mcnt, d2 += mcnt;
6912
6913		/* Do this because we've match some characters.  */
6914		SET_REGS_MATCHED ();
6915	      }
6916	  }
6917	  break;
6918
6919
6920        /* begline matches the empty string at the beginning of the string
6921           (unless `not_bol' is set in `bufp'), and, if
6922           `newline_anchor' is set, after newlines.  */
6923	case begline:
6924          DEBUG_PRINT1 ("EXECUTING begline.\n");
6925
6926          if (AT_STRINGS_BEG (d))
6927            {
6928              if (!bufp->not_bol) break;
6929            }
6930          else if (d[-1] == '\n' && bufp->newline_anchor)
6931            {
6932              break;
6933            }
6934          /* In all other cases, we fail.  */
6935          goto fail;
6936
6937
6938        /* endline is the dual of begline.  */
6939	case endline:
6940          DEBUG_PRINT1 ("EXECUTING endline.\n");
6941
6942          if (AT_STRINGS_END (d))
6943            {
6944              if (!bufp->not_eol) break;
6945            }
6946
6947          /* We have to ``prefetch'' the next character.  */
6948          else if ((d == end1 ? *string2 : *d) == '\n'
6949                   && bufp->newline_anchor)
6950            {
6951              break;
6952            }
6953          goto fail;
6954
6955
6956	/* Match at the very beginning of the data.  */
6957        case begbuf:
6958          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6959          if (AT_STRINGS_BEG (d))
6960            break;
6961          goto fail;
6962
6963
6964	/* Match at the very end of the data.  */
6965        case endbuf:
6966          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6967	  if (AT_STRINGS_END (d))
6968	    break;
6969          goto fail;
6970
6971
6972        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6973           pushes NULL as the value for the string on the stack.  Then
6974           `pop_failure_point' will keep the current value for the
6975           string, instead of restoring it.  To see why, consider
6976           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6977           then the . fails against the \n.  But the next thing we want
6978           to do is match the \n against the \n; if we restored the
6979           string value, we would be back at the foo.
6980
6981           Because this is used only in specific cases, we don't need to
6982           check all the things that `on_failure_jump' does, to make
6983           sure the right things get saved on the stack.  Hence we don't
6984           share its code.  The only reason to push anything on the
6985           stack at all is that otherwise we would have to change
6986           `anychar's code to do something besides goto fail in this
6987           case; that seems worse than this.  */
6988        case on_failure_keep_string_jump:
6989          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6990
6991          EXTRACT_NUMBER_AND_INCR (mcnt, p);
6992#ifdef _LIBC
6993          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6994#else
6995          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6996#endif
6997
6998          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6999          break;
7000
7001
7002	/* Uses of on_failure_jump:
7003
7004           Each alternative starts with an on_failure_jump that points
7005           to the beginning of the next alternative.  Each alternative
7006           except the last ends with a jump that in effect jumps past
7007           the rest of the alternatives.  (They really jump to the
7008           ending jump of the following alternative, because tensioning
7009           these jumps is a hassle.)
7010
7011           Repeats start with an on_failure_jump that points past both
7012           the repetition text and either the following jump or
7013           pop_failure_jump back to this on_failure_jump.  */
7014	case on_failure_jump:
7015        on_failure:
7016          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7017
7018          EXTRACT_NUMBER_AND_INCR (mcnt, p);
7019#ifdef _LIBC
7020          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7021#else
7022          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7023#endif
7024
7025          /* If this on_failure_jump comes right before a group (i.e.,
7026             the original * applied to a group), save the information
7027             for that group and all inner ones, so that if we fail back
7028             to this point, the group's information will be correct.
7029             For example, in \(a*\)*\1, we need the preceding group,
7030             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
7031
7032          /* We can't use `p' to check ahead because we push
7033             a failure point to `p + mcnt' after we do this.  */
7034          p1 = p;
7035
7036          /* We need to skip no_op's before we look for the
7037             start_memory in case this on_failure_jump is happening as
7038             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7039             against aba.  */
7040          while (p1 < pend && (re_opcode_t) *p1 == no_op)
7041            p1++;
7042
7043          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7044            {
7045              /* We have a new highest active register now.  This will
7046                 get reset at the start_memory we are about to get to,
7047                 but we will have saved all the registers relevant to
7048                 this repetition op, as described above.  */
7049              highest_active_reg = *(p1 + 1) + *(p1 + 2);
7050              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7051                lowest_active_reg = *(p1 + 1);
7052            }
7053
7054          DEBUG_PRINT1 (":\n");
7055          PUSH_FAILURE_POINT (p + mcnt, d, -2);
7056          break;
7057
7058
7059        /* A smart repeat ends with `maybe_pop_jump'.
7060	   We change it to either `pop_failure_jump' or `jump'.  */
7061        case maybe_pop_jump:
7062          EXTRACT_NUMBER_AND_INCR (mcnt, p);
7063          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7064          {
7065	    register UCHAR_T *p2 = p;
7066
7067            /* Compare the beginning of the repeat with what in the
7068               pattern follows its end. If we can establish that there
7069               is nothing that they would both match, i.e., that we
7070               would have to backtrack because of (as in, e.g., `a*a')
7071               then we can change to pop_failure_jump, because we'll
7072               never have to backtrack.
7073
7074               This is not true in the case of alternatives: in
7075               `(a|ab)*' we do need to backtrack to the `ab' alternative
7076               (e.g., if the string was `ab').  But instead of trying to
7077               detect that here, the alternative has put on a dummy
7078               failure point which is what we will end up popping.  */
7079
7080	    /* Skip over open/close-group commands.
7081	       If what follows this loop is a ...+ construct,
7082	       look at what begins its body, since we will have to
7083	       match at least one of that.  */
7084	    while (1)
7085	      {
7086		if (p2 + 2 < pend
7087		    && ((re_opcode_t) *p2 == stop_memory
7088			|| (re_opcode_t) *p2 == start_memory))
7089		  p2 += 3;
7090		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7091			 && (re_opcode_t) *p2 == dummy_failure_jump)
7092		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7093		else
7094		  break;
7095	      }
7096
7097	    p1 = p + mcnt;
7098	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7099	       to the `maybe_finalize_jump' of this case.  Examine what
7100	       follows.  */
7101
7102            /* If we're at the end of the pattern, we can change.  */
7103            if (p2 == pend)
7104	      {
7105		/* Consider what happens when matching ":\(.*\)"
7106		   against ":/".  I don't really understand this code
7107		   yet.  */
7108  	        p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7109		  pop_failure_jump;
7110                DEBUG_PRINT1
7111                  ("  End of pattern: change to `pop_failure_jump'.\n");
7112              }
7113
7114            else if ((re_opcode_t) *p2 == exactn
7115#ifdef MBS_SUPPORT
7116		     || (re_opcode_t) *p2 == exactn_bin
7117#endif
7118		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7119	      {
7120		register UCHAR_T c
7121                  = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7122
7123                if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7124#ifdef MBS_SUPPORT
7125		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7126#endif
7127		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7128                  {
7129  		    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7130		      pop_failure_jump;
7131#ifdef WCHAR
7132		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7133				    (wint_t) c,
7134				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7135#else
7136		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7137				    (char) c,
7138				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7139#endif
7140                  }
7141
7142#ifndef WCHAR
7143		else if ((re_opcode_t) p1[3] == charset
7144			 || (re_opcode_t) p1[3] == charset_not)
7145		  {
7146		    int not = (re_opcode_t) p1[3] == charset_not;
7147
7148		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7149			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7150		      not = !not;
7151
7152                    /* `not' is equal to 1 if c would match, which means
7153                        that we can't change to pop_failure_jump.  */
7154		    if (!not)
7155                      {
7156  		        p[-3] = (unsigned char) pop_failure_jump;
7157                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7158                      }
7159		  }
7160#endif /* not WCHAR */
7161	      }
7162#ifndef WCHAR
7163            else if ((re_opcode_t) *p2 == charset)
7164	      {
7165		/* We win if the first character of the loop is not part
7166                   of the charset.  */
7167                if ((re_opcode_t) p1[3] == exactn
7168 		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7169 			  && (p2[2 + p1[5] / BYTEWIDTH]
7170 			      & (1 << (p1[5] % BYTEWIDTH)))))
7171		  {
7172		    p[-3] = (unsigned char) pop_failure_jump;
7173		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7174                  }
7175
7176		else if ((re_opcode_t) p1[3] == charset_not)
7177		  {
7178		    int idx;
7179		    /* We win if the charset_not inside the loop
7180		       lists every character listed in the charset after.  */
7181		    for (idx = 0; idx < (int) p2[1]; idx++)
7182		      if (! (p2[2 + idx] == 0
7183			     || (idx < (int) p1[4]
7184				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7185			break;
7186
7187		    if (idx == p2[1])
7188                      {
7189  		        p[-3] = (unsigned char) pop_failure_jump;
7190                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7191                      }
7192		  }
7193		else if ((re_opcode_t) p1[3] == charset)
7194		  {
7195		    int idx;
7196		    /* We win if the charset inside the loop
7197		       has no overlap with the one after the loop.  */
7198		    for (idx = 0;
7199			 idx < (int) p2[1] && idx < (int) p1[4];
7200			 idx++)
7201		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7202			break;
7203
7204		    if (idx == p2[1] || idx == p1[4])
7205                      {
7206  		        p[-3] = (unsigned char) pop_failure_jump;
7207                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7208                      }
7209		  }
7210	      }
7211#endif /* not WCHAR */
7212	  }
7213	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
7214	  if ((re_opcode_t) p[-1] != pop_failure_jump)
7215	    {
7216	      p[-1] = (UCHAR_T) jump;
7217              DEBUG_PRINT1 ("  Match => jump.\n");
7218	      goto unconditional_jump;
7219	    }
7220        /* Note fall through.  */
7221
7222
7223	/* The end of a simple repeat has a pop_failure_jump back to
7224           its matching on_failure_jump, where the latter will push a
7225           failure point.  The pop_failure_jump takes off failure
7226           points put on by this pop_failure_jump's matching
7227           on_failure_jump; we got through the pattern to here from the
7228           matching on_failure_jump, so didn't fail.  */
7229        case pop_failure_jump:
7230          {
7231            /* We need to pass separate storage for the lowest and
7232               highest registers, even though we don't care about the
7233               actual values.  Otherwise, we will restore only one
7234               register from the stack, since lowest will == highest in
7235               `pop_failure_point'.  */
7236            active_reg_t dummy_low_reg, dummy_high_reg;
7237            UCHAR_T *pdummy = NULL;
7238            const CHAR_T *sdummy = NULL;
7239
7240            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7241            POP_FAILURE_POINT (sdummy, pdummy,
7242                               dummy_low_reg, dummy_high_reg,
7243                               reg_dummy, reg_dummy, reg_info_dummy);
7244          }
7245	  /* Note fall through.  */
7246
7247	unconditional_jump:
7248#ifdef _LIBC
7249	  DEBUG_PRINT2 ("\n%p: ", p);
7250#else
7251	  DEBUG_PRINT2 ("\n0x%x: ", p);
7252#endif
7253          /* Note fall through.  */
7254
7255        /* Unconditionally jump (without popping any failure points).  */
7256        case jump:
7257	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
7258          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7259	  p += mcnt;				/* Do the jump.  */
7260#ifdef _LIBC
7261          DEBUG_PRINT2 ("(to %p).\n", p);
7262#else
7263          DEBUG_PRINT2 ("(to 0x%x).\n", p);
7264#endif
7265	  break;
7266
7267
7268        /* We need this opcode so we can detect where alternatives end
7269           in `group_match_null_string_p' et al.  */
7270        case jump_past_alt:
7271          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7272          goto unconditional_jump;
7273
7274
7275        /* Normally, the on_failure_jump pushes a failure point, which
7276           then gets popped at pop_failure_jump.  We will end up at
7277           pop_failure_jump, also, and with a pattern of, say, `a+', we
7278           are skipping over the on_failure_jump, so we have to push
7279           something meaningless for pop_failure_jump to pop.  */
7280        case dummy_failure_jump:
7281          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7282          /* It doesn't matter what we push for the string here.  What
7283             the code at `fail' tests is the value for the pattern.  */
7284          PUSH_FAILURE_POINT (NULL, NULL, -2);
7285          goto unconditional_jump;
7286
7287
7288        /* At the end of an alternative, we need to push a dummy failure
7289           point in case we are followed by a `pop_failure_jump', because
7290           we don't want the failure point for the alternative to be
7291           popped.  For example, matching `(a|ab)*' against `aab'
7292           requires that we match the `ab' alternative.  */
7293        case push_dummy_failure:
7294          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7295          /* See comments just above at `dummy_failure_jump' about the
7296             two zeroes.  */
7297          PUSH_FAILURE_POINT (NULL, NULL, -2);
7298          break;
7299
7300        /* Have to succeed matching what follows at least n times.
7301           After that, handle like `on_failure_jump'.  */
7302        case succeed_n:
7303          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7304          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7305
7306          assert (mcnt >= 0);
7307          /* Originally, this is how many times we HAVE to succeed.  */
7308          if (mcnt > 0)
7309            {
7310               mcnt--;
7311	       p += OFFSET_ADDRESS_SIZE;
7312               STORE_NUMBER_AND_INCR (p, mcnt);
7313#ifdef _LIBC
7314               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7315			     , mcnt);
7316#else
7317               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7318			     , mcnt);
7319#endif
7320            }
7321	  else if (mcnt == 0)
7322            {
7323#ifdef _LIBC
7324              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7325			    p + OFFSET_ADDRESS_SIZE);
7326#else
7327              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7328			    p + OFFSET_ADDRESS_SIZE);
7329#endif /* _LIBC */
7330
7331#ifdef WCHAR
7332	      p[1] = (UCHAR_T) no_op;
7333#else
7334	      p[2] = (UCHAR_T) no_op;
7335              p[3] = (UCHAR_T) no_op;
7336#endif /* WCHAR */
7337              goto on_failure;
7338            }
7339          break;
7340
7341        case jump_n:
7342          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7343          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7344
7345          /* Originally, this is how many times we CAN jump.  */
7346          if (mcnt)
7347            {
7348               mcnt--;
7349               STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7350
7351#ifdef _LIBC
7352               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7353			     mcnt);
7354#else
7355               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7356			     mcnt);
7357#endif /* _LIBC */
7358	       goto unconditional_jump;
7359            }
7360          /* If don't have to jump any more, skip over the rest of command.  */
7361	  else
7362	    p += 2 * OFFSET_ADDRESS_SIZE;
7363          break;
7364
7365	case set_number_at:
7366	  {
7367            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7368
7369            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7370            p1 = p + mcnt;
7371            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7372#ifdef _LIBC
7373            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7374#else
7375            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7376#endif
7377	    STORE_NUMBER (p1, mcnt);
7378            break;
7379          }
7380
7381#if 0
7382	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7383	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7384	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7385	   macro and introducing temporary variables works around the bug.  */
7386
7387	case wordbound:
7388	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7389	  if (AT_WORD_BOUNDARY (d))
7390	    break;
7391	  goto fail;
7392
7393	case notwordbound:
7394	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7395	  if (AT_WORD_BOUNDARY (d))
7396	    goto fail;
7397	  break;
7398#else
7399	case wordbound:
7400	{
7401	  boolean prevchar, thischar;
7402
7403	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7404	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7405	    break;
7406
7407	  prevchar = WORDCHAR_P (d - 1);
7408	  thischar = WORDCHAR_P (d);
7409	  if (prevchar != thischar)
7410	    break;
7411	  goto fail;
7412	}
7413
7414      case notwordbound:
7415	{
7416	  boolean prevchar, thischar;
7417
7418	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7419	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7420	    goto fail;
7421
7422	  prevchar = WORDCHAR_P (d - 1);
7423	  thischar = WORDCHAR_P (d);
7424	  if (prevchar != thischar)
7425	    goto fail;
7426	  break;
7427	}
7428#endif
7429
7430	case wordbeg:
7431          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7432	  if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7433	      && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7434	    break;
7435          goto fail;
7436
7437	case wordend:
7438          DEBUG_PRINT1 ("EXECUTING wordend.\n");
7439	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7440              && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7441	    break;
7442          goto fail;
7443
7444#ifdef emacs
7445  	case before_dot:
7446          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7447 	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7448  	    goto fail;
7449  	  break;
7450
7451  	case at_dot:
7452          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7453 	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7454  	    goto fail;
7455  	  break;
7456
7457  	case after_dot:
7458          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7459          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7460  	    goto fail;
7461  	  break;
7462
7463	case syntaxspec:
7464          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7465	  mcnt = *p++;
7466	  goto matchsyntax;
7467
7468        case wordchar:
7469          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7470	  mcnt = (int) Sword;
7471        matchsyntax:
7472	  PREFETCH ();
7473	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7474	  d++;
7475	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7476	    goto fail;
7477          SET_REGS_MATCHED ();
7478	  break;
7479
7480	case notsyntaxspec:
7481          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7482	  mcnt = *p++;
7483	  goto matchnotsyntax;
7484
7485        case notwordchar:
7486          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7487	  mcnt = (int) Sword;
7488        matchnotsyntax:
7489	  PREFETCH ();
7490	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7491	  d++;
7492	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7493	    goto fail;
7494	  SET_REGS_MATCHED ();
7495          break;
7496
7497#else /* not emacs */
7498	case wordchar:
7499          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7500	  PREFETCH ();
7501          if (!WORDCHAR_P (d))
7502            goto fail;
7503	  SET_REGS_MATCHED ();
7504          d++;
7505	  break;
7506
7507	case notwordchar:
7508          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7509	  PREFETCH ();
7510	  if (WORDCHAR_P (d))
7511            goto fail;
7512          SET_REGS_MATCHED ();
7513          d++;
7514	  break;
7515#endif /* not emacs */
7516
7517        default:
7518          abort ();
7519	}
7520      continue;  /* Successfully executed one pattern command; keep going.  */
7521
7522
7523    /* We goto here if a matching operation fails. */
7524    fail:
7525      if (!FAIL_STACK_EMPTY ())
7526	{ /* A restart point is known.  Restore to that state.  */
7527          DEBUG_PRINT1 ("\nFAIL:\n");
7528          POP_FAILURE_POINT (d, p,
7529                             lowest_active_reg, highest_active_reg,
7530                             regstart, regend, reg_info);
7531
7532          /* If this failure point is a dummy, try the next one.  */
7533          if (!p)
7534	    goto fail;
7535
7536          /* If we failed to the end of the pattern, don't examine *p.  */
7537	  assert (p <= pend);
7538          if (p < pend)
7539            {
7540              boolean is_a_jump_n = false;
7541
7542              /* If failed to a backwards jump that's part of a repetition
7543                 loop, need to pop this failure point and use the next one.  */
7544              switch ((re_opcode_t) *p)
7545                {
7546                case jump_n:
7547                  is_a_jump_n = true;
7548                case maybe_pop_jump:
7549                case pop_failure_jump:
7550                case jump:
7551                  p1 = p + 1;
7552                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7553                  p1 += mcnt;
7554
7555                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7556                      || (!is_a_jump_n
7557                          && (re_opcode_t) *p1 == on_failure_jump))
7558                    goto fail;
7559                  break;
7560                default:
7561                  /* do nothing */ ;
7562                }
7563            }
7564
7565          if (d >= string1 && d <= end1)
7566	    dend = end_match_1;
7567        }
7568      else
7569        break;   /* Matching at this starting point really fails.  */
7570    } /* for (;;) */
7571
7572  if (best_regs_set)
7573    goto restore_best_regs;
7574
7575  FREE_VARIABLES ();
7576
7577  return -1;         			/* Failure to match.  */
7578} /* re_match_2 */
7579
7580/* Subroutine definitions for re_match_2.  */
7581
7582
7583/* We are passed P pointing to a register number after a start_memory.
7584
7585   Return true if the pattern up to the corresponding stop_memory can
7586   match the empty string, and false otherwise.
7587
7588   If we find the matching stop_memory, sets P to point to one past its number.
7589   Otherwise, sets P to an undefined byte less than or equal to END.
7590
7591   We don't handle duplicates properly (yet).  */
7592
7593static boolean
7594PREFIX(group_match_null_string_p) (p, end, reg_info)
7595    UCHAR_T **p, *end;
7596    PREFIX(register_info_type) *reg_info;
7597{
7598  int mcnt;
7599  /* Point to after the args to the start_memory.  */
7600  UCHAR_T *p1 = *p + 2;
7601
7602  while (p1 < end)
7603    {
7604      /* Skip over opcodes that can match nothing, and return true or
7605	 false, as appropriate, when we get to one that can't, or to the
7606         matching stop_memory.  */
7607
7608      switch ((re_opcode_t) *p1)
7609        {
7610        /* Could be either a loop or a series of alternatives.  */
7611        case on_failure_jump:
7612          p1++;
7613          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7614
7615          /* If the next operation is not a jump backwards in the
7616	     pattern.  */
7617
7618	  if (mcnt >= 0)
7619	    {
7620              /* Go through the on_failure_jumps of the alternatives,
7621                 seeing if any of the alternatives cannot match nothing.
7622                 The last alternative starts with only a jump,
7623                 whereas the rest start with on_failure_jump and end
7624                 with a jump, e.g., here is the pattern for `a|b|c':
7625
7626                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7627                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7628                 /exactn/1/c
7629
7630                 So, we have to first go through the first (n-1)
7631                 alternatives and then deal with the last one separately.  */
7632
7633
7634              /* Deal with the first (n-1) alternatives, which start
7635                 with an on_failure_jump (see above) that jumps to right
7636                 past a jump_past_alt.  */
7637
7638              while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7639		     jump_past_alt)
7640                {
7641                  /* `mcnt' holds how many bytes long the alternative
7642                     is, including the ending `jump_past_alt' and
7643                     its number.  */
7644
7645                  if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7646						(1 + OFFSET_ADDRESS_SIZE),
7647						reg_info))
7648                    return false;
7649
7650                  /* Move to right after this alternative, including the
7651		     jump_past_alt.  */
7652                  p1 += mcnt;
7653
7654                  /* Break if it's the beginning of an n-th alternative
7655                     that doesn't begin with an on_failure_jump.  */
7656                  if ((re_opcode_t) *p1 != on_failure_jump)
7657                    break;
7658
7659		  /* Still have to check that it's not an n-th
7660		     alternative that starts with an on_failure_jump.  */
7661		  p1++;
7662                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7663                  if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7664		      jump_past_alt)
7665                    {
7666		      /* Get to the beginning of the n-th alternative.  */
7667                      p1 -= 1 + OFFSET_ADDRESS_SIZE;
7668                      break;
7669                    }
7670                }
7671
7672              /* Deal with the last alternative: go back and get number
7673                 of the `jump_past_alt' just before it.  `mcnt' contains
7674                 the length of the alternative.  */
7675              EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7676
7677              if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7678                return false;
7679
7680              p1 += mcnt;	/* Get past the n-th alternative.  */
7681            } /* if mcnt > 0 */
7682          break;
7683
7684
7685        case stop_memory:
7686	  assert (p1[1] == **p);
7687          *p = p1 + 2;
7688          return true;
7689
7690
7691        default:
7692          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7693            return false;
7694        }
7695    } /* while p1 < end */
7696
7697  return false;
7698} /* group_match_null_string_p */
7699
7700
7701/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7702   It expects P to be the first byte of a single alternative and END one
7703   byte past the last. The alternative can contain groups.  */
7704
7705static boolean
7706PREFIX(alt_match_null_string_p) (p, end, reg_info)
7707    UCHAR_T *p, *end;
7708    PREFIX(register_info_type) *reg_info;
7709{
7710  int mcnt;
7711  UCHAR_T *p1 = p;
7712
7713  while (p1 < end)
7714    {
7715      /* Skip over opcodes that can match nothing, and break when we get
7716         to one that can't.  */
7717
7718      switch ((re_opcode_t) *p1)
7719        {
7720	/* It's a loop.  */
7721        case on_failure_jump:
7722          p1++;
7723          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7724          p1 += mcnt;
7725          break;
7726
7727	default:
7728          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7729            return false;
7730        }
7731    }  /* while p1 < end */
7732
7733  return true;
7734} /* alt_match_null_string_p */
7735
7736
7737/* Deals with the ops common to group_match_null_string_p and
7738   alt_match_null_string_p.
7739
7740   Sets P to one after the op and its arguments, if any.  */
7741
7742static boolean
7743PREFIX(common_op_match_null_string_p) (p, end, reg_info)
7744    UCHAR_T **p, *end;
7745    PREFIX(register_info_type) *reg_info;
7746{
7747  int mcnt;
7748  boolean ret;
7749  int reg_no;
7750  UCHAR_T *p1 = *p;
7751
7752  switch ((re_opcode_t) *p1++)
7753    {
7754    case no_op:
7755    case begline:
7756    case endline:
7757    case begbuf:
7758    case endbuf:
7759    case wordbeg:
7760    case wordend:
7761    case wordbound:
7762    case notwordbound:
7763#ifdef emacs
7764    case before_dot:
7765    case at_dot:
7766    case after_dot:
7767#endif
7768      break;
7769
7770    case start_memory:
7771      reg_no = *p1;
7772      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7773      ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7774
7775      /* Have to set this here in case we're checking a group which
7776         contains a group and a back reference to it.  */
7777
7778      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7779        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7780
7781      if (!ret)
7782        return false;
7783      break;
7784
7785    /* If this is an optimized succeed_n for zero times, make the jump.  */
7786    case jump:
7787      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7788      if (mcnt >= 0)
7789        p1 += mcnt;
7790      else
7791        return false;
7792      break;
7793
7794    case succeed_n:
7795      /* Get to the number of times to succeed.  */
7796      p1 += OFFSET_ADDRESS_SIZE;
7797      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7798
7799      if (mcnt == 0)
7800        {
7801          p1 -= 2 * OFFSET_ADDRESS_SIZE;
7802          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7803          p1 += mcnt;
7804        }
7805      else
7806        return false;
7807      break;
7808
7809    case duplicate:
7810      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7811        return false;
7812      break;
7813
7814    case set_number_at:
7815      p1 += 2 * OFFSET_ADDRESS_SIZE;
7816
7817    default:
7818      /* All other opcodes mean we cannot match the empty string.  */
7819      return false;
7820  }
7821
7822  *p = p1;
7823  return true;
7824} /* common_op_match_null_string_p */
7825
7826
7827/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7828   bytes; nonzero otherwise.  */
7829
7830static int
7831PREFIX(bcmp_translate) (s1, s2, len, translate)
7832     const CHAR_T *s1, *s2;
7833     register int len;
7834     RE_TRANSLATE_TYPE translate;
7835{
7836  register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7837  register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7838  while (len)
7839    {
7840#ifdef WCHAR
7841      if (((*p1<=0xff)?translate[*p1++]:*p1++)
7842	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7843	return 1;
7844#else /* BYTE */
7845      if (translate[*p1++] != translate[*p2++]) return 1;
7846#endif /* WCHAR */
7847      len--;
7848    }
7849  return 0;
7850}
7851
7852
7853#else /* not INSIDE_RECURSION */
7854
7855/* Entry points for GNU code.  */
7856
7857/* re_compile_pattern is the GNU regular expression compiler: it
7858   compiles PATTERN (of length SIZE) and puts the result in BUFP.
7859   Returns 0 if the pattern was valid, otherwise an error string.
7860
7861   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7862   are set in BUFP on entry.
7863
7864   We call regex_compile to do the actual compilation.  */
7865
7866const char *
7867re_compile_pattern (pattern, length, bufp)
7868     const char *pattern;
7869     size_t length;
7870     struct re_pattern_buffer *bufp;
7871{
7872  reg_errcode_t ret;
7873
7874  /* GNU code is written to assume at least RE_NREGS registers will be set
7875     (and at least one extra will be -1).  */
7876  bufp->regs_allocated = REGS_UNALLOCATED;
7877
7878  /* And GNU code determines whether or not to get register information
7879     by passing null for the REGS argument to re_match, etc., not by
7880     setting no_sub.  */
7881  bufp->no_sub = 0;
7882
7883  /* Match anchors at newline.  */
7884  bufp->newline_anchor = 1;
7885
7886# ifdef MBS_SUPPORT
7887  if (MB_CUR_MAX != 1)
7888    ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7889  else
7890# endif
7891    ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7892
7893  if (!ret)
7894    return NULL;
7895  return gettext (re_error_msgid[(int) ret]);
7896}
7897#ifdef _LIBC
7898weak_alias (__re_compile_pattern, re_compile_pattern)
7899#endif
7900
7901/* Entry points compatible with 4.2 BSD regex library.  We don't define
7902   them unless specifically requested.  */
7903
7904#if defined _REGEX_RE_COMP || defined _LIBC
7905
7906/* BSD has one and only one pattern buffer.  */
7907static struct re_pattern_buffer re_comp_buf;
7908
7909char *
7910#ifdef _LIBC
7911/* Make these definitions weak in libc, so POSIX programs can redefine
7912   these names if they don't use our functions, and still use
7913   regcomp/regexec below without link errors.  */
7914weak_function
7915#endif
7916re_comp (s)
7917    const char *s;
7918{
7919  reg_errcode_t ret;
7920
7921  if (!s)
7922    {
7923      if (!re_comp_buf.buffer)
7924	return gettext ("No previous regular expression");
7925      return 0;
7926    }
7927
7928  if (!re_comp_buf.buffer)
7929    {
7930      re_comp_buf.buffer = (unsigned char *) malloc (200);
7931      if (re_comp_buf.buffer == NULL)
7932        return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7933      re_comp_buf.allocated = 200;
7934
7935      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7936      if (re_comp_buf.fastmap == NULL)
7937	return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7938    }
7939
7940  /* Since `re_exec' always passes NULL for the `regs' argument, we
7941     don't need to initialize the pattern buffer fields which affect it.  */
7942
7943  /* Match anchors at newlines.  */
7944  re_comp_buf.newline_anchor = 1;
7945
7946# ifdef MBS_SUPPORT
7947  if (MB_CUR_MAX != 1)
7948    ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7949  else
7950# endif
7951    ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7952
7953  if (!ret)
7954    return NULL;
7955
7956  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7957  return (char *) gettext (re_error_msgid[(int) ret]);
7958}
7959
7960
7961int
7962#ifdef _LIBC
7963weak_function
7964#endif
7965re_exec (s)
7966    const char *s;
7967{
7968  const int len = strlen (s);
7969  return
7970    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7971}
7972
7973#endif /* _REGEX_RE_COMP */
7974
7975/* POSIX.2 functions.  Don't define these for Emacs.  */
7976
7977#ifndef emacs
7978
7979/* regcomp takes a regular expression as a string and compiles it.
7980
7981   PREG is a regex_t *.  We do not expect any fields to be initialized,
7982   since POSIX says we shouldn't.  Thus, we set
7983
7984     `buffer' to the compiled pattern;
7985     `used' to the length of the compiled pattern;
7986     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7987       REG_EXTENDED bit in CFLAGS is set; otherwise, to
7988       RE_SYNTAX_POSIX_BASIC;
7989     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7990     `fastmap' to an allocated space for the fastmap;
7991     `fastmap_accurate' to zero;
7992     `re_nsub' to the number of subexpressions in PATTERN.
7993
7994   PATTERN is the address of the pattern string.
7995
7996   CFLAGS is a series of bits which affect compilation.
7997
7998     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7999     use POSIX basic syntax.
8000
8001     If REG_NEWLINE is set, then . and [^...] don't match newline.
8002     Also, regexec will try a match beginning after every newline.
8003
8004     If REG_ICASE is set, then we considers upper- and lowercase
8005     versions of letters to be equivalent when matching.
8006
8007     If REG_NOSUB is set, then when PREG is passed to regexec, that
8008     routine will report only success or failure, and nothing about the
8009     registers.
8010
8011   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
8012   the return codes and their meanings.)  */
8013
8014int
8015regcomp (preg, pattern, cflags)
8016    regex_t *preg;
8017    const char *pattern;
8018    int cflags;
8019{
8020  reg_errcode_t ret;
8021  reg_syntax_t syntax
8022    = (cflags & REG_EXTENDED) ?
8023      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8024
8025  /* regex_compile will allocate the space for the compiled pattern.  */
8026  preg->buffer = 0;
8027  preg->allocated = 0;
8028  preg->used = 0;
8029
8030  /* Try to allocate space for the fastmap.  */
8031  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
8032
8033  if (cflags & REG_ICASE)
8034    {
8035      unsigned i;
8036
8037      preg->translate
8038	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
8039				      * sizeof (*(RE_TRANSLATE_TYPE)0));
8040      if (preg->translate == NULL)
8041        return (int) REG_ESPACE;
8042
8043      /* Map uppercase characters to corresponding lowercase ones.  */
8044      for (i = 0; i < CHAR_SET_SIZE; i++)
8045        preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : (int) i;
8046    }
8047  else
8048    preg->translate = NULL;
8049
8050  /* If REG_NEWLINE is set, newlines are treated differently.  */
8051  if (cflags & REG_NEWLINE)
8052    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
8053      syntax &= ~RE_DOT_NEWLINE;
8054      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8055      /* It also changes the matching behavior.  */
8056      preg->newline_anchor = 1;
8057    }
8058  else
8059    preg->newline_anchor = 0;
8060
8061  preg->no_sub = !!(cflags & REG_NOSUB);
8062
8063  /* POSIX says a null character in the pattern terminates it, so we
8064     can use strlen here in compiling the pattern.  */
8065# ifdef MBS_SUPPORT
8066  if (MB_CUR_MAX != 1)
8067    ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8068  else
8069# endif
8070    ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8071
8072  /* POSIX doesn't distinguish between an unmatched open-group and an
8073     unmatched close-group: both are REG_EPAREN.  */
8074  if (ret == REG_ERPAREN) ret = REG_EPAREN;
8075
8076  if (ret == REG_NOERROR && preg->fastmap)
8077    {
8078      /* Compute the fastmap now, since regexec cannot modify the pattern
8079	 buffer.  */
8080      if (re_compile_fastmap (preg) == -2)
8081	{
8082	  /* Some error occurred while computing the fastmap, just forget
8083	     about it.  */
8084	  free (preg->fastmap);
8085	  preg->fastmap = NULL;
8086	}
8087    }
8088
8089  return (int) ret;
8090}
8091#ifdef _LIBC
8092weak_alias (__regcomp, regcomp)
8093#endif
8094
8095
8096/* regexec searches for a given pattern, specified by PREG, in the
8097   string STRING.
8098
8099   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8100   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
8101   least NMATCH elements, and we set them to the offsets of the
8102   corresponding matched substrings.
8103
8104   EFLAGS specifies `execution flags' which affect matching: if
8105   REG_NOTBOL is set, then ^ does not match at the beginning of the
8106   string; if REG_NOTEOL is set, then $ does not match at the end.
8107
8108   We return 0 if we find a match and REG_NOMATCH if not.  */
8109
8110int
8111regexec (preg, string, nmatch, pmatch, eflags)
8112    const regex_t *preg;
8113    const char *string;
8114    size_t nmatch;
8115    regmatch_t pmatch[];
8116    int eflags;
8117{
8118  int ret;
8119  struct re_registers regs;
8120  regex_t private_preg;
8121  int len = strlen (string);
8122  boolean want_reg_info = !preg->no_sub && nmatch > 0;
8123
8124  private_preg = *preg;
8125
8126  private_preg.not_bol = !!(eflags & REG_NOTBOL);
8127  private_preg.not_eol = !!(eflags & REG_NOTEOL);
8128
8129  /* The user has told us exactly how many registers to return
8130     information about, via `nmatch'.  We have to pass that on to the
8131     matching routines.  */
8132  private_preg.regs_allocated = REGS_FIXED;
8133
8134  if (want_reg_info)
8135    {
8136      regs.num_regs = nmatch;
8137      regs.start = TALLOC (nmatch * 2, regoff_t);
8138      if (regs.start == NULL)
8139        return (int) REG_NOMATCH;
8140      regs.end = regs.start + nmatch;
8141    }
8142
8143  /* Perform the searching operation.  */
8144  ret = re_search (&private_preg, string, len,
8145                   /* start: */ 0, /* range: */ len,
8146                   want_reg_info ? &regs : (struct re_registers *) 0);
8147
8148  /* Copy the register information to the POSIX structure.  */
8149  if (want_reg_info)
8150    {
8151      if (ret >= 0)
8152        {
8153          unsigned r;
8154
8155          for (r = 0; r < nmatch; r++)
8156            {
8157              pmatch[r].rm_so = regs.start[r];
8158              pmatch[r].rm_eo = regs.end[r];
8159            }
8160        }
8161
8162      /* If we needed the temporary register info, free the space now.  */
8163      free (regs.start);
8164    }
8165
8166  /* We want zero return to mean success, unlike `re_search'.  */
8167  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8168}
8169#ifdef _LIBC
8170weak_alias (__regexec, regexec)
8171#endif
8172
8173
8174/* Returns a message corresponding to an error code, ERRCODE, returned
8175   from either regcomp or regexec.   We don't use PREG here.  */
8176
8177size_t
8178regerror (errcode, preg, errbuf, errbuf_size)
8179    int errcode;
8180    const regex_t *preg ATTRIBUTE_UNUSED;
8181    char *errbuf;
8182    size_t errbuf_size;
8183{
8184  const char *msg;
8185  size_t msg_size;
8186
8187  if (errcode < 0
8188      || errcode >= (int) (sizeof (re_error_msgid)
8189			   / sizeof (re_error_msgid[0])))
8190    /* Only error codes returned by the rest of the code should be passed
8191       to this routine.  If we are given anything else, or if other regex
8192       code generates an invalid error code, then the program has a bug.
8193       Dump core so we can fix it.  */
8194    abort ();
8195
8196  msg = gettext (re_error_msgid[errcode]);
8197
8198  msg_size = strlen (msg) + 1; /* Includes the null.  */
8199
8200  if (errbuf_size != 0)
8201    {
8202      if (msg_size > errbuf_size)
8203        {
8204#if defined HAVE_MEMPCPY || defined _LIBC
8205	  *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8206#else
8207          memcpy (errbuf, msg, errbuf_size - 1);
8208          errbuf[errbuf_size - 1] = 0;
8209#endif
8210        }
8211      else
8212        memcpy (errbuf, msg, msg_size);
8213    }
8214
8215  return msg_size;
8216}
8217#ifdef _LIBC
8218weak_alias (__regerror, regerror)
8219#endif
8220
8221
8222/* Free dynamically allocated space used by PREG.  */
8223
8224void
8225regfree (preg)
8226    regex_t *preg;
8227{
8228  if (preg->buffer != NULL)
8229    free (preg->buffer);
8230  preg->buffer = NULL;
8231
8232  preg->allocated = 0;
8233  preg->used = 0;
8234
8235  if (preg->fastmap != NULL)
8236    free (preg->fastmap);
8237  preg->fastmap = NULL;
8238  preg->fastmap_accurate = 0;
8239
8240  if (preg->translate != NULL)
8241    free (preg->translate);
8242  preg->translate = NULL;
8243}
8244#ifdef _LIBC
8245weak_alias (__regfree, regfree)
8246#endif
8247
8248#endif /* not emacs  */
8249
8250#endif /* not INSIDE_RECURSION */
8251
8252
8253#undef STORE_NUMBER
8254#undef STORE_NUMBER_AND_INCR
8255#undef EXTRACT_NUMBER
8256#undef EXTRACT_NUMBER_AND_INCR
8257
8258#undef DEBUG_PRINT_COMPILED_PATTERN
8259#undef DEBUG_PRINT_DOUBLE_STRING
8260
8261#undef INIT_FAIL_STACK
8262#undef RESET_FAIL_STACK
8263#undef DOUBLE_FAIL_STACK
8264#undef PUSH_PATTERN_OP
8265#undef PUSH_FAILURE_POINTER
8266#undef PUSH_FAILURE_INT
8267#undef PUSH_FAILURE_ELT
8268#undef POP_FAILURE_POINTER
8269#undef POP_FAILURE_INT
8270#undef POP_FAILURE_ELT
8271#undef DEBUG_PUSH
8272#undef DEBUG_POP
8273#undef PUSH_FAILURE_POINT
8274#undef POP_FAILURE_POINT
8275
8276#undef REG_UNSET_VALUE
8277#undef REG_UNSET
8278
8279#undef PATFETCH
8280#undef PATFETCH_RAW
8281#undef PATUNFETCH
8282#undef TRANSLATE
8283
8284#undef INIT_BUF_SIZE
8285#undef GET_BUFFER_SPACE
8286#undef BUF_PUSH
8287#undef BUF_PUSH_2
8288#undef BUF_PUSH_3
8289#undef STORE_JUMP
8290#undef STORE_JUMP2
8291#undef INSERT_JUMP
8292#undef INSERT_JUMP2
8293#undef EXTEND_BUFFER
8294#undef GET_UNSIGNED_NUMBER
8295#undef FREE_STACK_RETURN
8296
8297# undef POINTER_TO_OFFSET
8298# undef MATCHING_IN_FRST_STRING
8299# undef PREFETCH
8300# undef AT_STRINGS_BEG
8301# undef AT_STRINGS_END
8302# undef WORDCHAR_P
8303# undef FREE_VAR
8304# undef FREE_VARIABLES
8305# undef NO_HIGHEST_ACTIVE_REG
8306# undef NO_LOWEST_ACTIVE_REG
8307
8308# undef CHAR_T
8309# undef UCHAR_T
8310# undef COMPILED_BUFFER_VAR
8311# undef OFFSET_ADDRESS_SIZE
8312# undef CHAR_CLASS_SIZE
8313# undef PREFIX
8314# undef ARG_PREFIX
8315# undef PUT_CHAR
8316# undef BYTE
8317# undef WCHAR
8318
8319# define DEFINED_ONCE
8320