1/* Target-dependent code for PowerPC systems using the SVR4 ABI
2   for GDB, the GNU debugger.
3
4   Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6   This file is part of GDB.
7
8   This program is free software; you can redistribute it and/or modify
9   it under the terms of the GNU General Public License as published by
10   the Free Software Foundation; either version 2 of the License, or
11   (at your option) any later version.
12
13   This program is distributed in the hope that it will be useful,
14   but WITHOUT ANY WARRANTY; without even the implied warranty of
15   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16   GNU General Public License for more details.
17
18   You should have received a copy of the GNU General Public License
19   along with this program; if not, write to the Free Software
20   Foundation, Inc., 59 Temple Place - Suite 330,
21   Boston, MA 02111-1307, USA.  */
22
23#include "defs.h"
24#include "gdbcore.h"
25#include "inferior.h"
26#include "regcache.h"
27#include "value.h"
28#include "gdb_string.h"
29#include "gdb_assert.h"
30#include "ppc-tdep.h"
31#include "target.h"
32#include "objfiles.h"
33#include "infcall.h"
34
35/* Pass the arguments in either registers, or in the stack. Using the
36   ppc sysv ABI, the first eight words of the argument list (that might
37   be less than eight parameters if some parameters occupy more than one
38   word) are passed in r3..r10 registers.  float and double parameters are
39   passed in fpr's, in addition to that. Rest of the parameters if any
40   are passed in user stack.
41
42   If the function is returning a structure, then the return address is passed
43   in r3, then the first 7 words of the parametes can be passed in registers,
44   starting from r4. */
45
46CORE_ADDR
47ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
48			      struct regcache *regcache, CORE_ADDR bp_addr,
49			      int nargs, struct value **args, CORE_ADDR sp,
50			      int struct_return, CORE_ADDR struct_addr)
51{
52  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
53  const CORE_ADDR saved_sp = read_sp ();
54  int argspace = 0;		/* 0 is an initial wrong guess.  */
55  int write_pass;
56
57  /* Go through the argument list twice.
58
59     Pass 1: Figure out how much new stack space is required for
60     arguments and pushed values.  Unlike the PowerOpen ABI, the SysV
61     ABI doesn't reserve any extra space for parameters which are put
62     in registers, but does always push structures and then pass their
63     address.
64
65     Pass 2: Replay the same computation but this time also write the
66     values out to the target.  */
67
68  for (write_pass = 0; write_pass < 2; write_pass++)
69    {
70      int argno;
71      /* Next available floating point register for float and double
72         arguments.  */
73      int freg = 1;
74      /* Next available general register for non-float, non-vector
75         arguments.  */
76      int greg = 3;
77      /* Next available vector register for vector arguments.  */
78      int vreg = 2;
79      /* Arguments start above the "LR save word" and "Back chain".  */
80      int argoffset = 2 * tdep->wordsize;
81      /* Structures start after the arguments.  */
82      int structoffset = argoffset + argspace;
83
84      /* If the function is returning a `struct', then the first word
85         (which will be passed in r3) is used for struct return
86         address.  In that case we should advance one word and start
87         from r4 register to copy parameters.  */
88      if (struct_return)
89	{
90	  if (write_pass)
91	    regcache_cooked_write_signed (regcache,
92					  tdep->ppc_gp0_regnum + greg,
93					  struct_addr);
94	  greg++;
95	}
96
97      for (argno = 0; argno < nargs; argno++)
98	{
99	  struct value *arg = args[argno];
100	  struct type *type = check_typedef (VALUE_TYPE (arg));
101	  int len = TYPE_LENGTH (type);
102	  char *val = VALUE_CONTENTS (arg);
103
104	  if (TYPE_CODE (type) == TYPE_CODE_FLT
105	      && ppc_floating_point_unit_p (current_gdbarch) && len <= 8)
106	    {
107	      /* Floating point value converted to "double" then
108	         passed in an FP register, when the registers run out,
109	         8 byte aligned stack is used.  */
110	      if (freg <= 8)
111		{
112		  if (write_pass)
113		    {
114		      /* Always store the floating point value using
115		         the register's floating-point format.  */
116		      char regval[MAX_REGISTER_SIZE];
117		      struct type *regtype
118			= register_type (gdbarch, tdep->ppc_fp0_regnum + freg);
119		      convert_typed_floating (val, type, regval, regtype);
120		      regcache_cooked_write (regcache,
121                                             tdep->ppc_fp0_regnum + freg,
122					     regval);
123		    }
124		  freg++;
125		}
126	      else
127		{
128		  /* SysV ABI converts floats to doubles before
129		     writing them to an 8 byte aligned stack location.  */
130		  argoffset = align_up (argoffset, 8);
131		  if (write_pass)
132		    {
133		      char memval[8];
134		      struct type *memtype;
135		      switch (TARGET_BYTE_ORDER)
136			{
137			case BFD_ENDIAN_BIG:
138			  memtype = builtin_type_ieee_double_big;
139			  break;
140			case BFD_ENDIAN_LITTLE:
141			  memtype = builtin_type_ieee_double_little;
142			  break;
143			default:
144			  internal_error (__FILE__, __LINE__, "bad switch");
145			}
146		      convert_typed_floating (val, type, memval, memtype);
147		      write_memory (sp + argoffset, val, len);
148		    }
149		  argoffset += 8;
150		}
151	    }
152	  else if (len == 8 && (TYPE_CODE (type) == TYPE_CODE_INT	/* long long */
153				|| (!ppc_floating_point_unit_p (current_gdbarch) && TYPE_CODE (type) == TYPE_CODE_FLT)))	/* double */
154	    {
155	      /* "long long" or "double" passed in an odd/even
156	         register pair with the low addressed word in the odd
157	         register and the high addressed word in the even
158	         register, or when the registers run out an 8 byte
159	         aligned stack location.  */
160	      if (greg > 9)
161		{
162		  /* Just in case GREG was 10.  */
163		  greg = 11;
164		  argoffset = align_up (argoffset, 8);
165		  if (write_pass)
166		    write_memory (sp + argoffset, val, len);
167		  argoffset += 8;
168		}
169	      else if (tdep->wordsize == 8)
170		{
171		  if (write_pass)
172		    regcache_cooked_write (regcache,
173					   tdep->ppc_gp0_regnum + greg, val);
174		  greg += 1;
175		}
176	      else
177		{
178		  /* Must start on an odd register - r3/r4 etc.  */
179		  if ((greg & 1) == 0)
180		    greg++;
181		  if (write_pass)
182		    {
183		      regcache_cooked_write (regcache,
184					     tdep->ppc_gp0_regnum + greg + 0,
185					     val + 0);
186		      regcache_cooked_write (regcache,
187					     tdep->ppc_gp0_regnum + greg + 1,
188					     val + 4);
189		    }
190		  greg += 2;
191		}
192	    }
193	  else if (len == 16
194		   && TYPE_CODE (type) == TYPE_CODE_ARRAY
195		   && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
196	    {
197	      /* Vector parameter passed in an Altivec register, or
198	         when that runs out, 16 byte aligned stack location.  */
199	      if (vreg <= 13)
200		{
201		  if (write_pass)
202		    regcache_cooked_write (current_regcache,
203					   tdep->ppc_vr0_regnum + vreg, val);
204		  vreg++;
205		}
206	      else
207		{
208		  argoffset = align_up (argoffset, 16);
209		  if (write_pass)
210		    write_memory (sp + argoffset, val, 16);
211		  argoffset += 16;
212		}
213	    }
214	  else if (len == 8
215		   && TYPE_CODE (type) == TYPE_CODE_ARRAY
216		   && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
217	    {
218	      /* Vector parameter passed in an e500 register, or when
219	         that runs out, 8 byte aligned stack location.  Note
220	         that since e500 vector and general purpose registers
221	         both map onto the same underlying register set, a
222	         "greg" and not a "vreg" is consumed here.  A cooked
223	         write stores the value in the correct locations
224	         within the raw register cache.  */
225	      if (greg <= 10)
226		{
227		  if (write_pass)
228		    regcache_cooked_write (current_regcache,
229					   tdep->ppc_ev0_regnum + greg, val);
230		  greg++;
231		}
232	      else
233		{
234		  argoffset = align_up (argoffset, 8);
235		  if (write_pass)
236		    write_memory (sp + argoffset, val, 8);
237		  argoffset += 8;
238		}
239	    }
240	  else
241	    {
242	      /* Reduce the parameter down to something that fits in a
243	         "word".  */
244	      char word[MAX_REGISTER_SIZE];
245	      memset (word, 0, MAX_REGISTER_SIZE);
246	      if (len > tdep->wordsize
247		  || TYPE_CODE (type) == TYPE_CODE_STRUCT
248		  || TYPE_CODE (type) == TYPE_CODE_UNION)
249		{
250		  /* Structs and large values are put on an 8 byte
251		     aligned stack ... */
252		  structoffset = align_up (structoffset, 8);
253		  if (write_pass)
254		    write_memory (sp + structoffset, val, len);
255		  /* ... and then a "word" pointing to that address is
256		     passed as the parameter.  */
257		  store_unsigned_integer (word, tdep->wordsize,
258					  sp + structoffset);
259		  structoffset += len;
260		}
261	      else if (TYPE_CODE (type) == TYPE_CODE_INT)
262		/* Sign or zero extend the "int" into a "word".  */
263		store_unsigned_integer (word, tdep->wordsize,
264					unpack_long (type, val));
265	      else
266		/* Always goes in the low address.  */
267		memcpy (word, val, len);
268	      /* Store that "word" in a register, or on the stack.
269	         The words have "4" byte alignment.  */
270	      if (greg <= 10)
271		{
272		  if (write_pass)
273		    regcache_cooked_write (regcache,
274					   tdep->ppc_gp0_regnum + greg, word);
275		  greg++;
276		}
277	      else
278		{
279		  argoffset = align_up (argoffset, tdep->wordsize);
280		  if (write_pass)
281		    write_memory (sp + argoffset, word, tdep->wordsize);
282		  argoffset += tdep->wordsize;
283		}
284	    }
285	}
286
287      /* Compute the actual stack space requirements.  */
288      if (!write_pass)
289	{
290	  /* Remember the amount of space needed by the arguments.  */
291	  argspace = argoffset;
292	  /* Allocate space for both the arguments and the structures.  */
293	  sp -= (argoffset + structoffset);
294	  /* Ensure that the stack is still 16 byte aligned.  */
295	  sp = align_down (sp, 16);
296	}
297    }
298
299  /* Update %sp.   */
300  regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
301
302  /* Write the backchain (it occupies WORDSIZED bytes).  */
303  write_memory_signed_integer (sp, tdep->wordsize, saved_sp);
304
305  /* Point the inferior function call's return address at the dummy's
306     breakpoint.  */
307  regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
308
309  return sp;
310}
311
312/* Handle the return-value conventions specified by the SysV 32-bit
313   PowerPC ABI (including all the supplements):
314
315   no floating-point: floating-point values returned using 32-bit
316   general-purpose registers.
317
318   Altivec: 128-bit vectors returned using vector registers.
319
320   e500: 64-bit vectors returned using the full full 64 bit EV
321   register, floating-point values returned using 32-bit
322   general-purpose registers.
323
324   GCC (broken): Small struct values right (instead of left) aligned
325   when returned in general-purpose registers.  */
326
327static enum return_value_convention
328do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *type,
329			  struct regcache *regcache, void *readbuf,
330			  const void *writebuf, int broken_gcc)
331{
332  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333  gdb_assert (tdep->wordsize == 4);
334  if (TYPE_CODE (type) == TYPE_CODE_FLT
335      && TYPE_LENGTH (type) <= 8
336      && ppc_floating_point_unit_p (gdbarch))
337    {
338      if (readbuf)
339	{
340	  /* Floats and doubles stored in "f1".  Convert the value to
341	     the required type.  */
342	  char regval[MAX_REGISTER_SIZE];
343	  struct type *regtype = register_type (gdbarch,
344                                                tdep->ppc_fp0_regnum + 1);
345	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
346	  convert_typed_floating (regval, regtype, readbuf, type);
347	}
348      if (writebuf)
349	{
350	  /* Floats and doubles stored in "f1".  Convert the value to
351	     the register's "double" type.  */
352	  char regval[MAX_REGISTER_SIZE];
353	  struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
354	  convert_typed_floating (writebuf, type, regval, regtype);
355	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
356	}
357      return RETURN_VALUE_REGISTER_CONVENTION;
358    }
359  if ((TYPE_CODE (type) == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
360      || (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8))
361    {
362      if (readbuf)
363	{
364	  /* A long long, or a double stored in the 32 bit r3/r4.  */
365	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
366				(bfd_byte *) readbuf + 0);
367	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
368				(bfd_byte *) readbuf + 4);
369	}
370      if (writebuf)
371	{
372	  /* A long long, or a double stored in the 32 bit r3/r4.  */
373	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
374				 (const bfd_byte *) writebuf + 0);
375	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
376				 (const bfd_byte *) writebuf + 4);
377	}
378      return RETURN_VALUE_REGISTER_CONVENTION;
379    }
380  if (TYPE_CODE (type) == TYPE_CODE_INT
381      && TYPE_LENGTH (type) <= tdep->wordsize)
382    {
383      if (readbuf)
384	{
385	  /* Some sort of integer stored in r3.  Since TYPE isn't
386	     bigger than the register, sign extension isn't a problem
387	     - just do everything unsigned.  */
388	  ULONGEST regval;
389	  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
390					 &regval);
391	  store_unsigned_integer (readbuf, TYPE_LENGTH (type), regval);
392	}
393      if (writebuf)
394	{
395	  /* Some sort of integer stored in r3.  Use unpack_long since
396	     that should handle any required sign extension.  */
397	  regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
398					  unpack_long (type, writebuf));
399	}
400      return RETURN_VALUE_REGISTER_CONVENTION;
401    }
402  if (TYPE_LENGTH (type) == 16
403      && TYPE_CODE (type) == TYPE_CODE_ARRAY
404      && TYPE_VECTOR (type) && tdep->ppc_vr0_regnum >= 0)
405    {
406      if (readbuf)
407	{
408	  /* Altivec places the return value in "v2".  */
409	  regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
410	}
411      if (writebuf)
412	{
413	  /* Altivec places the return value in "v2".  */
414	  regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
415	}
416      return RETURN_VALUE_REGISTER_CONVENTION;
417    }
418  if (TYPE_LENGTH (type) == 8
419      && TYPE_CODE (type) == TYPE_CODE_ARRAY
420      && TYPE_VECTOR (type) && tdep->ppc_ev0_regnum >= 0)
421    {
422      /* The e500 ABI places return values for the 64-bit DSP types
423	 (__ev64_opaque__) in r3.  However, in GDB-speak, ev3
424	 corresponds to the entire r3 value for e500, whereas GDB's r3
425	 only corresponds to the least significant 32-bits.  So place
426	 the 64-bit DSP type's value in ev3.  */
427      if (readbuf)
428	regcache_cooked_read (regcache, tdep->ppc_ev0_regnum + 3, readbuf);
429      if (writebuf)
430	regcache_cooked_write (regcache, tdep->ppc_ev0_regnum + 3, writebuf);
431      return RETURN_VALUE_REGISTER_CONVENTION;
432    }
433  if (broken_gcc && TYPE_LENGTH (type) <= 8)
434    {
435      if (readbuf)
436	{
437	  /* GCC screwed up.  The last register isn't "left" aligned.
438	     Need to extract the least significant part of each
439	     register and then store that.  */
440	  /* Transfer any full words.  */
441	  int word = 0;
442	  while (1)
443	    {
444	      ULONGEST reg;
445	      int len = TYPE_LENGTH (type) - word * tdep->wordsize;
446	      if (len <= 0)
447		break;
448	      if (len > tdep->wordsize)
449		len = tdep->wordsize;
450	      regcache_cooked_read_unsigned (regcache,
451					     tdep->ppc_gp0_regnum + 3 + word,
452					     &reg);
453	      store_unsigned_integer (((bfd_byte *) readbuf
454				       + word * tdep->wordsize), len, reg);
455	      word++;
456	    }
457	}
458      if (writebuf)
459	{
460	  /* GCC screwed up.  The last register isn't "left" aligned.
461	     Need to extract the least significant part of each
462	     register and then store that.  */
463	  /* Transfer any full words.  */
464	  int word = 0;
465	  while (1)
466	    {
467	      ULONGEST reg;
468	      int len = TYPE_LENGTH (type) - word * tdep->wordsize;
469	      if (len <= 0)
470		break;
471	      if (len > tdep->wordsize)
472		len = tdep->wordsize;
473	      reg = extract_unsigned_integer (((const bfd_byte *) writebuf
474					       + word * tdep->wordsize), len);
475	      regcache_cooked_write_unsigned (regcache,
476					      tdep->ppc_gp0_regnum + 3 + word,
477					      reg);
478	      word++;
479	    }
480	}
481      return RETURN_VALUE_REGISTER_CONVENTION;
482    }
483  if (TYPE_LENGTH (type) <= 8)
484    {
485      if (readbuf)
486	{
487	  /* This matches SVr4 PPC, it does not match GCC.  */
488	  /* The value is right-padded to 8 bytes and then loaded, as
489	     two "words", into r3/r4.  */
490	  char regvals[MAX_REGISTER_SIZE * 2];
491	  regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3,
492				regvals + 0 * tdep->wordsize);
493	  if (TYPE_LENGTH (type) > tdep->wordsize)
494	    regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
495				  regvals + 1 * tdep->wordsize);
496	  memcpy (readbuf, regvals, TYPE_LENGTH (type));
497	}
498      if (writebuf)
499	{
500	  /* This matches SVr4 PPC, it does not match GCC.  */
501	  /* The value is padded out to 8 bytes and then loaded, as
502	     two "words" into r3/r4.  */
503	  char regvals[MAX_REGISTER_SIZE * 2];
504	  memset (regvals, 0, sizeof regvals);
505	  memcpy (regvals, writebuf, TYPE_LENGTH (type));
506	  regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3,
507				 regvals + 0 * tdep->wordsize);
508	  if (TYPE_LENGTH (type) > tdep->wordsize)
509	    regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
510				   regvals + 1 * tdep->wordsize);
511	}
512      return RETURN_VALUE_REGISTER_CONVENTION;
513    }
514  return RETURN_VALUE_STRUCT_CONVENTION;
515}
516
517enum return_value_convention
518ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype,
519			   struct regcache *regcache, void *readbuf,
520			   const void *writebuf)
521{
522  return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
523				   writebuf, 0);
524}
525
526enum return_value_convention
527ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch,
528				  struct type *valtype,
529				  struct regcache *regcache,
530				  void *readbuf, const void *writebuf)
531{
532  return do_ppc_sysv_return_value (gdbarch, valtype, regcache, readbuf,
533				   writebuf, 1);
534}
535
536/* Pass the arguments in either registers, or in the stack. Using the
537   ppc 64 bit SysV ABI.
538
539   This implements a dumbed down version of the ABI.  It always writes
540   values to memory, GPR and FPR, even when not necessary.  Doing this
541   greatly simplifies the logic. */
542
543CORE_ADDR
544ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
545				struct regcache *regcache, CORE_ADDR bp_addr,
546				int nargs, struct value **args, CORE_ADDR sp,
547				int struct_return, CORE_ADDR struct_addr)
548{
549  CORE_ADDR func_addr = find_function_addr (function, NULL);
550  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
551  /* By this stage in the proceedings, SP has been decremented by "red
552     zone size" + "struct return size".  Fetch the stack-pointer from
553     before this and use that as the BACK_CHAIN.  */
554  const CORE_ADDR back_chain = read_sp ();
555  /* See for-loop comment below.  */
556  int write_pass;
557  /* Size of the Altivec's vector parameter region, the final value is
558     computed in the for-loop below.  */
559  LONGEST vparam_size = 0;
560  /* Size of the general parameter region, the final value is computed
561     in the for-loop below.  */
562  LONGEST gparam_size = 0;
563  /* Kevin writes ... I don't mind seeing tdep->wordsize used in the
564     calls to align_up(), align_down(), etc.  because this makes it
565     easier to reuse this code (in a copy/paste sense) in the future,
566     but it is a 64-bit ABI and asserting that the wordsize is 8 bytes
567     at some point makes it easier to verify that this function is
568     correct without having to do a non-local analysis to figure out
569     the possible values of tdep->wordsize.  */
570  gdb_assert (tdep->wordsize == 8);
571
572  /* Go through the argument list twice.
573
574     Pass 1: Compute the function call's stack space and register
575     requirements.
576
577     Pass 2: Replay the same computation but this time also write the
578     values out to the target.  */
579
580  for (write_pass = 0; write_pass < 2; write_pass++)
581    {
582      int argno;
583      /* Next available floating point register for float and double
584         arguments.  */
585      int freg = 1;
586      /* Next available general register for non-vector (but possibly
587         float) arguments.  */
588      int greg = 3;
589      /* Next available vector register for vector arguments.  */
590      int vreg = 2;
591      /* The address, at which the next general purpose parameter
592         (integer, struct, float, ...) should be saved.  */
593      CORE_ADDR gparam;
594      /* Address, at which the next Altivec vector parameter should be
595         saved.  */
596      CORE_ADDR vparam;
597
598      if (!write_pass)
599	{
600	  /* During the first pass, GPARAM and VPARAM are more like
601	     offsets (start address zero) than addresses.  That way
602	     the accumulate the total stack space each region
603	     requires.  */
604	  gparam = 0;
605	  vparam = 0;
606	}
607      else
608	{
609	  /* Decrement the stack pointer making space for the Altivec
610	     and general on-stack parameters.  Set vparam and gparam
611	     to their corresponding regions.  */
612	  vparam = align_down (sp - vparam_size, 16);
613	  gparam = align_down (vparam - gparam_size, 16);
614	  /* Add in space for the TOC, link editor double word,
615	     compiler double word, LR save area, CR save area.  */
616	  sp = align_down (gparam - 48, 16);
617	}
618
619      /* If the function is returning a `struct', then there is an
620         extra hidden parameter (which will be passed in r3)
621         containing the address of that struct..  In that case we
622         should advance one word and start from r4 register to copy
623         parameters.  This also consumes one on-stack parameter slot.  */
624      if (struct_return)
625	{
626	  if (write_pass)
627	    regcache_cooked_write_signed (regcache,
628					  tdep->ppc_gp0_regnum + greg,
629					  struct_addr);
630	  greg++;
631	  gparam = align_up (gparam + tdep->wordsize, tdep->wordsize);
632	}
633
634      for (argno = 0; argno < nargs; argno++)
635	{
636	  struct value *arg = args[argno];
637	  struct type *type = check_typedef (VALUE_TYPE (arg));
638	  char *val = VALUE_CONTENTS (arg);
639	  if (TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) <= 8)
640	    {
641	      /* Floats and Doubles go in f1 .. f13.  They also
642	         consume a left aligned GREG,, and can end up in
643	         memory.  */
644	      if (write_pass)
645		{
646		  if (ppc_floating_point_unit_p (current_gdbarch)
647		      && freg <= 13)
648		    {
649		      char regval[MAX_REGISTER_SIZE];
650		      struct type *regtype
651                        = register_type (gdbarch, tdep->ppc_fp0_regnum);
652		      convert_typed_floating (val, type, regval, regtype);
653		      regcache_cooked_write (regcache,
654                                             tdep->ppc_fp0_regnum + freg,
655					     regval);
656		    }
657		  if (greg <= 10)
658		    {
659		      /* The ABI states "Single precision floating
660		         point values are mapped to the first word in
661		         a single doubleword" and "... floating point
662		         values mapped to the first eight doublewords
663		         of the parameter save area are also passed in
664		         general registers").
665
666		         This code interprets that to mean: store it,
667		         left aligned, in the general register.  */
668		      char regval[MAX_REGISTER_SIZE];
669		      memset (regval, 0, sizeof regval);
670		      memcpy (regval, val, TYPE_LENGTH (type));
671		      regcache_cooked_write (regcache,
672					     tdep->ppc_gp0_regnum + greg,
673					     regval);
674		    }
675		  write_memory (gparam, val, TYPE_LENGTH (type));
676		}
677	      /* Always consume parameter stack space.  */
678	      freg++;
679	      greg++;
680	      gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
681	    }
682	  else if (TYPE_LENGTH (type) == 16 && TYPE_VECTOR (type)
683		   && TYPE_CODE (type) == TYPE_CODE_ARRAY
684		   && tdep->ppc_vr0_regnum >= 0)
685	    {
686	      /* In the Altivec ABI, vectors go in the vector
687	         registers v2 .. v13, or when that runs out, a vector
688	         annex which goes above all the normal parameters.
689	         NOTE: cagney/2003-09-21: This is a guess based on the
690	         PowerOpen Altivec ABI.  */
691	      if (vreg <= 13)
692		{
693		  if (write_pass)
694		    regcache_cooked_write (regcache,
695					   tdep->ppc_vr0_regnum + vreg, val);
696		  vreg++;
697		}
698	      else
699		{
700		  if (write_pass)
701		    write_memory (vparam, val, TYPE_LENGTH (type));
702		  vparam = align_up (vparam + TYPE_LENGTH (type), 16);
703		}
704	    }
705	  else if ((TYPE_CODE (type) == TYPE_CODE_INT
706		    || TYPE_CODE (type) == TYPE_CODE_ENUM)
707		   && TYPE_LENGTH (type) <= 8)
708	    {
709	      /* Scalars get sign[un]extended and go in gpr3 .. gpr10.
710	         They can also end up in memory.  */
711	      if (write_pass)
712		{
713		  /* Sign extend the value, then store it unsigned.  */
714		  ULONGEST word = unpack_long (type, val);
715		  if (greg <= 10)
716		    regcache_cooked_write_unsigned (regcache,
717						    tdep->ppc_gp0_regnum +
718						    greg, word);
719		  write_memory_unsigned_integer (gparam, tdep->wordsize,
720						 word);
721		}
722	      greg++;
723	      gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
724	    }
725	  else
726	    {
727	      int byte;
728	      for (byte = 0; byte < TYPE_LENGTH (type);
729		   byte += tdep->wordsize)
730		{
731		  if (write_pass && greg <= 10)
732		    {
733		      char regval[MAX_REGISTER_SIZE];
734		      int len = TYPE_LENGTH (type) - byte;
735		      if (len > tdep->wordsize)
736			len = tdep->wordsize;
737		      memset (regval, 0, sizeof regval);
738		      /* WARNING: cagney/2003-09-21: As best I can
739		         tell, the ABI specifies that the value should
740		         be left aligned.  Unfortunately, GCC doesn't
741		         do this - it instead right aligns even sized
742		         values and puts odd sized values on the
743		         stack.  Work around that by putting both a
744		         left and right aligned value into the
745		         register (hopefully no one notices :-^).
746		         Arrrgh!  */
747		      /* Left aligned (8 byte values such as pointers
748		         fill the buffer).  */
749		      memcpy (regval, val + byte, len);
750		      /* Right aligned (but only if even).  */
751		      if (len == 1 || len == 2 || len == 4)
752			memcpy (regval + tdep->wordsize - len,
753				val + byte, len);
754		      regcache_cooked_write (regcache, greg, regval);
755		    }
756		  greg++;
757		}
758	      if (write_pass)
759		/* WARNING: cagney/2003-09-21: Strictly speaking, this
760		   isn't necessary, unfortunately, GCC appears to get
761		   "struct convention" parameter passing wrong putting
762		   odd sized structures in memory instead of in a
763		   register.  Work around this by always writing the
764		   value to memory.  Fortunately, doing this
765		   simplifies the code.  */
766		write_memory (gparam, val, TYPE_LENGTH (type));
767	      /* Always consume parameter stack space.  */
768	      gparam = align_up (gparam + TYPE_LENGTH (type), tdep->wordsize);
769	    }
770	}
771
772      if (!write_pass)
773	{
774	  /* Save the true region sizes ready for the second pass.  */
775	  vparam_size = vparam;
776	  /* Make certain that the general parameter save area is at
777	     least the minimum 8 registers (or doublewords) in size.  */
778	  if (greg < 8)
779	    gparam_size = 8 * tdep->wordsize;
780	  else
781	    gparam_size = gparam;
782	}
783    }
784
785  /* Update %sp.   */
786  regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
787
788  /* Write the backchain (it occupies WORDSIZED bytes).  */
789  write_memory_signed_integer (sp, tdep->wordsize, back_chain);
790
791  /* Point the inferior function call's return address at the dummy's
792     breakpoint.  */
793  regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
794
795  /* Find a value for the TOC register.  Every symbol should have both
796     ".FN" and "FN" in the minimal symbol table.  "FN" points at the
797     FN's descriptor, while ".FN" points at the entry point (which
798     matches FUNC_ADDR).  Need to reverse from FUNC_ADDR back to the
799     FN's descriptor address (while at the same time being careful to
800     find "FN" in the same object file as ".FN").  */
801  {
802    /* Find the minimal symbol that corresponds to FUNC_ADDR (should
803       have the name ".FN").  */
804    struct minimal_symbol *dot_fn = lookup_minimal_symbol_by_pc (func_addr);
805    if (dot_fn != NULL && SYMBOL_LINKAGE_NAME (dot_fn)[0] == '.')
806      {
807	/* Get the section that contains FUNC_ADR.  Need this for the
808           "objfile" that it contains.  */
809	struct obj_section *dot_fn_section = find_pc_section (func_addr);
810	if (dot_fn_section != NULL && dot_fn_section->objfile != NULL)
811	  {
812	    /* Now find the corresponding "FN" (dropping ".") minimal
813	       symbol's address.  Only look for the minimal symbol in
814	       ".FN"'s object file - avoids problems when two object
815	       files (i.e., shared libraries) contain a minimal symbol
816	       with the same name.  */
817	    struct minimal_symbol *fn =
818	      lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (dot_fn) + 1, NULL,
819				     dot_fn_section->objfile);
820	    if (fn != NULL)
821	      {
822		/* Got the address of that descriptor.  The TOC is the
823		   second double word.  */
824		CORE_ADDR toc =
825		  read_memory_unsigned_integer (SYMBOL_VALUE_ADDRESS (fn)
826						+ tdep->wordsize,
827						tdep->wordsize);
828		regcache_cooked_write_unsigned (regcache,
829						tdep->ppc_gp0_regnum + 2, toc);
830	      }
831	  }
832      }
833  }
834
835  return sp;
836}
837
838
839/* The 64 bit ABI retun value convention.
840
841   Return non-zero if the return-value is stored in a register, return
842   0 if the return-value is instead stored on the stack (a.k.a.,
843   struct return convention).
844
845   For a return-value stored in a register: when WRITEBUF is non-NULL,
846   copy the buffer to the corresponding register return-value location
847   location; when READBUF is non-NULL, fill the buffer from the
848   corresponding register return-value location.  */
849enum return_value_convention
850ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct type *valtype,
851			     struct regcache *regcache, void *readbuf,
852			     const void *writebuf)
853{
854  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
855
856  /* This function exists to support a calling convention that
857     requires floating-point registers.  It shouldn't be used on
858     processors that lack them.  */
859  gdb_assert (ppc_floating_point_unit_p (gdbarch));
860
861  /* Floats and doubles in F1.  */
862  if (TYPE_CODE (valtype) == TYPE_CODE_FLT && TYPE_LENGTH (valtype) <= 8)
863    {
864      char regval[MAX_REGISTER_SIZE];
865      struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
866      if (writebuf != NULL)
867	{
868	  convert_typed_floating (writebuf, valtype, regval, regtype);
869	  regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
870	}
871      if (readbuf != NULL)
872	{
873	  regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
874	  convert_typed_floating (regval, regtype, readbuf, valtype);
875	}
876      return RETURN_VALUE_REGISTER_CONVENTION;
877    }
878  if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 8)
879    {
880      /* Integers in r3.  */
881      if (writebuf != NULL)
882	{
883	  /* Be careful to sign extend the value.  */
884	  regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
885					  unpack_long (valtype, writebuf));
886	}
887      if (readbuf != NULL)
888	{
889	  /* Extract the integer from r3.  Since this is truncating the
890	     value, there isn't a sign extension problem.  */
891	  ULONGEST regval;
892	  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
893					 &regval);
894	  store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
895	}
896      return RETURN_VALUE_REGISTER_CONVENTION;
897    }
898  /* All pointers live in r3.  */
899  if (TYPE_CODE (valtype) == TYPE_CODE_PTR)
900    {
901      /* All pointers live in r3.  */
902      if (writebuf != NULL)
903	regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
904      if (readbuf != NULL)
905	regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, readbuf);
906      return RETURN_VALUE_REGISTER_CONVENTION;
907    }
908  if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
909      && TYPE_LENGTH (valtype) <= 8
910      && TYPE_CODE (TYPE_TARGET_TYPE (valtype)) == TYPE_CODE_INT
911      && TYPE_LENGTH (TYPE_TARGET_TYPE (valtype)) == 1)
912    {
913      /* Small character arrays are returned, right justified, in r3.  */
914      int offset = (register_size (gdbarch, tdep->ppc_gp0_regnum + 3)
915		    - TYPE_LENGTH (valtype));
916      if (writebuf != NULL)
917	regcache_cooked_write_part (regcache, tdep->ppc_gp0_regnum + 3,
918				    offset, TYPE_LENGTH (valtype), writebuf);
919      if (readbuf != NULL)
920	regcache_cooked_read_part (regcache, tdep->ppc_gp0_regnum + 3,
921				   offset, TYPE_LENGTH (valtype), readbuf);
922      return RETURN_VALUE_REGISTER_CONVENTION;
923    }
924  /* Big floating point values get stored in adjacent floating
925     point registers.  */
926  if (TYPE_CODE (valtype) == TYPE_CODE_FLT
927      && (TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 32))
928    {
929      if (writebuf || readbuf != NULL)
930	{
931	  int i;
932	  for (i = 0; i < TYPE_LENGTH (valtype) / 8; i++)
933	    {
934	      if (writebuf != NULL)
935		regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
936				       (const bfd_byte *) writebuf + i * 8);
937	      if (readbuf != NULL)
938		regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
939				      (bfd_byte *) readbuf + i * 8);
940	    }
941	}
942      return RETURN_VALUE_REGISTER_CONVENTION;
943    }
944  /* Complex values get returned in f1:f2, need to convert.  */
945  if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX
946      && (TYPE_LENGTH (valtype) == 8 || TYPE_LENGTH (valtype) == 16))
947    {
948      if (regcache != NULL)
949	{
950	  int i;
951	  for (i = 0; i < 2; i++)
952	    {
953	      char regval[MAX_REGISTER_SIZE];
954	      struct type *regtype =
955		register_type (current_gdbarch, tdep->ppc_fp0_regnum);
956	      if (writebuf != NULL)
957		{
958		  convert_typed_floating ((const bfd_byte *) writebuf +
959					  i * (TYPE_LENGTH (valtype) / 2),
960					  valtype, regval, regtype);
961		  regcache_cooked_write (regcache,
962                                         tdep->ppc_fp0_regnum + 1 + i,
963					 regval);
964		}
965	      if (readbuf != NULL)
966		{
967		  regcache_cooked_read (regcache,
968                                        tdep->ppc_fp0_regnum + 1 + i,
969                                        regval);
970		  convert_typed_floating (regval, regtype,
971					  (bfd_byte *) readbuf +
972					  i * (TYPE_LENGTH (valtype) / 2),
973					  valtype);
974		}
975	    }
976	}
977      return RETURN_VALUE_REGISTER_CONVENTION;
978    }
979  /* Big complex values get stored in f1:f4.  */
980  if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX && TYPE_LENGTH (valtype) == 32)
981    {
982      if (regcache != NULL)
983	{
984	  int i;
985	  for (i = 0; i < 4; i++)
986	    {
987	      if (writebuf != NULL)
988		regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1 + i,
989				       (const bfd_byte *) writebuf + i * 8);
990	      if (readbuf != NULL)
991		regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1 + i,
992				      (bfd_byte *) readbuf + i * 8);
993	    }
994	}
995      return RETURN_VALUE_REGISTER_CONVENTION;
996    }
997  return RETURN_VALUE_STRUCT_CONVENTION;
998}
999
1000CORE_ADDR
1001ppc64_sysv_abi_adjust_breakpoint_address (struct gdbarch *gdbarch,
1002					  CORE_ADDR bpaddr)
1003{
1004  /* PPC64 SYSV specifies that the minimal-symbol "FN" should point at
1005     a function-descriptor while the corresponding minimal-symbol
1006     ".FN" should point at the entry point.  Consequently, a command
1007     like "break FN" applied to an object file with only minimal
1008     symbols, will insert the breakpoint into the descriptor at "FN"
1009     and not the function at ".FN".  Avoid this confusion by adjusting
1010     any attempt to set a descriptor breakpoint into a corresponding
1011     function breakpoint.  Note that GDB warns the user when this
1012     adjustment is applied - that's ok as otherwise the user will have
1013     no way of knowing why their breakpoint at "FN" resulted in the
1014     program stopping at ".FN".  */
1015  return gdbarch_convert_from_func_ptr_addr (gdbarch, bpaddr, &current_target);
1016}
1017